
A Tale of Two Tasks: Automated Issue Priority Prediction with
Deep Multi-task Learning

Yingling Li∗
The Key Laboratory for Computer
Systems of State Ethnic Affairs
Commission, Southwest Minzu

University, China
80300053@swun.edu.cn

Xing Che∗
University of Chinese Academy of
Sciences; Institute of Software
Chinese Academy of Sciences;
Sichuan University, China

24744873@qq.com

Yuekai Huang
University of Chinese Academy of
Sciences; Institute of Software

Chinese Academy of Sciences, China
huangyuekai18@mails.ucas.ac.cn

Junjie Wang†
Institute of Software Chinese
Academy of Sciences, Beijing

junjie@iscas.ac.cn

Song Wang
York University, Canada
wangsong@yorku.ca

Yawen Wang
Institute of Software Chinese
Academy of Sciences, China
yawen2018@iscas.ac.cn

Qing Wang†
Institute of Software Chinese
Academy of Sciences, China

wq@iscas.ac.cn

ABSTRACT
Background. Issues are prevalent, and identifying the correct pri-
ority of the reported issues is crucial to reduce the maintenance
effort and ensure higher software quality. There are several ap-
proaches for the automatic priority prediction, yet they do not fully
utilize the related information that might influence the priority
assignment. Our observation reveals that there are noticeable cor-
relations between an issue’s priority and its category, e.g., an issue
of bug category tends to be assigned with higher priority than
an issue of document category. This correlation motivates us to
employ multi-task learning to share the knowledge about issue’s
category prediction and facilitating priority prediction.

Aims. This paper aims at providing an automatic approach for
effective issue’s priority prediction, to reduce the burden of the
project members and better manage the issues.

Method. We propose issue priority prediction approach PRIMA
with deep multi-task learning, which takes the issue category pre-
diction as another task to facilitate the information sharing and
learning. It consists of three main phases: 1) data preparation and
augmentation phase, which allows data sharing beyond single task
learning; 2) model construction phase, which designs shared layers
to encode the semantics of textual descriptions, and task-specific
layers to model two tasks in parallel; it also includes the indica-
tive attributes to better capture an issue’s inherent meaning; 3)
∗Co-first author
†Corresponding author

This work is licensed under a Creative Commons Attribution International
4.0 License.

ESEM ’22, September 19–23, 2022, Helsinki, Finland
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9427-7/22/09.
https://doi.org/10.1145/3544902.3546257

model training phase, which enables eavesdropping by shared loss
function between two tasks.

Results. Evaluations with four large-scale open-source projects
show that PRIMA outperforms commonly-used and state-of-the-art
baselines, with 32% -55% higher precision, and 28% - 56% higher
recall. Compared with single task learning, the performance im-
provement reaches 18% in precision and 19% in recall. Results from
our user study further prove its potential practical value.

Conclusions. The proposed approach provides a novel and ef-
fective way for issue priority prediction, and sheds light on jointly
exploring other issue-management tasks.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

ACM Reference Format:
Yingling Li, Xing Che, Yuekai Huang, Junjie Wang, Song Wang, Yawen
Wang, and Qing Wang. 2022. A Tale of Two Tasks: Automated Issue Priority
Prediction with Deep Multi-task Learning. In ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM)
(ESEM ’22), September 19–23, 2022, Helsinki, Finland. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3544902.3546257

1 INTRODUCTION
Issues can emerge at any time during software development, while
effectively managing and fixing issues are critical for ensuring
higher software quality. Yet, the issues can vary considerably as
some of them are critical enough to require immediate action,
whereas others are minor and can be handled later. Identifying
the correct priority of the reported issues is important in direct-
ing the software corrective maintenance effort and contributing to
creating more stable software systems [1, 7, 27, 29, 38].

Assigning the issue priority is a time-consuming and non-trivial
task, considering the large number of issues submitted in a software

1

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544902.3546257
https://doi.org/10.1145/3544902.3546257
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544902.3546257&domain=pdf&date_stamp=2022-09-19

ESEM ’22, September 19–23, 2022, Helsinki, Finland Li et al.

product, the complexity of the issue description, etc. Taking Kuber-
netes (an open-source system with 87.6k stars for managing con-
tainerized applications across multiple hosts) as an example, there
are 8,480 issue reports submitted from 04/01/2021 to 04/01/2022,
which means that this project can receive more than 23 new issue
reports a day on average. In addition, each issue report has approx-
imately 945 terms (for the Kubernetes project) mixed with code
examples and stack traces in describing the encouraged defects.
We also observe that for an issue report, it takes an average of
79 days to firstly assign the priority in an open-source project as
Kubernetes. More than that, the priority of an issue report can also
change in 35% of circumstances after the first assignment, due to the
inappropriate priority assignment. Taken in this sense, automated
priority prediction would be of great value.

Previous studies have proposed various approaches for the auto-
mated priority prediction [7, 26, 27, 29, 33]. Tian et al. [26, 27] ex-
tracted features from six dimensions, i.e., temporal, textual, author,
related-report, severity, and product, and built a machine learning
model for priority prediction. Umer et al. [29] utilized convolutional
neural network to implement an automated priority assignment
model, which can eliminate the efforts for feature definition. Fang
et al. [7] proposed to utilize graph convolutional networks to better
model the term’s semantics for priority prediction.

Nevertheless, these aforementioned approaches either directly
utilize the extracted features for machine learning, or only employ
the textual information for deep learning, both of which do not
fully utilize the related information that might influence the priority
assignment. Our observations from real-world open-source projects
reveal that there are some noticeable correlations between an issue’s
priority and its other attributes such as report category, e.g., an issue
with bug category tends to be assigned with a higher priority than
the issue with documentation category. Specifically, an issue report
of bug category has a correlation of 0.34 with the priority high,
while the correlation between document category and high priority
is only 0.02 for project amphtml (a web component framework).
These correlations could help take better advantage of the training
data and boost the prediction performance.

Motivated by the correlation, this study proposes to adopt deep
multi-task learning techniques, in which multiple learning tasks
are solved at the same time, while exploiting both commonalities
and differences across tasks, thereby increasing efficiency and pre-
diction accuracy.

This paper proposes an effective issue PRIority prediction ap-
proach with deep Multi-tAsk learning named PRIMA, which takes
the issue category prediction as the second task to facilitate the
learning of priority. It consists of three main phrases, (1) data prepa-
ration and augmentation phase, for allowing data sharing beyond
single task learning; (2) model construction phase, for constructing
the multi-task model for priority prediction and category predic-
tion tasks; (3) model training phase, for enabling eavesdropping
by shared loss function between two related tasks. Furthermore,
during model construction, we design word embedding and context
embedding layers to better encode the issue textual descriptions,
and include the indicative attributes extracted from historical is-
sue reports to better model the issue’s semantics and boost the
performance.

Evaluation results with four large-scale open-source projects
show that PRIMA outperforms two commonly-used and state-of-
the-art baselines, with the precision of 73% (32% - 55% higher than
baselines) and recall of 72% (28% - 56% higher than baselines). Specif-
ically, by jointly learning the two tasks, the performance of PRIMA
increases precision by 18% and recall by 19% compared with single
task learning. The inclusion of indicative attributes in the model
boosts the precision by 8% and recall by 7%. Furthermore, we con-
duct a field evaluation on the newly-reported issues on GitHub to
evaluate its potential practicability in real-world practice. Specif-
ically, we run our prediction model on 18 newly-reported issues,
and then send the predicted priority label through issue’s comment
to developers for confirmation. Among the 8 responses, 6 issues are
confirmed as correct, which further proves the potential practical
value of this work.

The proposed approach provides an effective way to jointly learn
the above two related tasks, and it can also be adopted/tailored to
other issue report management tasks to better support the issue
exploration and quality improvement.

The main contributions of this paper are as follows:
• The investigation of the correlation between issue priority
prediction and category prediction tasks, which motivates
the application of the deep multi-task learning in advancing
issue priority prediction.

• PRIMA—a deep multi-task learning approach with shared
layers for sharing information and task-specific layers for
jointly learning priority prediction and category prediction
tasks. PRIMA also incorporates indicative attributes together
with textual descriptions in the model.

• The evaluation of PRIMA on 14,682 issue reports from four
large-scale open-source projects and user study in real-world
practice, with affirmative results.

• Publicly accessible dataset for replication and source code
to facilitate applications in other scenarios1.

2 BACKGROUND AND MOTIVATION
2.1 Background
Multi-task Learning (MTL) is an approach that can improve the
generalization of themain task by sharing the domain-specific infor-
mation contained in the training signals of related tasks [4]. Many
recent deep learning approaches have used MTL either explicitly
or implicitly as part of their models. For example, MTL has been
applied successfully in natural language processing (NLP), speech
recognition to computer vision [5, 21, 36].

Figure 1: Two typical approaches of MTL.

1https://github.com/piexpe/Multi-task_priority

2

A Tale of Two Tasks: Automated Issue Priority Prediction with Deep Multi-task Learning ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 1: Current status of priority assignment

Project #days(first assign) %changed #days(final assign)

kubernetes 14.52 7.53 22.62

minikube 26.90 24.65 65.90

zephyr 48.36 7.17 51.70

amphtml 38.83 17.09 73.36

So far, there are two most typical ways to perform MTL in the
context of deep learning: hard or soft parameter sharing of hidden
layers [22], as shown in Figure 1. Hard parameter sharing [3] is
the most commonly-used MTL paradigm in deep neural networks.
This paradigm consists of two parts in constructing the network,
i.e., shared layers and task-specific layers. Through the shared
layers, the generally hidden vectors for input could be obtained.
The hidden vectors are used as the input of the task-specific layers
for many related tasks. After that, the shared information among
tasks is learned by optimizing model parameters using the joint loss
function. This structure can greatly reduce the risk of over-fitting.
In the soft parameter sharing paradigm, each task has its own
model with its own parameters, where the distance between the
parameters of the model is regularized by regularization techniques
[6, 35] to make the parameters similar. In our context, since these
two tasks share the same inputs, (i.e., the review issue descriptions),
they are naturally suitable for the hard parameter sharing, (i.e.,
sharing the same representation layer and processing multiple
tasks in the task-specific layers). Therefore, we choose the hard
parameter sharing for jointly learning.

2.2 Observations about Priority Assignment in
Real-world OSS Projects

Based on the issue reports of four large-scale open-source projects
(as shown in Section 4.2 and Table 4), we derive the following
observations which motivate this study.

2.2.1 Dilemma of Priority Assignment. There are a large num-
ber of issue reports submitted in an open-source project each day,
especially for the large projects. In real-world practice, assigning
the priority for the emerging issue reports is a time-consuming and
non-trivial task [7, 26, 27, 29].

As shown in Table 1, it takes an average of 26 days for a report to
be assigned first priority in minikube project, while this number is
38 for issues in amphtml project. Furthermore, in 24% and 17% cases,
an issue report’s priority changes in these two projects, and it takes
an average of 65 and 73 days for an issue report to be assigned the
correct priority for these two projects respectively. This implies the
inefficiency of current practice of priority allocation and indicates
the need for the automatic support.

2.2.2 Challenges in Priority Assignment. To accurately and
completely describe the encountered issues, an issue report is gen-
erally long and usually has code examples, stack traces, etc.

As shown in Table 2, each issue report is described with an
average of 149 terms in kubernetes project, and the number of terms
is 1,091 for minikube project. Meanwhile, a typical issue report

would contain one or two code examples (i.e., we roughly count
the code examples with <code> tag), described with an average of
29 to 600 terms.

This exerts great challenges for assigning correct priority for
an issue, e.g., one needs to read through the whole description,
speculate the possible influence scope, assess other reports’ status,
etc. Meanwhile, it also suggests the practical need for understanding
the semantics of the descriptions for better priority assignment.

Table 2: Statistics of issue reports

Project #terms #<code> #terms in <code>

kubernetes 149.48 1.89 60.51

minikube 1091.13 2.93 600.81

zephyr 260.26 1.58 138.85

amphtml 116.9 2.02 29.56

Document Features Bug

High

Mid

Low
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a) kubernetes

Document Features Bug

High

Mid

Low

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

(b) minikube

Document Features Bug

High

Mid

Low
0.05

0.10

0.15

0.20

0.25

0.30

(c) amphtml

Document Features Bug

High

Mid

Low 0.05

0.10

0.15

0.20

0.25

0.30

(d) zephyr

Figure 2: Correlation between issue’s priority and its cate-
gory

2.2.3 Correlation between An Issue’s Priority and Its Cate-
gory. Besides the textual descriptions of an issue report, we assume
there might be other information that potentially implies the impor-
tance of the issue. For example, issue reports describing bugs might
be prioritized higher than the issue reports for the feature requests.
Taken in this sense, we investigate the correlation between issue’s
priority and its category, as shown in Figure 2. Note that, in this
study, we focus on the top three most commonly used categories,
i.e., bug, feature, and document. We can see that, in three of the

3

ESEM ’22, September 19–23, 2022, Helsinki, Finland Li et al.

four projects, bug category is most correlated with the high priority.
And in all four projects, document category is least correlated with
the high priority, while has a relatively large correlation with the
lowest priority. We believe the correlation information can serve
as important clues for the priority assignment.

In summary, the first and second observations reveal that pri-
ority assignment is time-consuming and difficult, which motivates
the need for the automatic approach for priority assignment. It also
suggests the need for the effective semantic modeling and under-
standing so that the inherent meaning can be precisely captured.
The third observation implies that the priority and issue category
are correlated to some extent, which motivates us to employ multi-
task learning for the priority prediction.

3 APPROACH
Motivated by the observations in Section 2.2, we propose an issue
PRIority prediction approach with deep Multi-tAsk learning named
PRIMA, which conducts the priority prediction and category pre-
diction simultaneously.

As shown in Figure 3, the proposed approach, PRIMA, consists of
three main phases: (1) data preparation and augmentation phase, for
data preparation and augmentation to allow data sharing beyond
single task learning; (2) model construction phase, for constructing
the multi-task model for priority predication and category predica-
tion tasks; and (3) model training phase, enabling eavesdropping by
shared loss function between the two related tasks. During model
construction, we design word embedding and context embedding
layers to better encode the issue textual descriptions, and include
the indicative attributes extracted from historical issue reports to
better model issue’s semantics and boost the performance. We will
present details on each of the three phases next.

3.1 Data Preparation and Augmentation
In this step, each issue report will be processed, and introduced with
augmented information beyond the scope of single task learning.

3.1.1 Data Pre-processing. The raw issue reports are generally
described with textual descriptions mixed with console messages,
URLs, etc. Inappropriate processing may lead to the missing of
useful description, or the introduction of the noise information.
We first combine the title and description as the new descriptions.
Then we use a regular expression to replace the URL with the token
<url>, in order to help the model unify its understanding. Third,
we tokenize the descriptions with ark-twokenize2, which helps
extract more useful information from the descriptions, e.g., splitting
the method name following camel naming convention, matching
the operator for better splitting the code statement. Fourth, we
apply data cleaning for the special character removal and lowercase
conversion.

3.1.2 Indicative Attributes Extraction. Since previous work re-
vealed that certain factors such as the authors of an issue can in-
dicate the issue’s priority [27]. Following the existing study, we
extract 17 features involving three dimensions, i.e., temporal, author,
and related-report (as shown in Table 3), from the issue reports to
add to the learning model.
2https://github.com/myleott/ark-twokenize-py

For the temporal dimension, the features measure the time-
related tendency of priority assignment, i.e., the number of issue
reports that are reported with the highest priority in the last x
day(s). We vary the values of x, i.e., 1 day, 3 days, 7 days and 30
days, to get four features. Intuitively, there are usually a large num-
ber of critical issues submitted after the release of new versions,
and during the period, a newly reported issue is more likely to be
assigned with a higher priority.

For the author dimension, we capture the average and median
priority of the issue reports, and the total number of issue reports
reported by the author before this report. Intuitively, if an author
always reports high priority issues, she/hemight continue reporting
high priority issues.

For the related-report dimension, we capture the average and
median priority of the top-k most similar issue reports. We vary the
value k to create features 8-17. Considering that the similar issue
reports might be assigned the same priority, we employ them to help
decide the issue’s priority. To measure the similarity of two issue
reports, we train a word2vec [20] model with all the experimental
issue reports in training data. Then we represent the issue report
as the average of all the individual word vectors of its contained
terms, then the similarity between two reports is measured using
the cosine distance of the two vectors.

3.1.3 Data Label Sharing. Designed based on supervised learn-
ing, each issue report comes with the ground-truth labels for the
priority prediction and category classification tasks respectively.
At the outset, PRIMA allows sharing labels across related tasks.
Thus, the issue report is explicitly augmented in the following two
aspects.

Augmented priority prediction data: by sharing labels, the data
used to train the priority prediction task layers is automatically
augmented by including additional information on issue’s cate-
gories. The original priority prediction data are the issue reports
themselves, and the augmented data are the reports with their issue
categories.

Augmented category classification data: similarly, the data used
to train category classification task layers is augmented by adding
the priority of the issue report.

3.2 Model Construction
The model consists of two parts, i.e., the shared layers and two
task-oriented layers, with details in Figure 4. The shared layers are
to encode the issue reports, where we employ the word embedding
layer and context embedding layer to better capture the semantics
and contextual information of the issue. Then we solve two tasks
with task-oriented layers respectively. Furthermore, we fuse the
indicative attributes extracted from the past issue reports in our
model to further boost the priority prediction.

3.2.1 Shared Layers Learning. To better capture the semantic
meaning of the issue report, PRIMA designs two types of shared
layers, i.e., word embedding layer, which encodes each token in
the input into a semantic vector; context embedding layer, which
introduces the contextual information of the input in the represen-
tation learning and produces the contextual semantic vector for
each input token.

4

A Tale of Two Tasks: Automated Issue Priority Prediction with Deep Multi-task Learning ESEM ’22, September 19–23, 2022, Helsinki, Finland

C
o

n
textu

al
E

m
b

ed
d

in
g A
tten

tio
n

cell

FC
FC

…
…

…
…

V.S.

Prediction
Ground

Truth

V.S.

Prediction
Ground

Truth

Shared Loss

Function

Indicative Attributes

Extraction

Data Pre-processing

Issue

reports

Attribute

Fusion

Data preparation and
augmentation

Model Construction Model Training

Category prediction task

Priority prediction task

Data Label

Sharing

W
o

rd
E

m
b

ed
d

in
g

Shared layers Task-oriented Layers

M
ax

p
o

o
lin

g

𝑷
(𝒄

𝒚
𝟏 |𝑹

)
𝑷
(𝒄

𝒚
𝒏 |𝑹

)
𝑷
(𝒑

𝒙
𝟏 |𝑹

)
𝑷
(𝒑

𝒙
𝒏 |𝑹

)

Figure 3: Overview of PRIMA

Table 3: Overview of features

Dimension Feature Description

Temporal 1 - 4 Number of issue reports assigned with the highest priority within 1 / 3 / 7 / 30 days before this report

Author
5, 6 Average / Median priority of issue reports reported by this author before this report
7 Total number of issue reports reported by this author before this report

Related-Report

8, 9 Average / Median priority of the top-1 most similar issue reports with this report
10, 11 Average / Median priority of the top-3 most similar issue reports with this report
12, 13 Average / Median priority of the top-5 most similar issue reports with this report
14, 15 Average / Median priority of the top-10 most similar issue reports with this report
16, 17 Average / Median priority of the top-20 most similar issue reports with this report

Word embedding layer. The purpose of this layer is to encode
each token in the issue report as a semantic vector. PRIMA employs
a domain-specific pre-train BERT model [25] to encode the tokens
in issue reports. It has 12 layers, 768 hidden dimensions and 12
attention heads. It is pre-trained on 152million sentences from Stack
Overflow, and has advantages in capturing the inherent meaning of
terms in the software engineering domain. At the input, each report
is represented by 512 word tokens with a special starting symbol
[CLS]. For those that are not long enough, we use a special symbol
[PAD] to align to the length of 512. For those who are longer, we
truncate the excess sequence following common practice [9]. This
layer will output the semantic vector (768 dimensions, by default
in BERT) for each input token.

Context embedding layer. This layer is designed to capture
contextual information between terms and represent each input
token as the final semantic vector. We use the Bi-LSTM network
structure which is better at capturing the long distance dependency
and global semantic information. It converts the output of the
semantic vector from the word embedding layer into corresponding
contextual semantic vectors, and will be input into the subsequent
task-oriented layers.

3.2.2 Task-oriented Layers Learning. As shown in Figure 4,
PRIMA separately conducts priority prediction task and category
prediction task learning.

Domain-specific BERT

V1 V2 V3 Vn

LSTM

Cell

LSTM

Cell

LSTM

Cell

LSTM

Cell

LSTM

Cell

LSTM

Cell

LSTM

Cell

LSTM

Cell

C1 C2 C3 Cn

Attention Cell

FC

Max Pooling

FC

…

…

…

Priority prediction

task

Category prediction

task
softmax softmax

Indicative

attributes512

17

512

512+768

768

T1 T2 T3 Tn…

Shared layers —

Word

embedding layer

Shared layers —

Context

embedding layer

Task-oriented

layers

…

Figure 4: Architecture of our multi-task model

Priority prediction task layers. As we mentioned above, the
contextual semantic vector obtained from shared layers is fed into
priority prediction task layers. The dimension of the representation
isn×512, wheren is the length of the input, and 512 is the dimension
of each contextual semantic vector (denoted as ci) corresponding

5

ESEM ’22, September 19–23, 2022, Helsinki, Finland Li et al.

to each input token i . In detail, the contextual semantic vectors
are first fed into an attention cell to capture the most important
information indicating the issue’s priority. The attention cell maps
the contextual semantic vectors into a 512-dimensional vector.

For the contextual semantic vectors [c1, ...ci , ...cn] (denoted as
C), the attention cell will perform calculations using a trainable
parameter matrixW to obtain the output. The formula is as follows:

M = tanh(C) (1)
α = so f tmax(M ∗W) (2)

output =
∑

αC (3)
Specifically, we first fed contextual semantic vectors C into a

tanh function to get the normalized representation M, and then
calculate the global align weights α , which is the softmax value of
the product ofM and a trainable parameter matrixW. Finally, the
attention output is the sum of all the contextual semantic vectors
with attention weight.

To jointly capture other information for priority prediction, we
fuse the 17 extracted indicative attributes into the vector. In other
words, we concatenate the 512 dimensional vector with the 17
dimensional attribute vector to obtain a 529 dimensional new vec-
tor (denoted as a). The concatenated vector (a) is fed into a fully
connected layer to obtain the prediction result. For priority pre-
diction, we use softmax to output the probability of each priority,
i.e., a X -dimensional (X is the number of priority types) vector
P(priorityxi |R) which represents the probability that reports R be-
long to a certain priority xi . The formula is as follows:

P(xi |a) =
exp(a⊤wxi)∑
j exp(a

⊤wx j)
(4)

Where the w stands for the trainable parameters in the fully
connected layer.

Category prediction task layer. Different from the priority
prediction, the category prediction is concerns more about the
representative terms. For example, if “request” and ”feature” appear
in one issue report, the report is more likely to be a feature request.
Taken in this sense, we not only utilize the contextual semantic
vector, but also include the semantic vector produced by the word
embedding layer which focuses more on the meaning of single
tokens.

In detail, this network first concatenates the semantic vector
and the contextual semantic vector. Then, we use max pooling to
remove redundant information to improve the generalization of
the model and reduce over-fitting.

Like the priority prediction, we adopt softmax to output the
probability of each category, i.e., a Y -dimensional (Y is the number
of category types) vector P(cateдoryyi |R) which represents the
probability that report R belong to a certain category yi .

3.3 Model Training
3.3.1 Eavesdropping by Shared Loss Function. Before design-
ing the loss function, we observe that the data instances for both
priority prediction and category prediction tasks were imbalanced.
Taking kubernetes project as an example, 42.7% of the issue reports
are labeled as the medium priority, while only 25.9% are labeled as
the high priority. For category labels, 63.3% of the issue reports are

bug, while only 11.2% are document. To overcome the influence of
imbalanced data, we adopt the focal-loss function [15] and tailor it
for our multi-class prediction scenario. The formula is as follows:

Multi − FL =
n∑
i=1

−αi (1 − pi)
2loд(pi) (5)

Where αi stands for the weight of ith class, and pi means the
probability of predicting a data sample into ith class.

Then, following previous work, we employ a principle, shared
loss function to take the weighted sum of the two individual losses,
which is specified as:

Loss = λMulti − FLpr ior ity + (1 − λ)Multi − FLcateдory (6)

where λ is the harmonic factor in the range (0,1). The shared loss
function can allow the model to eavesdrop on information between
two related tasks, and learn some knowledge that is difficult to
learn from itself but easy to learn from the other task. The hyper-
parameter λ is determined by a greedy strategy presented below.

3.3.2 Training Details. The hyper-parameters are tuned with
a greedy strategy to obtain the best performance. Given a hyper-
parameter P and its candidate values {v1,v2, ...,vn }, we perform
automated tuning for n iterations, and choose the values which
lead to the best performance as the tuned value of P . After tuning,
the harmonic factor λ is set as 0.5, and the learning rate is set as
5 × 10−5. The optimizer is Adam algorithm [12]. We use the mini-
batch technique for speeding up the training process with batch
size 16. The drop rate is 0.1, which means 10% of neuron cells will
be randomly masked to avoid over-fitting.

We implement PRIMA by using an open-source Pytorch library3.
Our implementation and experimental data are available online4.

4 EXPERIMENTAL DESIGN
4.1 Research Questions
We answer the following four research questions:

• RQ1 (Effectiveness): What is the performance of PRIMA
for priority prediction?

• RQ2 (Multi-task Gain): What is the advantage of multi-
task learning applied in PRIMA compared to single-task
learning for priority prediction?

• RQ3 (Information Necessity): What is the contribution of
the indicative attributes for priority prediction?

• RQ4 (Extra Benefit): For category prediction, what per-
formance PRIMA can achieve compared with single-task
learning?

4.2 Dataset
We utilize four open-source projects from various domains (e.g.,
operating system, web component framework) for the evaluation,
as shown in Table 4. The selection criteria is that: more than 1k
stars (popular), a public issue tracking system (traceable), more
than three years of development history (trustworthy), more than
100 code commits (well maintained), and more than 1k closed issue
3https://github.com/huggingface/transformers
4https://github.com/piexpe/Multi-task_priority

6

A Tale of Two Tasks: Automated Issue Priority Prediction with Deep Multi-task Learning ESEM ’22, September 19–23, 2022, Helsinki, Finland

reports. We first crawl all the closed issue reports for each project,
and filter those reports that do not have the priority or category
label. Note that, we need these two labels for model training and
evaluation, and when applying the approach, we require none of
this information. We further filter the reports which have less than
3 words for noise cleaning.

For priority types, project zephyr and amphtml utilize three la-
bels, i.e., high, medium, and low. Project kubernetes and minikube
utilize five labels, e.g., critical-urgent, important-longterm. To facil-
itate revealing the higher priority issues, we combine the lowest
three priority types as low, and the highest two priority types still
stand for high and medium respectively. This step is used to reor-
ganize the five labels into three (i.e., high, medium and low). Note
that, the proposed PRIMA can handle five labels of priority, yet in
this evaluation, we use three labels to unify the demonstration of
results across four projects.

For category types, we choose the three most common types, i.e.,
bug, feature, and document, for experiment. Note that again, PRIMA
is scaleable to handle more category labels.

In total, there are 14,682 issue reports (#Issue) in the experimental
dataset. We list the details of the priority distribution and category
distribution in Table 4.

Table 4: Statistics of experimental dataset

Project #Issue
Priority Category

#High #Medium #Low #Bug #Feature #Document

kubernetes 7017 1822 3001 2194 4440 1793 784

minikube 1094 364 334 396 469 449 176

zephyr 3097 840 1183 1074 1915 894 288

amphtml 3474 970 1207 1297 2015 1178 281

TOTAL 14682 3996 5725 4961 8839 4314 1529

4.3 Baselines
We employ two state-of-the-art approaches for priority prediction
as the baselines to further demonstrate the advantages of PRIMA.

PPWGCN: this is the state-of-the-art approach using deep learn-
ing techniques by Fang et al.[7]. It builds a heterogeneous text graph
for issue reports and applies graph convolutional networks based
on weighted loss function to extract word’s semantics in bug re-
ports. We reuse the source code provided in the paper5 and retrain
the model with our training data to ensure the correctness.

DRONE: this is the state-of-the-art approach using machine
learning techniques by Tian et al.[26, 27]. It extracts multiple factors
from six dimensions, i.e., textual, temporal, author, related-report,
severity, and product. Then it trains a machine learning model
(e.g., SVM) and enhances the model with thresholding to handle
imbalanced data. Since it does not provide the source code, we
implement it strictly following the paper.

4.4 Experimental Setup
To simulate the usage of PRIMA in practice, we employ a commonly-
used longitudinal data setup to potentially avoid the influence of
5https://github.com/TanYoushuai123/PPWGCN

using future data [28]. In detail, for all the issue reports in one
project, we sort them in chronological order, and then divide them
into 10 equally sized folds. We then employ the first 8 folds as the
training dataset, the 9th fold as the validation dataset, and the last
fold as the testing dataset.

To answer RQ1, we run PRIMA and each baseline to obtain their
performance on the testing dataset. To answer RQ2, we configure
PRIMA into the single task learningmode for the priority prediction,
and compare the performance between PRIMA and its single-task
learning mode for predicting the issue’s priority. To answer RQ3,
we design a variant of PRIMA excluding the indicative attributes
from the model, and compare the performance between PRIMA
and its variant for priority prediction. To answer RQ4, we configure
PRIMA into the single task learning model as RQ2, yet for issue
category prediction.

4.5 Evaluation Metrics
We use commonly-used metrics, i.e., precision, recall, and F1-Score,
to evaluate the performance for priority prediction and category
prediction. Precision is the ratio of the number of correct predictions
to the total number of predictions. Recall is the ratio of the number
of correct predictions to the total number of ground-truth samples.
F1-Score is the harmonic mean of precision and recall.

Since the priority and category prediction are both involving
multiple labels, we additionally obtain the average performance
of precision, recall and F1 for each project across all the priority/-
category labels. In addition, for all four experimental projects, we
further obtain the average performance across all the priority/cate-
gory labels to derive a full view.

5 RESULTS AND ANALYSIS
5.1 Answers to RQ1: Effectiveness of PRIMA
Table 5 demonstrates the performance of PRIMA and baselines on
the priority prediction, i.e., high, medium, and low. PRIMA can
achieve an average of 73.8% precision, 72.6% recall, and 72.3% F1,
signifying the effectiveness of our approach in predicting the issue’s
priority.

We also observe that, among the three priorities, the approach
achieves the highest performance (89% F1) for the high priority,
while achieving the lowest performance (61.4% F1) for the low pri-
ority. For the high priority, the precision is 100% with 97% recall for
kubernetes project, and the F1 is 90.5% for the zyphyr project. Since
the issues with high priority are more important to the project’s
quality improvement, thus a higher performance of high priority
prediction further signifies the practical value of this approach. For
median and low priority, we find that there is usually a blurred
boundary between them, which potentially causes a lower per-
formance of these two priority types. Taken kubernetes #175616,
whose ground truth priority is low while our prediction is median,
as an example. The descriptive terms like “error”, “unable” fre-
quently occur in issues with median priority, which is the potential
reason for our wrong prediction.

In addition, among the four projects, minikube achieves the
lowest performance (78.6% F1 for high priority).The main reason

6https://github.com/kubernetes/kubernetes/issues/17561

7

ESEM ’22, September 19–23, 2022, Helsinki, Finland Li et al.

Table 5: Effectiveness of PRIMA (RQ1 and RQ2)

Priority Project
Prima Baseline 1: PPWGCN Baseline 2: DRONE Prima with single task

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

High

kubernetes 100 97.06 98.51 63.15 72.23 67.38 36.26 33.7 34.93 93.38 74.71 83.01

minkube 79.55 77.78 78.65 51.05 40.11 44.92 40.74 30.56 34.92 60.71 37.78 46.58

zephyr 90.53 90.53 90.53 51.58 62.14 56.37 78.95 66.67 72.29 79.38 81.05 80.21

amphtml 98.8 80.39 88.65 54.44 55.67 55.05 52.94 50.56 51.72 47.54 56.86 51.79

Average 92.22 86.44 89.09 55.06 57.54 55.93 52.22 45.37 48.47 70.25 62.60 65.40

Medium

kubernetes 72.24 76.08 74.11 67.6 59.49 63.29 48 46.6 47.29 61.75 75.08 67.77

minkube 67.65 88.46 76.67 42.58 39.52 40.99 30.43 41.18 35 48.28 53.85 50.91

zephyr 58.17 83.96 68.73 58.68 54.22 56.37 50.76 59.82 54.92 58.52 74.53 65.56

amphtml 49.51 44.74 47 45.47 41.56 43.43 43.24 53.78 47.94 42.07 53.51 47.1

Average 61.89 73.31 66.63 53.58 48.70 51.02 43.11 50.35 46.29 52.66 64.24 57.84

Low

kubernetes 66.97 63.79 65.34 64.22 67.09 65.63 35.06 38.76 36.82 63.68 55.17 59.12

minkube 68.75 56.41 61.97 51.81 65.15 57.72 40.54 37.5 38.96 56.6 76.92 65.22

zephyr 79.37 45.45 57.8 63.91 59.03 61.37 58.82 55.56 57.14 70.89 50.91 59.26

amphtml 54.94 67.42 60.54 56.38 59.94 58.1 53.04 43.57 47.84 62.96 38.64 47.89

Average 67.51 58.27 61.41 59.08 62.80 60.71 46.87 43.85 45.19 63.53 55.41 57.87

Overall 73.87 72.67 72.38 55.91 56.35 55.89 47.40 46.52 46.65 62.15 60.75 60.37

Figure 5: An example issue report of Kubernetes project

might be due to the small size of the experimental data of minikube
project, which can hardly train an effective model.

Compared with the baselines, PRIMA is 32% higher in precision,
and 28% higher in recall compared with PPWGCN, while PRIMA is
55% higher in precision, and 56% higher in recall compared with
DRONE. This further demonstrates the advantages of our proposed
PRIMA, i.e., capturing the semantics of issues and boosting the
performance with multi-task learning. Only in predicting medium

and low types of priority, the baselines occasionally outperforming
our proposed approach slightly. Among the two baselines, the deep
learning based approach PPWGCN is superior than the machine
learning based approach DRONE, which indicates the advantages
of deep learning approaches in capturing the semantics of the issue.

We use an issue7 presented in Figure 5 to intuitively illustrate
the superior performance of PRIMA compared with baselines. This
issue is related with the not working state of the export services,
and the manager marked it as priority/critical-urgent, i.e., the high
priority, while PRIMA obtains the correct prediction, yet PPWGCN
and DRONE predict it incorrectly, as low and median, respectively.

The first reason is that our proposed PRIMA uses multi-task
learning which can gain the knowledge of prediction for category
labels to better conduct the priority prediction. For this issue, the
manager mentions that it is a bug in the comment, and tags it with
both kind/bug and priority/critical-urgent labels at the same time. It
indicates that the manager may assign the priority label in conjunc-
tion with assigning category label, which further demonstrates the
design of PRIMA is reasonable. The second reason is that our pro-
posed approach is better at handling the code related information,
such as console message and API message, where the information
(e.g., “error from server”) can indicate the issue’s priority. And
the third reason is our utilized domain-specific BERT model and
attention mechanism can better capture the key information for
predicting the priority.

7https://github.com/kubernetes/kubernetes/issues/22247

8

A Tale of Two Tasks: Automated Issue Priority Prediction with Deep Multi-task Learning ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 6: Priority prediction of PRIMA and its variant (RQ3)

Priority Project
Prima Prima Without Attributes

Precision Recall F1 Precision Recall F1

High

kubernetes 100 97.06 98.51 92.09 75.29 82.85

minikube 79.55 77.78 78.65 74.42 71.11 72.73

zephyr 90.53 90.53 90.53 87.5 88.42 87.96

amphtml 98.8 80.39 88.65 84.16 83.33 83.74

Average 92.22 86.44 89.09 84.54 79.54 81.82

Medium

kubernetes 72.24 76.08 74.11 59.49 62.46 60.94

minikube 67.65 88.46 76.67 66.67 92.31 77.42

zephyr 58.17 83.96 68.73 60.87 66.04 63.35

amphtml 49.51 44.74 47 49.19 53.51 51.26

Average 61.89 73.31 66.63 59.06 68.58 63.24

Low

kubernetes 66.97 63.79 65.34 54.44 58.19 56.25

minikube 68.75 56.41 61.97 64.52 51.28 57.14

zephyr 79.37 45.45 57.8 65 59.09 61.9

amphtml 54.94 67.42 60.54 58.54 54.55 56.47

Average 67.51 58.27 61.41 60.63 55.78 57.94

Overall 73.87 72.67 72.38 68.07 67.97 67.67

5.2 Answers to RQ2: Multi-task Gain
Table 5 also presents the performance of single task learning mode
of priority prediction. We can observe that PRIMA outperforms the
single task learning mode, 18% higher in precision, and 19% higher
in recall. This indicates the shared features learned from two related
tasks indeed improve the priority prediction. The performance im-
provement is attributed to the internal shared learning mechanism
of PRIMA (shared layers learning and shared loss function), which
can share features between two related tasks.

In addition, PRIMA outperforms the single task learning mode in
the high priority prediction, which is more beneficial considering
the influence of the critical issues. The single task learning mode
can occasionally outperform PRIMA in medium and low priority
types slightly. This might be because the lower priority types are
difficult to be predicted inherently.

5.3 Answers to RQ3: Information Necessity
Table 6 demonstrates the performance of PRIMA and its variant
without indicative attributes. We can see that PRIMA achieves
average 8.5% higher precision and 6.9% higher recall, compared
with its variant. This suggests the necessity of these indicative
attributes for predicting issue’s priority, and the superiority of our
design model architecture.

5.4 Answers to RQ4: Extra Benefit
Table 7 presents the performance of PRIMA for category prediction,
and the category prediction with single-task learning. Generally
speaking, with PRIMA, the category prediction achieves 83% aver-
age precision, and 82% average recall, outperforming its variant of
single-task learning, i.e., 4.8% higher in precision and 9.5% higher
in recall.

This indicates that PRIMA can effectively predict both issue’s
priority and issue’s category, acting as an add-on for facilitating

Table 7: Category prediction performance compared with
single-task learning (RQ4)

Category Project
Prima Prima With Category task

Precision Recall F1 Precision Recall F1

Bug

kubernetes 94.64 94.85 94.75 94.85 90.6 92.68

minikube 82.98 82.98 82.98 76.09 74.47 75.27

zephyr 89.09 80.77 84.73 78.85 90.11 84.1

amphtml 89.53 81.04 85.07 86.53 79.15 82.67

Average 89.06 84.91 86.88 84.08 83.58 83.68

Feature

kubernetes 88.2 87.22 87.71 78.11 87.22 82.41

minikube 68.89 79.49 73.81 61.22 76.92 68.18

zephyr 67.48 85.57 75.45 81.01 65.98 72.73

amphtml 69.7 82.14 75.41 63.04 77.68 69.6

Average 73.57 83.61 78.10 70.85 76.95 73.23

Document

kubernetes 97.4 98.68 98.04 97.33 96.05 96.69

minikube 83.33 62.5 71.43 86.67 54.17 66.67

zephyr 69.57 50 58.18 62.5 46.88 53.57

amphtml 100 100 100 88.24 60 71.43

Average 87.58 77.80 81.91 83.69 64.28 72.09

Overall 83.40 82.10 82.30 79.54 74.94 76.33

the project a step further towards the automatic issue management.
When answering RQ2, we observe that for priority, PRIMA is aver-
age 18% higher in precision and 19% higher in recall compared with
single-task learning mode. Meanwhile, as we mentioned above,
for category prediction, PRIMA is 4.8% higher in precision and
9.5% higher in recall compared with the single-task learning mode.
This might because, the performance of category prediction with
single-task learning mode is already relatively high; and only little
knowledge for predicting the issue’s priority can be shared with
the issue category prediction.

6 DISCUSSIONS AND THREATS TO VALIDITY
6.1 Field Evaluation
The performance in Section 5 is obtained based on the historical
issues with the marked priority labels. This section conducts an ex-
periment on the newly reported issues to further examine whether
our proposed approach can accurately predict the priority labels,
and to investigate whether the developer thinks them useful.

In detail, we used the four experimental projects and also ran-
domly selected two other projects following the criteria in Section
3.1. We crawled the newly submitted issues, and run our prediction
model on these issues, and obtained the predicted priority of each
issue. We then submitted a comment below the related issue, sug-
gesting the issue’s priority level with the primary idea about how
we determine it. In total, 8 responses had been received among the
18 submitted comments. Of all the responses, 6 issues were con-
firmed as with the right priority label, while 2 issues were denied.
We put the detailed information in Table 8.

Some developers present the detailed comments about whether
they think the prediction is correct or wrong. For example, for
issue “woocommerce #32702” whose ground truth priority is high,
the developers respond that I think this should be the high priority,

9

ESEM ’22, September 19–23, 2022, Helsinki, Finland Li et al.

Table 8: Details of responded issues

Result Issue Prediction Ground truth

correct prediction

kubernetes #109500 Mid Mid

zephyr #44018 Mid Mid

zephyr #44531 Low Low

amphtml #38061 Low Low

woocommerce #32702 High High

yugabyte-db #12190 High High

wrong prediction
kubernetes #109543 High Mid

zephyr #44704 Mid Low

it looks like it could be a regression (bad) but it’s in a high value
area regardless. Another example is for issue “kubernetes #109543”
whose ground truth priority is median, the developers respond that
No. This problem is expected to exist for quite some time. Also, this test
is just for measuring performance and does not block merging. Correct
labeling requires background knowledge of the issue. For example, if,
hypothetically, this test is built into ci and blocks the merge when it
fails, then you are right, it would be a high priority. These further
indicate the complexity of the priority prediction task, and also
the potential of our proposed approach in recommending the right
priority with the learned background knowledge.

6.2 Threats to Validity
The external threats concern the generality of the proposed ap-
proach. We trained and evaluated PRIMA on the dataset consisting
of four open-source projects. The selected projects are from vari-
ous domains, relatively large-scale, popular, well-maintained, etc,
which potentially reduce this threat. The construct threats mainly
question the disposal of the five levels of priority for two of the
experimental projects. To provide a unified performance demonstra-
tion across the four experimental projects, we combine the lowest
three priority types as low priority, and reorganize the five levels
of priority to three levels. This might slightly influence the perfor-
mance of PRIMA, yet the relative high performance achieved on
the other two projects (with three priority levels) has demonstrated
the effectiveness of our approach.

7 RELATEDWORK
Issue Report Management. The issue reports in open-source
projects provide important clues for improving the quality of the
software. There are various approaches targeting at the automatic
management of issue reports, e.g., classification, duplication detec-
tion [24, 30, 31], bug triage [2, 10, 32], bug localization [11, 13, 37].

There are some studies focusing on the issue’s priority predic-
tion [7, 26, 27, 29]. Tian et al. [26, 27] extracted features from six
dimensions, i.e., temporal, textual, author, related-report, severity,
and product, and built a machine learning model for priority pre-
diction. Umer et al. [29] utilized a convolutional neural network
to implement an automated priority assignment model, which can
eliminate the efforts for feature definition and modeling. Fang et al.
[7] proposed to utilize graph convolutional networks together with

weighted loss function for priority prediction, to better capture
the syntactic and semantic information. We have proposed a new
approach and achieved higher performance compared with them.

There are also some studies focusing on the severity prediction
of issue reports [8, 18, 19], which is similar to this work. They uti-
lized text mining, machine learning, or deep learning techniques
to predict the issue’s priority. However, severity is different from
priority, in that severity is assigned by customers while priority is
provided by developers [26], and our experimental projects hosted
on Github do not have the severity label. Nevertheless, there is no
attempt for utilizing the multi-task learning for severity predic-
tion, and our proposed approach can potentially be tailored for the
severity prediction and facilitate performance improvement.

Multi-task Learning in SE. Some studies have used MTL to
simultaneously address two related tasks, or improve target tasks
by pre-training language models and vector representations on
auxiliary tasks. For example, DEMAR [14] proposed a deep MTL-
based model to jointly conduct requirements discovery and require-
ments annotation tasks. MTFuzz [23] employed MTL to learn a
compact embedding of program input spaces to guide the muta-
tion process. Other studies about code analysis with MTL included
modeling source code with pre-trained language model for code
understanding and generation [17], enabling knowledge sharing be-
tween related tasks for code completion [16], and leveragingmethod
name generation and method name informativeness prediction to
improve code summarization [34]. This work addresses the issue
priority prediction problem with multi-task learning, meanwhile,
our approach is not a simple and direct application of multi-task
learning framework, the incorporation of indicative attributes, and
the design of two types of shared layers improves the model further.

8 CONCLUSION
The true benefits of issue reports in open-source projects have
largely been attributed to the effective management of these issues,
and this paper focus on the automatic priority prediction to help
direct the corrective maintenance and improve software quality.
This paper proposes PRIMA, a deep multi-task learning based ap-
proach to automate the priority prediction while taking the issue
category prediction as the second task. We evaluate PRIMA on four
large-scale open-source projects, and the results confirm the effec-
tiveness of the proposed approach, and the benefits of multi-task
learning mechanism. The proposed approach provides an effective
way for automatic priority prediction, and sheds light on jointly
learning two tasks of the issue management.

ACKNOWLEDGMENTS
This work is supported by the Fundamental Research Funds for the
Central Universities, Southwest Minzu University (Grant Number
2020PTJS18002), the Southwest Minzu University Research Startup
Funds (Grant No.RQD2021096), Sichuan Science and Technology
Program (2021JDRC0066); and the National Natural Science Foun-
dation of China under grant No.61602450.

REFERENCES
[1] Rafi Almhana, Thiago do Nascimento Ferreira, Marouane Kessentini, and Tushar

Sharma. 2020. Understanding and Characterizing Changes in Bugs Priority: The
Practitioners’ Perceptive. In 20th IEEE International Working Conference on Source

10

A Tale of Two Tasks: Automated Issue Priority Prediction with Deep Multi-task Learning ESEM ’22, September 19–23, 2022, Helsinki, Finland

Code Analysis and Manipulation, SCAM 2020, Adelaide, Australia, September 28 -
October 2, 2020. IEEE, 87–97.

[2] John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who should fix this bug?. In
Proceedings of the 28th international conference on Software engineering. 361–370.

[3] Rich Caruana. 1993. Multitask Learning: A Knowledge-Based Source of Inductive
Bias. In Machine Learning, Proceedings of the Tenth International Conference, Uni-
versity of Massachusetts, Amherst, MA, USA, June 27-29, 1993. Morgan Kaufmann,
41–48.

[4] Rich Caruana. 1998. Multitask Learning. In Learning to Learn. Springer, 95–133.
[5] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural

language processing: deep neural networks with multitask learning. In Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008),
Helsinki, Finland, June 5-9, 2008 (ACM International Conference Proceeding Series),
Vol. 307. ACM, 160–167.

[6] Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. 2015. Low Resource De-
pendency Parsing: Cross-lingual Parameter Sharing in a Neural Network Parser.
In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing of the Asian Federation of Natural Language Processing, ACL 2015, July
26-31, 2015, Beijing, China, Volume 2: Short Papers. The Association for Computer
Linguistics, 845–850.

[7] Sen Fang, Youshuai Tan, Tao Zhang, Zhou Xu, and Hui Liu. 2021. Effective
Prediction of Bug-Fixing Priority via Weighted Graph Convolutional Networks.
IEEE Trans. Reliab. 70, 2 (2021), 563–574.

[8] Luiz Alberto Ferreira Gomes, Ricardo da Silva Torres, and Mario Lúcio Côrtes.
2019. Bug report severity level prediction in open source software: A survey and
research opportunities. Inf. Softw. Technol. 115 (2019), 58–78.

[9] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.
MIT Press. http://www.deeplearningbook.org/

[10] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. 2009. Improving bug
triage with bug tossing graphs. In Proceedings of the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. 111–120.

[11] Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller. 2013. Where should
we fix this bug? a two-phase recommendation model. IEEE transactions on
software Engineering 39, 11 (2013), 1597–1610.

[12] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[13] Tien-Duy B Le, Richard J Oentaryo, and David Lo. 2015. Information retrieval
and spectrum based bug localization: Better together. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. 579–590.

[14] Mingyang Li, Lin Shi, Ye Yang, and Qing Wang. 2020. A Deep Multitask Learning
Approach for Requirements Discovery and Annotation from Open Forum. In
35th IEEE/ACM International Conference on Automated Software Engineering, ASE
2020, Melbourne, Australia, September 21-25, 2020. IEEE, 336–348.

[15] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár.
2017. Focal Loss for Dense Object Detection. CoRR abs/1708.02002 (2017).
arXiv:1708.02002 http://arxiv.org/abs/1708.02002

[16] Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi Jin. 2020. A Self-Attentional
Neural Architecture for Code Completion with Multi-Task Learning. In ICPC ’20:
28th International Conference on Program Comprehension, Seoul, Republic of Korea,
July 13-15, 2020. ACM, 37–47.

[17] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task Learning based Pre-
trained Language Model for Code Completion. In 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 473–485.

[18] Wenjie Liu, Shanshan Wang, Xin Chen, and He Jiang. 2018. Predicting the
Severity of Bug Reports Based on Feature Selection. Int. J. Softw. Eng. Knowl. Eng.
28, 4 (2018), 537–558.

[19] Tim Menzies and Andrian Marcus. 2008. Automated severity assessment of
software defect reports. In 24th IEEE International Conference on Software Mainte-
nance (ICSM 2008), September 28 - October 4, 2008, Beijing, China. IEEE Computer
Society, 346–355.

[20] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In 1st International Con-
ference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May

2-4, 2013, Workshop Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1301.3781

[21] Jinfeng Rao, Ferhan Türe, and Jimmy Lin. 2018. Multi-Task Learning with Neural
Networks for Voice Query Understanding on an Entertainment Platform. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018. ACM, 636–
645.

[22] Sebastian Ruder. 2017. An Overview of Multi-Task Learning in Deep Neural
Networks. CoRR abs/1706.05098 (2017).

[23] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. 2020. MT-
Fuzz: fuzzing with a multi-task neural network. In ESEC/FSE ’20: 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Virtual Event, USA, November 8-13, 2020. ACM, 737–749.

[24] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo.
2010. A discriminative model approach for accurate duplicate bug report re-
trieval. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. 45–54.

[25] Jeniya Tabassum, Mounica Maddela, Wei Xu, and Alan Ritter. 2020. Code and
Named Entity Recognition in StackOverflow. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020, Online, July
5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.).
Association for Computational Linguistics, 4913–4926. https://doi.org/10.18653/
v1/2020.acl-main.443

[26] Yuan Tian, David Lo, and Chengnian Sun. 2013. Drone: Predicting priority of
reported bugs by multi-factor analysis. In 2013 IEEE International Conference on
Software Maintenance. IEEE, 200–209.

[27] Yuan Tian, David Lo, Xin Xia, and Chengnian Sun. 2015. Automated prediction
of bug report priority using multi-factor analysis. Empir. Softw. Eng. 20, 5 (2015),
1354–1383.

[28] Feifei Tu, Jiaxin Zhu, Qimu Zheng, and Minghui Zhou. 2018. Be careful of when:
an empirical study on time-related misuse of issue tracking data. In Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro
Garcia, and Corina S. Pasareanu (Eds.). ACM, 307–318.

[29] Qasim Umer, Hui Liu, and Inam Illahi. 2019. CNN-based automatic prioritization
of bug reports. IEEE Transactions on Reliability 69, 4 (2019), 1341–1354.

[30] Junjie Wang, Mingyang Li, Song Wang, Tim Menzies, and Qing Wang. 2019.
Images don’t lie: Duplicate crowdtesting reports detection with screenshot infor-
mation. Inf. Softw. Technol. 110 (2019), 139–155.

[31] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An approach
to detecting duplicate bug reports using natural language and execution informa-
tion. In Proceedings of the 30th international conference on Software engineering.
461–470.

[32] Xin Xia, David Lo, Ying Ding, Jafar M Al-Kofahi, Tien N Nguyen, and Xinyu
Wang. 2016. Improving automated bug triaging with specialized topic model.
IEEE Transactions on Software Engineering 43, 3 (2016), 272–297.

[33] Xin Xia, David Lo, Emad Shihab, and Xinyu Wang. 2015. Automated bug report
field reassignment and refinement prediction. IEEE Transactions on Reliability 65,
3 (2015), 1094–1113.

[34] Rui Xie, Wei Ye, Jinan Sun, and Shikun Zhang. 2021. Exploiting Method Names
to Improve Code Summarization: A Deliberation Multi-Task Learning Approach.
CoRR abs/2103.11448 (2021).

[35] Yongxin Yang and Timothy M. Hospedales. 2017. Trace Norm Regularised Deep
Multi-Task Learning. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.
OpenReview.net.

[36] Tianzhu Zhang, Bernard Ghanem, Si Liu, and Narendra Ahuja. 2012. Robust
visual tracking via multi-task sparse learning. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, Providence, RI, USA, June 16-21, 2012. IEEE
Computer Society, 2042–2049.

[37] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug reports.
In 2012 34th International Conference on Software Engineering (ICSE). IEEE, 14–24.

[38] Weiqin Zou, David Lo, Zhenyu Chen, Xin Xia, Yang Feng, and Baowen Xu. 2018.
How practitioners perceive automated bug report management techniques. IEEE
Transactions on Software Engineering 46, 8 (2018), 836–862.

11

http://www.deeplearningbook.org/
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/2020.acl-main.443
https://doi.org/10.18653/v1/2020.acl-main.443

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Observations about Priority Assignment in Real-world OSS Projects

	3 Approach
	3.1 Data Preparation and Augmentation
	3.2 Model Construction
	3.3 Model Training

	4 Experimental Design
	4.1 Research Questions
	4.2 Dataset
	4.3 Baselines
	4.4 Experimental Setup
	4.5 Evaluation Metrics

	5 Results and Analysis
	5.1 Answers to RQ1: Effectiveness of PRIMA
	5.2 Answers to RQ2: Multi-task Gain
	5.3 Answers to RQ3: Information Necessity
	5.4 Answers to RQ4: Extra Benefit

	6 Discussions and Threats to Validity
	6.1 Field Evaluation
	6.2 Threats to Validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

