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It is a common practice in finance to estimate volatility from the sum of frequently sampled squared returns. However, market microstructure
poses challenges to this estimation approach, as evidenced by recent empirical studies in finance. The present work attempts to lay out
theoretical grounds that reconcile continuous-time modeling and discrete-time samples. We propose an estimation approach that takes
advantage of the rich sources in tick-by-tick data while preserving the continuous-time assumption on the underlying returns. Under our
framework, it becomes clear why and where the “usual” volatility estimator fails when the returns are sampled at the highest frequencies.
If the noise is asymptotically small, our work provides a way of finding the optimal sampling frequency. A better approach, the “two-scales
estimator,” works for any size of the noise.
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1. INTRODUCTION

1.1 High-Frequency Financial Data With Noise

In the analysis of high-frequency financial data, a ma-
jor problem concerns the nonparametric determination of the
volatility of an asset return process. A common practice is
to estimate volatility from the sum of the frequently sampled
squared returns. Although this approach is justified under the
assumption of a continuous stochastic model in an idealized
world, it runs into the challenge from market microstructure
in real applications. We argue that this customary way of esti-
mating volatility is flawed, in that it overlooks the observation
error. The usual mechanism for dealing with the problem is to
throw away a large fraction of the available data by sampling
less frequently or constructing “time-aggregated” returns from
the underlying high-frequency asset prices. Here we propose
a statistically sounder device. Our device is model-free, takes
advantage of the rich sources of tick-by-tick data, and to a great
extent corrects for the adverse effects of microstructure noise
on volatility estimation. In the course of constructing our es-
timator, it becomes clear why and where the “usual” volatility
estimator fails when returns are sampled at high frequencies.

To fix ideas, let St denote the price process of a security, and
suppose that the process Xt = log St follows an Itô process,

dXt = µt dt + σt dBt, (1)

where Bt is a standard Brownian motion. Typically, µt, the drift
coefficient, and σ 2

t , the instantaneous variance of the returns
process Xt, will be (continuous) stochastic processes. The pa-
rameter of interest is the integrated (cumulative) volatility over
one or successive time periods,

∫ T1
0 σ 2

t dt ,
∫ T2

T1
σ 2

t dt, . . . . A nat-
ural way to estimate this object over, say, a single time interval
from 0 to T is to use the sum of squared returns,

[X,X]T
�=
∑

ti

(
Xti+1 − Xti

)2
, (2)
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where the Xti ’s are all of the observations of the return process
in [0,T]. The estimator

∑
ti(Xti+1 − Xti)

2 is commonly used
and generally called “realized volatility” or “realized variance.”
A sample of the recent literature on realized and integrated
volatilities includes works by Hull and White (1987), Jacod and
Protter (1998), Gallant, Hsu, and Tauchen (1999), Chernov and
Ghysels (2000), Gloter (2000), Andersen, Bollerslev, Diebold,
and Labys (2001), Dacorogna, Gençay, Müller, Olsen, and
Pictet (2001), Barndorff-Nielsen and Shephard (2002), and
Mykland and Zhang (2002).

Under model (1), the approximation in (2) is justified by the-
oretical results in stochastic processes stating that

plim
∑

ti

(
Xti+1 − Xti

)2 =
∫ T

0
σ 2

t dt, (3)

as the sampling frequency increases. In other words, the estima-
tion error of the realized volatility diminishes. According to (3),
the realized volatility computed from the highest-frequency
data should provide the best possible estimate for the integrated
volatility

∫ T
0 σ 2

t dt.
However, this is not the general viewpoint adopted in the

empirical finance literature. It is generally held there that the
returns process Xt should not be sampled too often, regard-
less of the fact that the asset prices can often be observed with
extremely high frequency, such as several times per second in
some instances. It has been found empirically that the realized
volatility estimator is not robust when the sampling interval is
small. Such issues as larger bias in the estimate and nonrobust-
ness to changes in the sampling interval have been reported
(see, e.g., Brown 1990). In pure probability terms, the observed
log return process is not in fact a semimartingale. Compelling
visual evidence of this can be found by comparing a plot of
the realized volatility as a function of the sampling frequency
with theorem I.4.47 of Jacod and Shiryaev (2003); the real-
ized volatility does not converge as the sampling frequency in-
creases. In particular this phenomenon can be observed for any
of the 30 stocks composing the Dow Jones Industrial Average.

The main explanation for this phenomenon is a vast array of
issues collectively known as market microstructure, including,
but not limited to, the existence of the bid–ask spread. When
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prices are sampled at finer intervals, microstructure issues be-
come more pronounced. The empirical finance literature then
suggests that the bias induced by market microstructure effects
makes the most finely sampled data unusable, and many authors
prefer to sample over longer time horizons to obtain more rea-
sonable estimates. The sampling length of the typical choices in
the literature is ad hoc and usually ranges from 5 to 30 minutes
for exchange rate data, for instance. If the original data are sam-
pled once every second, say, then retaining an observation every
5 minutes amounts to discarding 299 out of every 300 data
points.

This approach to handling the data poses a conundrum from
the statistical standpoint. It is difficult to accept that throwing
away data, especially in such quantities, can be an optimal solu-
tion. We argue here that sampling over longer horizons merely
reduces the impact of microstructure, rather than quantifying
and correcting its effect for volatility estimation. Ultimately, we
seek a solution that makes use of all of the data, yet results in
an unbiased and consistent estimator of the integrated volatil-
ity. Our contention is that the contamination due to market
microstructure is, to first order, the same as what statisticians
usually call “observation error.” In other words, the transaction
will be seen as an observation device for the underlying price
process. We incorporate the observation error into the estimat-
ing procedure for integrated volatility. That is, we suppose that
the return process as observed at the sampling times is of the
form

Yti = Xti + εti . (4)

Here Xt is a latent true, or efficient, return process that fol-
lows (4). The ε′

ti s are independent noise around the true return.
In the process of constructing our final estimator for the in-

tegrated volatility, which we call the “first best” approach, we
are led to develop and analyze a number of intermediary esti-
mators, starting with a “fifth-best” approach that computes re-
alized volatility using all of the data available. This fifth-best
approach has some clearly undesirable properties. In fact, we
show in Section 2.2 that ignoring microstructure noise would
have a devastating effect on the use of the realized volatility.
Instead of (2), one gets

∑

ti,ti+1∈[0,T]

(
Yti+1 − Yti

)2 = 2nEε2 + Op
(
n1/2), (5)

where n is the number of sampling intervals over [0,T]. Thus
the realized volatility estimates not the true integrated volatil-
ity, but rather the variance of the contamination noise. In fact,
we show that the true integrated volatility, which is Op(1), is
even dwarfed by the magnitude of the asymptotically Gaussian
Op(n1/2) term. This section also discusses why it is natural to
want the quadratic variation of the latent process X, as opposed
to trying to construct, say, prices with the help of some form of
quadratic variation for Y .

Faced with such dire consequences, the usual empirical prac-
tice where one does not use all of the data is likely to produce
an improvement. We show that this is indeed the case by ana-
lyzing the estimation approach where one selects an arbitrary
sparse sampling frequency (such as one every 5 minutes, for
instance). We call this the “fourth-best” approach. A natural

question to ask, then, is how that sparse sampling frequency
should be determined. We show how to determine it optimally
by minimizing the mean squared error (MSE) of the sparse real-
ized volatility estimator, yielding what we term the “third-best”
estimator. Similar results to our third-best approach have been
discussed independently (when σt is conditionally nonrandom)
by Bandi and Russell (2003) in a paper presented at the 2003
CIRANO conference.

The third-best answer may be to sample, say, every 6 minutes
and 15 seconds instead of an arbitrary 5 minutes. Thus, even if
one determines the sampling frequency optimally, it remains
the case that one is not using a large fraction of the avail-
able data. Driven by one of statistics’ first principles—“thou
shall not throw data away”—we go further by proposing two
estimators that make use of the full data. Our next estima-
tor, the “second-best,” involves sampling sparsely over sub-
grids of observations. For example, one could subsample every
5 minutes, starting with the first observation, then starting
with the second, and so on. We then average the results ob-
tained across those subgrids. We show that subsampling and
averaging result in a substantial decrease in the bias of the
estimator.

Finally, we show how to bias-correct this estimator, result-
ing in a centered estimator for the integrated volatility despite
the presence of market microstructure noise. Our final estima-
tor, the “first-best” estimator, effectively combines the second-
best estimator (an average of realized volatilities estimated over
subgrids on a slow time scale of, say, 5 minutes each) with the
fifth-best estimator (realized volatility estimated using all of the
data) providing the bias-correction device. This combination of
slow and fast time scales gives our article its title.

Models akin to (4) have been studied in the constant σ

case by Zhou (1996), who proposed a bias-correcting approach
based on autocovariances. The behavior of this estimator has
been studied by Zumbach, Corsi, and Trapletti (2002). Other
contributions in this direction have been made by Hansen and
Lunde (2004a,b), who considered time-varying σ in the con-
ditionally nonrandom case, and by Oomen (2004). Efficient
likelihood estimation of σ has been considered by Aït-Sahalia,
Mykland, and Zhang (2005).

The article is organized as follows. Section 1.2 provides a
summary of the five estimators. The main theory for these es-
timators, including asymptotic distributions, is developed suc-
cessively in Sections 2–4 for the case of one time period [0,T].
The multiperiod problem is treated in Section 5. Section 6 dis-
cusses how to estimate the asymptotic variance for equidistant
sampling. Section 7 presents the results of Monte Carlo simula-
tions for all five estimators. Section 8 concludes and provides a
discussion for the case where the process contains jumps. The
Appendix provides proofs.

1.2 The Five Estimators: A User’s Guide

Here we provide a preview of our results in Sections 2–4. To
describe the results, we proceed through five estimators, from
the worst to the (so far) best candidate. In this section, all limit
results and optimal choices are stated in the equidistantly sam-
pled case; the more general results are given in the subsequent
sections.
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1.2.1 The Fifth-Best Approach: Completely Ignoring the
Noise. The naïve estimator of quadratic variation is [Y,Y](all)

T ,
which is the realized volatility based on the entire sample. We
show in Section 2 that (5) holds. We therefore conclude that re-
alized volatility [Y,Y](all)

T is not a reliable estimator for the true
variation 〈X,X〉T of the returns. For large n, the realized volatil-
ity diverges to infinity linearly in n. Scaled by (2n)−1, it esti-
mates consistently the variance of microstructure noise, Eε2,
rather than the object of interest 〈X,X〉T . Said differently, mar-
ket microstructure noise totally swamps the variance of the
price signal at the level of the realized volatility. Our simula-
tions in Section 7 also document this effect.

1.2.2 The Fourth-Best Approach: Sampling Sparsely at
Some Lower Frequency. Of course, completely ignoring the
noise and sampling as prescribed by [Y,Y](all)

T is not what em-
pirical researchers do in practice. Much, if not all, of the exist-
ing literature seems to have settled on sampling sparsely, that
is, constructing lower-frequency returns from the available data.
For example, using essentially the same exchange rate series,
these somewhat ad hoc choices range from 5-minute intervals
to as long as 30 minutes. That is, the literature typically uses the
estimator [Y,Y](sparse)

T described in Section 2.3. This involves
taking a subsample of nsparse observations. For example, with
T = 1 day, or 6.5 hours of open trading for stocks, and we start
with data sampled on average every �t = 1 second, then, for the
full dataset, n = T/�t = 23,400; but once we sample sparsely
every 5 minutes, then we sample every 300th observation, and
nsparse = 78.

The distribution of [Y,Y](sparse)
T is described by Lemma 1

and Proposition 1, both in Section 2.3. To first approximation,

[Y,Y](sparse)
T

L≈〈X,X〉T + 2nsparseEε2

︸ ︷︷ ︸
bias due to noise

+
[

4nsparseEε4

︸ ︷︷ ︸
due to noise

+ 2T

nsparse

∫ T

0
σ 4

t dt

︸ ︷︷ ︸
due to discretization︸ ︷︷ ︸

]1/2

total variance

Ztotal. (6)

Here Ztotal is a standard normal random variable. The sym-
bol “≈L” means that when multiplied by a suitable factor,
the convergence is in law. For precise statements, consult Sec-
tions 2–4.

1.2.3 The Third-Best Approach: Sampling Sparsely at an
Optimally Determined Frequency. Our results in Section 2.3
show how, if one insists on sampling sparsely, it is possible to
determine an optimal sampling frequency instead of selecting
the frequency in a somewhat ad hoc manner as in the fourth-best
approach. In effect, this is similar to the fourth-best approach,
except that the arbitrary nsparse is replaced by an optimally de-
termined n∗

sparse. Section 2.3 shows how to minimize over nsparse
the MSE and calculate it; for equidistant observations,

n∗
sparse =

(
T

4(Eε2)2

∫ T

0
σ 4

t dt

)1/3

.

The more general version is given by (31).

We note that the third- and the fourth-best estimators, which
rely on comparatively small sample sizes, could benefit from
the higher-order adjustments. A suitable Edgeworth adjustment
is currently under investigation.

1.2.4 The Second-Best Approach: Subsampling and Averag-
ing. As discussed earlier, even if one determines the optimal
sampling frequency as we have just described, it is still the case
that the data are not used to their full extent. We therefore pro-
pose in Section 3 the estimator [Y,Y](avg)

T constructed by aver-
aging the estimators [Y,Y](k)T across K grids of average size n̄.
We show in Section 3.5 that

[Y,Y](avg)
T

L≈〈X,X〉T + 2n̄Eε2
︸ ︷︷ ︸

bias due to noise

+
[

4
n̄

K
Eε4

︸ ︷︷ ︸
due to noise

+ 4T

3n̄

∫ T

0
σ 4

t dt
︸ ︷︷ ︸

due to discretization︸ ︷︷ ︸

]1/2

total variance

Ztotal, (7)

where Ztotal is a standard normal term. The above expression
is in the equidistantly sampled case; the general expression is
given by (51)–(52) in Section 3.5.

As can be seen from the foregoing equation, [Y,Y](avg)
T re-

mains a biased estimator of the quadratic variation 〈X,X〉T of
the true return process. But the bias 2n̄Eε2 now increases with
the average size of the subsamples, and n̄ ≤ n. Thus, as far
as the bias is concerned, [Y,Y](avg)

T is a better estimator than
[Y,Y](all)

T . The optimal trade-off between the bias and variance
for the estimator [Y,Y](avg)

T is described in Section 3.6; we set
K∗ ≈ n/n̄∗ with n̄∗ determined in (53), namely (in the equidis-
tantly sampled case)

n̄∗ =
(

T

6(Eε2)2

∫ T

0
σ 4

t dt

)1/3

. (8)

1.2.5 The First-Best Approach: Subsampling and Averaging,
and Bias-Correction. Our final estimator is based on bias-
correcting the estimator [Y,Y](avg)

T . This is the subject of Sec-
tion 4. We show that a bias-adjusted estimator for 〈X,X〉T can
be constructed as

〈̂X,X〉T = [Y,Y](avg)
T − n̄

n
[Y,Y](all)

T ,

that is, by combining estimators obtained over the two time
scales “all” and “avg.” A small-sample adjustment,

〈̂X,X〉(adj)
T =

(

1 − n̄

n

)−1

〈̂X,X〉T ,

is given in (64) in Section 4.2, which shares the same asymp-
totic distribution as 〈̂X,X〉T to the order considered.

We show in Theorem 4 in Section 4.1 that if the number of
subgrids is selected as K = cn2/3, then

〈̂X,X〉T
L≈〈X,X〉T

+ 1

n1/6

[
8

c2
(Eε2)2

︸ ︷︷ ︸
due to noise

+ c
4T

3

∫ T

0
σ 4

t dt
︸ ︷︷ ︸

due to discretization︸ ︷︷ ︸

]1/2

total variance

Ztotal. (9)
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Unlike all of the previously considered estimators, this estima-
tor is now correctly centered at 〈X,X〉T . It converges only at
rate n−1/6, but from a MSE perspective, this is better than be-
ing (badly) biased. In particular, the prescription is to use all
the available data, so there is no limit to how often one should
sample: every few seconds or more often would be typical in
tick-by-tick financial data, so n can be quite large. Based on
Section 4.2, we use an estimate of the optimal value

c∗ =
(

T

12(Eε2)2

∫ T

0
σ 4

t dt

)−1/3

. (10)

2. ANALYSIS OF REALIZED VOLATILITY UNDER
MARKET MICROSTRUCTURE NOISE

2.1 Setup

To spell out the foregoing model, we let Y be the logarithm
of the transaction price, which is observed at times 0 = t0,
t1, . . . , tn = T . We assume that at these times, Y is related to
a latent true price X (also in logarithmic scale) through (4). The
latent price X is given in (1). The noise εti satisfies the assump-
tion

εti iid with Eεti = 0, and var(εti) = Eε2;
also, ε |= X process, (11)

where |= denotes independence between two random quanti-
ties. Our modeling as in (4) does not require that εt exists for
every t; in other words, our interest in the noise is only at the
observation times, ti.

For the moment, we focus on determining the integrated
volatility of X for one time period [0,T]. This is also known as
the continuous quadratic variation 〈X,X〉 of X. In other words,

〈X,X〉T =
∫ T

0
σ 2

t dt. (12)

To succinctly describe the realized volatility, we use the no-
tions of grid and observed quadratic variation, as follows.

Definition 1. The full grid containing all of the observation
points is given by

G = {t0, . . . , tn}. (13)

Definition 2. We also consider arbitrary grids, H ⊆ G. To de-
note successive elements in such grids, we proceed as follows.
If ti ∈ H, then ti,− and ti,+ denote the preceding and follow-
ing elements in H. ti will always denote the ith point in the
full grid G. Hence, when H = G, ti,− = ti−1 and ti,+ = ti+1.
When H is a strict subgrid of G, it will normally be the case
that ti,− < ti−1, and ti,+ > ti+1. Finally, we take

|H| = (# points in grid H) − 1. (14)

This is to say that |H| is the number of time increments (ti, ti,+],
so that both endpoints are contained in H. In particular, |G| = n.

Definition 3. The observed quadratic variation [·, ·] for a
generic process Z (such as Y or X) on an arbitrary grid H ⊆ G
is given by

[Z,Z]Ht =
∑

tj,tj,+∈H,tj,+≤t

(Ztj,+ − Ztj)
2. (15)

When the choice of grid follows from the context, [Z,Z]Ht may
be denoted as just [Z,Z]t. On the full grid G, the quadratic vari-
ation is given by

[Z,Z](all)
t = [Z,Z]Gt =

∑

ti,ti+1∈G,ti+1≤t

(�Zti)
2, (16)

where �Zti = Zti+1 − Zti . Quadratic covariations are defined
similarly (see, e.g., Karatzas and Shreve 1991; Jacod and
Shiryaev 2003 for more details on quadratic variations).

Our first objective is to assess how well the realized volatil-
ity, [Y,Y](all)

T , approximates the integrated volatility 〈X,X〉T of
the true, latent process. In our asymptotic considerations, we
always assume that the number of observations in [0,T] goes
to infinity, and also that the maximum distance in time between
two consecutive observations goes to 0,

max
i

�ti → 0 as n → ∞. (17)

For the sake of preciseness, it should be noted that when
n → ∞, we are dealing with a sequence Gn of grids, Gn =
{t0,n, . . . , tn,n}, and similarly for subgrids. We have avoided us-
ing double subscripts so as to not complicate the notation, but
this is how all our conditions and results should be interpreted.

Note finally that we have adhered to the time series conven-
tion that �Zti = Zti+1 − Zti . This is in contrast to the stochastic
calculus convention �Zti = Zti − Zti−1 .

2.2 The Realized Volatility: An Estimator of
the Variance of the Noise?

Under the additive model Yti = Xti +εti , the realized volatility
based on the observed returns Yti now has the form

[Y,Y](all)
T = [X,X](all)

T + 2[X, ε](all)
T + [ε, ε](all)

T .

This gives the conditional mean and variance of [Y,Y](all)
T ,

E
([Y,Y](all)

T

∣
∣X process

)= [X,X](all)
T + 2nEε2, (18)

under assumption (11). Similarly,

var
([Y,Y](all)

T

∣
∣X process

)= 4nEε4 + Op(1), (19)

subject to condition (11) and Eε4
ti = Eε4 < ∞, for all i. Subject

to slightly stronger conditions,

var
([Y,Y](all)

T

∣
∣X process

)

= 4nEε4 + (8[X,X](all)
T Eε2 − 2 var(ε2)

)

+ Op(n
−1/2). (20)

It is also the case that as n → ∞, conditionally on the X
process, we have asymptotic normality,

n−1/2([Y,Y](all)
T − 2nEε2) L−→2(Eε4)1/2Znoise. (21)

Here Znoise is standard normal, with the subscript “noise” indi-
cating that the randomness comes from the noise ε, that is, the
deviation of the observables Y from the true process X.

The derivations of (19)–(20), along with the conditions for
the latter, are provided in Section A.1. The result (21) is derived
in Section A.2, where it is part of Theorem A.1.
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Equations (18) and (19) suggest that in the discrete world
where microstructure effects are unfortunately present, realized
volatility [Y,Y](all)

T is not a reliable estimator for the true vari-
ation [X,X](all)

T of the returns. For large n, realized volatility
could have little to do with the true returns. Instead, it relates
to the noise term, Eε2 in the first order and Eε4 in the second
order. Also, one can see from (18) that [Y,Y](all)

T has a positive
bias whose magnitude increases linearly with the sample size.

Interestingly, apart from revealing the biased nature of
[Y,Y](all)

T at high frequency, our analysis also delivers a con-
sistent estimator for the variance of the noise term. In other
words, let

Êε2 = 1

2n
[Y,Y](all)

T .

We have, for a fixed true return process X,

n1/2(Êε2 − Eε2) → N(0,Eε4), as n → ∞; (22)

see Theorem A.1 in the Appendix.
By the same methods as in Section A.2, a consistent estima-

tor of the asymptotic variance of Êε2 is then given by

Êε4 = 1

2n

∑

i

(�Yti)
4 − 3(Êε2)2. (23)

A question that naturally arises is why one is interested in the
quadratic variation of X (either 〈X,X〉 or [X,X]), as opposed to
the quadratic variation of Y ([Y,Y]), because “〈Y,Y〉” would
have to be taken to be infinite in view of the foregoing. For
example, in options pricing or hedging, one could take the op-
posite view that [Y,Y] is the volatility that one actually faces.

A main reason why we focus on the quadratic variation of
X is that the variation caused by the ε’s is tied to each transac-
tion, as opposed to the price process of the underlying security.
From the standpoint of trading, the ε’s represent trading costs,
which are different from the costs created by the volatility of
the underlying process. Different market participants may even
face different types of trading costs depending on institutional
arrangements. In any case, for the purpose of integrating trad-
ing costs into options prices, it seems more natural to approach
the matter via the extensive literature on market microstructure
(see O’Hara 1995 for a survey).

A related matter is that continuous finance would be diffi-
cult to implement if one were to use the quadratic variation
of Y . If one were to use the quadratic variation [Y,Y], then one
would also be using a quantity that would depend on the data
frequency.

Finally, apart from the specific application, it is interesting
to be able to say something about the underlying log return
process and to be able to separate this from the effects intro-
duced by the mechanics of the trading process, where the idio-
syncratics of the trading arrangement play a role.

2.3 The Optimal Sampling Frequency

We have just argued that the realized volatility estimates the
wrong quantity. This problem only gets worse when observa-
tions are sampled more frequently. Its financial interpretation
boils down to market microstructure, summarized by ε in (4).
As the data record is sampled finely, the change in true returns
gets smaller while the microstructure noise, such as bid–ask

spread and transaction cost, remains at the same magnitude. In
other words, when the sampling frequency is extremely high,
the observed fluctuation in the returns process is more heavily
contaminated by microstructure noise and becomes less repre-
sentative of the true variation 〈X,X〉T of the returns. Along this
line of discussion, the broad opinion in financial applications is
not to sample too often, at least when using realized volatility.
We now discuss how this can be viewed in the context of the
model (4) with stochastic volatility.

Formally, sparse sampling is implemented by sampling on a
subgrid H of G, with, as before,

[Y,Y](sparse) = [Y,Y](H) =
∑

ti,ti,+∈H
(Yti,+ − Yti)

2.

For the moment, we take the subgrid as given, but later we con-
sider how to optimize the sampling. We call nsparse = |H|.

To give a rationale for sparse sampling, we propose an as-
ymptotic where the law of ε, although still iid, is allowed to
vary with n and nsparse. Formally, we suppose that the distri-
bution of ε, L(ε), is an element of the set D of all distribu-
tions for which E(ε) = 0 and where E(ε2) and E(ε4)/E(ε2)2

are bounded by arbitrary constants. The asymptotic normality
in Section 2.2 then takes the following, more nuanced form.

Lemma 1. Suppose that X is an Itô process of form (1),
where |µt| and σt are bounded above by a constant. Suppose
that for given n, the grid Hn is given, with nsparse → ∞ as
n → ∞, and that for each n, Y is related to X through model (4).
Assume (11), where L(ε) ∈ D. Like the grid Hn, the law L(ε)

can depend on n (whereas the process X is fixed). Let (17) be
satisfied for the sequence of grids Hn. Then

[Y,Y]HT = [X,X]HT + 2nsparseEε2

+ (4nsparseEε4

+ (8[X,X]HT Eε2 − 2 var(ε2)
))1/2

Znoise

+ Op
(
n−1/4

sparse(Eε2)1/2), (24)

where Znoise is a quantity that is asymptotically standard nor-
mal.

The lemma is proved at the end of Section A.2. Note now that
the relative order of the terms in (24) depends on the quantities
nsparse and Eε2. Therefore, if Eε2 is small relative to nsparse,
then [Y,Y]HT is, after all, not an entirely absurd substitute for
[X,X]HT .

One would be tempted to conclude that the optimal choice of
nsparse is to make it as small as possible. But that would over-
look the fact that the bigger the nsparse, the closer the [X,X]HT
to the target integrated volatility 〈X,X〉T from (12).

To quantify the overall error, we now combine Lemma 1
with the results on discretization error to study the total er-
ror [Y,Y]HT − 〈X,X〉T . Following Rootzen (1980), Jacod and
Protter (1998), Barndorff-Nielsen and Shephard (2002), and
Mykland and Zhang (2002), and under the conditions that these
authors stated, we can show that
(

nsparse

T

)1/2

([X,X]HT − 〈X,X〉T )

L−→
(∫ T

0
2H′(t)σ 4

t dt

)1/2

× Zdiscrete, (25)
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stably in law. (We discuss this concept at the end of Sec. 3.4.)
Zdiscrete is a standard normal random variable, with the subscript
“discrete” indicating that the randomness is due to the dis-
cretization effect in [X,X]HT when evaluating 〈X,X〉T . H(t) is
the asymptotic quadratic variation of time, as discussed by
Mykland and Zhang (2002),

H(t) = lim
n→∞

nsparse

T

∑

ti,ti,+∈H,ti,+≤t

(ti,+ − ti)
2.

In the case of equidistant observations, �t0 = · · · = �tn−1 =
�t = T/nsparse and H′(t) = 1. Because the ε’s are independent
of the X process, Znoise is independent of Zdiscrete.

For small Eε2, one now has an opportunity to estimate
〈X,X〉T . It follows from our Lemma 1 and proposition 1 of
Mykland and Zhang (2002) that

Proposition 1. Assume the conditions of Lemma 1, and also
that maxti,ti,+∈H(ti,+ − ti) = O(1/nsparse). Also assume Condi-
tion E in Section A.3. Then H is well defined, and

[Y,Y]HT = 〈X,X〉T + 2Eε2nsparse + ϒZtotal

+ Op
(
n−1/4

sparse(Eε2)1/2)+ op
(
n−1/2

sparse
)
, (26)

in the sense of stable convergence, where Ztotal is asymptoti-
cally standard normal and where the variance has the form

ϒ2 = 4nsparseEε4 + (8[X,X]HT Eε2 − 2 var(ε2)
)

︸ ︷︷ ︸
due to noise

+ T

nsparse

∫ T

0
2H′(t)σ 4

t dt

︸ ︷︷ ︸

.

due to discretization

(27)

Seen from this angle, there is scope for using the real-
ized volatility [Y,Y]H to estimate 〈X,X〉. There is a bias,
2Eε2nsparse, but the bias goes down if one uses fewer obser-
vations. This, then, is consistent with the practice in empirical
finance, where the estimator used is not [Y,Y](all), but instead
[Y,Y](sparse), by sampling sparsely. For instance, faced with
data sampled every few seconds, empirical researchers would
typically use square returns (i.e., differences of log-prices Y)
over, say, 5-, 15-, or 30-minute time intervals. The intuitive ra-
tionale for using this estimator is to attempt to control the bias
of the estimator; this can be assessed based on our formula (26),
replacing the original sample size n by the lower number re-
flecting the sparse sampling. But one should avoid sampling too
sparsely, because formula (27) shows that decreasing nsparse has
the effect of increasing the variance of the estimator via the dis-
cretization effect which is proportional to n−1

sparse. Based on our
formulas, this trade-off between sampling too often and sam-
pling too rarely can be formalized, and an optimal frequency at
which to sample sparsely can be determined.

It is natural to minimize the MSE of [Y,Y](sparse),

MSE = (2nsparseEε2)2

+
{

4nsparseEε4 + (8[X,X]HT Eε2 − 2 var(ε2)
)

+ T

nsparse

∫ T

0
2H′(t)σ 4

t dt

}

. (28)

One has to imagine that the original sample size n is quite large,
so that nsparse < n. In this case minimizing the MSE (28) means
that one should choose nsparse to satisfy ∂MSE/∂nsparse ≈ 0; in
other words,

8nsparse(Eε2)2 + 4Eε4 − T

n2
sparse

∫ T

0
2H′(t)σ 4

t dt ≈ 0 (29)

or

n3
sparse + 1

2
n2

1
Eε4

(Eε2)2
− (Eε2)−2 T

8

∫ T

0
2H′(t)σ 4

t dt ≈ 0. (30)

Finally, still under the conditions on Proposition 1, the opti-
mum n∗

sparse becomes

n∗
sparse = (Eε2)−2/3

(
T

8

∫ T

0
2H′(t)σ 4

t dt

)1/3

(1 + op(1))

as Eε2 → 0. (31)

Of course, if the actual sample size n were smaller than n∗
sparse,

then one would simply take n∗
sparse = n, but this is unlikely to

occur for heavily traded stock.
Equation (31) is the formal statement saying that one can

sample more frequently when the error spread is small. Note
from (28) that to first order, the final trade-off is between the
bias 2nsparseEε2 and the variance due to discretization. The ef-
fect of the variance associated with Znoise is of lower order when
comparing nsparse and Eε2. It should be emphasized that (31) is
a feasible way of choosing nsparse. One can estimate Eε2 using
all of the data following the procedure in Section 2.2. The inte-
gral

∫ T
0 2H′(t)σ 4

t dt can be estimated by the methods discussed
in Section 6.

Hence, if one decides to address the problem by selecting
a lower frequency of observation, then one can do so by sub-
sampling the full grid G at an arbitrary sparse frequency and
use [Y,Y](sparse). Alternatively, one can use nsparse as optimally
determined by (31). We denote the corresponding estimator as
[Y,Y](sparse,opt). These are our fourth- and third-best estimators.

3. SAMPLING SPARSELY WHILE USING ALL OF
THE DATA: SUBSAMPLING AND AVERAGING

OVER MULTIPLE GRIDS

3.1 Multiple Grids and Sufficiency

We have argued in the previous section that one can indeed
benefit from using infrequently sampled data. And yet one of
the most basic lessons of statistics is that one should not do
this. We present here two ways of tackling the problem. Instead
of selecting (arbitrarily or optimally) a subsample, our meth-
ods are based on selecting a number of subgrids of the original
grid of observation times, G = {t0, . . . , tn}, and then averaging
the estimators derived from the subgrids. The principle is that
to the extent that there is a benefit to subsampling, this benefit
can now be retained, whereas the variation of the estimator can
be lessened by the averaging. The benefit of averaging is clear
from sufficiency considerations, and many statisticians would
say that subsampling without subsequent averaging is inferen-
tially incorrect.

In what follows we first introduce a set of notations, then turn
to studying the realized volatility in the multigrid context. In
Section 4 we show how to eliminate the bias of the estimator by
using two time scales, a combination of single grid and multiple
grids.
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3.2 Notation for the Multiple Grids

We specifically suppose that the full grid G, G = {t0, . . . , tn}
as in (13), is partitioned into K nonoverlapping subgrids G(k),
k = 1, . . . ,K; in other words,

G =
K⋃

k=1

G(k), where G(k) ∩ G(l) = ∅ when k = l.

For most purposes, the natural way to select the kth subgrid G(k)

is to start with tk−1 and then pick every Kth sample point after
that, until T . That is,

G(k) = {tk−1, tk−1+K, tk−1+2K, . . . , tk−1+nkK
}

for k = 1, . . . ,K, where nk is the integer making tk−1+nkK the
last element in G(k). We refer to this as regular allocation of
sample points to subgrids.

Whether the allocation is regular or not, we let nk = |G(k)|. As
in Definition 2, n = |G|. Recall that the realized volatility based
on all observation points G is written as [Y,Y](all)

T . Meanwhile,
if one uses only the subsampled observations Yt, t ∈ G(k), then
the realized volatility is denoted by [Y,Y](k)T . It has the form

[Y,Y](k)T =
∑

tj,tj,+∈G(k)

(
Ytj,+ − Ytj

)2
,

where if ti ∈ G(k), then ti,+ denotes the following elements
in G(k).

A natural competitor to [Y,Y](all)
T , [Y,Y](sparse)

T , and

[Y,Y](sparse,opt)
T is then given by

[Y,Y](avg)
T = 1

K

K∑

k=1

[Y,Y](k)T , (32)

and this is the statistic we analyze in the what following. As
before, we fix T and use only the observations within the time
period [0,T]. Asymptotics are still under (17) and under

as n → ∞ and n/K → ∞. (33)

In general, the nk need not be the same across k. We define

n̄ = 1

K

K∑

k=1

nk = n − K + 1

K
. (34)

3.3 Error Due to the Noise: [Y, Y ](avg)
T − [X, X ](avg)

T

Recall that we are interested in determining the integrated
volatility, 〈X,X〉T , or quadratic variation, of the true but un-
observable returns. As an intermediate step, here we study
how well the “pooled” realized volatility [Y,Y](avg)

T approx-
imates [X,X](avg)

T , where the latter is the “pooled” true inte-
grated volatility when X is considered only on the discrete time
scale.

From (18) and (32),

E
([Y,Y](avg)

T

∣
∣X process

)= [X,X](avg)
T + 2n̄Eε2. (35)

Also, because {εt, t ∈ G(k)} are independent for different k,

var
([Y,Y](avg)

T

∣
∣X process

) = 1

K2

K∑

k=1

var
([Y,Y](k)T

∣
∣X process

)

= 4
n̄

K
Eε4 + Op

(
1

K

)

, (36)

in the same way as in (19). Incorporating the next-order term in
the variance yields that

var
([Y,Y](avg)

T

∣
∣X
)

= 4
n̄

K
Eε4 + 1

K

[
8[X,X](avg)

T Eε2 − 2 var(ε2)
]

+ op

(
1

K

)

, (37)

as in (20).
By Theorem A.1 in Section A.2, the conditional asymptotics

for the estimator [Y,Y](avg)
T are as follows.

Theorem 1. Suppose that X is an Itô process of form (1).
Suppose that Y is related to X through model (4), and that (11)
is satisfied with Eε4 < ∞. Also suppose that ti and ti+1 are
not in the same subgrid for any i. Under assumption (33), as
n → ∞,
√

K

n̄

([Y,Y](avg)
T − [X,X](avg)

T − 2n̄Eε2) L−→ 2
√

Eε4Z(avg)

noise ,

(38)

conditional on the X process, where Z(avg)

noise is standard normal.

This can be compared with the result stated in (24). Notice
that Z(avg)

noise in (38) is almost never the same as Znoise in (24);
in particular, cov(Znoise,Z(avg)

noise ) = var(ε2)/Eε4, based on the
proof of Theorem A.1 in the Appendix.

In comparison with the realized volatility using the full
grid G, the aggregated estimator [Y,Y](avg)

T provides an im-
provement in that both the asymptotic bias and variance are
of smaller order of n, compare (18) and (19). We use this in
Section 4.

3.4 Error Due to the Discretization Effect:
[X, X ](avg)

T − 〈X, X 〉T

In this section we study the impact of the time discretization.
In other words, we investigate the deviation of [X,X](avg)

T from
the integrated volatility 〈X,X〉T of the true process. Denote the
discretization effect by DT , where

Dt = [X,X](avg)
t − 〈X,X〉t

= 1

K

K∑

k=1

([X,X](k)t − 〈X,X〉t
)
, (39)

with

[X,X](k)t =
∑

ti,ti,+∈G(k),ti,+≤t

(
Xti,+ − Xti

)2
. (40)

In what follows we consider the asymptotics of DT . The prob-
lem is similar to that of finding the limit of [X,X](all)

T −〈X,X〉T ,
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[cf. (25)]. However, this present case is more complicated due
to the multiple grids.

We suppose in the following that the sampling points
are regularly allocated to subgrids; in other words, G(l) =
{tl−1, tK+l−1, . . .}. We also assume that

max
i

|�ti| = O

(
1

n

)

(41)

and

K/n → 0. (42)

Define the weight function

hi = 4

K�t

(K−1)∧i∑

j=1

(

1 − j

K

)2

�ti−j. (43)

In the case where the ti are equidistant, and under regular al-
location of points to subgrids, �ti = �t, and so all of the hi’s
(except the first K − 1) are equal, and

hi = 4
1

K

(K−1)∧i∑

j=1

(

1 − j

K

)2

=






4
2K2 − 4K + 3

6K2
= 4

3
+ o(1), i ≥ K − 1

4

3

i

K2
(3K2 − 3Ki + i2) + o(1), i < K − 1.

(44)

More generally, assumptions (41) and (42) ensure that

sup
i

hi = O(1). (45)

We take 〈D,D〉T to be the quadratic variation of Dt when
viewed as a continuous-time process (39). This gives the best
approximation to the variance of DT . We show the following
results in Section A.3.

Theorem 2. Suppose that X is an Itô process of the form (1),
with drift coefficient µt and diffusion coefficient σt, both con-
tinuous almost surely. Also suppose that σt is bounded away
from 0. Assume (41) and (42), and that sampling points are
regularly allocated to grids. Then the quadratic variation of DT

is approximately

〈D,D〉T = TK

n
η2

n + op

(
K

n

)

, (46)

where

η2
n =
∑

i

hiσ
4
ti �ti. (47)

In particular, DT = Op((K/n)1/2). From this, we derive a
variance–variance trade-off between the two effects that have
been discussed, noise and discretization. First, however, we dis-
cuss the asymptotic law of DT . We discuss stable convergence
at the end of this section.

Theorem 3. Assume the conditions of Theorem 2, and also
that

η2
n

P−→η2 (48)

where η is random. Also assume condition E in Section A.3.
Then

DT/(K/n)1/2 L−→η
√

TZdiscrete, (49)

where Zdiscrete is standard normal and independent of the
process X. The convergence in law is stable.

In other words, DT/(K/n)1/2 can be taken to be asymptoti-
cally mixed normal “N(0, η2T).” For most of our discussion, it
is most convenient to suppose (48), and this is satisfied in many
cases. For example, when the ti are equidistant, and under reg-
ular allocation of points to subgrids,

η2 = 4

3

∫ T

0
σ 4

t dt, (50)

following (44). One does not need to rely on (48); we ar-
gue in Section A.3 that without this condition, one can take
DT/(K/n)1/2 to be approximately N(0, η2

nT). For estimation of
η2 or η2

n , see Section 6.
Finally, stable convergence (Rényi 1963; Aldous and

Eagleson 1978; Hall and Heyde 1980, chap. 3) means for our
purposes that the left side of (49) converges to the right side
jointly with the X process, and that Z is independent of X.
This is slightly weaker than convergence conditional on X,
but serves the same function of permitting the incorporation
of conditionality-type phenomena into arguments and conclu-
sions.

3.5 Combining the Two Sources of Error

We can now combine the two error terms arising from dis-
cretization and from the observation noise. It follows from The-
orems 1 and 3 that

[Y,Y](avg)
T − 〈X,X〉T − 2n̄Eε2 = ξZtotal + op(1), (51)

where Ztotal is an asymptotically standard normal random vari-
able independent of the X process and

ξ2 = 4
n̄

K
Eε4

︸ ︷︷ ︸
due to noise

+ T
1

n̄
η2

︸ ︷︷ ︸
due to discretization

. (52)

It is easily seen that if one takes K = cn2/3, then both compo-
nents in ξ2 will be present in the limit; otherwise, one of them
will dominate. Based on (51), [Y,Y](avg)

T is still a biased estima-
tor of the quadratic variation 〈X,X〉T of the true return process.
One can recognize that as far as the asymptotic bias is con-
cerned, [Y,Y](avg)

T is a better estimator than [Y,Y](all)
T , because

n̄ ≤ n, demonstrating that the bias in the subsampled estimator
[Y,Y](avg)

T increases in a slower pace than the full-grid estima-
tor. One can also construct a bias-adjusted estimator from (51);
this further development would involve the higher-order analy-
sis between the bias and the subsampled estimator. We describe
the methodology of bias correction in Section 4.
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3.6 The Benefits of Sampling Sparsely: Optimal
Sampling Frequency in the Multiple-Grid Case

As in Section 2.3, when the noise is negligible asymptoti-
cally, we can search for an optimal n̄ for subsampling to balance
the coexistence of the bias and the variance in (51). To reduce
the MSE of [Y,Y](avg)

T , we set ∂MSE/∂ n̄ = 0. From (52)–(51),
bias = 2n̄Eε2 and ξ2 = 4 n̄

K Eε4 + T
n̄ η2. Then

MSE = bias2 + ξ2 = 4(Eε2)2n̄2 + 4
n̄

K
Eε4 + T

n̄
η2

= 4(Eε2)2n̄2 + T

n̄
η2 to first order;

thus the optimal n̄∗ satisfies that

n̄∗ =
(

Tη2

8(Eε2)2

)1/3

. (53)

Therefore, assuming that the estimator [Y,Y](avg)
T is adopted,

one could benefit from a minimum MSE if one subsamples n̄∗
data in an equidistant fashion. In other words, all n observations
can be used if one uses K∗, K∗ ≈ n/n̄∗, subgrids. This is in
contrast to the drawback of using all of the data in the single-
grid case. The subsampling coupled with aggregation brings out
the advantage of using all of data. Of course, for the asymptotics
to work, we need Eε2 → 0. Our recommendation, however, is
to use the bias-corrected estimator given in Section 4.

4. THE FINAL ESTIMATOR: SUBSAMPLING,
AVERAGING, AND BIAS CORRECTION

OVER TWO TIME SCALES

4.1 The Final Estimator 〈̂X, X 〉T : Main Result

In the preceding sections, we have seen that the multigrid
estimator [Y,Y](avg) is yet another biased estimator of the true
integrated volatility 〈X,X〉. In this section we improve the
multigrid estimator by adopting bias adjustment. To access the
bias, one uses the full grid. As mentioned before, from (22) in
the single-grid case (Sec. 2), Eε2 can be consistently approxi-
mated by

Êε2 = 1

2n
[Y,Y](all)

T . (54)

Hence the bias of [Y,Y](avg) can be consistently estimated by
2n̄Êε2. A bias-adjusted estimator for 〈X,X〉 thus can be ob-
tained as

〈̂X,X〉T = [Y,Y](avg)
T − n̄

n
[Y,Y](all)

T , (55)

thereby combining the two time scales (all) and (avg).
To study the asymptotic behavior of 〈̂X,X〉T , first note that

under the conditions of Theorem A.1 in Section A.2,
(

K

n̄

)1/2(〈̂X,X〉T − [X,X](avg)
T

)

=
(

K

n̄

)1/2([Y,Y](avg)
T − [X,X](avg)

T − 2n̄Eε2)

− 2(Kn̄)1/2(Êε2 − Eε2)

L−→ N
(
0,8(Eε2)2), (56)

where the convergence in law is conditional on X.
We can now combine this with the results of Section 3.4 to

determine the optimal choice of K as n → ∞,

〈̂X,X〉T − 〈X,X〉T

= (〈̂X,X〉T − [X,X](avg)
T

)+ ([X,X](avg)
T − 〈X,X〉T

)

= Op

(
n̄1/2

K1/2

)

+ Op
(
n̄−1/2). (57)

The error is minimized by equating the two terms on the
right side of (57), yielding that the optimal sampling step for
[Y,Y](avg)

T is K = O(n2/3). The right side of (57) then has order
Op(n−1/6).

In particular, if we take

K = cn2/3, (58)

then we find the limit in (57), as follows.

Theorem 4. Suppose that X is an Itô process of form (1), and
assume the conditions of Theorem 3 in Section 3.4. Suppose
that Y is related to X through model (4), and that (11) is satisfied
with Eε2 < ∞. Under assumption (58),

n1/6(〈̂X,X〉T − 〈X,X〉T
)

L−→ N
(
0,8c−2(Eε2)2)+ η

√
TN(0, c)

= (8c−2(Eε2)2 + cη2T
)1/2N(0,1), (59)

where the convergence is stable in law (see Sec. 3.4).

Proof. Note that the first normal distribution comes from
(56) and that the second comes from Theorem 3 in Section 3.4.
The two normal distributions are independent because the con-
vergence of the first term in (57) is conditional on the X process,
which is why they can be amalgamated as stated. The require-
ment that Eε4 < ∞ (Thm. A.1 in the App.) is not needed, be-
cause only a law of large numbers is required for M(1)

T (see the
proof of Thm. A.1) when considering the difference in (56).
This finishes the proof.

The estimation of the asymptotic spread s2 = 8c−2(Eε2)2 +
cη2T of 〈̂X,X〉T is deferred to Section 6. It is seen in Sec-
tion A.1 that for K = cn2/3, the second-order conditional vari-
ance of 〈̂X,X〉T , given the X process, is given by

var
(〈̂X,X〉T

∣
∣X
) = n−1/3c−28(Eε2)2

+ n−2/3c−1[8[X,X](avg)
T Eε2 − 2 var(ε2)

]

+ op
(
n−2/3). (60)

The evidence from our Monte Carlo simulations in Section 7
suggests that this correction may matter in small samples, and
that the (random) variance of 〈̂X,X〉T is best estimated by

s2 + n−2/3c−1[8[X,X](avg)
T Eε2 − 2 var(ε2)

]
. (61)

For the correction term, [X,X](avg)
T can be estimated by 〈̂X,X〉T

itself. Meanwhile, by (23), a consistent estimator of var(ε2) is
given by

v̂ar(ε2) = 1

2n

∑

i

(
�Yti

)4 − 4(Êε2)2.
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4.2 Properties of 〈̂X, X 〉T : Optimal Sampling and
Bias Adjustment

To further pin down the optimal sampling frequency K, one
can minimize the expected asymptotic variance in (59) to obtain

c∗ =
(

16(Eε2)2

T Eη2

)1/3

, (62)

which can be consistently estimated from data in past time pe-
riods (before time t0 = 0), using Êε2 and an estimator of η2 (cf.
Sec. 6). As mentioned in Section 3.4, η2 can be taken to be inde-
pendent of K as long as one allocates sampling points to grids
regularly, as defined in Section 3.2. Hence one can choose c,
and so also K, based on past data.

Example 1. If σ 2
t is constant, and for equidistant sampling

and regular allocation to grids, η2 = 4
3σ 4T , then the asymptotic

variance in (59) is

8c−2(Eε2)2 + cη2T = 8c−2(Eε2)2 + 4
3 cσ 4T2,

and the optimal choice of c becomes

copt =
(

12(Eε2)2

T2σ 4

)1/3

. (63)

In this case, the asymptotic variance in (59) is

2(12(Eε2)2)
1/3

(σ 2T)
4/3

.

One can also, of course, estimate c to minimize the actual as-
ymptotic variance in (59) from data in the current time period
(0 ≤ t ≤ T). It is beyond the scope of this article to consider
whether such a device for selecting the frequency has any im-
pact on our asymptotic results.

In addition to large-sample arguments, one can study 〈̂X,X〉T
from a “smallish” sample standpoint. We argue in what follows
that one can apply a bias-type adjustment to get

〈̂X,X〉(adj)
T =

(

1 − n̄

n

)−1

〈̂X,X〉T . (64)

The difference from the estimator in (55) is of order
Op(n̄/n) = Op(K−1), and thus the two estimators behave the
same as the asymptotic order that we consider. The estima-
tor (64), however, has the appeal of being, in a certain way,
“unbiased,” as follows. For arbitrary (a,b), consider all estima-
tors of the form

〈̂X,X〉(adj)
T = a[Y,Y](avg)

T − b
n̄

n
[Y,Y](all)

T .

Then, from (18) and (35),

E
(〈̂X,X〉(adj)

T

∣
∣X process

)

= a
([X,X](avg)

T + 2n̄Eε2)− b
n̄

n

([X,X](all)
T + 2nEε2)

= a[X,X](avg)
T − b

n̄

n
[X,X](all)

T + 2(a − b)n̄Eε2.

It is natural to choose a = b to completely remove the ef-
fect of Eε2. Also, following Section 3.4, both [X,X](avg)

T and
[X,X](all)

T are asymptotically unbiased estimators of 〈X,X〉T .
Hence one can argue that one should take a(1− n̄/n) = 1, yield-
ing (64).

Similarly, an adjusted estimator of Eε2 is given by

Êε2(adj) = 1
2 (n − n̄)−1([Y,Y](all)

T − [Y,Y](avg)
T

)
, (65)

which satisfies that E(Êε2(adj)|X process) = Eε2 + 1
2 (n −

n̄)−1([X,X](all)
T − [X,X](avg)

T ) and thus is unbiased to high or-
der. As for the asymptotic distribution, one can see from Theo-
rem A.1 in the Appendix that

Êε2(adj) − Eε2

= (Êε2 − Eε2)(1 + O(K−1)) + Op
(
Kn−3/2)

= Êε2 − Eε2 + Op
(
n−1/2K−1)+ Op

(
Kn−3/2)

= Êε2 − Eε2 + Op
(
n−5/6),

from (58). It follows that n1/2(Êε2 − Eε2) and n1/2(Êε2(adj) −
Eε2) have the same asymptotic distribution.

5. EXTENSION TO MULTIPLE PERIOD INFERENCE

For a given family A = {G(k), k = 1, . . . ,K}, we denote

〈̂X,X〉t = [Y,Y](avg)
t − n̄

n
[Y,Y](all)

t , (66)

where, as usual, [Y,Y](all)
t =∑ti+1≤t(�Yti)

2 and [Y,Y](avg)
t =

1
K

∑K
k=1[Y,Y](k)t , with

[Y,Y](k)t =
∑

ti,ti,+∈G(k),ti,+≤t

(
Yti,+ − Yti

)2
.

To estimate 〈X,X〉 for several discrete time periods, say
[0,T1], [T1,T2], . . . , [TM−1,TM], where M is fixed, this am-
ounts to estimating 〈X,X〉Tm − 〈X,X〉Tm−1 = ∫ Tm

Tm−1
σ 2

u du, for

m = 1, . . . ,M, and the obvious estimator is 〈̂X,X〉Tm
−

〈̂X,X〉Tm−1
.

To carry out the asymptotics, let nm be the number of
points in the mth time segment and, similarly, let Km = cmn2/3

m ,
where cm is a constant. Then {n1/6

m (〈̂X,X〉Tm
− 〈̂X,X〉Tm−1

−
∫ Tm

Tm−1
σ 2

u du),m = 1, . . . ,M} converge stably to {(8c−2
m (Eε2)2 +

cmη2
m(Tm − Tm−1))

1/2Zm}, where the Zm are iid standard nor-
mals, independent of the underlying process, and η2

m is the
limit η2 (Thm. 3) for time period m. In the case of equidis-
tant ti and regular allocation of sample points to grids, η2

m =
4
3

∫ Tm
Tm−1

σ 4
u du.

In other words, the one-period asymptotics generalize
straightforwardly to the multiperiod case. This is because
〈̂X,X〉Tm

− 〈̂X,X〉Tm−1
− ∫ Tm

Tm−1
σ 2

u du has, to first order, a mar-
tingale structure. This can be seen in the Appendix.

An advantage of our proposed estimator is that if εti has
different variance in different time segments, say var(εti) =
(Eε2)m for ti ∈ (Tm−1,Tm], then both consistency and asymp-
totic (mixed) normality continue to hold, provided that one re-
places Eε2 by (Eε2)m. This adds a measure of robustness to
the procedure. If one were convinced that Eε2 were the same
across time segments, then an alternative estimator would have
the form

〈̂X,X〉t = [Y,Y](avg)
t −

(
1

K
#{ti+1 ≤ t} − 1

)
1

n
[Y,Y](all)

T

for t = T1, . . . ,TM. (67)
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However, the errors 〈̂X,X〉Tm
− 〈̂X,X〉Tm−1

− ∫ Tm
Tm−1

σ 2
u du in this

case are not asymptotically independent. Note that for T = Tm,
both candidates (66) and (67) for 〈̂X,X〉t coincide with the
quantity in (55).

6. ESTIMATING THE ASYMPTOTIC
VARIANCE OF 〈̂X, X 〉T

In the one-period case, the main goal is to estimate the as-
ymptotic variance s2 = 8c−2(Eε2)2 + cη2T [cf. (58) and (59)].
The multigrid case is a straightforward generalization, as indi-
cated in Section 5.

Here, we are concerned only with the case where the points ti
are equally spaced (�ti = �t) and are regularly allocated to
the grids A1 = {G(k), k = 1, . . . ,K1}. A richer set of ingredients
are required to find the spread than to just estimate 〈̂X,X〉T .
To implement the estimator, we create an additional family
A2 = {G(k,i), k = 1, . . . ,K1, i = 1, . . . , I} of grids where G(k,i)

contains every Ith point of G(k), starting with the ith point.
We assume that K1 ∼ c1n2/3. The new family then consists of
K2 ∼ c2n2/3 grids, where c2 = c1I.

In addition, we need to divide the time line into segments,
(Tm−1,Tm], where Tm = m

M T . For the purposes of this discus-
sion, M is large but finite. We now get an initial estimator of
spread as

ŝ2
0 = n1/3

M∑

m=1

(〈̂X,X〉K1
Tm

− 〈̂X,X〉K1
Tm−1

− (〈̂X,X〉K2
Tm

− 〈̂X,X〉K2
Tm−1

))2
,

where 〈X,X〉Ki
t is the estimator (66) using the grid family i,

i = 1,2.
Using the discussion in Section 5, we can show that

ŝ2
0 ≈ s2

0, (68)

where, for c1 = c2 (I = 1),

s2
0 = 8(Eε2)2(c−2

1 + c−2
2 − c−1

1 c−1
2 ) + (c1/2

1 − c1/2
2

)2
Tη2

= 8(Eε2)2c−2
1 (1 + I−2 − I−1) + c1

(
I1/2 − 1

)2
Tη2. (69)

In (68), the symbol “≈” denotes first convergence in law as
n → ∞, and then a limit in probability as M → ∞. Because
Eε2 can be estimated by Êε2 = [Y,Y](all)/2n, we can put hats
on s2

0, (Eε2)2, and η2 in (69) to obtain an estimator of η2. Sim-
ilarly,

s2 = 8(Eε2)2
(

c−2 − c(c−2
1 + c−2

2 − c−1
1 c−1

2 )

(c1/2
1 − c1/2

2 )
2

)

+ c

(c1/2
1 − c1/2

2 )
2

s2
0

= 8

(

c−2 − cc−3
1

I−2 − I−1 + 1

(I1/2 − 1)
2

)

(Eε2)2

+ c

c1

1

(I1/2 − 1)
2

s2
0, (70)

where c ∼ Kn−2/3, where K is the number of grids used origi-
nally to estimate 〈X,X〉T .

Table 1. Coefficients of (Êε2)2 and ŝ 2 When c1 = c

I coeff(s 2
0 ) coeff((Eε2)2)

3 1.866 −3.611c−2

4 1.000 1.5000c−2

Normally, one would take c1 = c. Hence an estimator ŝ2 can
be found from ŝ2

0 and Êε2. When c1 = c, we argue that the op-
timal choice is I = 3 or 4, as follows. The coefficients in (70)
become

coeff(s2
0) = (I1/2 − 1

)−2

and

coeff((Eε2)2) = 8c−2(I1/2 − 1
)−2

f (I),

where f (I) = I − 2I1/2 − I−2 + I−1. For I ≥ 2, f (I) is increas-
ing, and f (I) crosses 0 for I between 3 and 4. These, there-
fore, are the two integer values of I that give the lowest ratio
of coeff((Eε2)2)/coeff(s2

0). Using I = 3 or 4, therefore, would
maximally insulate against (Êε2)2 dominating over ŝ2

0. This is
desirable, because ŝ2

0 is the estimator of carrying the informa-
tion about η2. Numerical values for the coefficients are given in
Table 1. If c were such that (Êε2)2 still overwhelms ŝ2

0, then a
choice of c1 = c should be considered.

7. MONTE CARLO EVIDENCE

In this article we have discussed five approaches to deal-
ing with the impact of market microstructure noise on realized
volatility. In this section we examine the performance of each
approach in simulations, and compare the results with those
predicted by the aforementioned asymptotic theory.

7.1 Simulations Design

We use the stochastic volatility model of Heston (1993) as
our data-generating process,

dXt = (µ − vt/2)dt + σt dBt (71)

and

dvt = κ(α − vt)dt + γ v1/2
t dWt, (72)

where vt = σ 2
t . We assume that the parameters (µ, κ,α, γ )

and ρ, the correlation coefficient between the two Brownian
motions B and W , are constant in this model. We also as-
sume Feller’s condition 2κα ≥ γ 2, to make the zero boundary
unattainable by the volatility process.

We simulate M = 25,000 sample paths of the process us-
ing the Euler scheme at a time interval �t = 1 second, and set
the parameter values at values reasonable for a stock: µ = .05,

κ = 5, α = .04, γ = .5, and ρ = −.5. As for the market mi-
crostructure noise ε, we assume that it is Gaussian and small.
Specifically, we set (Eε2)1/2 = .0005 (i.e., the standard devia-
tion of the noise is .05% of the value of the asset price). We
purposefully set this value to be smaller than the values cali-
brated using the empirical market microstructure literature.

On each simulated sample path, we estimate 〈X,X〉T over
T = 1 day (i.e., T = 1/252, because the parameter values are all
annualized) using the five estimation strategies described ear-
lier: [Y,Y](all)

T , [Y,Y](sparse)
T , [Y,Y](sparse,opt)

T , [Y,Y](avg)
T , and
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finally, 〈̂X,X〉(adj)
T . We assume that a day consists of 6.5 hours

of open trading, as is the case on the NYSE and NASDAQ.
For the fourth-best estimator, we represent this approach using
sparse sampling at a frequency of once every 5 minutes.

7.2 Simulations Results

Table 2 reports the simulation results for the five estima-
tion strategies. For each estimator, the bias is calculated as
E [estimator − 〈X,X〉T ]. The variance row reports the quantity

E

[

var

(

estimator − 〈X,X〉T

∣
∣
∣

∫ T

0
σ 2

t dt,
∫ T

0
σ 4

t dt

)]

. (73)

The rows marked “relative” report the corresponding results in
percentage terms, that is, for

estimator − 〈X,X〉T

〈X,X〉T
.

Note that although the convergence of the discretization error is
stable as opposed to conditional, (73) seems like a reasonable
stand-in for the theoretical quantity under consideration.

In each case, “small sample” represents the average value
over the M simulated paths, and “asymptotic” refers to the value
predicted by our theory. The noise parts of the asymptotic vari-
ances are taken to include the relevant second-order terms, as
given by (20), (37), and (60), yielding spreads like (in the latter
case) (61). The small-sample variance is computed by binning
the results of the simulations according to the values of the pair
(
∫ T

0 σ 2
t dt,

∫ T
0 σ 4

t dt), calculating the variance within each bin,
and then averaging across the bins, weighted by the number of
elements in each bin.

Comparing the rows showing small-sample results to their
asymptotic predictions, we see that the asymptotic theory pro-
vides a good approximation to the first two moments of the
small-sample distribution of the five estimators. Comparing
across columns, we see that the differences between the five es-
timators are quite large. As expected, the naive fifth-best strat-
egy produces disastrous results. The first-best strategy results
in a large decrease of root MSE (RMSE) relative to the oth-
ers, including in particular the fourth-best strategy, which is
the approach currently used in most of the empirical literature.
But, at least for the parameter values used here, determining the
optimal sampling frequency (the sparse optimal, or third-best,
strategy) results in a modest improvement over the arbitrary

selection of a sampling frequency (the sparse, or fourth-best,
strategy). Using all of the data as in the subsampled and aver-
aged estimator (second-best), but especially the bias correction
by combining two time scales as in our first-best approach, is
where the major practical improvements reside.

It may seem surprising that the variance of the estimator is
reduced so much from the second to first-best estimator. After
all, if one sets c = Kn−2/3, then the asymptotic normal term
in (7) becomes

1

n1/6

[
4

c2
(Eε4)

︸ ︷︷ ︸
due to noise

+ c
4T

3

∫ T

0
σ 4

t dt
︸ ︷︷ ︸

due to discretization︸ ︷︷ ︸

]1/2

total variance

Ztotal.

This is quite similar to the error term in (9). However, the
c for the second-best estimator is chosen by (8), whereas for
the first-best case it is given by (10). The two optima are very
different because for the second-best estimator, it is chosen by
a bias–variance trade-off, whereas for the first-best estimator,
it is chosen to minimize the asymptotic variance. From this
standpoint, it is quite reasonable for the first-best estimator to
also have substantially better asymptotic variance. In fact, from
(8) and (10), it is easy to see that for the optimal choices,

c∗
second best = n1/32−1/3

(
Eε4

E(ε2)2

)1/3

c∗
first best,

whence the total variance is in fact quite different for the two
estimators.

Figure 1 shows the small-sample and asymptotic RMSE of
the [Y,Y](sparse)

T estimator as a function of the subsampling
interval, illustrating the minimization problem studied in Sec-
tion 2.3. Finally, Figure 2 shows the standardized distribution
of the first-best estimator obtained from the simulations (his-
togram) and the corresponding asymptotic distribution pre-
dicted by our theory (solid line). Due to the effect of bias, the
distributions of the fifth- to second-best estimators are irrele-
vant, because they cannot be used to set intervals for the volatil-
ity.

8. DISCUSSION

In this work we have quantified and corrected the effect of
noise on the nonparametric assessment of integrated volatil-
ity. In the setting of high-frequency data, the usual financial
practice is to use sparse sampling, in other words, throwing

Table 2. Monte Carlo Simulations for the Five Estimation Strategies

Fifth-best Fourth-best Third-best Second-best First-best
[ Y , Y ] (all)

T [ Y , Y ] (sparse)
T [ Y , Y ] (sparse, opt)

T [ Y , Y ] (avg)
T 〈̂X, X 〉 (adj)

T

Small-sample bias 1.1699 × 10−2 3.89 × 10−5 2.18 × 10−5 1.926 × 10−5 2 × 10−8

Asymptotic bias 1.1700 × 10−2 3.90 × 10−5 2.20 × 10−5 1.927 × 10−5 0

Small-sample variance 1.791 × 10−8 1.4414 × 10−9 1.59 × 10−9 9.41 × 10−10 9 × 10−11

Asymptotic variance 1.788 × 10−8 1.4409 × 10−9 1.58 × 10−9 9.37 × 10−10 8 × 10−11

Small-sample RMSE 1.1699 × 10−2 5.437 × 10−5 4.543 × 10−5 3.622 × 10−5 9.4 × 10−6

Asymptotic RMSE 1.1700 × 10−2 5.442 × 10−5 4.546 × 10−5 3.618 × 10−5 8.9 × 10−6

Small-sample relative bias 182 .61 .18 .15 −.00045
Small-sample relative variance 82,502 1.15 .11 .053 .0043
Small-sample relative RMSE 340 1.24 .37 .28 .065
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Figure 1. RMSE of the Sparse Estimator as a Function of the Subsampling Frequency ( RMSE small sample; RMSE asymptotic).

away most of the available data. We have argued that this is
caused by not incorporating the noise in the model. Although it
is statistically unsound to throw away data, we have shown that
it is possible to build on this practice to construct estimators that
make statistical sense.

Specifically, we have found that the usual realized volatility
mainly estimates the magnitude of the noise term rather than
anything to do with volatility. An approach built on separating
the observations into multiple “grids” lessens this problem. We
found that the best results can be obtained by combining the
usual (“single-grid”) realized volatility with the multiple-grid–
based device. This gives an estimator that is approximately
unbiased; we have also shown how to assess the (random) vari-

ance of this estimator. We also show that for our most recom-
mended procedure, the optimal number of multiple grids is of
order O(n2/3) (see Sec. 4). Most of the development is in the
context of finding the integrated volatility over one time period;
at the end, we extend this to multiple periods. Also, in the case
where the noise can be taken to be almost negligible, we pro-
vide a way of optimizing the sampling frequency if one wishes
to use the classical “realized volatility” or its multigrid exten-
sion.

One important message of the article is that any time one has
an impulse to sample sparsely, one can always do better with a
multigrid method, regardless of the model or the quantity being
estimated.

Figure 2. Asymptotic and Small-Sample Standardized Distributions of the First-Best Estimator.
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Our results in this article cover the case where the latent X
follows the Itô process model (1). Theorem 1 remains true un-
der the assumption that X is a general semimartingale, that is,
a process X that can also have jumps. This follows because the
proof of Lemma A.2 remains true for general semimartingale X
(Jacod and Shiryaev 2003, thm. I.4.47, p. 52). Also, apart from
using Lemma A.2, Theorem A.1 is unrelated to the nature of
the X process. As far as the effect of jumps on the discretization
effect is concerned, it should be noted that consistency holds,
as follows. When X is a general semimartingale, then for any
sequence of grids Hn so that (41) holds, [X,X]Hn converges to
the continuous-time quadratic variation of X, that is,

∫ T

0
σ 2

t dt +
∑

0≤t≤T

( jump of X at t2) (74)

(cf. Jacod and Shiryaev 2003, thm. I.4.47, p. 52). In particu-
lar, this also applies to subgrids under the regularity conditions
that we have discussed. Furthermore, by extension of the same
proof, [X,X](avg) also converges to (74). From the same argu-
ment, so does 〈̂X,X〉T . In this sense, the two-scales estimator is
robust to jumps.

APPENDIX: PROOFS OF RESULTS

When the total grid G is considered, we use
∑n−1

i=1 ,
∑

ti+1≤T , and
∑

ti∈G interchangeably in the following proofs. Also, we write “|X” to
indicate expressions that are conditional on the entire X process.

A.1 Variance of [Y, Y ]T Given the X Process

Here we calculate explicitly the variance in (19), from which the
stated approximation follows. The explicit remainder term is also used
for (36). Let a partition of [0,T] be 0 = t0 ≤ t1 ≤ · · · ≤ tn = T . Under
assumption (11),

var
([Y,Y](all)

T

∣
∣X
) = var

[ ∑

ti+1≤T

(
�Yti

)2
∣
∣
∣X

]

=
∑

ti+1≤T

var
[(

�Yti
)2∣∣X

]

︸ ︷︷ ︸
IT

+ 2
∑

ti+1≤T

cov
[(

�Yti−1

)2
,
(
�Yti

)2∣∣X
]

︸ ︷︷ ︸
IIT

because �Yti = �Xti + �εti is 1 dependent given X process,

var
[(

�Yti
)2∣∣X

] = κ4
(
�Yti

∣
∣X
)+ 2

[
var
(
�Yti

∣
∣X
)]2

+ 4
[
E
(
�Yti

∣
∣X
)]2 var

(
�Yti

∣
∣X
)

+ 4E
(
�Yti

∣
∣X
)
κ3
(
�Yti

∣
∣X
)

= κ4
(
�εti

)+ 2
[
var
(
�εti

)]2 + 4
(
�Xti

)2 var
(
�εti

)

+ 4
(
�Xti

)
κ3
(
�εti

)
(under Assumption 11)

= 2κ4(ε) + 8(Eε2)2 + 8
(
�Xti

)2Eε2,

and because κ3(�εti) = 0. The κ’s are the cumulants of the relevant
order,

κ1(ε) = 0, κ2(ε) = var(ε) = E(ε2),
(A.1)

κ3(ε) = Eε3, and κ4(ε) = E(ε4) − 3(Eε2)2.

So IT = n(2κ4(ε) + 8(Eε2)2) + 8[X,X](all)
T Eε2. Similarly, for the co-

variance,

cov
[(

�Yti−1

)2
,
(
�Yti

)2∣∣X
]

= cov
[(

�εti−1

)2
,
(
�εti

)2]+ 4
(
�Xti−1

)(
�Xti

)
cov
(
�εti−1 ,�εti

)

+ 2
(
�Xti−1

)
cov
[
�εti−1 ,

(
�εti

)2]

+ 2
(
�Xti

)
cov
[(

�εti−1

)2
,�εti

]

= κ4(ε) + 2(Eε2)2 − 4
(
�Xti−1

)(
�Xti

)
κ2(ε)

− 2
(
�Xti

)
κ3(ε) + 2

(
�Xti−1

)
κ3(ε), (A.2)

because of (A.1).
Thus, assuming the coefficients in (A.2),

IIT = 2(n − 1)
(
κ4(ε) + 2(Eε2)2)

− 8Eε2
∑

ti+1≤T

(
�Xti−1

)(
�Xti

)− 4κ3(ε)
(
�Xtn−1 − �Xt0

)
.

Amalgamating the two expressions, one obtains

var
([Y,Y](all)

T

∣
∣X
)

= n
(
2κ4(ε) + 8(Eε2)2)+ 8[X,X](all)

T Eε2

+ 2(n − 1)
(
κ4(ε) + 2(Eε2)2)

− 8Eε2
∑(

�Xti−1

)(
�Xti

)− 4κ3(ε)
(
�Xtn−1 − �Xt0

)

= 4nEε4 + Rn, (A.3)

where the remainder term Rn satisfies

|Rn| ≤ 8Eε2[X,X]T + 2
(
κ4(ε) + 2(Eε2)2)

+ 8Eε2
∣
∣
∣
∑(

�Xti−1

)∣∣
∣
∣
∣(�Xti

)∣∣+ 4|κ3(ε)|(∣∣�Xtn−1

∣
∣+ ∣∣�Xt0

∣
∣)

≤ 16Eε2[X,X](all)
T + 2

(
κ4(ε) + 2(Eε2)2)

+ 2|κ3(ε)|(2 + [X,X]T ) (A.4)

by the Cauchy–Schwarz inequality and because |x| ≤ (1 + x2)/2. Be-

cause [X,X](all)
T = Op(1), (19) follows.

Under slightly stronger conditions (e.g., |µt| and σt are bounded
above by a constant),

∑
(�Xti−1 )(�Xti) is a near-martingale and of

order Op(n−1/2), and, similarly, �Xtn−1 − �Xt0 = Op(n−1/2), from
which (20) follows.

Similarly, to obtain a higher-order approximation to the variance of
the estimator 〈̂X,X〉T , note that

〈̂X,X〉T − 〈X,X〉T =
(

[Y,Y](avg)
T − 1

K
[Y,Y](all)

T − [X,X](avg)
T

)

+ ([X,X](avg)
T − 〈X,X〉T

)
. (A.5)

Now recalling (20) and (37) and, in addition,

cov
([Y,Y](all), [Y,Y](avg)

∣
∣X
)

= 2
(
Eε4 − (Eε2)2)

(

2n̄ − 1

K

)

+ 8Eε2[X,X](all)
T

1

K
+ op

(
1

K

)

,

we see that

var
(〈̂X,X〉T |X)

= var
([Y,Y](avg)

T

∣
∣X
)+ 1

K2
var
([Y,Y](all)

T

∣
∣X
)

− 2

K
cov
([Y,Y](avg)

T , [Y,Y](all)
T

∣
∣X
)
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= 4
n̄

K
Eε4 + 1

K

[
8[X,X](avg)

T Eε2 − 2
(
Eε4 − (Eε2)2)]+ op

(
1

K

)

+ 1

K2

[
4n̄KEε4 + (8[X,X](all)

T Eε2 − 2
(
Eε4 − (Eε2)2))+ op(1)

]

− 2

K

[

2
(
Eε4 − (Eε2)2)

(

2n̄ − 1

K

)

+ 8Eε2[X,X](all)
T

1

K
+ op

(
1

K

)]

= n̄

K
8(Eε2)2 + 1

K

[
8[X,X](avg)

T Eε2 − 2
(
Eε4 − (Eε2)2)]

+ op

(
1

K

)

,

because at the optimal choice, K = cn2/3 and n̄ = c−1n1/3. Therefore,
(60) holds.

A.2 The Relevant Central Limit Theorem

Lemma A.2. Suppose that X is an Itô process. Suppose that Y is
related to X through model (4). Then under assumption (11) and defi-
nitions (16) and (32),

[Y,Y](all)
T = [ε, ε](all)

T + Op(1) and

[Y,Y](avg)
T = [ε, ε](avg)

T + [X,X](avg)
T + Op

(
1√
K

)

.

Proof. (a) The one-grid case:

[Y,Y](all)
T = [X,X](all)

T + [ε, ε](all)
T + 2[X, ε](all)

T . (A.6)

We show that

E
(([X, ε](all)

T

)2∣∣X
)= Op(1) (A.7)

and, in particular,

[X, ε](all)
T = Op(1). (A.8)

To see (A.7),

[X, ε](all)
T =

n−1∑

i=0

(
�Xti

)(
�εti

)

=
n−1∑

i=0

(
�Xti

)
εti+1 −

n−1∑

i=0

(
�Xti

)
εti

=
n−1∑

i=1

(
�Xti−1 − �Xti

)
εti + �Xtn−1εtn − �Xt0εt0 . (A.9)

Because E([X, ε](all)
T |X) = 0 and εti iid for different ti, we get

E
(([X, ε](all)

T

)2∣∣X
) = var

([X, ε](all)
T

∣
∣X
)

= Eε2

[ n−1∑

i=1

(
�Xti−1 − �Xti

)2 + �X2
tn−1

+ �X2
t0

]

= 2[X,X]T Eε2 − 2Eε2
n−1∑

i=1

(
�Xti−1

)(
�Xti

)

≤ 4[X,X]T Eε2, (A.10)

by the Cauchy–Schwarz inequality, from which and from [X,X](all)

being of order Op(1), (A.7) follows. Hence (A.8) follows by the
Markov inequality.

(b) The multiple-grid case: Notice that

[Y,Y](avg) = [X,X](avg)
T + [ε, ε](avg)

T + 2[X, ε](avg)
T (A.11)

(A.11) strictly follows from model (4) and the definitions of grids and

[·, ·](avg)
t ; see Section 3.2.

We need to show that

E
(([X, ε](avg)

T

)2∣∣X
)= Op

(
1

K

)

, (A.12)

in particular,

[X, ε](avg)
T = Op

(
1

K1/2

)

(A.13)

and var([X, ε](avg)
T |X) = E[([X, ε](avg)

T )2|X].
To show (A.12), note that E([X, ε](avg)

T |X) = 0 and

E
[([X, ε](avg)

T

)2∣∣X
] = var

([X, ε](avg)
T

∣
∣X
)

= 1

K2

K∑

k=1

var
([X, ε](k)T

∣
∣X
)

≤ 4Eε2

K
[X,X](avg)

T = Op

(
1

K

)

,

where the second equality follows from the disjointness of different
grids as well as ε |= X. The inequality follows from the same argument
as in (A.10). Then the order follows because [X,X](avg)

T = Op(1); see
the method of Mykland and Zhang (2002) for a rigorous development

for the order of [X,X](avg)
T .

Theorem A.1. Suppose that X is an Itô process of form (1). Sup-
pose that Y is related to X through model (4), and that (11) is satis-
fied with Eε4 < ∞. Also suppose that ti and ti+1 is not in the same

subgrid for any i. Under assumption (33), as n → ∞, (
√

n(Êε2 −
Eε2),

√
K
n̄ ([Y,Y](avg)

T − [X,X](avg)
T − 2n̄Eε2)) converges in law to a

bivariate normal, with mean 0 and covariance matrix
(

Eε4 2 var(ε2)

2 var(ε2) 4Eε4

)

(A.14)

conditional on the X process where the limiting random variable is
independent of the X process.

Proof. By Lemma A.2, we need the distribution of [ε, ε](avg) and
[ε, ε](all). First, we explore the convergence of

1√
n

([ε, ε](all)
T − 2nEε2, [ε, ε](avg)

T K − 2n̄KEε2). (A.15)

Recall that all of the sampling points t0, t1, . . . , tn are within [0,T]. We
use G to denote the time points in the full sampling, as in the single
grid. G(k) denotes the subsamplings from the kth grid. As before, if
ti ∈ G(k), then ti,− and ti,+ are the previous and next elements in G(k),
εti,− = 0 for ti = minG(k) and εti,+ = 0 for ti = maxG(k).

Set

M(1)
T = 1√

n

∑

ti∈G

(
ε2

ti − Eε2),

M(2)
T = 1√

n

∑

ti∈G
εtiεti−1 , (A.16)

M(3)
T = 1√

n

K∑

k=1

∑

ti∈G(k)

εtiεti,−.
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We first find the asymptotic distribution of (M(1)
T ,M(2)

T ,M(3)
T ) using

the martingale central limit theorem. Then we use the result to find the
limit of (A.15).

Note that (M(1)
T ,M(2)

T ,M(3)
T ) are the end points of martingales

with respect to filtration Fi = σ(εtj , j ≤ i,Xt, all t). We now de-
rive its (discrete-time) predictable quadratic variation 〈M(l),M(k)〉,
l, k = 1,2,3 [discrete-time predictable quadratic variations are only
used in this proof and the proof of Lemma 1, and are different from
the continuous time quadratic variations in (12)]:

〈
M(1),M(1)

〉
T = 1

n

∑

ti∈G
var
(
ε2

ti − Eε2∣∣Fti−1

)

= var(ε2),

〈
M(2),M(2)

〉
T = 1

n

∑

ti∈G
var
(
εtiεti−1

∣
∣Fti−1

)

(A.17)= Eε2

n

∑

ti∈G
ε2

ti−1
= (Eε2)2 + op(1),

〈
M(3),M(3)

〉
T = 1

n

K∑

k=1

∑

ti∈G(k)

var
(
εtiεti,−

∣
∣Fti−1

)

= Eε2

n

K∑

k=1

∑

ti∈G(k)

ε2
ti,− = (Eε2)2 + op(1),

by the law of large numbers.
Similarly, for the predictable quadratic covariations,

〈
M(1),M(2)

〉
T = 1

n

∑

ti∈G
cov
(
ε2

ti − Eε2, εtiεti−1

∣
∣Fti−1

)

= Eε3 1

n

∑

ti∈G
εti−1 = op(1),

〈
M(1),M(3)

〉
T = 1

n

K∑

k=1

∑

ti∈G(k)

cov
(
ε2

ti − Eε2, εtiεti,−
∣
∣Fti−1

)

(A.18)

= Eε3 1

n

K∑

k=1

∑

ti∈G(k)

εti,− = op(1),

〈
M(2),M(3)

〉
T = 1

n

K∑

k=1

∑

ti∈G(k)

cov
(
εtiεti−1 , εtiεti,−

∣
∣Fti−1

)

= Eε2

n

K∑

k=1

∑

ti∈G(k)

εti−1εti,− = op(1),

because ti+1 is not in the same grid as ti.
Because the εti ’s are iid and Eε4

ti < ∞, the conditional Lin-
deberg conditions are satisfied. Hence by the martingale central
limit theorem (see Hall and Heyde 1980, condition 3.1, p. 58),
(M(1),M(2),M(3)) are asymptotically normal, with covariance ma-
trix as the asymptotic value of 〈M(l),M(k)〉. In other words, asymp-
totically, (M(1),M(2),M(3)) are independent normal with respective
variances var(ε), (Eε2)2, and (Eε2)2.

Returning to (A.15), we have that

[ε, ε](all) − 2nEε2

= 2
∑

i =0,n

(ε2
ti − Eε2) + (ε2

t0 − Eε2) + (ε2
tn − Eε2) − 2

∑

ti>0

εtiεti−1

= 2
√

n
(
M(1) − M(2)

)+ Op(1). (A.19)

Meanwhile,

[ε, ε](k) − 2nkEε2

=
∑

ti∈G(k),ti =maxG(k)

(
εti,+ − εti

)2 − 2nkEε2

= 2
∑

ti∈G(k)

(
ε2

ti − Eε2)− (ε2
minG(k) − Eε2)− (ε2

maxG(k) − Eε2)

− 2
∑

ti∈G(k)

εtiεti,−, (A.20)

where nk + 1 represents the total number of sampling points in G(k).
Hence

[ε, ε](avg)
T K − 2n̄Eε2K = √

n
(
2M(1) − 2M(3)

)− R

= 2
√

n
(
M(1) − M(3)

)+ Op
(
K1/2), (A.21)

because R =∑K
k=1[(ε2

minG(k) − Eε2) + (ε2
maxG(k) − Eε2)], satisfying

ER2 = var(R) ≤ 4K var(ε2).

Because n−1K → 0, and because the error terms in (A.19) and
(A.20) are uniformly integrable, it follows that

(A.15) = 2
(
M(1) − M(2),M(1) − M(3)

)+ op(1). (A.22)

Hence (A.15) is also asymptotically normal with covariance matrix
(

4Eε4 4 var(ε2)

4 var(ε2) 4Eε4

)

.

By Lemma A.2, and as n−1K → 0,

1√
n

([Y,Y](all)
T − 2nEε2,K

([Y,Y](avg)
T − [X,X](avg)

T − 2n̄Eε2))
∣
∣
∣X

is asymptotically normal,

1√
n

( [Y,Y](all)
T − 2nEε2

[Y,Y](avg)
T K − 2n̄KEε2 − [X,X](avg)

T K

∣
∣
∣
∣X

)

= 2

(
M(1) − M(2)

M(1) − M(3)

)

+ op(1)

L−→ 2N

(

0,

(
Eε4 var(ε2)

var(ε2) Eε4

))

. (A.23)

Because

Êε2 = 1

2n
[Y,Y](all)

T and
(A.24)

K√
n

=
√

K

n̄
(1 + o(1)).

Theorem A.1 follows.

Proof of Lemma 1. For simplicity, and without loss of generality,
we assume that H = G. The result follows the proofs of Lemma A.2

and Theorem A.1, but with a more exact representation of [Y,Y](all)
T −

[X,X](all)
T . Specifically, from (A.9) and (A.19), we have that

[Y,Y](all)
T − [X,X](all)

T − 2nEε2

= [ε, ε]T − 2nEε2 + 2[X, ε](all)
T

= 2
∑

i =0,n

(
ε2

ti − Eε2)+ (ε2
t0 − Eε2)+ (ε2

tn − Eε2)− 2
∑

ti>0

εtiεti−1

+ 2
n−1∑

i=1

(
�Xti−1 − �Xti

)
εti + 2�Xtn−1εtn − 2�Xt0εt0 .
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With the same filtration as in the proof of Theorem A.1, this is the
sum of a martingale triangular array with increment 2(ε2

ti − Eε2) −
2εtiεti−1 + (�Xti−1 −�Xti)εti for i = 0, n. Again, the conditions of the
martingale central limit theorem (see Hall and Heyde 1980, chap. 3)
are satisfied, by (17), whence the term is asymptotically normal, con-
ditionally on the X process. The conditional variance is given by (20)
under the conditions mentioned in the statement of the lemma. Be-
cause Eε2 can vary with n, the Op(n−1/2

sparse) term in (20) is actually of

order Op(n−1/2
sparseEε2).

A.3 Asymptotics of DT

For transparency of notation, we take �t = T/n; in other words, the
average of the �ti.

Proof of Theorem 2. Note first that because we assume that
µt and σt are continuous, they are locally bounded. Because here we
seek to show convergence in probability, we can therefore assume
without loss of generality that |µt| is bounded above by a nonrandom
constant and also that ∞ > σ+ ≥ σt ≥ σ− > 0, where σ+ and σ− are
nonrandom. This is by the usual stopping time argument.

Also note that once µt and σt are bounded as we have now assumed,
by Girsanov’s theorem (see, e.g., Karatzas and Shreve 1991, chap. 3.5;
Jacod and Shiryaev 2003, chap. II.3b), we can, without loss of gen-
erality, further suppose that µt = 0 identically. (If the convergence in
probability holds under the equivalent probability, then it also will hold
under the original one.)

Now for the derivation. First, consider

(
Xti − Xti,−

)2 =
( ti−1∑

tj=ti,−
�Xtj

)2

=
ti−1∑

tj=ti,−

(
�Xtj

)2 + 2
∑

ti−1≥tk>tl≥ti,−
�Xtk�Xtl .

It follows that

[X,X](avg)
T

= [X,X](all)
T + 2

n−1∑

i=1

(
�Xti

)K∧i∑

j=1

(

1 − j

K

)
(
�Xti−j

)+ Op(K/n).

The remainder term incorporates end effects and has order Op(K/n)

by (41) and (42), and due to the regular allocation of points to grids.
Following Jacod and Protter (1998) and Mykland and Zhang (2002),

[X,X](all)
T − 〈X,X〉T = Op(1/

√
n ) = op(

√
K/n ) too, under the as-

sumption (17) [which is a special case of assumption (41)] and that
inft∈[0,T] σ 2

t > 0 almost surely. In other words,

DT = ([X,X](avg)
T − 〈X,X〉T

)

= 2
n−1∑

i=1

(
�Xti

)K∧i∑

j=1

(

1 − j

K

)
(
�Xti−j

)+ op
(√

K�t
)
. (A.25)

It follows that

〈D,D〉T = 4
n−1∑

j=1

(
�〈X,X〉ti

)
(K∧i∑

j=1

(

1 − j

K

)
(
�Xti−j

)
)2

+ op(K�t)

= (I) + (II) + op(K�t), (A.26)

where

(I) = 4
n−1∑

i=1

(
�〈X,X〉ti

)
(K∧i∑

j=1

(

1 − j

K

)2(
�Xti−j

)2
)

= 4
n−1∑

i=1

σ 4
ti �ti

(K∧i∑

j=1

(

1 − j

K

)2
�ti−j

)

+ op(K�t)

= K�t
n−1∑

i=1

σ 4
ti hi�ti + op(K�t),

where hi is given by (43). Thus Theorem 2 will have been shown if we
can show that

(II) = 8
n−1∑

i=1

�〈X,X〉tiζi (A.27)

is of order op(K�t), where

ζi =
i−1∑

l>r≥0

(
�Xtl

)(
�Xtr

)
(

1 − i − l

K

)+(
1 − i − r

K

)+
. (A.28)

We do this as follows. Denote δ+ = maxi |�ti| = O( 1
n ), and set

(II)′ = 8
∑n−1

i=1 �tiσ 2
ti−K

ζi. Then, by Hölder’s inequality, E|(II) −
(II)′| ≤ δ+n‖ sup|t−s|≤(K+1)δ+ |σ 2

t − σ 2
s |‖2 supi ‖ζi‖2 = o(δ+K) be-

cause of the boundedness and continuity of σt and because, applying
the Burkholder–Davis–Gundy inequality twice, we have that

E(ζ 2
i ) ≤ E

i−1∑

l=1

�〈X,X〉tl

×
(

(l−1)∧(i−1)∑

r≥0

(
�Xtr

)
(

1 − i − l

K

)+(
1 − i − r

K

)+)2

≤ δ+(σ+)2

×
i−1∑

l=1

E

(
(l−1)∧(i−1)∑

r≥0

(
�Xtr

)
(

1 − i − l

K

)+(
1 − i − r

K

)+)2

≤ (δ+)2(σ+)4

×
i−1∑

l=1

(l−1)∧(i−1)∑

r≥0

((

1 − i − l

K

)+(
1 − i − r

K

)+)2

= O((δ+K)2) uniformly in i, (A.29)

where the second-to-last transition does for the inner sum what the two
first inequalitities do for the outer sum. Now rewrite

(II)′ = 8
n−1∑

l>r≥0

(
�Xtl

)(
�Xtr

)

×
n−1∑

i=l+1

�tiσ
2
ti−K

(

1 − i − l

K

)+(
1 − i − r

K

)+
. (A.30)

In the same way as in (A.29), we then obtain

E((II)′)2 ≤ 64(δ+)2(σ+)4

×
n−1∑

l>r≥0

E

( n−1∑

i=l+1

�tiσ
2
ti−K

×
(

1 − i − l

K

)+(
1 − i − r

K

)+)2
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≤ 64(δ+)2(σ+)4 × (δ+)2(σ+)4

×
n−1∑

l>r≥0

( n−1∑

i=l+1

(

1 − i − l

K

)+(
1 − i − r

K

)+)2

≤ 64(δ+)4(σ+)8nK3 = O((δ+K)3) = o((δ+K)2), (A.31)

by assumptions (41) and (42). The transition from the second to the last
line in (A.31) is due to the fact that

∑n−1
i=l+1(1− i−l

K )+(1− i−r
K )+ ≤ K,

and = 0 when l−r ≥ K. Thus we have shown that (II) = op(K�t), and
hence Theorem 2 has been established.

We now proceed to the asymptotic distribution of DT . We first state
a technical condition on the filtration (Ft)0≤t≤T to which Xt and µt
(but not the ε′’s) are assumed to be adapted.

Condition E (Description of the filtration). There is a continuous
multidimensional P-local martingale X = (X (1), . . . ,X (p)), any p,
so that Ft is the smallest sigma-field containing σ(Xs, s ≤ t) and N ,
where N contains all of the null sets in σ(Xs, s ≤ T).

For example, X can be a collection of Brownian motions.

Proof of Theorem 3. We can show by methods similar to those in
the proof of Theorem 2 that if L is any martingale adapted to the filtra-
tion generated by X , then

sup
t

∣
∣
∣
∣

1

�tK
〈D,L〉t

∣
∣
∣
∣

p→ 0. (A.32)

The stable convergence with respect to the filtration (Ft)0≤t≤T then
follows in view of Rootzen (1980) or Jacod and Protter (1998). This
ends the proof of Theorem 3.

Finally, in the case where η2
n does not converge, one can still use the

mixed normal with variance η2
n . This is because every subsequence

of η2
n has a further subsequence that does converge in probability to

some η2 and hence for which the assumption (48) in Theorem 3 would
be satisfied. The reason for this is that one can define the distribution
function of a finite measure by

Gn(t) =
∑

ti+1≤t

hi�ti. (A.33)

Because Gn(t) ≤ T supi hi, it follows from (45) that the sequence Gn
is weakly compact in the sense of weak convergence; see Helly’s the-
orem (e.g., Billingsley 1995, p. 336). For any convergent subsequence
Gn → G, we then get that

η2
n =

∫ T

0
σ 4

t dGn(t) →
∫ T

0
σ 4

t dG(t) (A.34)

almost surely, because we have assumed that 〈X,X〉′t is a continuous
function of t. One then defines η2 to be the (subsequence-dependent)
right side of (A.34). To proceed further with the asymptotics, continue
the foregoing subsequence and note that

1

�tK
〈D,D〉t ≈

∫ t

0
σ 4

s dGn(s)

→
∫ t

0
σ 4

s dG(s)

completing the proof.

[Received October 2003. Revised December 2004.]
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