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ABSTRACT

This paper analyzes the vulnerability space arising in Trusted Ex-

ecution Environments (TEEs) when interfacing a trusted enclave

application with untrusted, potentially malicious code. Consider-

able research and industry effort has gone into developing TEE

runtime libraries with the purpose of transparently shielding en-

clave application code from an adversarial environment. However,

our analysis reveals that shielding requirements are generally not

well-understood in real-world TEE runtime implementations. We

expose several sanitization vulnerabilities at the level of the Ap-

plication Binary Interface (ABI) and the Application Programming

Interface (API) that can lead to exploitable memory safety and side-

channel vulnerabilities in the compiled enclave. Mitigation of these

vulnerabilities is not as simple as ensuring that pointers are out-

side enclave memory. In fact, we demonstrate that state-of-the-art

mitigation techniques such as Intel’s edger8r, Microsoft’s łdeep

copy marshallingž, or even memory-safe languages like Rust fail

to fully eliminate this attack surface. Our analysis reveals 35 en-

clave interface sanitization vulnerabilities in 8 major open-source

shielding frameworks for Intel SGX, RISC-V, and Sancus TEEs. We

practically exploit these vulnerabilities in several attack scenarios

to leak secret keys from the enclave or enable remote code reuse.

We have responsibly disclosed our findings, leading to 5 desig-

nated CVE records and numerous security patches in the vulnerable

open-source projects, including the Intel SGX-SDK, Microsoft Open

Enclave, Google Asylo, and the Rust compiler.
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1 INTRODUCTION

Minimization of the Trusted Computing Base (TCB) has always

been one of the key principles underlying the field of computer se-

curity. With an ongoing stream of vulnerabilities in mainstream op-

erating system and privileged hypervisor software layers, Trusted

Execution Environments (TEEs) [28] have been developed as a

promising new security paradigm to establish strong hardware-

backed security guarantees. TEEs such as Intel SGX [8], ARM Trust-

Zone [34], RISC-V Keystone [21], or Sancus [32] realize isolation

and attestation of secure application compartments, called enclaves.

Essentially, TEEs enforce a dual-world view, where even compro-

mised or malicious system software in the normal world cannot

gain access to the memory space of enclaves running in an iso-

lated secure world on the same processor. This property allows

for drastic TCB reduction: only the code running in the secure

world needs to be trusted for enclaved computation results. Nev-

ertheless, TEEs merely offer a relatively coarse-grained memory

isolation primitive at the hardware level, leaving it up to the enclave

developer to maintain useful security properties at the software

level. This can become particularly complex when dealing with

interactions between the untrusted host OS and the secure enclave,

e.g., sending or receiving data to or from the enclave. For this rea-

son, recent research and industry efforts have developed several

TEE runtime libraries that transparently shield enclave applications

by maintaining a secure interface between the normal and secure

worlds. Prominent examples of such runtimes include Intel’s SGX-

SDK [19], Microsoft’s Open Enclave SDK [29], Graphene-SGX [43],

SGX-LKL [35], Google’s Asylo [13], and Fortanix’s Rust-EDP [11].

There are some differences in the way each trusted runtime

handles input/output data to and from the enclave. At the system

level, all TEEs offer some form of ecall/ocallmechanism to switch

from the normal to the secure word (and vice versa). Building on

this hardware-level isolation primitive, TEE runtimes aim to ease

enclave development by offering a higher level of abstraction to

the enclave programmer. Particularly, commonly used production-

quality SDKs [19, 29] offer a secure function call abstraction, where

untrusted code is allowed to only call explicitly annotated ecall

entry points within the enclave. Furthermore, at this level of ab-

straction the enclave application code can call back to the untrusted

world by means of specially crafted ocall functions. It is the TEE

runtime’s responsibility to safeguard the secure function call ab-

straction by sanitizing low-level ABI state and marshalling input

and output buffers when switching to and from enclave mode. How-

ever, the SDK-based approach still leaves it up to the developer to



manually partition secure application logic and design the enclave

interface. As an alternative to such specifically written enclave code,

one line of research [1, 2, 42, 43] has developed dedicated enclave

library OSs that seamlessly enforce the ecall/ocall abstraction at

the system call level. Ultimately, this approach holds the promise

to securely running unmodified executables inside an enclave and

fully transparently applying TEE security guarantees.

Over the last years, security analysis of enclaved execution has

received considerable attention from a microarchitectural side-

channel [24, 26, 30, 45, 46] and more recently also transient execu-

tion perspective [5, 20, 44]. However, in the era where our commu-

nity is focusing on patching enclave software against very advanced

Spectre-type attacks, comparably little effort has gone into explor-

ing how resilient commonly used trusted runtimes are against plain

architectural memory-safety style attacks. Previous research [3, 22]

has mainly focused on developing techniques to efficiently exploit

traditional memory safety vulnerabilities in an enclave setting, but

has not addressed the question how prevalent such vulnerabilities

are across TEE runtimes. More importantly, it remains largely un-

explored whether there are new types of vulnerabilities or attack

surfaces that are specific to the unique enclave protection model

(e.g., ABI-level misbehavior, or API-level pointer poisoning in the

shared address space). Clearly, the enclave interface represents an

important attack surface that so far has not received the necessary

attention and thus is the focus of this paper.

Our contribution. In this paper, we study the question of how

a TEE trusted runtime can securely łbootstrapž from an initial

attacker-controlled machine state to a point where execution can be

safely handed over to the actual application written by the enclave

developer. We start from the observation that TEE runtimes hold

the critical responsibility of shielding an enclave application at

all times to preserve its intended program semantics in a hostile

environment. As part of our analysis, we conclude that the complex

shielding requirement for an enclave runtime can be broken down

into at least two distinct tiers of responsibilities.

In a first ABI-level tier, we consider that upon enclave entry,

the adversary usually controls a significant portion of the low-

level machine state (e.g., CPU registers). This requires sanitization,

typically implemented through a carefully crafted enclave entry

assembly routine to establish a trustworthy ABI state as expected

by the compiled application code. Examples of trusted runtime

responsibilities at this level include switching to a private call stack,

clearing status register flags that may adversely affect program

execution, or scrubbing residual machine state before enclave exit.

Secondly, we consider that the enclaved binary itself makes cer-

tain API-level assumptions. Here we pay particular attention to

pointers and size arguments, because in many TEE designs [8, 21,

32], at least part of the enclave’s address space is shared with un-

trusted adversary-controlled code. Hence, the enclaved binary may

assume that untrusted pointer arguments are properly sanitized to

point outside of trusted memory, or that ocall return values have

been scrutinized. Our main contributions are:

• We categorize enclave interface shielding responsibilities into

10 distinct classes, across the ABI and API tiers (cf. Table 1).

• We analyze 8 widely used enclave runtimes, revealing a recur-

ring vulnerability landscape, ranging from subtle side-channel

leakage to more grave types of memory safety infringements.

• We practically demonstrate according attacks in various ap-

plication scenarios by extracting full cryptographic keys, and

triggering controlled enclave memory corruptions.

• We show that state-of-the-art automated enclave interface san-

itization approaches such as edger8r, or even the use of safe

languages like Rust, fail to fully prevent our attacks, highlight-

ing the need for more principled mitigation strategies.

Responsible disclosure. All of the security vulnerabilities de-

scribed in this work have been responsibly disclosed through the

proper channels for each affected TEE runtime. In each case, the

issues have been verified and acknowledged by the developers. In

the case of Intel, this can be tracked via CVE-2018-3626 and CVE-

2019-14565, and for Microsoft via CVE-2019-0876, CVE-2019-1369,

and CVE-2019-1370. The weakness found in Fortanix-EDP led to a

security patch in the Rust compiler. For other open-source projects,

our reports have been acknowledged in the respective commits or

issues on GitHub. We worked with the maintainers of said projects

to ensure mitigation of the problems reported in this paper.

To ensure the reproducibility of our work, and to provide the

community with a relevant sample of vulnerable enclave programs

for evaluating future attacks and defenses, we published all of our

attack code at https://github.com/jovanbulck/0xbadc0de.

2 BACKGROUND AND RELATED WORK

This section reviews enclave operation and TEE design, introduces

the trusted runtime libraries we analyzed in this work, and finally

summarizes related work on TEE memory corruption attacks.

2.1 Enclave entry and exit

TEE design. The mechanisms to interface with enclaves vary

depending on the underlying TEE being used. Figure 1 shows how,

from an architectural point of view, we distinguish two types of TEE

designs: those that rely on a single-address-space model (e.g., Intel

SGX [8] and Sancus [32]) vs. the ones that follow a two-world view

(e.g., ARM TrustZone [34] and Keystone [21]). In the former case,

enclaves are embedded in the address space of an unprivileged host

application. The processor orchestrates enclave entry/exit events,

and enforces that enclave memory can never be accessed from

outside the enclave. Since the trusted code inside the enclave is

allowed to freely access unprotected memory locations outside the

enclave, bulk input/output data transfers are supported by simply

passing pointers in the shared address space.

In the case of a two-world design, on the other hand, the CPU

is logically divided into a łnormal worldž and a łsecure worldž. A

privileged security monitor software layer acts as a bridge between

both worlds. The processor enforces that normal world code cannot

access secure world memory and resources, and may only call a

predefined entry point in the security monitor. Since the security

monitor has unrestricted access to memory of both worlds, an

explicit łworld-shared memoryž region can typically be setup to

pass data from the untrusted OS into the enclave (and vica versa).

https://github.com/jovanbulck/0xbadc0de
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Figure 1: Enclave interactions in a single-address-space TEE

design (left) vs. two-world design (right). The software com-

ponents we study are bold, and the TCB is green (solid lines).

Enclave entry/exit. Given that the runtimes we studied focus

mainly on Intel SGX (cf. Section 3.2), we now describe ecall/ocall

and exception handling following SGX terminology [8]. Note that

other TEEs feature similar mechanisms, the key difference for a two-

world design being that some of the enclave entry/exit functionality

may be implemented in the privileged security monitor software

layer instead of in the processor.

In order to enter the enclave, the untrusted runtime executes the

eenter instruction, which switches the processor into enclave mode

and transfers execution to a predefined entry point in the enclave’s

Trusted Runtime System (TRTS). Any meta data information, in-

cluding the requested ecall interface function to be invoked, can

be passed as untrusted parameters in CPU registers. TRTS first san-

itizes CPU state and untrusted parameters before passing control

to the ecall function to be executed. Subsequently, TRTS issues an

eexit instruction to perform a synchronous enclave exit back to

the untrusted runtime, again passing any parameters through CPU

registers. The process for ocalls takes place in reverse order. When

the enclave application calls into TRTS to perform an ocall, the

trusted CPU context is first stored before switching to the untrusted

world, and restored on subsequent enclave re-entry.

When encountering interrupts or exceptions during enclaved

execution, the processor executes an Asynchronous Enclave eXit

(AEX) procedure. AEX first saves CPU state to a secure Save State

Area (SSA) memory location inside the enclave, before scrubbing

registers and handing control to the untrusted OS. The enclave can

subsequently be resumed through the eresume instruction. Alter-

natively, the untrusted runtime may optionally first call a special

ecall which allows the enclave’s TRTS to internally handle the

exception by inspecting and/or modifying the saved SSA state.

2.2 TEE shielding runtimes

Intel SGX-SDK. With the release of the open-source SGX-SDK,

Intel [19] supports a secure function call abstraction to enable pro-

duction enclave development in C/C++. Apart from pre-built trusted

runtime libraries, a key component of the SDK is the edger8r tool,

which parses a developer-provided Enclave Description Language

(EDL) file in order to automatically generate trusted and untrusted

proxy functions to be executed when crossing enclave boundaries.

Microsoft Open Enclave SDK. Microsoft developed the open-

source Open Enclave (OE) SDK with the purpose of facilitating

TEE-agnostic production enclave development [29]. Currently, OE

only supports Intel SGX applications, but in the future TrustZone-

based TEEs will also be supported through OP-TEE bindings [29].

The OE runtime includes a custom fork of Intel’s edger8r tool.

Google Asylo. Google aims to provide a higher-level, platform-

agnostic C++ API to develop production enclaves in a Remote Pro-

cedure Call (RPC)-like fashion [13]. While the Asylo specification

aims to generalize over multiple TEEs, presently only a single SGX

back-end is supported, which internally uses Intel’s SGX-SDK. From

a practical perspective, the Asylo runtime can thus be regarded as

an additional abstraction layer on top of the Intel SGX-SDK.

Fortanix Rust-EDP. As an alternative to Intel’s andMicrosoft’s

SDKs written in C/C++, Fortanix released a production-quality SGX

toolchain to develop enclaves in the safe Rust language [11]. The

combination of SGX’s isolation guarantees with Rust’s type sys-

tem aims to rule out memory safety attacks against the trusted

enclave code. Similar to libOS-based approaches, Rust-EDP hides

the enclave interface completely from the programmer and trans-

parently redirects all outside world interactions in the standard

library through a compact and scrutinized ocall interface.

Graphene-SGX. This open-source library OS approach allows

to run unmodified Linux binaries inside SGX enclaves [43]. The

trusted Graphene-SGX runtime transparently takes care of all en-

clave boundary interactions. For this, the libOS offers a limited

ecall interface to launch the application, and translates all system

calls made by the shielded application binary into untrusted ocalls.

While Graphene was originally developed as a research project, it

is currently meeting increasing industry adaption and thrives to

become a standard solution in the Intel SGX landscape [36].

SGX-LKL. This open-source research project offers a trusted

in-enclave library OS that allows to run unmodified Linux binaries

inside SGX enclaves [35]. Similarly to Graphene-SGX, SGX-LKL

intercepts all system calls in the shielded application binary, but the

libOS layer is internally based on the Linux Kernel Library (LKL).

Keystone. Keystone [21] is an open-source research framework

for developing customized TEEs in RISC-V processors. Keystone

adopts a łsecure worldž view similar to ARM TrustZone [34] where

a privileged security monitor software layer separates enclaves in

their own address spaces, potentially including explicit shared mem-

ory regions. Keystone enclaves feature a trusted runtime which in-

tercepts system calls and transparently tunnels all untrusted world

interactions through the underlying security monitor.

Sancus. The Sancus research TEE [32] offers lightweight en-

clave isolation and attestation on an embedded 16-bit TI MSP430

processor featuring a plain single-address-space without virtual

memory. A dedicated C compiler automates enclave creation and in-

cludes a small trusted runtime library that is transparently invoked

on enclave entry/exit. Trusted software may additionally provide

code confidentiality [14] or authentic execution [31] guarantees.

2.3 Related work

OS system call interface. During the last decade, significant

research efforts have been made to discover and mitigate vulnera-

bilities in OS kernels, such as missing pointer checks, uninitialized



data leakage, or buffer and integer overflows [6]. By exploiting

a single vulnerability in a kernel, unprivileged adversaries may

read or write arbitrary memory and gain root access. While these

vulnerabilities continue to be relevant in modern kernels, they are

generally well understood by the OS security community. However,

they have received less attention in the context of TEEs.

Checkoway et al. [4] first demonstrated that an untrusted OS can

perform so called Iago attacks to compromise legacy applications

by supplying maliciously crafted pointers or lengths as the return

value of a traditionally trusted system call like malloc(). These

attacks are closely related to a small subset of the vulnerabilities

described in this work, specifically attack vector #9, which exploits

that pointers or buffer sizes returned by untrusted ocalls may

not be properly sanitized (cf. Section 5.5). Our work generalizes

Iago attacks from the OS system call interface to ocalls in general,

and more broadly shows that Iago attacks are but one instance

of adversarial OS interactions. We show for instance that legacy

applications may also make implicit assumptions on the validity of

argv and envp pointers, which are not the result of system calls.

Memory corruption attacks on ARMTrustZone. ARM Trust-

Zone [34] was one of the first widely deployed TEEs, particularly

in mobile devices, and hence received considerable attention from

security researchers. The code running in the secure world largely

depends on the device manufacturer, with widely used runtimes

including Trustonic Kinibi, Qualcomm’s QSEE, Google’s Trusty,

and the open-source project OP-TEE. Over the past years, several

vulnerabilities [33, 34] have been discovered in TrustZone runtimes

caused by e.g., missing or incorrect pointer range or length checks,

or incorrect handling of integer arithmetic. Often, these vulnera-

bilities rely on the existence of a shared memory region for data

exchange between the normal and secure worlds: if an adversary

passes a pointer into trusted memory where a pointer to shared

memory is expected, memory corruption or disclosure may occur

when the pointer is not properly validated by the trusted runtime.

Machiry et al. [27] presented a related class of Boomerang attacks,

which leverage the fact that TrustZone’s secure world OS has full

access to untrusted memory, including the regions used by the

untrusted OS. Boomerang exploits that trusted pointer sanitization

logic may only validate that pointers lie outside of secure memory,

allowing unprivileged code executing in the normal world to read

or write memory locations belonging to other applications or the

untrusted OS. In a sense, Boomerang vulnerabilities are orthogonal

to a subset of the vulnerabilities described in this paper: both target

incorrect pointer checks within trusted code, but while Boomerang

attacks relate to checks of pointers into untrusted memory, we focus

on pointers into trusted memory.

Memory corruption attacks on Intel SGX. Lee et al. [22] were

the first to execute a completely blind memory corruption attack

against SGX by augmenting code reuse attack techniques [41] with

several side-channel oracles. To successfully mount this attack, ad-

versaries require kernel privileges and a static enclave memory lay-

out. Recently, these techniques were improved by Biondo et al. [3]

to allow even non-privileged adversaries to hijack vulnerable en-

claves in the presence of fine-grained address space randomiza-

tion [40]. Their approach is furthermore made application-agnostic

by leveraging gadgets found in the trusted runtime library of the

official Intel SGX-SDK. In a perpendicular line of research, Schwarz

et al. [38] criticized SGX’s design choice of providing enclaves with

unlimited access to untrusted memory outside the enclave. They

demonstrated that malware code executing inside an SGX enclave

can mount stealthy code reuse attacks to hijack control flow in the

untrusted host application.

Importantly, all previous SGX memory safety research focused

on contributing novel exploitation techniques while assuming the

prior presence of a vulnerability in the enclave code itself. Hence,

those results are complementary to the vulnerabilities described in

this work. We have indeed demonstrated control flow hijacking for

some of the pointer sanitization issues below, and these may further

benefit from exploitation techniques developed in prior work.

3 METHODOLOGY AND ADVERSARY MODEL

3.1 Attacker model

We consider systems with hardware support for a TEE and where

a trusted runtime supports the secure, shielded execution of an en-

claved binary produced by the application developer. With enclaved

binary, we specifically mean that the binary is the output of a stan-

dard compiler, which is not aware of the TEE. It is the responsibility

of the shielding runtime to preserve intended program semantics

in a hostile environment. We focus exclusively on vulnerabilities

in the TEE runtime and assume that there are no application-level

memory safety vulnerabilities in the enclaved binary.

We assume the standard TEE attacker model [28], where ad-

versaries have full control over all software executing outside the

hardware-protected memory region. This is a powerful attacker

model, allowing the adversary to, for instance, modify page table

entries [47, 54], or precisely execute the victim enclave one instruc-

tion at a time [45]; yet, this is the attacker that TEEs are designed

to defend against. It is important to note that some of the attacks

we discuss can also be launched by significantly less privileged

attackers, i.e., with just user-level privileges to invoke the enclave.

3.2 Research methodology

Our objective is to pinpoint enclave shielding responsibilities, and to

find vulnerabilities where real-world TEE runtimes fail to safeguard

implicit interface assumptions made by the enclaved binary.

TEE runtime code review. We base our research on manual

code review, and hence limited our study to open-source TEE run-

times. After reviewing the literature and code repositories, we

selected 8 popular runtimes to be audited. Our resulting selection

allows to compare tendencies in (i) production vs. research code

bases; (ii) SDK vs. libOS-based shielding abstractions; (iii) unsafe

C/C++ vs. safe Rust programming languages; and (iv) underly-

ing TEE design dependencies. Note that we opted not to include

baidu-rust-sgx, as it is merely a layer on top of Intel SGX-SDK (and

hence inherits all vulnerabilities of the latter). After reviewing prior

research [33] and relevant code, we found that sanitization in the

TrustZone runtime OP-TEE has already been thoroughly vetted

and we hence decided not to systematically audit this runtime. For

each of the selected TEE runtime implementations, we then re-

viewed the sanitizations and defensive checks implemented by the

trusted runtime between entering the TEE and transferring control



Table 1: Enclave runtime vulnerability assessment (our contribution, highlighted) and comparison to related work on OSs and

TEEs. Symbols indicate whether a vulnerability was successfully exploited (⋆); acknowledged but without proof-of-concept

( ); or not found to apply (#). Half-filled symbols (⋆,G#) indicate that improper sanitization only leads to side-channel leakage.

Vulnerability

Runtime

SG
X-S

DK

Op
enE

ncl
ave

Gra
phe

ne

SG
X-L

KL

Rus
t-E

DP

Asy
lo
Key

sto
ne

San
cus

Lin
ux Prior TEE attack research

#1 Entry status flags sanitization ⋆ ⋆ G#  G#  # # [9]

#2 Entry stack pointer restore # # ⋆  # # # ⋆ #
Tier1

(ABI)
#3 Exit register leakage # # # ⋆ # # # # # SGX Dark-ROP exploitation [3, 22]

#4 Missing pointer range check # ⋆ ⋆ ⋆ #  # ⋆ [6] TrustZone exploits [33, 34]

#5 Null-terminated string handling ⋆ ⋆ # # # # # # [6]

#6 Integer overflow in range check # #  #  #   [6] TrustZone exploits [33, 34]

#7 Incorrect pointer range check # #  # #  #  #

#8 Double fetch untrusted pointer # #  # # # # # [37, 53] SGX AsyncShock framework [50]

#9 Ocall return value not checked # ⋆ ⋆ ⋆ #  ⋆ # ś Iago attacks (Linux system call interface) [4]

Tier2

(API)

#10 Uninitialized padding leakage [23] ⋆ #  #  ⋆ ⋆ [7] SGX-SDK edger8r struct leakage [23]

to the enclaved binary, and the symmetrical path when exiting the

TEE. We found new vulnerabilities in all studied runtimes. Table 1

summarizes our findings, structured according to the respective

vulnerability classes, and relating to similar vulnerabilities in the

Linux kernel and prior TEE research. Our systematization revealed

10 distinct attack vectors across 2 subsequent tiers of TEE shielding

responsibilities, explored in Sections 4 and 5, respectively.

In our code review, we focus our attention on the assumptions

that an enclaved binary makes about two key interfaces, and we

consider both integrity and confidentiality concerns. A first level of

interface sanitization we inspect is the ABI, which unambiguously

specifies function calling conventions regarding the low-level ma-

chine state expected by the compiler [10]. We manually locate the

trusted runtime entry point, and review how the compact assembly

routine establishes a trustworthy ABI state on entry, and similarly

scrubs residual CPU state on exit. The second key interface, that

we refer to as the API, is the functional interface of the enclaved

binary. We review how the TEE runtime validates different kinds

of arguments passed in through an ecall or as the return value

of an ocall. We focus in particular on the handling of pointers

and strings, where it is the TEE runtime’s responsibility to ensure

that variable-sized buffers lie entirely outside the enclave before

copying them inside and transferring execution to the enclaved

binary. For confidentiality, we check again that all memory copied

outside the TEE only contains explicit return values, and that no

avoidable side-channel leakage is introduced.

TEE design considerations. The communication between en-

clave and untrusted code for all TEE runtimes considered in this

paper relies on some form of łworld-shared memoryž, i.e., a mem-

ory region that is accessible to both trusted and untrusted code.

Depending on the specific TEE design (cf. Fig. 1), this can be re-

alized by either embedding the enclave in the address space of

a surrounding host process, as in Intel SGX [8] or Sancus [32],

or by explicitly mapping a dedicated virtual memory region into

both worlds as in ARM TrustZone [34] and Keystone [21]. Prior

research has mainly explored interface sanitization vulnerabilities

in ARM TrustZone TEEs (cf. Section 2.3). Given the prevalence of

SGX in contemporary Intel processors, our study focuses largely

on SGX-style single-address-space TEE designs as used in 7 out of 8

considered runtimes. However, the example of Keystone, and prior

research on ARM TrustZone [33, 34], shows that the attack surface

studied here is not necessarily limited to TEEs using the single-

address-space approach taken by SGX. As part of our analysis, we

found that certain TEE-specific design considerations may some-

times significantly impact exploitability. When applicable, such

TEE design considerations are discussed throughout the paper.

4 ESTABLISHING A TRUSTED ABI

Similarly to traditional user/kernel isolation, TEE-enabled proces-

sors typically only take care of switching to a fixed entry point

and thereafter leave it up to trusted runtime software to securely

bootstrap the enclaved execution. In practice, this implies that ad-

versaries may still control a large fraction of the low-level machine

state (e.g., CPU registers) on enclave entry. Hence, a trusted as-

sembly entry routine is responsible to establish an ABI-compliant

machine state when transferring control to the shielded application,

and to save and scrub low-level machine state on enclave exit.

4.1 Sanitizing machine state on entry

After reviewingwell-documentedABI-level calling conventions [10]

expected by popular C compilers, we concluded that most CPU reg-

isters can be left unmodified, apart from the stack pointer explored

in the next section. However, a more subtle concern relates to the

expected state of certain status register flags on function entry.

Attack vector #1 (status flags): Entry code should sanitize register flags

that may adversely impact program execution. ▷ Prevalent in production

and research runtimes, but exclusively Intel SGX (x86 CISC).

TEE design. The underlying processor architecture used in the

specific TEE design may greatly impact the resulting ABI-level at-

tack surface. That is, in comparison to Intel’s notoriously complex

x86 CISC architecture [8], simpler RISC-based TEEs such as San-

cus [32], Keystone [21], or ARM TrustZone [34] tend to impose less

obligations for trusted software to sanitize low-level machine state.

For instance, we found that the Sancus runtime should only take

care to clear the interrupt flag. Likewise, TrustZone even transpar-

ently takes care to save/restore secure world stack pointer registers.



Our analysis further reveals the trade-offs for implementing register

and status flag clearing in either hardware or software. For instance,

we show that the Intel SGX design leaves this responsibility largely

to software, exposing a larger attack surface.

We methodically examined all the software-visible flags in the

x86 flags register [17] and discovered two potentially dangerous

flags that may adversely impact enclaved execution if not properly

cleared. First, the Alignment Check (AC) flag may be set before

entering the enclave in order to be deterministically notified of

every unaligned memory access performed by the trusted enclave

software. This novel side-channel attack vector is closely related to

well known page fault [54] or segmentation fault [15] controlled-

channels, but this time abuses x86 #AC alignment-check exceptions.

Also, note that #PF side-channels ultimately reflect fundamental

hardware-level TEE design decisions that cannot be avoided in soft-

ware, whereas we argue that #AC leakage originates from the trusted

runtime’s failure to clear the associated status register control flag.

A second and more dangerous ABI-level attack vector arises from

the Direction Flag (DF), which can be set to change the loop behav-

ior of x86 string instructions (e.g., rep movs) from auto-increment to

auto-decrement. Commonly used x86 ABIs [10] allow for compiler

optimizations by mandating that DF shall always be cleared on func-

tion call/return. However, in case this subtle ABI requirement is not

explicitly enforced in the assembly entry routine, SGX adversaries

may change DF to an unexpected łdecrementž direction before the

ecall and thereby hijack the intended direction of all subsequent

x86 string instructions executed by the enclave. This opens a severe

vulnerability that can be successfully exploited to trigger enclave

memory corruption and erroneous computation results.

Intel SGX-SDK. We experimentally confirmed that the trusted

runtime in Intel’s official SGX-SDK [19] does not clear AC or DF on

enclave entry. The latter can be tracked via CVE-2019-14565 (Intel

SA-00293), leading to enclave TCB recovery.

While unaligned data accesses (e.g., fetching a 16-bit word at an

odd byte address) are explicitly supported in the x86 architecture,

the processor may optionally be forced to generate an exception

for such accesses when software sets the AC bit in the flags reg-

ister. We developed a minimal sample enclave to showcase how

#AC exceptions may in certain scenarios reveal secret-dependent

data accesses at an enhanced byte-level granularity as compared

to state-of-the-art SGX side-channel attacks that are restricted to a

coarser-grained 64 B cacheline [39] or 4 KiB page-level [47, 54] gran-

ularity. Figure 2 illustrates the key idea behind the attack, where

a 16-bit word is loaded by specifying a byte-granular index in a

small lookup table that has been explicitly aligned to a cacheline

boundary (e.g., as might also be performed in a streamed data or

string processing enclave application). In the example, secret index

0 returns the data AB, whereas secret index 1 returns BC. Our exploit

deterministically reconstructs the intra-cacheline secret-dependent

data access by observing whether or not the enclaved execution

generates an #AC alignment-check exception. One of the challenges

we encountered is to make the enclave progress after returning

from the untrusted signal handler. Since the processor automati-

cally restores the previous value of the flags register (including

the set AC bit) from enclave-private SSA memory when resuming

the enclave [8], the unaligned data access will never be allowed to

unaligned data access #AC exception

64B cacheline   A B D
index (secret)

C

Figure 2: Misaligned, intra-cacheline secret data access.

complete. To overcome this challenge, we make use of the adver-

sary’s root privileges to load a simple kernel module that clears the

processor’s Alignment Mask (CR0.AM) to temporarily disable align-

ment checking. Combined with a single-stepping attack primitive

like SGX-Step [45], this approach allows to determine noise-free

alignment side-channel information for every single instruction in

the victim enclave.

It should be noted that the oversight of not clearing the AC flag

in the trusted runtime merely leaks address-related side-channel

information, which falls explicitly outside of SGX’s threat model [8].

However, this is distinctly not the case for the DF flag, which di-

rectly intervenes with the semantics of the enclaved execution. We

confirmed that the popular gcc v5.4 compiler replaces for instance

common strlen() and memset() invocations with inlined x86 string

instructions at optimization level -Os. We developed a start-to-end

attack scenario to show how forcibly inverting the direction of such

string operations when entering the enclave through an ecall can

lead to controlled heap corruption and memory disclosure. Our

PoC exploit targets edger8r bridge code that is automatically gen-

erated to copy input and output buffers to and from the enclave

(cf. Section 5.1 and Fig. 3). Particularly, we abuse that edger8r code

allocates the output buffers on the enclave heap and thereafter uses

memset() to securely initialize the newly allocated buffer to all-zero.

However, setting DF before the ecall causes the memset() direction

to be inverted and any preceding heap memory to be corrupted (i.e.,

zeroed). Due to the way the SGX-SDK enclave heap is organized,

this will ultimately lead to a crash on the next free() invocation in

the edger8r code. Every heap frame is preceded by a size field and

a pointer to a meta-data bookkeeping structure. Such pointers are

stored in xor-ed form with a randomly generated secret constant

to harden the code against traditional heap corruption attacks. We

confirmed that after erroneously zeroing the preceding heap frames,

the resulting pointer will most likely end up as a non-canonical

64-bit address and halt the enclave by means of a general protec-

tion fault. However, before finally calling free() and detecting the

heap corruption, the trusted edger8r-generated code still copies the

allocated output buffer outside the enclave, potentially leading to

secret disclosure (as this buffer has never been properly zeroed).

We note that the heap corruption in itself may also be leveraged in

application-specific scenarios, e.g., zeroing out a cryptographic key

residing in the preceding heap frame.

Microsoft Open Enclave SDK. We experimentally confirmed

that OE suffers from the same DF vulnerability described above

(tracked via CVE-2019-1370). However, we found that after enter-

ing the enclave with the DF flag set, the trusted runtime already

crashes early-on in the entry path. The reason for this is that on

our machines (gcc v5.4 using the default Makefile), one of the

compiled entry functions uses a rep string instruction to initialize a

local variable on the call stack. Hence, setting DF leads to memory



1 cmp $RETURN_FROM_OCALL , %rdi ; %RDI = attacker arg

2 je .Lreturn_from_ocall

3 ...

4 .Lreturn_from_ocall

5 ⭑ mov %gs:SGX_LAST_STACK , %rsp

6 ...

7 ret

Listing 1: Low-level ocall return path in Graphene-SGX.

corruption by overwriting a piece of the trusted call stack with

zeroes. We have not attempted to further exploit this behavior.

Other SGX runtimes. When reviewing the assembly entry rou-

tines of the other SGX-based shielding systems (cf. Table 1), we

found that none of them sanitizes AC, whereas interestingly both

Rust-EDP and Graphene-SGX clear DF on enclave entry. Note that

Google’s Asylo framework is built on top of the Intel SGX-SDK and

hence inherits all of the vulnerabilities described above.

4.2 Maintaining the call stack abstraction

In order to safeguard enclave confidentiality and integrity, it is

essential that enclaves features their own private call stack. When

exiting the TEE by means of an ocall, the trusted stack pointer

should be stored and control flow should continue at a location

outside the enclave. After having performed an ocall, upon receiv-

ing the next ecall, the private call stack should be restored so the

runtime can łreturnž into the shielded application.

Attack vector #2 (call stack): Entry code should safeguard the call stack

abstraction for ecalls and ocalls. ▷ Not applicable to TrustZone, well-

understood in production SGX-SDKs, but not always in research code.

TEE design. We observed that TEE-specific design decisions

may largely impact the attack surface arising from call stack switch-

ing. That is, in ARMTrustZone [34] the stack pointer CPU register is

duplicated and fully transparently stored/restored on secure world

context switches. More versatile TEE designs like Intel SGX [8]

or Sancus [32], on the other hand, support multiple mutually dis-

trusting enclaves and leave it up to trusted runtime software to

store and restore the stack pointer across enclave boundaries. An-

other illustration of the trade-offs between hardware and software

responsibilities arises in SGX’s eexit instruction, which was de-

signed to explicitly fault when supplying in-enclave continuation

addresses [8]. Alternative TEE designs like Sancus [32], on the other

hand, expect such continuation pointer checks to be performed by

the trusted software, leaving a larger attack surface.

Graphene-SGX. After scrutinizing Graphene’s low-level boot-

strapping code, we discovered that enclave_entry.S does not prop-

erly safeguard the ocall return abstraction. Listing 1 shows how

the code unconditionally jumps to the stack pointer restore logic

after merely receiving an unchecked magic value in the %rdi register.

We experimentally confirmed that this can be abused to illegally

łreturnž into an enclave thread that is not waiting for a previous

ocall return. An adversary can exploit this weakness to erroneously

initialize the trusted in-enclave stack pointer of a newly started

thread with the value of the last ocall. The memory content at

these locations determine the values popped into registers, and

ultimately ret control flow.

SGX-LKL. We found a highly similar vulnerability in the way

SGX-LKL’s low-level entry code distinguishes different ecall types.

Specifically, we noticed that the unchecked parameter in %rdi can be

poisoned to trick the entry routine into erroneously calling a signal

handler for a thread that was never interrupted. This is especially

problematic as the signal handler code will then illegally restore

the stack pointer register from an uninitialized memory location.

Sancus. We reviewed the assembly code inserted at the entry

point of a Sancus enclave, and noticed that the Sancus TEE suffers

from similar call stack switching vulnerabilities. Particularly, we

experimentally confirmed that it is possible to supply illegal CPU

register arguments and trick the enclave into łreturningž into a

thread that was not waiting for a previous ocall return. In such a

case, the enclave stack will be falsely restored to the value of the

last valid ocall, leading to memory-safety violations from incorrect

control flow and register values. Sancus’s enclave entry assembly

routine further expects a CPU register parameter to specify the

address where execution is continued after leaving the enclave. The

software does not properly validate this parameter. Unlike SGX’s

eexit hardware primitive, which refuses to jump to illegal continu-

ation addresses, Sancus enclaves are exited by means of an ordinary

jmp instruction. We experimentally confirmed the possibility of

code reuse attacks [41] by forcing the vulnerable entry routine to

jump to an arbitrary in-enclave continuation address.

4.3 Storing and scrubbing machine state on exit

Prior to exiting the TEE, the trusted runtime’s assembly routine

should save and clear all CPU registers that are not part of the

calling convention, and restore them on subsequent enclave re-

entry. This is highly similar to how a traditional operating system

needs to context switch between processes, and hence we found

this to be a generally well-understood requirement.

Attack vector #3 (register state): Exit code should save and scrub CPU

registers. ▷ Generally well-understood across runtimes and architectures.

TEE design. Similar to parameter passing across traditional

user/kernel boundaries, widespread TEE designs commonly pre-

serve CPU register contents when context switching between the

normal and secure worlds. Prior research [3, 22] on exploiting mem-

ory safety vulnerabilities in SGX enclaves has for instance exploited

that the eexit instruction does not clear register values, leaving this

as an explicit software responsibility. Further, while scrubbing CPU

registers on enclave interrupt is a hardware responsibility in the In-

tel SGX design [8], we found that the AEX operation in current SGX

processors does not clear the x86 DF flag (cf. Section 4.1). We ex-

perimentally confirmed that this can be exploited as a side-channel

to learn the direction of private in-enclave string operations.

SGX-LKL. When reviewing the respective assembly routines,

we noticed that SGX-LKL is the only SGX runtime which does not

properly scrub registers before invoking eexit. The reason for this

oversight is that LKL attempts to leverage the setjmp/longjmp stan-

dard C library functions to easily store and restore the execution

state on enclave entry/exit without needing dedicated assembly

code. While indeed functionally correct, i.e., the integrity of CPU

registers is preserved across enclave calls, the approach cannot

guarantee confidentiality. This is because setjmp() still behaves



as a normal C function, whichÐadhering to calling conventionsÐ

does not clear all CPU state. We therefore advise to use a dedicated

assembly routine which overwrites confidential CPU registers be-

fore invoking eexit. This issue highlights the necessity to explicate

and properly separate ABI and API-level shielding concerns in

consecutive stages of the trusted runtime (cf. Section 3). We exper-

imentally confirmed this vulnerability by loading an elementary

AES-NI application binary inside SGX-LKL, and modifying the un-

trusted runtime to dump x86 xmm registersÐincluding the AES state

and round keysÐafter enclave exit.

5 SANITIZING THE ENCLAVE API

Once a trustworthy ABI state has been established, the trusted

bootstrapping assembly code can safely transfer control to ma-

chine code emitted by a compiler from a program description

written in a higher-level language. Remarkably, almost all run-

times [13, 19, 21, 29, 32, 35, 43] we studied are written in C or C++,

with the notable exception of Fortanix’s EDP platform [11], which

is written in the memory-safe Rust language. While the use of safe

languages is indeed preferable to rule out an important class of

application-level memory-safety vulnerabilities in the trusted run-

time implementation, we show that safe languages by themselves

cannot guarantee that the enclave interface is safe.

That is, it remains the responsibility of the trusted runtime im-

plementation to marshal and scrutinize untrusted input parameters

before passing them on to the shielded application written by the

enclave developer. Depending on the specific runtime, develop-

ers may communicate trusted API sanitization and marshalling

requirements explicitly (e.g., using a domain-specific language like

in Intel’s edger8r or Microsoft’s oeedger8r), or the enclave interface

may be completely hidden from the programmer (e.g., libOS-based

approaches).

In this section, we analyze shielding requirements for API san-

itization based on the different types of arguments that can be

passed across the enclave boundary. We pay particular attention

to pointers and (variable-sized) input buffers, given the prevalent

weaknesses found in real-world code.

5.1 Validating pointer arguments

Whenever untrusted side and enclave share at least part of their

address spaces, an important new attack surface arises: malicious

(untrusted) code can pass in a pointer to enclave memory where a

pointer to untrusted memory is expected. Therefore, it is the respon-

sibility of the shielding system to be careful in never dereferencing

untrusted input pointers that fall outside of the shared memory

region and point into the enclave. In case such sanity checks are

missing, the trusted enclave software may unintentionally disclose

and/or corrupt enclave memory locations. This is an instance of the

well-known łconfused deputyž [16] security problem: the attacker

is architecturally prohibited from accessing secure enclave mem-

ory, but tricks a more privileged enclaved program to inadvertently

dereference a secure memory location chosen by the attacker.

Attack vector #4 (pointers): Runtimes should sanitize input pointers to

lie inside the expected shared memory region. ▷ Generally understood,

but critical oversights prevalent across research and production code.
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Figure 3: Automatically generated edger8r bridge code han-

dles shielding of application input and output buffers.

TEE design. TEEs commonly support some form of sharedmem-

ory which allows trusted in-enclave code to directly read or write

an untrusted memory region outside the enclave (cf. Section 3.2).

Input and output data transfers can now easily be achieved by

bulk-copying into the shared memory region and passing pointers.

Pointer sanitization is a relatively well-known requirement for

enclave applications, and even bears some similarity with tradi-

tional user-to-kernel system call validation concerns [6]. However,

the kernel system call interface remains largely invisible, fairly

stable, and is only modified by a select group of expert developers.

SDK-based enclave development frameworks on the other hand

expose ecalls and ocalls much more directly to the application

developer by means of a secure function call abstraction.

Intel SGX-SDK. In line with trusted runtime shielding require-

ments, pointer sanitization should preferably not be left to the

application developer’s end responsibility. As part of the official

SGX-SDK, Intel [19] therefore developed a convenient tool called

edger8r, which transparently generates trusted proxy bridge code

to take care of validating pointer arguments and copying input and

output buffers to/from the enclave. The tool automatically gener-

ates C code based on ecall/ocall function prototypes and explicit

programmer annotations that specify pointer directions and sizes

in a custom, domain-specific Enclave Definition Language (EDL).

Figure 3 gives an overview of the high-level operation of the

trusted edger8r bridge code. After entering the enclave, the trusted

runtime establishes a trusted ABI (cf. Section 4), locates the ecall

function to be called, and finally 1○ hands over control to the

corresponding edger8r-generated bridge code. At this point, all

input buffer pointers are validated to fall completely outside the

enclave, before being copied 2○ from untrusted shared memory to

a sufficiently-sized shadow buffer allocated on the enclave heap. Fi-

nally, the edger8r bridge transfers control 3○ to the code written by

the application developer, which can now safely operate 4○ on the

cloned buffer in enclave memory. A symmetrical path is followed

when returning or performing ocalls to the untrusted code outside

the enclave.

Microsoft Open Enclave SDK. Microsoft [29] adopted the san-

itization strategy from the Intel SGX-SDK by means of their own

oeedger8r fork. Interestingly, OE uses a łdeep copyž marshalling

scheme to generalize to TEEs where the enclave cannot directly

access host memory and every interaction needs to be mediated in

a security kernel with access to an explicit shared memory region

(cf. Fig. 1). With deep copy marshalling, instead of passing the en-

clave pointers to the input buffer, the contents of the buffer are first



1 OE_ECALL void ecall_hello(hello_args_t* p_host_args) {

2 oe_result_t __result = OE_FAILURE;

3 if (! p_host_args || !oe_is_outside_enclave(p_host_args ,

4 sizeof (* p_host_args)))

5 goto done;

6 ...

7 done:

8 ⭑ if (p_host_args) p_host_args ->_result = __result;

9 }

Listing 2: Proxy function generated by oeedger8r (simplified)

with illegal write to arbitrary in-enclave pointer on failure.

copied into the marshalling structure and then cloned into enclave

memory. The pointers in the argument structure are then modified

such that they point to the corresponding (cloned) memory buffer.

Nevertheless, we discovered several flaws in the way OE handles

pointer validation (tracked via CVE-2019-0876). A first subtle issue

was found by reviewing the oeedger8r-generated code skeleton

itself. Listing 2 shows a simplified snippet of the trusted bridge

code generated for an elementary hello() entry point. The code

attempts to properly verify that the untrusted p_host_args structure

lies outside the enclave, and indeed rejects the ecallwhen detecting

a pointer poisoning attempt. However, in the done branch at line 8,

an error code is still written into the p_host_args structure, even

if it was found earlier to illegally point inside the enclave. At the

time of our review, this could only be exploited when calling the

enclave through a legacy ecall dispatcher that had unfortunately

not been removed from OE’s trusted code base (cf. Appendix A.1).

Secondly, we found that enclaves built with OE feature a small

number of łbuilt-inž ecall entry points for infrastructural function-

ality directly serviced in the trusted runtime without forwarding

to the shielded application. Notably, OE developers decided not to

route these entry points through oeedger8r-generated bridges, but

instead opted to manually scrutinize arguments for these special

ecalls. We audited all eight built-in entry points, and confirmed

that most of themwere carefully written to prevent pointer sanitiza-

tion issues, as well as more subtle attack vectors like TOCTOU and

speculative execution side-channels. However, we found a critical

issue in the built-in _handle_get_sgx_report() ecall involved in

crucial attestation functionality (see Appendix A.2 for full code).

This function copies the untrusted report input buffer into enclave

memory, but never validates whether the argument pointer passed

by the untrusted runtime actually lies outside the enclave. This

evidently leads to corruption of trusted memory, e.g., when writing

the return value in the fall-through branch similar to the oeedger8r-

generated code discussed above.

Both of the above vulnerabilities allow to write a fixed fail-

ure code (0x03000000 and 0x01000000) to an arbitrary in-enclave

memory location. We developed a PoC based on an existing file-

encryptor OE example application, and successfully exploited the

above vulnerabilities to forcefully overwrite the first round keys of

the AES cipher. This could be extended by overwriting all but the

final round keys with known values to perform full key extraction.

Google Asylo. Because Google’s Asylo [13] framework is built

on top the existing Intel SGX-SDK, it also inherits Intel’s edger8r-

based input sanitization scheme. Particularly, the Asylo trusted

runtime features a small number of predefined ecall entry points,

specified in EDL, that implement the necessary functionality to

present a higher-level, RPC-like message passing abstraction to the

application programmer. Considering that Asylo’s runtime extends

the trusted computing base on top of Intel’s existing SGX-SDK, we

were interested to assess whether the extra abstraction level may

also bring additional attack surface. This may for instance be the

casewhenmaking use of the unsafe [user_check] EDL attribute [19]

that explicitly weakens edger8r guarantees and puts the burden of

pointer validation on the programmer (e.g., to allow for application-

specific optimizations in performance-critical scenarios). Manually

scrutinizing the EDL specifications of Asylo’s trusted runtime, we

found 14 instances of the problematic [user_check] attribute. We

reviewed these instances and alarmingly found that several of them

lacked proper pointer validation, leaving critical vulnerabilities in

the compiled enclave (e.g., a write-zero primitive). Notably, the

developers took care to validate second-level input buffers in the

untrusted argument structure, but failed to validate the argument

pointer itself (cf. Appendix A.3 for a relevant sample).

Graphene-SGX. While Graphene-SGX’s [43] untrusted world

interaction and pointer validation concerns are largely limited to

ocalls (cf. Sections 5.3 and 5.5), our inspection of the narrow ecall

interface revealed a rather subtle type of implicit pointer passing

that was overlooked. Namely, Graphene’s trusted runtime never

validates the argv and envp pointers, which are passed from the

untrusted runtime all the way into the main function of the shielded

application binary. As a result, adversaries can for instance leak

arbitrary in-enclave memory when the trusted application outputs

argv values (e.g., in case of an unknown command line argument).

We experimentally confirmed this attack by means of an elemen-

tary echo program, which unknowingly prints in-enclave secrets

after overriding argv[1] in the untrusted runtime. With respect to

mitigations, note that properly sanitizing string arguments can be

non-trivial in itself, as explored in Section 5.2.

We also found that the special enclave_ecall_thread_start()

trusted runtime function unconditionally redirects control flow,

without performing any validation on the provided untrusted func-

tion pointer. We successfully exploited this to jump to arbitrary

in-enclave locations, hence allowing code reuse attacks [41].

SGX-LKL. Our analysis of the open-source SGX-LKL ecall in-

terface revealed the exact same vulnerability. That is, the trusted __s

gx_init_enclave() libOS function passes the untrusted argv pointer

directly to the shielded application without any prior sanitization.

We experimentally confirmed that this vulnerability can be abused

for information leakage, similar to the above exploit.

Further, the in-enclave signal handler ecall entry point does not

check that the siginfo struct pointer provided by the untrusted

runtime lies outside the enclave. This vulnerability can be abused in

certain scenarios to leak in-enclave memory contents. For instance,

we describe a full exploit for the SIGILL signal in Appendix A.4.

Sancus. To demonstrate that untrusted pointer dereference vul-

nerabilities are not limited to advanced virtual memory-based archi-

tectures, we also reviewed the trusted runtime and infrastructural

enclaves of the low-end open-source Sancus [32] TEE for embedded

TI MSP430 devices. As with the above runtimes, we focused our

security audit on the enclave boundary code only.



A first critical vulnerability was found in a recent extension [31]

to the Sancus compiler infrastructure, which implements a high-

level authenticated message passing abstraction to develop dis-

tributed event-driven enclave programs. Much like Intel’s edger8r,

the Sancus compiler fully automatically generates ecall bridge code

to transparently marshal, decrypt, and authenticate input buffers,

which can be subsequently processed by the shielded application.

We found that the compiler-generated bridge code does not sani-

tize untrusted pointer arguments (cf. Appendix A.5). This may be

exploited to forcefully decrypt enclave secrets.

A second input pointer validation vulnerability was found in

an infrastructural trusted loader enclave [14] that decrypts third-

party application enclaves to preserve code confidentiality. We

noticed that the trusted loader enclave code lacks any input pointer

validation checks, allowing us to build an arbitrary write primitive

in enclave memory. We successfully exploited this vulnerability in

a PoC that launches a ROP-style [41] control flow hijacking attack

by corrupting the loader enclave call stack.

5.2 Validating string arguments

In case the enclave interface is written in a low-level language like

C, string arguments do not carry an explicit length and may not

even have been properly null-terminated. Thus, shielding runtimes

need to first determine the expected length and always include a

null terminator when copying the string inside the enclave.

Attack vector #5 (strings): Runtimes should avoid computing untrusted

string sizes, and always include a null byte at the expected end. ▷ At least

one related instance repeated across two production SDKs.

TEE design. We show below how computing on unchecked

string pointers may leak enclave secrets through side-channels,

even if the ecall is eventually rejected. While side-channels are

generally a known issue across TEE technologies [8, 21, 34, 46] and

may even be observed by non-privileged adversaries, for example

by measuring overall execution time [30] or attacker-induced cache

evictions [26, 39], we show that TEE-specific design decisions can

still largely affect the overall exploitability of subtle side-channel

vulnerabilities. Particularly, we develop a highly practical attack

that abuses several privileged adversary capabilities that have previ-

ously been proven notorious in the Intel SGX design, e.g., untrusted

page tables [47, 54], interrupts [24, 45, 46], and storing interrupted

CPU register contents in SSA memory frames [5, 44].

Intel SGX-SDK. We discovered that edger8r-generated code

may be tricked into operating on unchecked in-enclave pointers

when computing the size of a variable-length input buffer. While

such illegal ecall attempts will always be properly rejected, we

found that adversaries can exploit the unintended size computa-

tion as a deterministic oracle that reveals side-channel information

about arbitrary in-enclave memory locations. This vulnerability is

tracked via CVE-2018-3626 (Intel SA-00117), leading to enclave TCB

recovery and changes in the EDL specification [18]. Prior to our dis-

closure, EDL allowed programmers to specify a custom [sizefunc]

attribute that takes as an argument an unchecked pointer to an

application-specific structure, and returns its size. Likewise, there

is a dedicated [string] EDL attribute to specify null-terminated

1 static sgx_status_t SGX_CDECL sgx_my_ecall(void* pms)

2 {

3 CHECK_REF_POINTER(pms , sizeof(ms_my_ecall_t));

4 ms_my_ecall_t* ms = SGX_CAST(ms_my_ecall_t*, pms);

5 char* _tmp_s = ms ->ms_s;

6

7 ⭑ size_t _len_s = _tmp_s ? strlen(_tmp_s) + 1 : 0;

8 char* _in_s = NULL;

9

10 CHECK_UNIQUE_POINTER(_tmp_s , _len_s);

11 __builtin_ia32_lfence (); // fence after pointer checks

12 ...

Listing 3: Proxy function generated by edger8r for the EDL

specification: public void my_ecall([in,string] char *s).

string arguments. Essentially, this special case comes down to

[sizefunc=strlen].

Consider the code skeleton generated by edger8r in Listing 3

for an ecall that expects a single string pointer argument. In or-

der to verify that the complete string is outside the enclave, the

trusted edge routine first computes the size of the argument buffer

(through either strlen() or a dedicated sizefunc in general), and

only thereafter checks whether the entire buffer falls outside of the

enclave. It is intended that the edge code first determines the length

in untrusted memory, but we made the crucial observation that the

strlen() invocation at line 7 operates on an arbitrary unchecked

pointer, potentially pointing into enclave memory. Any pointer

poisoning attempts will subsequently be rejected at line 10, but

the unintended computation may have already leaked information

through various side-channels [24, 45]. In general, leakage occurs

whenever there is secret-dependent control or data flow in the

specified sizefunc. This is most obviously the case for the common

[string] EDL attribute, since the amount of loop operations per-

formed by strlen() reveals the number of non-zero bytes following

the specified in-enclave pointer.

Our attack builds on top of the open-source SGX-Step [45] en-

clave interrupt framework to turn the subtle strlen() side-channel

leakage into a fully deterministic oracle that reveals the exact po-

sition of all 0x00 bytes in enclave private memory (thereby for

instance fully breaking the confidentiality of booleans or providing

valuable information for cryptanalysis). Particularly, we use SGX-

Step to reliably step the strlen() execution, one instruction at a

time, leveraging the łaccessedž bit in the page table entry of the

targeted in-enclave memory location as a noise-free oracle that is

deterministically set by the processor for every strlen() loop itera-

tion [47]. We confirmed that our single-stepping oracle continues to

work reliably even when the victim enclave was compiled to a sin-

gle, extremely compact rep movsb instruction (x86 string operations

can indeed be interrupted in between every loop iteration [17]).

We developed a practical end-to-end AES-NI key extraction PoC

in an application enclave built with a vulnerable version of edger8r.

Our victim enclave provides a single, multi-threaded ecall entry

point that encrypts the first 16 bytes of a given string using side-

channel resistant AES-NI instructions with a secret in-enclave key.

Since AES-NI operates exclusively on CPU registers (e.g., xmm0) and

due to the limited nature of the strlen() side-channel, we cannot

perform key extraction by directly targeting the AES state or key

in memory. Instead, our attack uses repeated encryption ecalls,

assuming varying (but not necessarily known) plaintext and known
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Figure 4: Overview of the key extraction attack exploiting

strlen() side-channel leakage in Intel SGX-SDK.

ciphertext. We further abuse that the Intel SGX architecture enables

a privileged adversary to precisely interrupt a victim enclave at

a chosen instruction-level granularity [45], thereby forcing the

processor to write the register state to a fixed SSA location in

enclave memory (this includes the xmm registers that are part of

the XSAVE region of the SSA frame). Figure 4 depicts the high-level

phases of the attack flow, using two threads A and B:

(a) Invoke the encryption ecall from thread A 1○ and interrupt

the enclave 2○ before the final round of the AES (i.e., before the

aesenclast instruction). To keep the PoC simple, we achieve this

requirement by inserting an access to a dummy page at the ap-

propriate point, and catching accesses to this page in a signal

handler on the untrusted side. Note that in a real-world attack,

the single-stepping feature of SGX-Step could be used to execute

the victim enclave exactly up to this point, without relying on a

more coarse-grained page fault for interruption.

(b) While the ecall in thread A is interrupted, prepare the timer

used by SGX-Step 3○ and launch a second thread B 4○ to probe

the position of the first zero byte (if any) in the intermediate AES

state. Concretely, this involves a second ecall to the same entry

point, but this time supplying an illegal in-enclave target address

pointing to the fixed memory location containing the xmm0 register

in the SSA frame of the interrupted thread A. Each time when a

timer interrupt arrives 5○, we monitor and clear 6○ the łaccessedž

bit of the targeted SSA page table entry.

(c) After the strlen() probing has finished, the obtained leakage

is stored alongside the corresponding ciphertext, and thread A is

resumed by restoring read/write access to the dummy page.

(d) Repeat from step (a) with a different plaintext until the full key

has been recovered (see Algorithm 1).

Experimentally, we determined that this attack succeeds with

881 AES invocations on average (over 1000 runs with random keys,

minimum: 306, maximum: 3346), given a deterministic, noise-free

strlen() oracle. Note that this attack could also be adapted to work

with noisy measurements, using the so-called zero-value model

known from hardware side-channel attacks [12]. Besides, the attack

would also be applicable when targeting the first round of the AES

in a known-plaintext scenario.

Properly closing this side-channel requires profound changes in

the way edger8rworks. Notably, the bridge code includes an lfence

instruction at line 11 to rule out advanced Spectre-v1 misspecula-

tion attacks that might still speculatively compute on unchecked

Algorithm 1 strlen() oracle AES key recovery where S (⋅) denotes the

AES SBox and SR (p) the position of byte p after AES ShiftRows.

while not full key K recovered do

(P ,C , L) ← random plaintext, associated ciphertext, strlen oracle

if L < 16 then

K [SR (L)] ← C [SR(L)]⊕ S (0)

end if

end while

pointers before they are architecturally rejected. However, our

attack is immune to such countermeasures because we directly

observe side effects of normal, non-speculative execution. Further,

early rejecting the ecall when detecting that the start pointer falls

inside the enclave does not suffice in general. In such a case, adver-

saries might still pass pointers below the enclave base address, and

observe secret-dependent behavior based on the first bytes of the

enclave. Intel implemented our recommended mitigation strategy

by dropping support for the superfluous [sizefunc] EDL attribute

entirely, and further abstaining from computing untrusted buffer

sizes inside the enclave. Instead, alleged buffer sizes are computed

outside the enclave, and passed as an untrusted argument, such that

the CHECK_UNIQUE_POINTER test can take place immediately. For the

strlen() case, the untrusted memory can simply be copied inside,

and an extra null byte inserted at the alleged end. This solution con-

veniently moves all secret-dependent control flow from the enclave

into the untrusted application context.

Microsoft Open Enclave SDK. After Intel had properly patched

the strlen() side-channel vulnerability in the SGX-SDK, OE ap-

pears to have tried to adopt our proposed mitigation strategy of

passing an untrusted alleged string length into the enclave. How-

ever, after reviewing the generated code, we found that oeedger8r

fails to include a 0x00 terminator byte after copying the untrusted

string inside enclave memory (cf. Appendix A.6). This critical over-

sight can be exploited to trick the shielded enclave application into

operating on non-null-terminated strings. The trusted user function

will incorrectly assume that the string is properly terminated and

may perform out-of-bounds memory read/writes, hence turning a

mitigation for a subtle and functionally correct side-channel issue

into a more dangerous source of enclave memory corruption. This

OE vulnerability is tracked via CVE-2019-0876 and specific to en-

claves that expect EDL string arguments, and output or manipulate

them in-place (e.g., strcpy()).

We experimentally demonstrated this vulnerability by means

of a minimal PoC application enclave which overwrites all non-

alphanumeric chars in a string with 0x20, until the null terminator

is encountered. If this enclave operates on an unterminated string,

the length field of the subsequent heap frame is corrupted, which

subsequently can be further leveraged in more complex exploits.

5.3 Validating variable-sized buffers

Multi-byte input buffers are commonly specified by passing a pointer

to the start of the buffer and an associated size. In order to properly

validate such buffers, the trusted runtime should first compute the

end pointer by adding the alleged size argument, and thereafter

assert that the complete input buffer address range falls outside the

enclave. However, since the buffer size is an adversary-controlled



parameter, care should be taken to prevent the pointer addition

from overflowing and silently wrapping around the address space.

Attack vector #6 (integer overflow): Runtimes should use safe arith-

metics when computing addresses in a buffer with untrusted size. ▷ Rela-

tively well-understood in production SDKs, not in research code.

TEE design. We found that the address-related vulnerabilities

in this section are significantly more exploitable in TEE designs

that provide increased attacker control over the shared memory

and enclave memory layouts. For instance, some integer overflow

vulnerabilities require the adversary to control the enclave base

address in a shared address space, as is the case for the Intel SGX [8]

and Sancus [32] designs, but not for ARM TrustZone [34] or Key-

stone [21]. Further, we found that logical errors may arise when

checking variable sized buffers in a shared address space. As de-

tailed below, the exploitability of such logic bugs depends heavily

on the ability of the adversary to trigger certain edge cases (e.g.,

passing a pointer that lies just before the enclave base address),

which might also be considerably easier in single-address space

TEE designs like Intel SGX or Sancus.

Fortanix Rust-EDP. In contrast to the other runtimes described

in this paper, Fortanix’s EDP [11] leverages the type system of

the safe Rust language to disallow inadvertent untrusted pointer

dereferences apart from the dedicated UserSafe type, which trans-

parently sanitizes any pointers passed into the enclave. Rust-EDP’s

shielding system has been explicitly designed to avoid known en-

clave boundary attacks and implements libOS-like functionality

through a deliberately very narrow ocall interface that is kept

invisible to the application programmer. However, our analysis

shows that the promising approach of enforcing pointer sanitiza-

tion through the use of a type systemmay evidently still suffer from

security issues if the implementation in the type itself is incorrect.

We manually scrutinized the implementation of the confined

UserSafe type (part of the Rust compiler’s SGX-EDP target [11])

and found a potentially exploitable integer overflow vulnerability

in the pointer validation logic. Listing 4 shows the relevant is_use

r_range() function, which checks whether an untrusted memory

range specified by a pointer and length falls completely outside the

enclave. Concretely, we observed that the 64-bit integer addition to

compute the end pointer at line 4 may overflow. Note that Rust can

automatically detect integer overflows, but these runtime checks

are only enabled in debug mode, meaning that in production builds

(e.g., rustc -C debug-assertions=off), integer overflows do not

cause an error by default [25].

We confirmed (after isolating the validation function in a dummy

Rust test program) that said function can be made to early-out

and return true at line 5 even when passing an illegal in-enclave

pointer if the enclave base is near the top of the address space.

Note that Intel SGX leaves the enclave base address under explicit

attacker control [8], so this requirement may be satisfied by real-

world attackers. For example, the untrusted runtime can return

a specially-crafted pointer from the alloc() usercall, potentially

leading to in-enclave memory disclosure or corruption, depending

on how the pointer is further used within the enclave. After our

disclosure, the EDP trusted runtime now explicitly asserts that

untrusted sizes returned by alloc() do not overflow.

1 /// `true ` if the specified memory range is in userspace.

2 pub fn is_user_range(p: *const u8 , len: usize) -> bool {

3 let start = p as u64;

4 ⭑ let end = start + (len as u64);

5 end <= image_base () || start >= image_base () + (unsafe {

ENCLAVE_SIZE } as u64) // unsafe ok: link -time constant

6 }

Listing 4: Pointer validation in the Rust-EDP UserSafe type.

Google Asylo. Apart from the aforementioned [user_check] is-

sues, the entry points in Asylo’s trusted runtime take care to vali-

date all second-level input buffers. However, our code review also

revealed a subtle logic mistake in the input validation logic itself.

That is, we observed that many of the trusted runtime functions (cf.

Appendix A.3 for a relevant sample) rely on the TrustedPrimitive

s::IsTrustedExtent(input,input_size) library function returning

true to reject the ecall attempt when detecting that an untrusted

input buffer is completely contained within enclave memory.

While this function itself translates to the corresponding sgx_is

_within_enclave() primitive from the SGX-SDK, which is indeed

correct and free from integer overflow vulnerabilities, the logic

mistake occurs when considering malicious input buffers that only

partly overlap with untrusted and enclave memory. For instance,

IsTrustedExtent() will properly return false and the ecall will

still be allowed when passing a lengthy adversarial input buffer

that starts one byte before the enclave base address but continues

into the enclave memory range. Evidently, this may subsequently

lead to trusted enclave memory corruption or disclosure. Hence,

the trusted runtime should instead make use of the proper sgx_is_

outside_enclave() SGX-SDK primitive.

Attack vector #7 (outside ≠ ¬inside): In a shared address space, input

buffers should not fall partially inside the trusted memory region. ▷ Gen-

erally understood in production SDKs, not always in research code.

Graphene-SGX. We discovered a critical integer overflow vul-

nerability in the widely used pointer range validation function

that often computes on untrusted attacker-provided sizes (simi-

lar to the Rust-EDP issue described above). We further found that

Graphene-SGX suffers from the same subtle logic mistake that we

spotted in the Asylo code base: at the time of our review, there

was no sgx_is_outside_enclave() primitive, and all instances of

the intended łabort if not completely outsidež were erroneously

checked for łabort if completely inside enclavež (cf. Listing 5 for a

relevant sample). A related type of pointer validation vulnerabili-

ties arises when the libOS allocates variable-sized output buffers in

untrusted memory outside the enclave to be able to exchange data

for ocall arguments and return values. For performance reasons,

Graphene-SGX allocates such shared memory buffers directly on

the untrusted host stack. While the untrusted host stack pointer

is indeed validated to lie outside of enclave memory upon enclave

entry, we observed that the trusted libOS does not properly check

whether the untrusted stack does not overflow into enclave memory

after allocating a new shared memory buffer in the widely used OC

ALLOC macro. Depending on the specific ocall implementation, the

enclave will subsequently copy data to/from the inappropriately

allocated buffer, leading to information disclosure and/or memory

corruption.



Keystone. While Keystone [21] is still a research prototype and

lacked essential functionality when we reviewed its code, we dis-

covered and reported a potential integer overflow vulnerability (cf.

Appendix A.7) in the trusted security monitor’s detect_region_ove

rlap() function, which is used during the creation of an enclave.

However, this overflow was not directly exploitable due to certain

restrictions on region sizes in the Keystone codebase.

Sancus. We found both logical errors and integer overflow vul-

nerabilities in the sancus_is_outside_sm() function provided by the

trusted runtime. Particularly, the current implementation does not

properly detect an untrusted buffer that spans the entire enclave

address range, or a carefully crafted length specifier that triggers

an integer overflow to wrap around the 16-bit address space.

5.4 Pointer-to-pointer validation pitfalls

While the previous sections have focussed on the spatial aspect of

untrusted pointer dereferencing, we also found more subtle vulner-

abilities related to the temporal aspect. That is, whenever a pointer

points to an untrusted address or size (as it is often the case, for

instance, in marshalling structs), the runtime should take care to

first copy the second-level pointer value to a trusted location in

enclave memory before applying the sanitization logic. If this is

not the case, adversaries may overwrite the second-level pointer

in untrusted memory after the validation has succeeded but before

the pointer is dereferenced in the enclave code. This class of vul-

nerabilities is also referred to as łdouble fetchž bugs in operating

system kernels [37, 53].

Attack vector #8 (double fetch): Untrusted pointer values should be

copied inside the enclave before validation to avoid time-of-check time-of-

use. ▷ Relatively well-understood (once pointer sanitization is applied).

TEE design. Double fetch bugs typically rely on a very nar-

row vulnerability time window and hence can be notoriously hard

to exploit in traditional user-to-kernel contexts. However, recent

research demonstrated how some TEE design decisions may con-

siderably simplify exploitation of synchronization bugs in enclaves.

AsyncShock [50] exploits that Intel SGX adversaries may provoke

page faults in the enclaved execution, and SGX-Step [45] similarly

abuses that privileged SGX adversaries may abuse system timers to

very precisely interrupt a victim enclave after every single instruc-

tion. Finally, Schwarz et al. [37] use a cache side-channel to expose

double fetch bugs in both Intel SGX and ARM TrustZone TEEs.

Graphene-SGX. Scrutinizing Graphene-SGX’s ocall interface,

we found several instances of exploitable double fetch vulnerabili-

ties. Listing 5 provides a relevant code snippet that attempts to sani-

tize the result of the sock_accept system call. First, at line 1, a buffer

ms is allocated in untrusted memory outside the enclave. The struct

buffer pointed to by ms contains another pointer ms->ms_addr that

will be initialized by the untrusted runtime to point to the socket

address returned by the system call. As ms->ms_addr is an untrusted

pointer, the libOS shielding system attempts to properly validate

that it lies outside the enclave at line 5 (modulo the logic bug de-

scribed in Section 5.3) before dereferencing ms->ms_addr a second

time when copying the socket address buffer inside at line 11. How-

ever, since the parent ms struct was allocated in untrusted memory

and has never been copied inside, SGX adversaries can interrupt

1 OCALLOC(ms , ms_ocall_sock_accept_t *, sizeof (*ms));

2 ...

3 retval = SGX_OCALL(OCALL_SOCK_ACCEPT , ms);

4 if (retval >= 0) {

5 ⭑ if (len && (sgx_is_within_enclave(ms ->ms_addr , len)

6 || ms ->ms_addrlen > len)) {

7 OCALL_EXIT ();

8 return -PAL_ERROR_DENIED;

9 }

10 ...

11 ⭑ COPY_FROM_USER(addr , ms ->ms_addr , ms ->ms_addrlen);

Listing 5: Double fetch vulnerability in Graphene-SGX.

the enclave in between lines 5 and 11 and trivially overwrite the ms

_addr field with an arbitrary in-enclave address, potentially leading

to trusted memory disclosure.

5.5 Validating ocall return values

Apart from validating ecall arguments, the enclave trusted runtime

should also take care to properly scrutinize ocall return values

when passing pointers or sizes back into the enclave.

Attack vector #9 (Iago): Pointers or sizes returned through ocalls

should be scrutinized [4]. ▷ Understood, but still prevalent in research

libOSs that shield system calls; one instance in a production SDK.

TEE design. We found that the complexity of the shielding sys-

tem may largely affect this attack surface. That is, SDK-based ap-

proaches typically do not feature a large built-in ocall interface,

whereas libOSs should safeguard against Iago attacks [4] by scruti-

nizing return values from the complex system call interface before

passing them on to the shielded application.

Microsoft Open Enclave SDK. OE’s trusted runtime includes

a oe_get_report() function which is used to provide attestation

functionality to the enclaved binary. Internally, this function per-

forms the same ocall twice; the first time specifying the output

buffer as a null pointer in order to obtain the required quote size.

Based on this size, a buffer is allocated on the enclave heap, and

subsequently filled through a second ocall invocation. We found,

however, that the untrusted runtime can return different sizes for

the two ocall invocations (tracked via CVE-2019-1369). Particularly,

the in-enclave buffer is allocated based on the size obtained from

the first ocall, whereas the size returned by the second ocall is

passed on to the caller of oe_get_report(). Hence, returning an un-

expectedly large size in the second ocall invocation may cause the

enclave application to read or write out of bounds. We experimen-

tally confirmed that OE’s remote attestation example enclave can

leak up to 10 kB of trusted heap memory (this upper bound is due

to an internal limit), possibly at multiple heap locations depending

on other memory allocations.

LibOS-based runtimes. We discovered several exploitable in-

stances of Iago attacks [4] in Graphene-SGX’s ocall interface. For

example, an untrusted system call return value len is later used

to copy len bytes from untrusted memory into a fixed-size buffer

inside the enclave, leading to arbitrary write-past the in-enclave

buffer. To demonstrate this vulnerability, we developed a PoCwhere

the readdir() system call in the untrusted runtime returns an un-

expected length, causing an out-of-bounds write in the enclave.



Similarly, in SGX-LKL’s ocall interface, we found several in-

stances of Iago vulnerabilities where for example the untrusted

pointers returned by mmap() are not checked to lie outside of en-

clavememory, or the untrusted length returned by write() is passed

unsanitized back to the shielded application. To demonstrate how

this can be successfully exploited, we developed an elementary

victim application featuring a common programming idiom where

write() is used to output a buffer piecewise, each time advancing

a pointer with the number of bytes successfully written (i.e., the

system call’s return value). We modified the untrusted runtime to

unexpectedly increment the return value of the write() system call,

causing the shielded application binary to output secret enclave

memory beyond the buffer bounds. Finally, we also confirmed and

reported the existence of similar issues in Google Asylo.

Keystone. Similar to the above SGX runtimes, Keystone pro-

vides system call wrappers to simplify porting of existing code to

an enclave. While Keystone documentation indicates that the de-

velopers are aware of potential issues, the codebase currently lacks

mitigations against Iago attacks. Hence, we developed an exploit

using the write() system call, similar to the SGX-LKL PoC.

5.6 Scrubbing uninitialized structure padding

Apart from pointers and size arguments, enclaves may also pass

composite struct types to the untrusted world. While, as with all

output buffers, we assume that enclave applications do not inten-

tionally disclose secrets through the program-visible state (i.e., the

struct’s individual members), prior research on operating system

kernel [7] and SGX enclave [23] interfaces has shown that padding

bytes silently added by the compiler may still unintentionally leak

uninitialized secret memory.

Attack vector #10 (uninitialized padding): Scrubbing program-visible

state may not suffice for struct outputs [23]. ▷ Especially relevant for

production SDKs that expose the enclave interface to the programmer.

TEE design. This subtle attack vector cannot be easily mitigated

by sanitizing program-visible API state. Possible mitigations include

securely initializing the entire output struct using memset() and/or

doing a member-wise deep-copy, or declaring the output struct as

łpackedž so the compiler does not unknowingly introduce padding.

However, both solutions require application-specific knowledge

about the exact struct types being passed. As an important insight,

we therefore found that this attack vector can only be transparently

shielded when the enclave interface is predefined and fixed. That

is, the fixed ocall interface in libOS-based runtimes can indeed be

manually scrutinized for this type of vulnerabilities. However, this

is not the case for SDK-based runtimes that offer a generic enclave

interface defined by the programmer, and hence (opposed to their

shielding responsibility) ultimately outsource the responsibility of

scrubbing uninitialized struct padding to the application developer.

SDK-based runtimes. Lee et al. [23] first demonstrated how

uninitialized struct padding may pose a subtle information leak-

age source in the edger8r-generated code of the Intel SGX-SDK.

Building on their findings, we generalized this attack vector to also

demonstrate its applicability to oeedger8r-generated code in Mi-

crosoft’s Open Enclave SDK, as well as in the Sancus TEE. Similarly,

we confirmed that padding leakage can also occur in Keystone, e.g.,

through the padding of calc_message_t in the demo enclave.

LibOS-based runtimes. We reviewed the ocall interfaces in

the libOS-based runtimes we studied (Graphene-SGX, LKL, Rust-

EDP). Rust-EDP appears to be free of such issues, and Graphene-

SGX explicitly enforces struct packing through a compiler #pragma.

However, SGX-LKL contains at least two instances of an ocall using

a struct with potentially vulnerable padding bytes (sigaction and

siginfo_t). In Google Asylo, most structs passed through an ocall

are explicitly declared as packed, however, we found one instance of

a padded struct BridgeSignalHandler used in the syscall interface.

6 DISCUSSION AND GENERAL MITIGATIONS

The most intuitive solution to defend against our attacks is to in-

corporate additional checks in the enclave code to properly sanitize

ABI state and API arguments/return values. When properly imple-

mented, such checks suffice to block all of the attacks described

in this work, and they have indeed been adopted by the various

projects we analyzed. However, leaving the decision of whether

(and how) to correctly implement numerous interface validation

checks to enclave developers, who are likely unaware of this class

of vulnerabilities, may be problematic. Moreover, even when de-

velopers think about inserting the necessary checks, our analysis

has revealed several recurring pitfalls, including subtle logical bugs,

side-channels, double fetches, and integer overflows. This high-

lights the need for more principled approaches to rule out this class

of vulnerabilities at large, as well as defense-in-depth code harden-

ing measures that may raise the bar for successful exploitation.

Code hardening. Interface sanitization vulnerabilities are closely

related to a wider class of memory safety issues [3, 22], and their

exploitation may hence be partially hindered by established tech-

niques such as heap obfuscation (cf. Section 4.1). Furthermore, SGX-

Shield [40] aims to obstruct memory corruption attacks by random-

izing the memory layout of enclaved binaries shielded by the Intel

SGX-SDK. However, prior research [3] has shown that SGX-Shield

does not randomize the trusted runtime, meaning that the code

we studied would still feature a deterministic and static memory

layout, and may offer numerous gadgets for mounting code reuse

attacks. Further, as the trusted runtime also forms an integral part

of SGX-Shield’s loader [40], any memory safety or side-channel

vulnerabilities in the trusted runtime itself may also be used to dis-

rupt the preliminary randomization stage. While randomizing the

memory layout of the trusted runtime would indeed be desirable,

this constitutes a non-trivial task [3, 40] given its low-level nature,

including hand-written assembly code and static memory addresses

expected by SGX’s eenter and eresume instructions. In this respect,

we want to emphasize that some of the attacks we presented are

free from non-static address dependencies, and hence remain inher-

ently immune to software randomization schemes. For example, the

SGX-SDK strlen() oracle in Fig. 4 depends solely on the fixed ad-

dress of the victim’s SSA frame, which is deterministically dictated

by the SGX hardware and immutable from software.

As a perpendicular code hardening avenue, we recommend to

implement more aggressive responses when detecting pointer vi-

olations in the trusted runtime. That is, most of the runtimes we



studied merely reject the ecall attempt when detecting pointer

poisoning. In the SGX-SDK strlen() oracle attack of Section 5.2,

we for example abused this to repeatedly call a victim enclave,

each time passing an illegal pointer and making side-channel ob-

servations before the ecall is eventually rejected. To rule out such

repeated attacks, and reflecting that in-enclave pointers represent

clear adversarial or buggy behavior, we recommend to immediately

destroy secrets and/or initiate an infinite loop upon detecting the

first pointer poisoning attempt in the trusted runtime.

Hardware-assisted solutions. As a more principled approach

to rule out the confused deputy attacks described in this paper,

solutions could leverage finer-grained memory protection features

in the processor. In particular, tagged memory [51] or capability

architectures [52] appear to be a promising approach to inherently

separate the memory domains of untrusted and trusted code. On

a capability machine [52], pointers are represented at run-time as

unforgeable objects carrying associated permissions and length

fields. The machine ensures that untrusted code can never create

a valid capability that points inside enclave-private memory and

pass it as an argument to an ecall, thereby eradicating an entire

class of pointer dereference vulnerabilities architecturally.

As an example of an alternative tagged memory design, the re-

cently proposed Timber-V [51] architecture provides lightweight

and strong enclaved execution on embedded RISC-V platforms.

Timber-V processors offer enhanced MPU isolation by keeping

track of a 2-bit tag for every memory word, allowing individual

memory locations to be associated with one out of 4 possible se-

curity domains. The CPU further restricts tag updates, and offers

checked memory load/store operations, which take an expected tag

as an argument and trap whenever the actual memory location

being dereferenced does not match the expected tag. Hence, any

pointer poisoning attempts by untrusted code outside the enclave

would be immediately caught by the hardware.

The untrusted pointer dereference issues we identified in this

work bear some similarities with how privileged OS kernel code

needs to properly sanitize user space pointers in e.g., system call

arguments. As a defense-in-depth mechanism, recent x86 proces-

sors support Supervisor Mode Access Protection (SMAP) features

to explicitly disallow unintended user space pointer dereferences

in kernel mode [17]. We encourage further research to investigate

porting such CPU features to enclave mode.

Safe programming languages. The combination of TEEs and

safe programming languages, such as Rust, has been proposed as a

promising research direction to safeguard enclave program seman-

tics, but still requires additional interface sanitizations [48]. The

approach of Fortanix’s Rust-EDP [11] shows how the compiler’s

type system can be automatically leveraged to limit the burden of

pointer sanitization concerns from a cross-cutting concern through-

out the enclave code base to the correct implementation of a single

untrusted pointer type. However, it is important to note that safe

languages by themselves are not a silver bullet solution to our

attacks. That is, the trusted runtime code remains responsible to

bootstrap memory safety guarantees by (i) establishing expected

ABI calling conventions in the low-level entry assembly code, and

(ii) providing a correct implementation of sanitization in the un-

trusted pointer type. In this respect, the subtle integer overflow

vulnerability in Fortantix’s EDP, presented in Section 5.3, demon-

strates that developing both the trusted runtime libraries and the

enclave in safe Rust may still not suffice to fully eradicate pointer

sanitization vulnerabilities.

Finally, as an alternative to Intel’s edger8r tool, the use of sep-

aration logic has been proposed to automatically generate secure

wrappers for SGX enclaves [49]. This approach aims to provide the

advantages of safe languages, and even formal verification guaran-

tees, but still relies on explicit developer annotations.

7 CONCLUSIONS AND FUTUREWORK

Our work highlights that the shielding responsibilities in today’s

TEE runtimes are not sufficiently understood, and that various

security issues exist in the respective trusted computing bases. We

showed that this attack surface is large and often overlooked: we

have identified 35 interface sanitization vulnerabilities in 8 open-

source TEE runtimes, including production-quality SDKs written

by security-savvy developer teams. Our analysis further reveals

that the entry points into this attack surface are more pervasive

than merely argument pointers: we contributed a classification of

10 recurring vulnerability classes spanning the ABI and API tiers.

In the defensive landscape, our work emphasizes the need to

research more principled interface sanitization strategies to safe-

guard the unique TEE shielding responsibilities. We particularly

encourage the development of static analysis tools, and fuzzing-

based vulnerability discovery and exploitation techniques to further

explore this attack surface.

ACKNOWLEDGMENTS

We thank Jethro Beekman (Fortanix), Job Noorman (KU Leuven),

and Johannes Götzfried for insightful discussions, and the anony-

mous reviewers for constructive feedback that helped improving

the paper. We further would like to thank the maintainers of the

open-source projects we studied for their contributions to the com-

munity and for promptly responding and working on mitigations.

This research is partially funded by the Research Fund KU Leu-

ven, and by the Agency for Innovation and Entrepreneurship (Flan-

ders). Jo Van Bulck is supported by a grant of the Research Foun-

dation ś Flanders (FWO). This research is partially funded by the

Engineering and Physical Sciences Research Council (EPSRC) under

grants EP/R012598/1, EP/R008000/1 and by the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No. 779391 (FutureTPM). Abdulla Aldoseri is supported

by a stipend from the University of Bahrain.

REFERENCES
[1] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L Still-
well, et al. 2016. SCONE: Secure Linux Containers with Intel SGX. In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 689ś703.

[2] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding applications
from an untrusted cloud with Haven. In Proceedings of the 11th USENIX conference
on Operating Systems Design and Implementation. USENIX Association, 267ś283.

[3] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. 2018. The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel
SGX. In Proceedings of the 27th USENIX Security Symposium. 1213ś1227.

[4] S. Checkoway and H. Shacham. 2013. Iago Attacks: Why the System Call API
is a Bad Untrusted RPC Interface. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). 253ś264.



[5] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Spec-
ulative Execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 142ś157.

[6] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and
M Frans Kaashoek. 2011. Linux kernel vulnerabilities: State-of-the-art defenses
and open problems. In Proceedings of the Second Asia-Pacific Workshop on Systems.
ACM, 5:1ś5:5.

[7] J. Corbet. 2010. Structure holes and information leaks. online, accessed 2019-08-06:
https://lwn.net/Articles/417989/. (December 2010).

[8] V. Costan and S. Devadas. 2016. Intel SGX Explained. IACR Cryptology ePrint
Archive 2016, 086 (2016), 1ś118.

[9] J. Edge. 2008. CVE-2008-1367 Kernel doesn’t clear DF for signal handlers.
https://bugzilla.redhat.com/show_bug.cgi?id=437312. (March 2008).

[10] A. Fog. 2018. Calling conventions for different C++ compilers and operating
systems. http://www.agner.org/optimize/calling_conventions.pdf. (April 2018).

[11] Fortanix. 2019. Fortanix Enclave Development Platform ś Rust EDP. online,
accessed 2019-08-30: https://edp.fortanix.com/. (2019).

[12] J. D. Golić and C. Tymen. 2003. Multiplicative Masking and Power Analysis of
AES. In Cryptographic Hardware and Embedded Systems (CHES). 198ś212.

[13] Google. 2019. Asylo: An open and flexible framework for enclave applications.
online, accessed 2019-08-06: https://asylo.dev/. (2019).

[14] J. Götzfried, T. Müller, R. De Clercq, P. Maene, F. Freiling, and I. Verbauwhede.
2015. Soteria: Offline software protection within low-cost embedded devices. In
Annual Computer Security Applications Conference (ACSAC). 241ś250.

[15] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Off-limits:
Abusing legacy x86 memory segmentation to spy on enclaved execution. In
International Symposium on Engineering Secure Software and Systems (ESSoS ’18).
Springer, 44ś60.

[16] N. Hardy. 1988. The Confused Deputy (or why capabilities might have been
invented). ACM SIGOPS Operating Systems Review 22, 4 (1988), 36ś38.

[17] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide. 325384 (2016).

[18] Intel. 2018. Intel Software Guard Extensions (SGX) SW Development Guidance for
Potential Edger8r Generated Code Side Channel Exploits. Revision 1.0.

[19] Intel. 2019. Intel Software Guard Extensions ś Get Started with the SDK. online,
accessed 2019-05-10: https://software.intel.com/en-us/sgx/sdk. (2019).

[20] E. Mohammadian Koruyeh, K. N Khasawneh, C. Song, and N. Abu-Ghazaleh. 2018.
Spectre returns! speculation attacks using the return stack buffer. In USENIX
Workshop on Offensive Technologies (WOOT).

[21] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović. 2019. Keystone: A
Framework for Architecting TEEs. arXiv preprint arXiv:1907.10119 (2019).

[22] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado, and
B. Byunghoon Kang. 2017. Hacking in Darkness: Return-oriented Programming
against Secure Enclaves. In Proceedings of the 26th USENIX Security Symposium.
523ś539.

[23] S. Lee and T. Kim. 2017. Leaking Uninitialized Secure Enclave Memory via
Structure Padding. arXiv preprint arXiv:1710.09061 (2017).

[24] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In Proceedings of the 26th USENIX Security Symposium. 557ś
574.

[25] G. Lehel and N. Matsakis. 2017. rust-lang RFC: Integer overflows in Rust. online,
accessed 2019-05-10: https://github.com/rust-lang/rfcs/blob/9ef0c35/text/0560-
integer-overflow.md. (2017).

[26] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. 2016. Armageddon:
Cache attacks on mobile devices. In Proceedings of the 25th USENIX Security
Symposium. 549ś564.

[27] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang, A. Bianchi,
Y. Ryn Choe, C. Kruegel, and G. Vigna. 2017. BOOMERANG: Exploiting the
Semantic Gap in Trusted Execution Environments. In NDSS 2017.

[28] Pieter Maene, Johannes Götzfried, Ruan De Clercq, Tilo Müller, Felix Freiling, and
Ingrid Verbauwhede. 2017. Hardware-Based Trusted Computing Architectures
for Isolation and Attestation. IEEE Trans. Comput. PP, 99 (2017).

[29] Microsoft. 2019. Open Enclave SDK. online, accessed 2019-05-10: https:
//openenclave.io/sdk/. (2019).

[30] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar. 2019. Memjam: A false
dependency attack against constant-time crypto implementations. International
Journal of Parallel Programming 47, 4 (2019), 538ś570.

[31] J. Noorman, J. Tobias Mühlberg, and F. Piessens. 2017. Authentic execution of
distributed event-driven applications with a small TCB. In STM. 55ś71.

[32] J. Noorman, J. Van Bulck, J. Tobias Mühlberg, F. Piessens, P. Maene, B. Preneel, I.
Verbauwhede, J. Götzfried, T. Müller, and F. Freiling. 2017. Sancus 2.0: A low-cost
security architecture for IoT devices. ACM Transactions on Privacy and Security
(TOPS) 20, 3 (2017), 7:1ś7:33.

[33] OP-TEE. 2019. Security Advisories. online, accessed 2019-08-29: https://www.op-
tee.org/security-advisories. (2019).

[34] S. Pinto and N. Santos. 2019. Demystifying Arm TrustZone: A Comprehensive
Survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 130.

[35] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui,
Vasily A Sartakov, and Peter Pietzuch. 2019. SGX-LKL: Securing the Host OS
Interface for Trusted Execution. arXiv preprint arXiv:1908.11143 (2019).

[36] Graphene Project. 2019. Graphene: a Library OS for Unmodified Applications.
online, accessed 2019-08-30: https://grapheneproject.io/. (2019).

[37] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh, and S. Mangard.
2018. Automated detection, exploitation, and elimination of double-fetch bugs
using modern CPU features. In Asia CCS 2018. 587ś600.

[38] M. Schwarz, Samuel Weiser, and Daniel Gruss. 2019. Practical enclave malware
with Intel SGX. In DIMVA. 177ś196.

[39] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. 2017. Malware
guard extension: using SGX to conceal cache attacks. In DIMVA. 3ś24.

[40] J. Seo, B. Lee, S. Min Kim, M.W Shih, I. Shin, D. Han, and T. Kim. 2017. SGX-Shield:
Enabling Address Space Layout Randomization for SGX Programs.. InNDSS 2017.

[41] H. Shacham et al. 2007. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86).. In ACM CCS 2007. 552ś561.

[42] S. Shinde, D. Le Tien, S. Tople, and P. Saxena. 2017. Panoply: Low-TCB Linux
Applications With SGX Enclaves. In NDSS 2017.

[43] C.C Tsai, D. E Porter, and M. Vij. 2017. Graphene-SGX: A practical library OS for
unmodified applications on SGX. In USENIX ATC.

[44] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Sil-
berstein, T. F. Wenisch, Y. Yarom, and R. Strackx. 2018. Foreshadow: Extracting
the keys to the Intel SGX kingdom with transient out-of-order execution. In
Proceedings of the 27th USENIX Security Symposium.

[45] J. Van Bulck, F. Piessens, and R. Strackx. 2017. SGX-Step: A practical attack
framework for precise enclave execution control. In SysTEX. 4:1ś4:6.

[46] J. Van Bulck, F. Piessens, and R. Strackx. 2018. Nemesis: Studying microarchitec-
tural timing Leaks in rudimentary CPU interrupt logic. In ACM CCS 2018.

[47] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx. 2017. Telling
your secrets without page faults: Stealthy page table-based attacks on enclaved
execution. In Proceedings of the 26th USENIX Security Symposium. 1041ś1056.

[48] N. van Ginkel, R. Strackx, T. Mühlberg, and F. Piessens. 2016. Towards safe
enclaves. In Hot Issues in Security Principles and Trust (HotSpot). 1ś16.

[49] N. van Ginkel, R. Strackx, and F. Piessens. 2017. Automatically generating
secure wrappers for SGX enclaves from separation logic specifications. In Asian
Symposium on Programming Languages and Systems. 105ś123.

[50] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza. 2016. AsyncShock:
Exploiting synchronisation bugs in Intel SGX enclaves. In European Symposium
on Research in Computer Security. 440ś457.

[51] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and A.-Reza Sadeghi.
2019. TIMBER-V: Tag-IsolatedMemory Bringing Fine-grained Enclaves to RISC-V.
In NDSS 2019.

[52] J. Woodruff, R. NM Watson, D. Chisnall, S. W Moore, J. Anderson, B. Davis, B.
Laurie, P. G Neumann, R. Norton, and M. Roe. 2014. The CHERI capability model:
Revisiting RISC in an age of risk. In ISCA 2014. 457ś468.

[53] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. 2018. Precise and scalable detection
of double-fetch bugs in OS kernels. In IEEE Symposium on Security and Privacy.
661ś678.

[54] Y. Xu, W. Cui, and M. Peinado. 2015. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In IEEE Symposium on Security
and Privacy. 640ś656.

A VULNERABLE CODE SAMPLES

A.1 OE legacy ecall dispatcher

The (legacy) ecall interface _handle_call_enclave() does not vali-

date that arg_in.args points outside the enclave. While this pointer

is subsequently checked by the oeedger8r-generated entry code,

an error code is still written to the in-enclave memory location on

failure (cf. Listing 2). After our report, the legacy handle_call_encl

ave() dispatcher has been removed completely.

1 static oe_result_t _handle_call_enclave(uint64_t arg_in) {

2 oe_call_enclave_args_t args , *args_ptr;

3 ...

4 if (! oe_is_outside_enclave ((void*)arg_in ,

5 sizeof(oe_call_enclave_args_t)))

6 OE_RAISE(OE_INVALID_PARAMETER);

7 args_ptr = (oe_call_enclave_args_t *) arg_in;

8 args = *args_ptr;

9 ...
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10 ⭑ func(args.args);

11 ...

Listing 6: https://github.com/Microsoft/OpenEnclave/blob/

93ac313a/enclave/core/sgx/calls.c#L216

A.2 OE built-in attestation ecall

Evidently, a check that validates that arg_in points outside the

enclave was overlooked. We thus can overwrite in-enclave memory

through the write to host_arg->result. Note that the target buffer

has to have a certain size to avoid segfaults in the function _oe_g

et_local_report() that is called within _handle_get_sgx_report()

(this is because the parameter oe_get_sgx_report_args_t is a large

struct). Because of that, _oe_get_local_report() will very likely

fail with the return value OE_INVALID_PARAMETER (0x3) and overwrite

the first four bytes of the memory at host_arg with 0x03000000.

1 oe_result_t _handle_get_sgx_report(uint64_t arg_in) {

2 oe_result_t result = OE_UNEXPECTED;

3 oe_get_sgx_report_args_t* host_arg =

4 (oe_get_sgx_report_args_t *) arg_in;

5 oe_get_sgx_report_args_t enc_arg;

6 size_t report_buffer_size = sizeof(sgx_report_t);

7

8 if (host_arg == NULL)

9 OE_RAISE(OE_INVALID_PARAMETER);

10

11 // Validate and copy args to prevent TOCTOU issues.

12 ⭑ enc_arg = *host_arg;

13

14 OE_CHECK(_oe_get_local_report(NULL , 0,

15 (enc_arg.opt_params_size != 0) ? enc_arg.opt_params : NULL ,

16 enc_arg.opt_params_size , (uint8_t *)&enc_arg.sgx_report ,

17 &report_buffer_size));

18

19 ⭑ *host_arg = enc_arg;

20 result = OE_OK;

21 done:

22 if (host_arg)

23 ⭑ host_arg ->result = result;

24 return result;

25 }

Listing 7: https://github.com/microsoft/OpenEnclave/blob/

93ac313a/enclave/core/sgx/report.c#L388

A.3 Asylo ecall entry point

Asylo’s trusted ecall dispatcher is declared in Intel SGX-SDK EDL

specification as follows: public int ecall_dispatch_trusted_call

(uint64_t selector, [user_check] void *buffer). However, in the

code below, it becomes apparent that the [user_check] argument

buffer is never properly validated before being unmarshalled. This

issue can most easily be mitigated by properly declaring the argu-

ment buffer using edger8r’s [in] pointer attribute instead of the

problematic [user_check] attribute. Further, the validation logic

at line 16 contains a logic mistake which incorrectly assumes that

outside == ¬inside (cf. Section 5.3).

1 int ecall_dispatch_trusted_call(uint64_t selector , void *buffer) {

2 return asylo :: primitives :: asylo_enclave_call(selector , buffer);

3 }

4

5 int asylo_enclave_call(uint64_t selector , void *buffer) {

6 SgxParams *const sgx_params = reinterpret_cast <SgxParams *>(

buffer);

7

8 ⭑ const void *input = sgx_params ->input;

9 ⭑ size_t input_size = sgx_params ->input_size;

10 ⭑ sgx_params ->input = nullptr;

11 ⭑ sgx_params ->input_size = 0;

12 void *output = nullptr;

13 size_t output_size = 0;

14

15 if (input) {

16 ⭑ if (TrustedPrimitives :: IsTrustedExtent(input , input_size)) {

17 PrimitiveStatus status{error :: GoogleError :: INVALID_ARGUMENT ,

"input should lie within untrusted memory."};

18 return status.error_code ();

19 }

Listing 8: https://github.com/google/asylo/blob/e4810bdbac/

asylo/platform/primitives/sgx/trusted_sgx.cc#L98

A.4 SGX-LKL SIGILL signal handler exploit

SGX-LKL intercepts the SIGILL (undefined instruction) to handle

instructions like rdtsc inside the enclave. In this case, the host exe-

cutes rdtsc and the result is passed back into the enclave through

the enclave’s signal handler interface. In case of SIGILL, an adver-

sary can change the untrusted siginfo argument to point into the

enclave, which will then yield the memory contents at that location

as the 64-bit result of rdtsc, as shown by our PoC. This specific

vulnerability can only be exploited if the target in-enclave memory

starts with 0x04000000 (i.e., siginfo->signum==SIGILL). In addition,

the rdtsc result needs to be outputted back to the untrusted side

(e.g., our PoC simply prints it to the terminal). Note that adversaries

can also use the in-enclave signal handler’s execution itself as a

side-channel. Depending on the contents of the memory pointed to

by siginfo->signum different code paths are taken, so established

side-channel approaches may reconstruct the secret-dependent con-

trol through differences in timing [30], page tables [47, 54], or other

microarchitectural elements [24, 46].

1 void __enclave_signal_handler(gprsgx_t *regs ,

2 enclave_signal_info_t *siginfo) {

3 ...

4 int ret;

5 ⭑ switch (siginfo ->signum) {

6 case SIGSEGV:

7 ⭑ ret = handle_sigsegv(regs , siginfo ->arg);

8 break;

9 case SIGILL:

10 ⭑ ret = handle_sigill(regs , siginfo ->arg);

11 break;

12 default:

13 ret = -1;

14 }

15 ...

Listing 9: https://github.com/lsds/sgx-lkl/blob/664eb25a/src

/sgx/enclave_signal.c#L17

A.5 Sancus authentic execution stub

Passing a ciphertext pointer argument that points inside the enclave

may unintentionally decrypt enclave memory, potentially leading

to information disclosure. Interestingly, we observed that untrusted

array index arguments were properly sanitized to safeguard against

well-understood buffer overflow vulnerabilities.

1 void SM_ENTRY __sm_handle_input(uint16_t conn_id ,

2 const void* payload , size_t len)

3 {
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4 if (conn_id >= SM_NUM_INPUTS) return;

5

6 size_t data_len = len - AD_SIZE - SANCUS_TAG_SIZE;

7 ⭑ uint8_t* cipher = (uint8_t *) payload + AD_SIZE;

8 ⭑ uint8_t* tag = cipher + data_len;

9

10 uint8_t* input_buffer = alloca(data_len);

11

12 ⭑ if (sancus_unwrap_with_key(__sm_io_keys[conn_id],

13 payload , AD_SIZE , cipher ,

14 data_len , tag , input_buffer))

15 {

16 __sm_input_callbacks[conn_id ]( input_buffer , data_len);

17 }

18 }

Listing 10: https://github.com/sancus-pma/sancus-compiler

/blob/5d5cbff/src/stubs/sm_input.c#L7

A.6 OE string ecall edge wrapper

As part of OE’s łdeep copyž marshalling scheme, the _handle_call

_enclave_function() from the trusted runtime properly copies the

entire marshalled input buffer into the enclave (including the string

argument and alleged length which are put into the serialized input

_buffer by the untrusted runtime). The oeedger8r bridge then takes

care to redirect all pointers to the marshalled input buffer. However,

when doing so the auto-generated oeedger8r entry code below does

not explicitly null-terminate the untrusted string argument. Hence,

the trusted user function will incorrectly assume that the string

is properly terminated and may perform out-of-bounds memory

read/writes beyond the end of the string.

1 void ecall_my_ecall(uint8_t* input_buf ,

2 size_t input_buf_size , uint8_t* output_buf ,

3 size_t output_buf_size , size_t* output_bytes_written)

4 {

5 oe_result_t _result = OE_FAILURE;

6 /* NOTE: output buf code removed for sake of space */

7 my_ecall_args_t* pargs_in =( my_ecall_args_t *) input_buf;

8 size_t input_buf_offset = 0;

9

10 /* Make sure buffers lie within the enclave */

11 OE_ADD_SIZE(input_buf_offset , sizeof (* pargs_in));

12 if (! input_buf || !oe_is_within_enclave(input_buf ,

input_buf_size))

13 goto done;

14

15 /* OE_SET_IN_POINTER(s, s_len * sizeof(char)) */

16 if (pargs_in ->s) {

17 ⭑ *( uint8_t **)&pargs_in ->s = input_buf + input_buf_offset;

18 OE_ADD_SIZE(input_buf_offset , (size_t)(s_len*sizeof(char)));

19 if (input_buf_offset > input_buf_size) {

20 _result = OE_BUFFER_TOO_SMALL;

21 goto done;

22 }

23 }

24 oe_lfence (); /* lfence after checks */

25 ⭑ my_ecall(pargs_in ->s); /* Call user function */

26 ...

27 }

Listing 11: Proxy function generated by oeedger8r for the

EDL specification: public void my_ecall([in,string] char *s).

A.7 Keystone integer overflow

We discovered a potential vulnerability that originates from an

integer overflow in the detect_region_overlap() function which

is used during the process of creating an enclave. Evidently, there

is no check to guarantee that the integer additions do not over-

flow. Suppose that epm_base=0x82800000 and epm_size=100000. If

one passes addr=0x1 and size=0xffffffffffffffff, there is an over-

lap between both regions. However, when these values are put

into the above condition, this evaluates to łno overlapž (zero). The

above issue was not exploitable at the time of discovery: various

constraints imposed on the size prevented the exploitation of this

issue, but it might have been problematic in the future if the overlap

check was used in different parts of the code.

1 static int detect_region_overlap(uintptr_t addr , uintptr_t size)

2 {

3 ...

4 ⭑ region_overlap |= (( uintptr_t) epm_base < addr + size)

5 && (( uintptr_t) epm_base + epm_size > addr);

6 ...

Listing 12: https://github.com/keystone-enclave/riscv-pk/

blob/e24d47c/sm/pmp.c#L71

https://github.com/sancus-pma/sancus-compiler/blob/5d5cbff/src/stubs/sm_input.c#L7
https://github.com/sancus-pma/sancus-compiler/blob/5d5cbff/src/stubs/sm_input.c#L7
https://github.com/keystone-enclave/riscv-pk/blob/e24d47c/sm/pmp.c#L71
https://github.com/keystone-enclave/riscv-pk/blob/e24d47c/sm/pmp.c#L71
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