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Corner detection is a common method to obtain image features, and the detection effect influences the performance of matching
and tracking directly. A FAST-Harris fusion corner detection algorithm is proposed to improve the shortcomings of the Harris
algorithm, such as the low detection accuracy and low positioning accuracy, and a corner detection fusion model is established.
First, the detected target image is padded, and then the FASTalgorithm is used with a 25% reduced contrast points to achieve fast
capture roughly; in this way, a candidate corner set is obtained. +en, screening the candidate corner is set one by one by
calculating the response function of the Harris with Scharr operator to achieve capture accurately. Finally, the real corners are
obtained using SAD for nonmaximum suppression. +e positioning error, error detection rate, robustness, and running time of
corner detection are obtained by the PyCharm platform. Compared with Harris, the error detection rate and localization error of
the algorithm are reduced by 16.89% and 42.04%, respectively. Compared with 8 popular corner detection algorithms, the error
detection rate and localization error of the algorithm in this paper are the lowest, which are 24.60% and 1.42 pixels. +e robust
performance in lossy JPEG compression is the best, with 17.37% shorter running time than Harris algorithm. +e method in this
paper can be used in scenarios such as autonomous driving and image search services.

1. Introduction

Corner detection is a method used to obtain image features
in computer vision which is widely used in motion esti-
mation [1], image matching [2–6], image visual processing
[7], visual tracking [8–10], and 3D scene reconstruction, etc.
[11–15], mainly divided into edge-based corner detection
algorithm [16] and gray-based corner detection algorithm
[17]. +e corner detection algorithm based on edge has
prime requirements for image segmentation and edge de-
tection, and the algorithm is complex and the steps are
cumbersome. +e gray-based corner detection algorithm
calculates the curvature according to the gradient change of
the local grayscale of the image and does not need to segment
the image and detect the edge in advance.

Harris algorithm [18] is proposed on the basis of gray
corner detection algorithm Moravec [19]. It uses the Taylor
series expansion to extend the four moving directions to any
direction, so that Harris algorithm has better robustness and

detection accuracy, but the corner detection rate decreases.
In [20], Sobel edge detection is proposed to extract the
alternative corners. When nonmaximum suppression is
carried out, the rectangular template is changed to the
circular template to improve the detection speed. +e
computational performance and repeatability of [21] are
better than [20, 22–25]. +e eigenvalues of the matrix are
directly calculated by the improved Harris algorithm of Shi-
Tomasi, the smaller eigenvalues are compared with the
threshold value, and the strong feature point is greater than
the threshold value, which effectively improves the detection
accuracy [26]. In [27] and [28], the linear combination
coefficient and subpixel Harris algorithm are introduced,
respectively. Only the corners near the enhanced edge and
the parameters of the rectangular template are normalized to
improve the accuracy of corner detection. Lowe proposed a
Scale Invariant Feature Transform (SIFT) algorithm [29]
with rotation invariance, scale invariance, and light intensity
invariance. Based on [29], Bay et al. in [29] proposed an
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accelerated robust feature (Speeded Up Robust Feature,
SURF) algorithm [30] to improve the speed of the algorithm
while ensuring the invariance of scale and affine transfor-
mation. In AKAZE [31], Fast Explicit Diffusion (FED) is
added to the pyramid framework to quickly construct a
nonlinear space. In the corner detection algorithm of sub-
pixel accuracy [32], one is to get the coordinate value of
subpixel accuracy by minimizing the iterative method of
error function. +e Features from Accelerated Segment Test
(FAST) algorithm [33] is the most efficient algorithm in the
grayscale corner detection, but there are many redundant
corner points detected and there is an image edge missed
detection. In order to solve the shortcomings of the FAST
algorithm, Rublee et al. proposed the Oriented FAST and
Rotated BRIEF (ORB) algorithm [34] which has rotation
invariance, fast calculation speed, and antinoise. Researchers
usually combine the FAST algorithm with the traditional
corner detection algorithm [35–37] or improve the FAST
algorithm [38] with the back propagation neural network.
Finally, the nonmaximum suppression method is used to
screen corners [39] to solve the problem of detecting re-
dundant corners.

By means of the above analysis the Harris algorithm has
high detection accuracy, while having a large amount of
computation, and the corner detection efficiency is low.
FAST algorithm has fast corner detection speed, but it de-
tects more redundant corners. In order to achieve high
positioning accuracy, detection accuracy, and robustness,
this paper proposes a corner detection algorithm that
combines FAST and Harris (F–H). +e improved FAST
algorithm is used to quickly capture the corner position, and
then the improved Harris algorithm is used to finely screen
the corner points. +e mathematical model is established by
gradually narrowing the corner capture range. First, the
target image is padded with constants to solve the problem of
image edge missed detection. +en, the corner points are
quickly and roughly captured by using a 7 ∗ 7 rectangular
window for the target image with the advantage of high
detection efficiency of the coarse capture FAST algorithm.
Using the advantage of high detection accuracy of Harris
algorithm, a 3 ∗ 3 rectangular window is used to filter the
candidate corner set. Finally, Sum of Absolute Difference
(SAD) is used for nonmaximum suppression to reduce
redundant corners and get real corners. +e simulation
experiment is completed based on PyCharm-python3.8
platforms. +e results show that the proposed algorithm has
better performance in corner missed detection rate and
positioning error than eight advanced algorithms and has
obvious advantages in detection speed compared with Harris
algorithm.

+e contributions of the paper are summarized briefly as
follows: a fusion corner detection model of FASTand Harris
is established. First, the number of comparisons between the
center point and the discrete points on the circumference is
reduced by 25%, and a 7 ∗ 7 rectangular window is used to
capture the corner points roughly to obtain a set of candidate
corner points. +en, the Scharr operator is used to replace
the Sobel operator in the Harris algorithm to calculate the
gradient values in the x and y directions, and the 3 ∗ 3 matrix

window is used to screen the candidate corners twice to
extract the small boundaries in the image. Finally, the final
real corners are determined by nonmaximum suppression.

+e specific arrangement of the paper is as follows:
Section 2 introduces the FAST algorithm and the improved
FAST algorithm. In Section 3, the Harris algorithm and the
improved Harris algorithm are introduced. In Section 4, the
mathematical model of corner detection combined with
FAST and Harris is introduced in detail. In Section 5,
simulation experiments are carried out on the PyCharm
platform, and the detection error rate, positioning error,
repeatability, and execution time performance of 9 corner
detection methods are compared. Finally, the conclusion is
given in Section 6.

2. Improved FAST Algorithm for
Rough Capture

2.1. FAST Algorithm Mathematical Model. +e classical
FAST algorithm [33] is shown in Figure 1, and Bresenham
circle is drawn by considering the target detection point P (x,
y) as the center of a circle and three pixels as radius. +e
corners are obtained by judging the difference between the
pixel value Ip(xp, yp) of the P(x, y) point and the pixel value
Ii(xi, yi) of the discrete points P1∼P16 on the Bresenham
circle. A large part of the corners detected by the FAST
algorithm is error corners, or redundant corners.

Hypothesis 1. +e pixel values of P1∼P16 are Ii(xi, yi) (i� 1,
2, 3 ... 16).

Ii xi, yi( 􏼁 − Ip xp, yp􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥T. (1)

N � 􏽘
x∀(circle(p))

Ii xi, yi( 􏼁 − Ip xp, yp􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>T
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ 12, (2)

where N is the number of pixels satisfying (1), T is the
threshold, and the empirical value is usually 50 pixels, where
N> 12, 12 is the best experimental result value obtained
through experimental comparison in literature [33].

When the pixel value of point P (x, y) satisfies (2), then P
(x, y) is judged to be a corner point.

+e corner detection rate of the classic FASTalgorithm is
very high, but the corner response function of the FAST
algorithm is shown in (2). When N meets the condition,
there are more corners, and many feature points are con-
nected together, resulting in redundant corners. More than
that, it seriously affects the detection performance of FAST.

2.2. Mathematical Model of Rough Capture FAST Algorithm.
+e algorithm proposed in the paper reduced the number of
points compared with the target detection point P (x, y) in
(1) to improve the corner detection speed of FASTalgorithm;
the number of the contrast points between the center point
and on the circumference discrete point is decreased by 25%.
As shown in Figure 1, only the difference between the point
P1 (x1, y1-3), P5 (x5+3, y5), P9 (x9, y9+3) and P13 (x13-3, y13) on
the Bresenham circle and P (x, y) should be estimated, which
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is equivalent to the vertical point of the 7 ∗ 7 matrix window
judged with P (x, y) as the center. Equation (3) is the FAST
corner response function. P (x, y) is the candidate corner if
the value of the pixel is satisfied.

N � 􏽘
x∀(circle(p))

Ii xi, yi( 􏼁 − Ip xp, yp􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>T
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ 3, (3)

where Ii (i� 1,5,9,13) represents the pixel value of any pixel
on the circumference. Ip is the pixel value of the center point
P (x, y). Set the threshold T� 50. Roughly capturing FAST
algorithm reduces 12 P (x, y) contrast points compared with
the classical FAST algorithm and speeds up the detection
speed, but it gets more candidate corners and the selection of
candidate corners is not optimal. +e improved Harris al-
gorithm is adopted to get the accurate corner points in the
paper and finally used SAD for nonmaximum suppression to
get the optimal corner point.

2.3. Target Image Padding. As proposed in [36], the can-
didate corners are captured roughly by the FAST algorithm
preliminarily as shown in Figure 2(a), the 7 ∗ 7 matrix
window is selected to slide the target image, and three rows
and three columns of pixels are lost in each edge of the target
image. In Figure 2, the matrix box in blue is the target image,
while the matrix box with the dotted line in red is the padded
target image.

It is necessary to pad the image for obtaining each point
P (x, y) in the image as shown in Figure 2(b); the image
padding size should be expressed in (4) if the input and
output sizes are the same.

n � ⌊
n + 2q − f

s
⌋ + 1. (4)

In (4), n ∗ n is the input size of the image; f is the size of
the matrix window; q is the size of padding; s is step length;
⌊⌋ is round down to the integer.

Hypothesis 2. Image size is rows ∗ cols, padding the image in
horizontal direction with the parameters n� rows, f� 7, s� 1,
and putting the parameters into (4). +en, we get

rows � rows + 2q − 7 + 1⟶ q � 3. (5)

+e rows in (5) are replaced by clos and the number of
padded columns is shown in (3). According to (5), the size of
the image padding value is related to the window size of the
sliding matrix. +erefore, the edge of the target image is
padded with three rows and three columns to ensure each
pixel in the image is detected, as shown in Figure 2(c).

Figure 3 shows the process diagram of rough capture
FAST algorithm.

Step 1. Padding the original image as shown in Figure 3(a).

Step 2. As shown in Figure 3(b), move the matrix window of
7 ∗ 7 from left to right, top to bottom, and step distance is
one pixel, according to (3) to determine corner point.

Step 3. Get the candidate corner position as shown in
Figure 3(c).

+e padding methods of roughly capturing FAST in-
clude constant padding, symmetry axis padding, and
boundary pixel value padding. For the same corner points,
the running time of the constant padding method is superior
to the other two methods by 33.31% and 3.59% according to
the simulation, so the constant padding method is adopted
in the paper.

Figure 4 shows the format of the pseudocode for Al-
gorithm 1 rough capture FAST algorithm.

3. Improved Harris Algorithm for
Accurate Capture

+e above rough capture FAST algorithm is used to get the
candidate corner set after padding the target image with
constant. +e candidate corner set includes a lot of re-
dundancy corners and there are some corner points pal-
letized, so it is necessary to further screen the corners. +e
classical Harris algorithm has good robustness and using
Scharr operator [40] instead of Sobel operator can screen the
real corners more carefully in the candidate corner set.

3.1. Mathematical Model of Harris Algorithm. +e image is
observed by sliding a small window in classic Harris algo-
rithm [18]. +e window moves to arbitrary directions, and
the points whose gray changed obviously should be the
corners. +e pixel gray of P (x, y) changed with the moving
of the window based on Taylor series expression showed in

E(u, v) � 􏽘
x,y

w(x, y)[I(x + u, y + v) − I(x, y)]
2
, (6)

where u and v are the offsets in vertical and horizontal
directions; w (x, y) represents the weight of point-centered; I
represent the gray value.

Equation (6) is expanded by a first-order Taylor ex-
pansion and can be rewritten as (7) approximately if the
image I (x, y) translated ∆x in a horizontal direction while ∆y
in vertical direction.

Figure 1: Selection of FAST judgment points.
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Figure 3: Improved FAST corner detection flow chart: (a) image padding, (b) corner point judgment, and (c) corner point position.

Algorithm 1: Rough capture FAST algorithm
Input: image, T=50
Output: PointList 

1.�e target image edge padded with 3 pixels and the padding constant is 0.
2.rows, cols = image. shape [:2]
3.Consider the target pixel as the circle center and 3 pixels as the radius, compared the four pixels 
numbered 1, 5, 9 and 13 with the target pixel. col, row = point.
4.for row in range (rows):
5.for col in range (cols):
6.if N = ||Ii (rowi, coli) − Ip (rowp, colp)|>T| ≥ 3 :

7. PointList.append((col, row))
8. return PointList;

x∀ (circle (point))

Figure 4: Pseudocode format of Algorithm 1.
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Figure 2: Target image padding: (a) Bresenham circle position, (b) expected position, and (c) postpadding position.
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E(u, v) ≈ 􏽘
x,y

w(x, y) I(x, y) +
zI

zx
(x, y)u +

zI

zy
(x, y)v − I(x, y)􏼢 􏼣

2

. (7)

≈ 􏽘
x,y

w(x, y)
zI

zx
(x, y)u +

zI

zy
(x, y)v􏼢 􏼣

2

. (8)

Equation (8) is obtained by second-order Taylor
expansion.

E(u, v) � 􏽘
x,y

w(x, y) u
2
f
2
x(x, y) + 2 uvfx(x, y)fy(x, y) + v

2
f
2
x(x, y)􏼐 􏼑

� 􏽘
x,y

w(x, y) u
2
I
2
x + 2 uvIxIy + v

2
I
2
y􏼐 􏼑

� u v􏼂 􏼃 􏽘
x,y

w(x, y)
I
2
x IxIy

IxIy I
2
y

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠
u

v
􏼢 􏼣

� u v􏼂 􏼃H
u

v
􏼢 􏼣.

(9)

In (9) H is composed of a window function and a
horizontal vertical gradient.

H � 􏽘
x,y

w(x, y)
I
2
x IxIy

IxIy I
2
y

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⟶ A
− 1 λ1 0

0 λ2
􏼢 􏼣A. (10)

Equation (10) is the diagonal real symmetric matrix, A is
the rotation factor, and the variation components in two
orthogonal directions namely λ1 and λ2 (eigenvalue) are
extracted.

In (11) R represents the Harris corner response function,
and α is a constant (generally 0.04–0.06), set as α� 0.05 in
the paper.

R � det(H) − α(trace(H))
2
, (11)

where det(H) � λ1λ2 and trace(H) � λ1 + λ2.

3.2. Mathematical Model of Accurate Capture Harris
Algorithm. +e Scharr operator is used to calculate the gra-
dient values of theHmatrix in the x and y directions instead of
Sobel operator to improve the detection accuracy of Harris
algorithm.+e Scharr operator can extract the tiny boundaries
effectively and then filter the H matrix with Gaussian filter to
eliminate the isolated points and convex points in the image.

Gaussian filtering function is used as the window
function w (x, y) in (10) expressed in

w(x, y) �
1

2πσ2
e

− x2+y2( )/2σ2 . (12)

Table 1 is the parameters of the Gaussian filter. +e
template on the left is a 3∗ ∗ ∗3 matrix, which is the window
function calculated by (12) assuming the value of σ is 1.5.
And then the template on the right side is obtained after
normalizing the left one, which is used to eliminate isolated

points and raised points in candidate corner points with the
normalized filter.

E (u, v) is related to Ix and Iy, and the H function in (10)
can be simplified as

H �
I
2
x IxIy

IxIy I
2
y

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (13)

In (13), Ix uses the 3 ∗ 3 Scharr gradient operator [−3 0 3;
−10 0 10; −3 0 3] [40] to calculate the horizontal gradient,
and Iy uses the 3 ∗ 3 Scharr gradient operator [ −3 −10 −3; 0 0
0; 3 10 3] [40]. Calculate the vertical gradient.

In (14), R is the Harris corner response function, and α is
a constant; α is 0.05 in the paper.

R � det H0( 􏼁 − α trace H0( 􏼁( 􏼁
2
, (14)

where H0 is the new matrix obtained with transformation as
in Table 1 Gaussian filtering.

Finally, whether P (x, y) is a real corner point or not can
be judged according to (18).

R ismuch greater than 0, corner,

R ismuch less than 0, edge,

|R| ≈ 0, plane.

⎧⎪⎪⎨

⎪⎪⎩
(15)

+e flow chart of accurate Harris corner detection al-
gorithm is shown. In Figure 5, Steps 1–4 keep on cycling
until the candidate corner set is empty:

(1) Step 1: take one of the candidate corners P (x, y)
obtained by roughly capturing FAST algorithm

(2) Step 2: calculate x-axis and y-axis gradient values of P
(x, y) points using 3 ∗ 3 Scharr operator

(3) Step 3: a new H0 matrix is obtained by Gaussian
filtering of x, y gradient values
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(4) Step 4: according to corner criterion R, determine
whether point P (x, y) is a corner or not

Figure 6 shows the format of the pseudocode for Al-
gorithm 2 accurate capture Harris algorithm.

4. FAST-Harris Fusion Corner
Detection Algorithm

+e corner detection algorithm fusion combining FASTwith
Harris is proposed in the paper. According to the improved
FAST algorithm in Section 2.2, the corner detection is
captured by the matrix window of 7 ∗ 7 to obtain the
candidate corner set. +en the improved Harris algorithm in

Section 3.2 is used to rescreen the candidate corner by the
matrix window of 3 ∗ 3. Finally, the real corner is determined
by nonmaximum suppression.

4.1. FAST-Harris Algorithm Mathematical Model. +e
mathematical model of FAST-Harris algorithm is divided
into two parts. In the first part, the candidate corner set is
obtained if the pixels in the image are satisfied (16). In the
second part, if the candidate corner points are satisfied (16),
then screen the point according to (17), and finally the real
corners are obtained.

Num � 􏽘
x∀(circle(p))

Ii xi, yi( 􏼁 − Ip xp + q, yp + q􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>T
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ 3⟶ P xp + q, yp + q􏼐 􏼑. (16)

R
P xp+q,yp+q( 􏼁

� det H
P xp+q,yp+q( 􏼁􏼒 􏼓 − α trace H

P xp+q,yp+q( 􏼁􏼒 􏼓􏼒 􏼓
2
> 0⟶ Pc xp + q, yp + q􏼐 􏼑. (17)

H
P xp+q,yp+q( 􏼁

�
I
2
xp+q Ixp+qIyp+q

Ixp+qIyp+q I
2
yp+q

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. (18)

In (16) and (17), Ii (i� 1, 5, 9, 13) denotes the pixel value
of the pixel on the circumference with radius 3 pixels; Ip is
the pixel value of the center point P (xp+ q, yp+ q), q is the
padding size for the target image; T is the threshold. P(xp+ q,
yp+ q) is the candidate corner; Pc(xp+ q, yp+ q) is the corner
after the Gaussian filter; Ixp+q and Iyp+q are the horizontal
and vertical one-step pixel value of P(xp+ q, yp+ q).

4.2. Nonmaximum Suppression. +e corner set is obtained
by the corner detection algorithm based on FAST-Harris

fusion above. In order to reduce the redundancy corners,
SAD is used for nonmaximum suppression.

Calculate the SAD values of each candidate corner
Pc(xp+ q,yp+ q) and 16 pixels value around its Bresenham
circle as the scores of the candidate corner, expressed as in
(18).

S(P, A)SAD � 􏽘
16

i�1
IP xP + q, yP + q( 􏼁 − Ii xi, yi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (19)

Step 1 Step 2 Step 3

Step 4

Ix

Iy
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Iy

R Corner point
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0.0585 0.0965 0.0585
0.0965 0.1592 0.0965

A B C
H P D
G F E P P

P
P
PP

P

Figure 5: Flow chart of improved Harris algorithm corner detection.

Table 1: Parameters of the Gaussian filter.
(−1, −1) (−1, 0) (−1, −1)

⟶
w(x,y)

0.0585 0.0965 0.0585
(0, −1) (0, 0) (0, 1) 0.0965 0.1592 0.0585
(1, −1) (1, 0) (1, 1) 0.0585 0.0965 0.0585
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In (19), Ii is the pixel value of discrete point on the
Bresenham circle; Ip is the pixel value of candidate corner.

According to the Euler distance expressed as (20), the
two candidate corners Pc (xi, yi) and Pc (xj, yj) are adjacent if
the Euler distance between Pc (xi, yi) and Pc (xj, yj) is less than
four pixels.

e �

������������������

xi − xj􏼐 􏼑
2

− yi − yj􏼐 􏼑
2

􏽲

< 4. (20)

Finally, comparing the scores of two adjacent corners,
the corner with low score should be desert. Using the
nonmaximum suppression to find the local maximum value,
reduce the redundant corners and then determine the final
real corners.

4.3. Steps of FAST-Harris Algorithm Corner Detection.
+e flow chart of corner detection algorithm proposed in
this paper is shown in Figure 7. First, the edge of the target
image is padded, then the FAST algorithm (green process
box) is roughly captured, and then the Harris algorithm
(yellow process box) is accurately captured. Finally, the
nonmaximum suppression (gray process box) is used to
obtain the final corner point.

5. Analysis of Experimental Results

+is paper selects PyCharm-python3.8 as the experimental
development platform. Because the stability of the initial
program is not high, all the experimental results in this paper
are carried out after the program runs 20 times. +e algo-
rithm parameters are taken as the empirical value T� 50
pixels, q� 3. +e target image padding method selects
constant padding, and all parameters in the experiment are
consistent. +e proposed method was compared with the
other eight corner detectors (Harris [18], FAST [33], ORB
[34], SURF [30], SIFT [29], Shi-Tomasi [26], Subpixel level
[32], and AKAZE [31]). +e method in the paper is com-
pared with Harris [18], Shi-Tomasi [26], and Subpixel level
[32] represented by improving positioning accuracy; SIFT

[29] represented by improving robustness, SURF [30] and
AKAZE [31] represented for comparison; FAST [33] algo-
rithm represented by detection speed and ORB [34] for
comparison. After 50 times running for the program, the
performance evaluation for error detection rate, positioning
error, robustness, and running time is obtained.

5.1. Error Detection Rate and Positioning Error Performance
Evaluation of Corner Detection. In this section, the error
detection rate and localization error are used to evaluate the
nine methods (Harris [18], FAST [33], ORB [34], SURF [30],
SIFT [29], Shi-Tomasi [26], Sub -pixel level [32], AKAZE
[31], and F–H).

5.1.1. Error Detection Rate. In the image corner detection
results, the ratio of error corner F to the total number of
detected corners is represented by Er. If the total number of
corner points got by corner detection algorithm is S, the
number of correct matching corner points is R, the number
of error corner points is F (including the number of missing
and error corner points), and the number of real corner
points detected manually is 􏽢R. Er can be expressed as

Er �
F

S
× 100%. (21)

Equation (21) matches the 􏽢R corner point set with the
position coordinates of the S corner point set, keeping the
real corner detected within 4 pixels in the R corner set, with
distance over 4 pixels, less than 8 pixels for missed corner;
otherwise, it is error corer.

Figure 8 shows three test images: ’Block image’ [41],
’Checkerboard image’ [42], ’House image’ [41], and corre-
sponding manual marked corners (marked with green cir-
cles). +e test images ’Block image’, ’Checkerboard image’,
and ’House image’ contain 59, 100, and 61 corners, re-
spectively. +e manually marked corner position is jointly
marked by 10 experts. When eight experts mark the same
corner position, it is the real corner position [16].

Algorithm 2: Accurate capture Harris algorithm
Input: PointList, α=0.05
Output corners 

1. Using 3*3 Scharr gradient operator to calculate row, coldirection gradient value. For the candidate 
corner saved in PointList [].
2. Find the values of I2

rowp
, I2

colp
, Irowp

 and Icolp
 in HP(rowp, colp) matrix.

3. Gaussian filtering is adopted to eliminate isolated points and bulges and build up a new matrix H0.

4. Calculate the corner response function RP (row,col) = det (HP(row,col))-α (trace (HP(row,col)))2

5. α=0.05

6. if RP(row,col) >> 0: return corners;

else RP(row,col) << 0: return edge;

else RP(row,col) ≈ 0: return plane;

7.Perform SAD non-maximum suppression on corners= [] filtered the redundant corners.

Figure 6: Pseudocode format of Algorithm 2.
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+e corner detection results of the algorithm in this
paper and other 8 algorithms on the three target images are
shown in Figures 9–11. As shown in Table 2, Harris [18], Shi-
Tomasi [26], Subpixel level [32], SIFT [29], SURF [30],
AKAZE [31], FAST [33], ORB [34], F–H, and the number of
error detection corners on the ’Block image’ [41] test images
of the proposed algorithm are 29, 25, 28, 99, 42, 63, 46, 38,
and 4, respectively. +e number of misdetection points on
the ’Checkerboard image’ [42] test images is 12, 12, 10, 276,
37, 130, 107, 48, and 4, respectively. +e number of mis-
detection points on the ’House image’ [41] test images is 45,
32, 30, 56, 36, 52, 51, 36, and 25, respectively.

As shown in Figure 12, compared with the Harris [18]
algorithm, Shi-Tomasi [26] and Subpixel level [32] al-
gorithms are represented by the positioning accuracy, and
the average error detection rate is reduced by 16.89%,
33.08%, and 16.87%. Compared with the other five al-
gorithms, the algorithm in this paper has the best error
detection rate, and the average error detection rate is
24.60%.

5.1.2. Positioning Error. +e positioning error [43] is an
important index for evaluating the accuracy of corner de-
tection algorithm. Assuming that the 􏽢R corner set {(􏽢xi, 􏽢yi),
i� 1,2, ..., m} and the S corner set {(xi, yi), i� 1,2, ..., m} are
matched successfully, the localization error can be defined as

E �

�������������������������

1
m

× 􏽘
m

i�1
􏽢xi − xi( 􏼁

2
+ 􏽢yi − yi( 􏼁

2
􏽨 􏽩

􏽶
􏽴

. (22)

As shown in Figure 13, the positioning error of the F–H
algorithm is the lowest on the three images. As shown in
Table 3, the average positioning errors of the 9 algorithms in
the three images are 2.45, 1.92, 1.94, 2.72, 2.63, 1.91, 2.01,
1.93, and 1.42 pixels, respectively. Compared with the Harris
[18] Shi-Tomasi [26], and the Subpixel level [32] represented
by the positioning accuracy, the average positioning error is
reduced by 42.04%, 26.04%, and 26.80%, respectively.
Compared with the other five algorithms, the algorithm in
this paper has the smallest average positioning error.

(a) (b) (c)

Figure 8: Real corner position of three test images: (a) block image, (b) checkerboard image, and (c) house image.

Input target image

Target image edge fills 3 
pixels, fill value is 0

Number of pixels in 
target image n

n==0?end

Detecting the lth
(l=1,2,…n) pixel target 

image

Insert l into formula (20)

Judge whether 
Num is valid

Save l at PointList = []

Take the candidate point in 
PointList = []

Calculation of x, y 
direction gradient by 

Scharr

Insert l into formula (22)

A new matrix H0
is obtained by Gaussian 
filtering the formula (22)

RP (x+q, y+q) value in 
Formula (21)

RP (x+q, y+q)>>0?

Save the corners to 
Corner = []

The pixel points in 
Corner = [] are 

calculated by Formula 
(23)

Non-maximum 
Suppression Using 

Formula (24)

Final corner 
position

Figure 7: FAST-Harris algorithm flow chart.
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5.2. Robustness Evaluation under Image Transformation.
In this section, repeatability is used to evaluate the ro-
bustness of the 9 methods (Harris [18], Shi-Tomasi [26],
Subpixel level [32], SIFT [29], SURF [30], AKAZE [31],
FAST [33], ORB [34], and F–H). +e repeatability under
image transformation in [43] means that the image can also
be detected through rotation, scaling, noise, and lossy JPEG
compression. +is is a robust corner detection method. Let
n1, n2 be the number of corner points detected in the two
pictures and R the number of corner points that appear in
the two pictures at the same time, and (23) is the repeat-
ability under image transformation.

REPEAT �
1
2

× R ×
1
n1

+
1
n2

􏼠 􏼡. (23)

Due to the different corner detection methods, the ac-
curacy of the corner position is different, so as long as the
corner appears within 4 pixels adjacent to the target position,
it is considered that the corner appears repeatedly. +e
higher the repeatability under image transformation, the
better the robustness of the detection method.

As shown in Figure 8, robustness experiments are
performed on “Block image” [41], “Checkerboard image”
[42], “House image” [41] images. Each image undergoes 4

(a) (b) (c) (d) (e) (f ) (g) (h)

(i)

Figure 9: “Block image” test results of 9 algorithms: (a) F–H, (b) Harris, (c) FAST, (d) Shi-Tomasi, (e) SURF, (f ) Subpixel level, (g) ORB, (h)
SIFT, and (i) AKAZE.

(a) (b) (c) (d) (e) (f) (g) (h)

(i)

Figure 10: “Checkerboard image” test results of 9 algorithms: (a) F–H, (b) Harris, (c) FAST, (d) Shi-Tomasi, (e) SURF, (f ) Subpixel level, (g)
ORB, (h) SIFT, and (i) AKAZE.

(a) (b) (c) (d) (e) (f ) (g) (h)

(i)

Figure 11: “House image” test results of 9 algorithms: (a) F–H, (b) Harris, (c) FAST, (d) Shi-Tomasi, (e) SURF, (f ) Subpixel level, (g) ORB,
(h) SIFT, and (i) AKAZE.
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different transformations, as shown in Figure 14, and a total
of 108 test images are obtained.

Rotation angle: the original image in the [−π, π] range,
π/4 angle to rotate the test image.

Uniform scale factor: the horizontal and vertical resolu-
tion of the image, between [−1, 1] with 0.2 interval test image.

Add Gaussian noise: add Gaussian noise to simulate
sensor noise caused by bad lighting and high temperature,
add zero-mean Gaussian noise in the range of [0, 3.5], and
get test images at intervals of standard deviation 0.5.

JEPG quality factor: the ‘cv2.IMWITE_JPEG_ QUAL-
ITY, C’ function is used to ensure that the image size is fixed.

Table 2: Comparison of error detection rates (%) of 9 detection algorithms on three test images.

Method Missed corners Error corners Error detection rate (%)
Block image

Harris [18] 13 16 42.65
Shi-Tomasi [26] 10 15 38.46
Subpixel level [32] 14 14 40.00
SIFT [29] 43 56 76.71
SURF [30] 27 15 82.35
AKAZE [31] 33 30 43.10
FAST [33] 17 29 37.70
ORB [34] 13 25 36.89
F–H 15 0 36.59

Checkerboard image
Harris [18] 12 0 7.69
Shi-Tomasi [26] 12 0 13.64
Subpixel level [32] 10 0 5.95
SIFT [29] 32 244 58.09
SURF [30] 37 0 17.96
AKAZE [31] 35 95 30.45
FAST [33] 32 75 39.34
ORB [34] 28 20 25.32
F–H 4 0 2.50

House image
Harris [18] 7 38 38.46
Shi-Tomasi [26] 20 12 58.18
Subpixel level [32] 23 7 42.85
SIFT [29] 26 30 30.30
SURF [30] 23 13 64.28
AKAZE [31] 20 32 60.37
FAST [33] 21 30 61.45
ORB [34] 12 24 47.25
F–H 7 18 34.72
Bold shows minimum missed corners, minimum error corners, and minimum error detection rate (%).
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Figure 12: Average error detection rate (%) comparison of 9 detection algorithms on three test images.
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Table 3: Comparison of positioning errors (pixels) of 9 detection algorithms on three test images.

Method
Harris and

Stephens [18]
Shi and

Tomasi [26]
Subpixel
level [32] SIFT [29] SURF [30] AKAZE [31] FAST [33] ORB [34] F–H

Block image 2.51 1.97 1.59 2.47 2.34 1.99 2.28 2.10 1.33
Checkerboard
image 2.23 1.68 2.09 2.99 2.96 1.79 1.60 1.59 1.54

House image 2.62 2.10 2.14 2.72 2.60 1.97 2.15 2.07 1.38
Bold shows minimum positioning error (pixels).

0 45 90 135 180 225 270 315

(a)

0.20.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(b)

0 0.5 1 1.5 2 2.5 3 3.5

(c)

0 10 20 30 40 50 60 70 80 90

(d)

Figure 14: Image sets under different transformations: (a) rotation angle, (b) uniform scale factor, (c) Gaussian noise, and (d) JEPG quality
factor.
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+e image quality C changes within the range of [0, 90], and
the test image is obtained at the interval of 10.

Figure 15 shows the line chart of robustness experi-
mental results of 9 detection algorithms for “Block im-
age” [41], “Checkerboard image” [42], and “House
image” [41] images. Table 4 illustrates the data of the
experimental results quantized value; it can be seen that
the algorithm in this paper is compared with the SIFT
[29] algorithm, SURF [30] and AKAZE [31] algorithm
represented by improving robustness. Robustness is
optimal. Among the 9 algorithms, the algorithm pro-
posed in this paper has the second performance in

uniform scaling and rotation, the third performance in
adding Gaussian noise, but the best performance in lossy
JPEG compression.

To further verify the robustness of the algorithm, as
shown in Figure 16, 10 images of different scenes were
selected in the COCO2017 dataset [44] to verify the average
repeatability of the corner detection algorithm. Each image
was subjected to 4 different transformations, resulting in a
total of 360 test images.

Figure 17 shows a line graph of the robustness of 9
detection algorithms for 10 groups of images, and Table 5
shows the data quantification values. From Table 5, it can

Table 4: +e robustness of three groups of images under different transformations.

Method Uniform scale factor Rotation angle Add Gaussian noise JEPG quality factor
Harris [18] 0.37 0.25 0.14 0.42
Shi-Tomasi [26] 0.69 0.76 0.71 0.63
Subpixel level [32] 0.61 0.67 0.69 0.65
SIFT [29] 0.31 0.29 0.14 0.34
SURF [30] 0.45 0.55 0.39 0.49
AKAZE [31] 0.48 0.51 0.39 0.42
FAST [33] 0.56 0.63 0.36 0.55
ORB [34] 0.44 0.50 0.42 0.44
F–H 0.68 0.68 0.51 0.66
Bold shows the optimal robust values of three groups of images under different transformations.
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Figure 15: Line chart of robustness for 9 detection algorithms with 3 groups of images.

12 Mathematical Problems in Engineering



be seen that the algorithm in the paper compared with the
SIFT [29], SURF [30], and AKAZE [31] is represented by
improved robustness. +e robustness of the proposed
algorithm is the best in uniform scaling and lossy JPEG
compression. Among the 9 algorithms, the proposed
algorithm is the best in lossy JPEG compression.

5.3. Performance Evaluation of Corner Detection Running
Time. +is section uses runtime to evaluate the performance
of nine methods (Harris [18], Shi-Tomasi [26], Subpixel level
[32], SIFT [29], SURF [30], AKAZE [31], FAST [33], ORB
[34], and F–H). As shown in Figure 18, eight different scenes
of “Construction”, “Train”, “Wall”, “Airplane”, “Fruit”,

Figure 16: COCO2017 test data set (Reference [44]).
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Figure 17: Line chart of robustness of 9 detection algorithms for 10 groups of images.
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“Bridge”, “Car”, and “Instrument” were selected from the
ImageNet dataset [45], and “Block image” [41], “Checker-
board image” [42], “House image” [41] are shown in Figure 8,
to test the running time of the corner detection algorithm.+e
experiment is implemented in PyCharm-python3.8 with
2.60GHZ i7-9750H CPU and 8GBmemory. Each image runs
50 times, removes the longest and shortest running time, and
then takes the average running time. Table 6 shows the
comparison of the average running time. It can be seen from
the table that the running time of this method is less than
other algorithms; the running time is shortened by 17.37%
compared with Harris algorithm especially.

6. Conclusion

In this paper, aiming at the low detection efficiency of Harris
algorithm and the low detection accuracy of FAST algo-
rithm, a corner detection method based on integrating FAST
and Harris is proposed, and a corner detection model based
on integrating FASTand Harris is established. First, in order
to avoid the missing of image edge, the image is padded, and
then the corner detection speed of FAST algorithm is im-
proved by reducing the discrete detection points on the
Bresenham circle. +en the candidate corner set is obtained
by using the rough capture FASTalgorithm with 7 ∗ 7 as the

Figure 18: ImageNet test dataset (Reference [45]).

Table 5: +e robustness of 10 groups of images under different transformations.

Method Uniform scale factor Rotation angle Add Gaussian noise JEPG quality factor
Harris [18] 0.28 0.32 0.20 0.36
Shi-Tomasi [26] 0.53 0.52 0.53 0.44
Subpixel level [32] 0.43 0.45 0.49 0.41
SIFT [29] 0.40 0.41 0.36 0.40
SURF [30] 0.40 0.43 0.31 0.30
AKAZE [31] 0.46 0.46 0.35 0.39
FAST [33] 0.57 0.34 0.12 0.33
ORB [34] 0.61 0.42 0.28 0.35
F–H 0.47 0.43 0.23 0.45
+e best robust values of 10 groups of images under the transformation of uniform scale factor, rotation angle, add Gaussian noise, and JEPG quality factor
(the higher the value, the better the robustness).

Table 6: Performance comparison of nine detection methods in running time (s).

Method
Image

Construction Airplane Train Instrument Bridge Fruit Wall Car Block Checkerboard House Average
value

Harris [18] 23.17 23.23 26.90 37.68 23.15 44.94 23.12 27.62 10.89 10.72 10.93 23.85
Shi-Tomasi [26] 0.07 0.07 0.05 0.07 0.07 0.08 0.06 0.06 0.03 0.03 0.02 0.06
Subpixel level
[32] 0.07 0.06 0.04 0.02 0.03 0.03 0.03 0.02 0.01 0.01 0.01 0.03

SIFT [29] 0.13 0.18 0.10 0.13 0.11 0.14 0.10 0.10 0.04 0.03 0.04 0.10
SURF [30] 0.08 0.09 0.07 0.10 0.09 0.09 0.09 0.08 0.03 0.04 0.04 0.07
AKAZE [31] 0.03 0.03 0.03 0.04 0.03 0.05 0.03 0.03 0.02 0.02 0.02 0.03
FAST [33] 0.03 0.03 0.03 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02
ORB [34] 0.86 0.89 0.88 0.93 0.84 0.91 0.91 0.83 0.14 0.14 0.14 0.68
F–H 21.19 21.29 24.18 31.66 16.56 36.42 16.18 25.67 10.32 9.71 10.36 20.32
Bold shows that nine algorithms correspond to the minimum running time of 10 different scenarios.
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matrix window; second, the accurate screening of candidate
corners is carried out by accurately capturing Harris algo-
rithm with 3 ∗ 3 as matrix window. Finally, SAD is used for
nonmaximum suppression to reduce corner redundancy.

Compared with Harris, Shi-Tomasi, Subpixel level, SIFT,
SURF, AKAZE, FAST, andORB, the proposed algorithm has
the best performance in error detection rate and location
error. Compared with Harris and FAST algorithms, the
average error rate is reduced by 16.88% and 46.71%, re-
spectively, and the average positioning error is 1.42 pixels.
Compared with 8 algorithms, the performance of lossy JEPG
compression has the best average repeatability, which is 0.56.
Compared with Harris algorithm, the running time is re-
duced by 17.37%.

+e data of the simulation show that an innovative
corner detection model integrated the improved FAST and
Harris. +is method has better accuracy and robustness. +e
method can be used to image visual processing, motion
estimation, image matching, visual tracking, and 3D scene
reconstruction and so on, especially in the high quality and
speed scene [46, 47].
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