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Abstract—In this paper, a real world short-haul commodity
routing problem is presented. This problem shares several
similarities with vehicle routing problem with time windows
(VRPTW) and the service network design problem (SNDP),
but also has its own specific structures that do not exist in
VRPTW or SNDP. A task based formulation is developed for
this problem and a variable neighbourhood search metaheuristic
approach is proposed, resulting in a visible improvement over
the original routing plans according to experimental tests over
three real-life instances. Apart from introducing a new real-world
commodity routing problem, another main contribution of this
paper is a task based formulation that allows commodity flows
being considered as nodes in a routing network. Thus algorithms
that were designed for VRPTW or SDVRP can also possibly be
adapted to solve this commodity flow problem.

I. INTRODUCTION

Freight transportation is an important aspect of business
for transportation firms. The efficiency and quality of service
is especially crucial for their survival and profitability in a
competitive market. For the problems in this area, the objective
is usually described as providing high standard services while
maintaining a consistent performance or running at the lowest
cost at a specified service level. As traffic in urban areas,
or even rural areas, becomes increasingly demanding and
more complicated, companies are facing more challenges
than ever before to maintain or improve the level of freight
services due to traffic uncertainties. Another important issue
is the environmental impact from modern transportation. High
transport efficiency could help to reduce the use of fossil fuel.
Such perspectives have attracted many researchers to explore
this area by using many different approaches.

In this paper, a real world short-haul routing problem is
introduced. This new problem shares several characteristics
of vehicle routing problem with time windows (VRPTW) [1]
and service network design problem (SNDP) [2]. All these
problems involve transporting commodities or services over
a network with geographically distributed nodes. However,
there are some features that differentiate this problem from
the classic VRPTW and SNDP. The first main difference
is the “servicing time” due to the short-haul nature of this

new problem. The commodity loading/unloading time in this
problem is comparable to the transportation time and hence
cannot be ignored or combined in a similar way as in the
service network design problem or VRPTW. Secondly, the
commodity flows in SNDP can be continuous but in this
new problem they are integers (measured by the number
of containers). Finally, transportation demands in this new
problem can be between any ports but no consolidation is
generally permitted since the volume of unit commodity is
comparable to the capacity of vehicles. This is very different
from conventional VRP where commodities are shipped from
one or more depots to customers. It is also different from
SNDP in which path sharing and consolidation are widely
used mechanisms to improve efficiency.

The paper is structured as follows: Section II reviews
relevant work, mainly focusing on vehicle routing problems
and service network design problems. In section III, the new
commodity routing problem is presented and a task based
formulation is provided. The proposed solution method for
this problem is then given in section IV and its computational
results are discussed in section V. Finally section VI concludes
this paper.

II. LITERATURE REVIEW
A. Vehicle Routing Problem

The vehicle routing problem (VRP) involves designing a
vehicle routing plan to service all customers over a network.
These customers, located in geographically different locations,
are visited exactly once. The routes typically start from a
special node called depot, pass through a set of arcs then
return back to the depot after all assigned customers are
serviced. Each route is associated with one vehicle schedule.
The vehicle routing problem was originally proposed as the
truck dispatching problem [3]. Later, several variants of VRP
were introduced and the topic as a whole has been intensively
researched over the past few decades. Reviews and recent
developments of VRP can be found in [4], [5] and [6]. Related
algorithms are also covered by [7] in detail. There are many
VRP variants proposed later. For some common variants, one



can read the book by Toth and Vigo [1] for more information.
Among these variants, the VRP with split delivery (SDVRP)
and VRP with time windows (VRPTW) share most similarities
with our problem.

VRPTW is an extension of VRP with additional time
window constraints. Solomon [8] proposed several classic
heuristics for VRPTW. However, the results from these heuris-
tics are inferior when compared with modern approaches in
terms of solution quality. This is understandable as the compu-
tational power was low at that time and iterative metaheuristic
approaches are computationally more expensive. Taillard et
al. [9] introduced an efficient tabu search for the problem. An
adaptive memory is used to improve the quality of solutions.
The adaptive memory contains the routes of the best solutions
that have previously been explored. Chiang and Russel [10]
proposed a reactive tabu search that adjusts the tabu list
during the search process. It increases the size of the tabu list
based on whether the same solution is visited multiple times
during a period. If no feasible solution is found during several
iterations, the size of the tabu list is decreased. Several local
search algorithms and neighbourhood functions are covered
in [11]. El-Sherbeny [12] also reviewed recent algorithms for
VRPTW.

SDVRP was introduced in 1989 by Moshe Dror and Pierre
Trudeau [13]. The idea is that transportation cost can be
reduced by splitting the commodity such that they can be trans-
ported by several vehicles. Dror et al. [14] proposed an integer
programming model and a branch and bound algorithm for
the problem. Cordeau et al. [15] reviewed SDVRP and some
related problems with related algorithms. Recent development
of SDVRP can be found in [16].

B. Service Network Design Problem

The service network design problem is usually used to solve
problems at strategic and tactical levels. The service network
design problem differs from the fixed-charge multi-commodity
routing problem in that service assets are required to stay
balanced during every period of the planning horizon. In a
service network design problem, each node in the problem has
a predictable service demand in each period. Thus, generating
a cost-effective, asset-balanced routing plan that can cope with
demand across the entire planning horizon is important. Early
models and algorithmic frameworks can be found in [17],
[18] and [19]. Crainic [2] presented an excellent review of
this problem, especially with the modelling and mathematical
programming development efforts. The review focuses on
long-haul transportation. Andersen et al. [20] discussed the
coordination of multiple fleets in the service network design
problem. Various modelling approaches are also compared.
A time-dependent, real-world sized SNDP with stochastic
demand was investigated by [21]. Bai et al. [22] explored
several guided local search (GLS) approaches for SNDP, an
investigation was carried out to find out the mechanisms that
can potentially speed up the GLS algorithm, resulting in a
more efficient tabu assisted multi-start GLS algorithm.

III. PROBLEM DEFINITION AND MODEL

This section describes the problem addressed in this paper.
It is an increasingly challenging problem faced by a large
international port in Ningbo, China.

A. Description of the Problem

The Ningbo Port is the 5th largest port in the world.
The problem concerned in this paper is regarding to the
operations of container transshipments between nine different
ports managed by the company. Figure 1 shows the locations
of these ports. The company currently has a fleet of 30 trucks,
each having the same configuration. There is a central depot
for all trucks that is quite close to port “BCLT2”. The drivers
are split into two shifts per day. Each shift lasts at most 12
hours. The day shift starts at 8am and the night shift starts
at 8pm. Before the end of the shift, all trucks are required to
return to the depot to prepare for the next shift. On average,
there are about 200-300 containers to be relayed by the fleet
every day. The commodity information is stored in digital
declaration forms. They define the source port, destination
port, available time, deadline, how many containers to be
transported and their sizes. Historical data shows that most
commodities’ deadlines are during the day shift.

Fig. 1.

Map of ports at Ningbo Port, China

Apart from the 30 trucks directly managed by the company,
there are some other trucks available for use if they have
finished their tasks. However, this set of trucks’ available time
and quantity is unpredictable for each day. Thus, it is not
included as part of the fleet. In addition, there is, on average,
one truck that needs repairing or maintenance everyday. This
leaves 29 trucks available at any time. Each truck can take
either two small containers or one large container. However,
a small but heavy container requires a dedicated truck.

The trucks are equipped with GPS tracking devices. How-
ever, the GPS information is not fully integrated with the
current routing software developed by the company. The
planning of their truck routes is carried out by a central
server that communicates with drivers through mobile phone
text messages. A driver sends a message to request a task.
After finishing this task, the driver sends a “task finished”
message to the server, and a new task is automatically assigned



to this driver. This seems to be a reasonably good solution.
However, drivers may send the finish message a bit earlier so
that he can get the next task without delaying. This makes
the information recording inaccurate. If the data collection is
based on the text message records, it will be very hard to
know the exact time when a driver starts his task because
the time of receiving message is not necessarily the time of
starting the task. The driver may have to deadhead (travelling
without loading anything) to the requested port first to start
the task if the destination port of the previous task is not at
the same port as the starting port of the new task. Sometimes
there is also traffic congestion that prolongs the travel time.
Thus, all data such as travel distances, travel time, loading and
unloading time are collected by combining data from GPS and
estimations from drivers.

B. Current Software and The Company’s Challenge

The current routing software adopts two routing heuristics
to rank shipment tasks. The first heuristic tries to reduce empty
loads by matching the connecting ports between tasks. Thus,
the empty loading distance hopefully can be reduced. The
second heuristic is designed for emergent situations where the
deadlines of commodities are close. Thus tasks are assigned
to trucks according to the closeness of deadlines. Some less-
urgent tasks are postponed. Both routing heuristics are used
in real-time routing. A new task is allocated to a truck which
becomes available after its current task is completed. Tasks
are assigned one by one. No initial routing plan is given for
a shift at first. Sometimes, manual scheduling is required to
improve the performance.

The historical results shows that this method of working
has low efficiency and is comparable to the performance of
manual schedules. The average number of trucks with heavy
loads is below 70 percent.

To meet the growing service demands and the introduction
of other relay services, the Ningbo Port company is trying
to increase the efficiency and maximise throughput. This will
reduce the resources used in the future, saving a lot of cost
while at the same time contributing less pollution.

C. The Task Based Formulation

In this section, we present the concept of “task” to help
model the problem. A task is defined as a transportation
volume that transports one or two containers from its source
port to its destination port. Each task can be serviced by one
truck only. Several properties are associated with each task.
These properties are: container size, source port, destination
port, container quantity and a time window (a, b) indicating
its available time and deadline. The length of the time window
of a task varies from several hours to several shifts. However,
most tasks are available for more than one shift before its
deadline.

The detailed process of completing one task consists of three
actions:

o Picking up commodity from the source port.
o Transporting the commodity to the destination port.

o Unloading the commodity at the destination port.
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Fig. 2. Example of completing several tasks by a truck

Each action in the process will take some time to complete.
Picking up container has a loading time. While unloading the
container creates unloading time. The transportation time is
the travel time from the source port to the destination port.
The distance travelled during transportation time is called
heavy-load distance or loaded distance. If the truck is just
deadheading (i.e. not carrying anything), it is called empty
load distance. This is shown in the Figure 2 as dotted arrow
between task 2 and task 3.

This problem is a short-haul routing problem since the travel
time ranges from half an hour to three hours. The loading
time and unloading time takes from about half an hour to
one hour. It is obvious that loading and unloading time has
a heavy weight on the total time of completing a task. These
two periods should be counted separately and should not be
ignored. They cannot simply be combined as part of “travel
time” on the arcs or “servicing time” on nodes because the
time taken at each port is dependent on whether both loading
and unloading are involved or only one of them is required.

The urgency of a task is measured by how close the current
time is to the task’s deadline. Correctly evaluating the urgency
of each task is crucial in this problem. If a task is due, it will
cause severe problem for the company. In this formulation,
the urgency level of each task is evaluated in each shift. If a
task must be finished before a shift ends, then the task is a
mandatory task for this shift. If, for a given shift, a task can
be finished in later shifts, then the task is an optional task for
this shift.

Assume that there are three tasks to be finished as shown
in Figure 3. Task 2 is available from shift 1 to shift 2. Thus,
it is an optional task for shift 1 and a mandatory task for shift
2. Task 3 has a shorter time window and it must be finished
in shift 1. Thus it is a mandatory task for shift 1. Task 1 is
a special case. The available time of task 1 in shift 3 is quite
short. It is not possible to finish this task in shift 3. Thus, task
1 is a mandatory task for shift 2 and an optional task for shift
1.

For convenience of implementation, we classify tasks into
mandatory task set and optional task set whenever a shift
is considered. For the example in Figure 3, shift 1 has one
mandatory task (task 3) and two optional tasks (task 1 and
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Fig. 3. Example of three tasks and four shifts.

task 2). The mandatory task set of shift 2 depends on whether
task 1 or task 2 was finished in shift 1. If task 1 is not finished,
then the mandatory task set of shift 2 will have task 1. This
is same for task 2. It can be inferred that the task sets of one
shift is partially dependent on the routing of previous shifts.

The task based routes have several advantages over a node
based representation in this problem. In a node based repre-
sentation, routes are represented as sequences of ports. Thus,
additional information should be added to arcs to indicate
which task is being serviced or whether the truck is simply
deadheading to another node. This will make the problem more
complex. While in this task based representation, it is possible
to directly tell whether a truck is deadheading by checking
whether the destination node and source node of neighbouring
tasks are the same. Another advantage is that in a task based
formulation, there is no need to consider the size or weight of
containers because the information is preprocessed in such a
way that any truck can complete any task if time window
constraint is not violated. Most importantly, a task based
representation makes it possible to let the algorithm consider
commodity shipments as “nodes”. Since many neighbourhood
functions designed for VRP operates on nodes, this model will
allow algorithms that were proposed for VRPs to be used on
commodity flow problems.

D. Objectives

The total travel distance of completing a given list of tasks
varies according to the routing plan. If the destination port
and source port of two consecutive tasks match, then the
travel distance of completing these two tasks is minimal. This
minimal travel distance equals to the heavy-load distance of
completing the two tasks. This characteristic is also true when
the truck is trying to complete a list of tasks. That is, the lower
bound of the travel distance of completing a list of tasks is
equal to the sum of heavy-load distance of completing all the
tasks in the list. However, a route plan with zero deadhead
distance is very rare in real-life problems.

From the discussion above, it can be concluded that reduc-
ing the deadhead distance of trucks in a route plan is the key to
reduce costs. In this paper, we aim to minimize the empty-load
distance as the objective in the model.

E. Mathematical Formulation

Consider a graph G = (N, A) that consists of a set of
nodes representing geographically distributed ports, and a set
of arcs that interconnects all nodes. The node with index 0
is the depot. Each node i € N is associated with two values:
the loading time 1[i] and unloading time u[i]. Each arc from
node i to node j is associated with a travel time t[i, j] and a
travel distance d[i, j|, and Vi € N, d[i,i] = 0,t[i,i] = 0. The
travel time and travel distance is symmetric. That is, Vi,j €
N, d[i, j] = d[j,1],t[s, j] = t[j,4]. There is a set of fasks C' to
be serviced. Each task ¢ € C has its source node a(c) € N
and destination node 5(¢) € N and a time window (alc], b[c]).
o(c) is the starting time of task c and ¢(c) is the finishing time
of task c.

A solution x contains a continuous set of shifts S. “Con-
tinuous” here means that the end time of one shift is the start
time of the next shift. For each shift s € S, the start time
and end time of the shift is represented as (e, fs). In each
shift, there are a maximum of v routes. A route r is a feasible
sequence of tasks that a truck can complete in the shift. The
binary variable I', indicates whether task c in C'is used in r.

- 1
r={,

Assume that set R contains the permutations of all feasible
routes for the problem. Then a feasible solution contains a
set of routes from R that finishes all the tasks in C. §; is a
binary decision variable that indicates whether r is used in
shift s € S.

s )1
w={ 4

We relabel the tasks in r in shift s, so that the tasks in
route 7 becomes (c[°,c5®,...,ch?). For a given task ¢}’ in
route 7, Let a(c}®) be the source node of task ¢ and 5(c}°)
be the destination node of task c;;°. Thus, it can be inferred
that dla(c}?), B(c}®)] is the travel distance of task c}° and
tla(cr?), B(c;®)] is the travel time for this task. Thus the

starting time of ci,® can be represented as:

if ¢ is serviced in r.
if ¢ is not serviced in 7.

if r is used in s.
if r is not used in s.

(g2 ) + B 1), aler”)]
ale’] + t[B(ch2 1), alcp)]
es + t[0, ()]

alei] + 1[0, )]

k>1,¢(c,) > alc?].
kE>1,¢(ct2,) <alc?].
k=1,es>alc?].
k=1,es <alg?]

o(c) =

and the finishing time ¢(c}*) of ¢}° becomes:

s(e”) = o(ei”) + ()] + tlale), B(e”)] + u[B(c;)]

This recursive presentation ensures that each task’s starting
time and finishing time are correctly calculated from the
previous task in the same route. The first task’s starting time in
a route is either the task’s available time or the earliest arrival
time for the truck to the task’s source node. The objective
of the problem is to finish all mandatory tasks of the given
set of shifts while keeping the empty load distance as low as



possible. The problem can be modelled as follows:

Minimizef(r) = » 6;“:’(2 dB(i), a(i+1)]

seSreR i
+d[0, (1)) +d[B(n),0]) (D)

Subject to

Sor<v, Vses. 2)

reR
ale] < o(c) and s(c) < bl), VeeC 3)
() +t[B(k),0] < fs, Vitn €T (4)
ZzéiFZZ , VeedC. (5)

seSreR

6, =0,1 (6)

Constraint (2) limits the maximum routes so that it does
not exceed the number of available trucks. Constraint (3)
is to ensure that the time window of each task is satisfied.
Constraint (4) limits the maximum travel time so that trucks
return back to the depot before this shift ends. Constraint (5)
makes sure that each task is serviced once only.

IV. METHODOLOGY

We considered several methodologies to solve this new
problem. The time-space network can be used to model this
problem in the way similar to what SNDP does. Since this
is a short-haul routing problem, using a time-space network
will result in a very large network. This becomes much more
complex when there are more than 200 containers everyday. It
will be impossible to find a good solution within a reasonable
time. Many other exact algorithms have similar issue.

Since the tasks in task based model is quite similar to
the nodes in VRP, it is quite natural for one to consider the
metaheuristics for VRP. A two-stage metaheuristic algorithm
is proposed. In the first stage, an insertion heuristic is used to
quickly generate a good quality starting solution. The insertion
heuristic has be demonstrated to be a good starting solution
method heuristic for the VRP [8]. Then in the second stage,
a VNS algorithm with a tabu list is used to further improve
the quality of the starting solution. The VNS and tabu search
are also efficient metaheuristics for the VRPTW and SDVRP.
Thus we hybridize VNS with tabu search in hope to gain
improvement over existing software used in the company.

A. Data Preprocessing

The commodity information from declaration forms cannot
be directly used in task based route planning and it is necessary
to pre-process these data. This section describes in detail how
commodities are converted into tasks defined in the previous
section and how commodities are classified as mandatory or
optional.

Before the algorithm starts, all pairs of small containers
with the same declaration ID' are combined into one task

IThe containers with the same declaration ID have the same source and
destination nodes and the same time window

which corresponds to the maximum load that a truck can
sustain. Large containers are not combined due to the capacity
constraints of trucks. After tasks are generated, the urgency
level of tasks in each shift is then calculated.

The total time of completing a task ¢ € C'is T'C. = ly(c) +
tla(c), B(c)]+up(c). The DST,, which represents the deadline
for task ¢ to be started, is calculated as follows:

DST, = bl] - TC, 7)

Similarly, the EC'T,, which represents the earliest completion
time possible for task c, is calculated as:

ECT, =ald|+TC, )]
For a shift s, a mandatory task c¢ should satisfy:
es < DST, and blc] < fs — TC, )

While optional tasks are available before the end of shift but
can be completed later, this is mathematically represented as:

ECT, < f, and DST, > f, (10)

We do not use the available time of commodity because if the
available time is before the end of shift f; but there is not
enough time to finish it, then it will be meaningless to even
consider this task in the shift.

B. Insertion Heuristic

The proposed first stage algorithm is a parallel insertion
heuristic similar to the insertion heuristic in [8]. To generate
routes for a shift s, the insertion heuristic first tries to create
initial routes by assigning one task to each truck’s route based
on initialization criteria. Then, it inserts mandatory tasks of the
current shift to the initial routes. After all mandatory tasks of
the current shifts are inserted, the algorithm will try to assign
tasks from the optional task set of shift s. Instead of picking
a task from the whole optional task set for the current shift,
the algorithm only picks the mandatory tasks from the next
shift. It should be noted that these mandatory tasks in the next
shift still belong to the optional task set for the current shift
s. This insertion process is carried out until all trucks have an
initial task in shift s or there is no more tasks can be assigned
in shift s. This picking order can reduce the work-load of the
next shift. The pseudo code is presented in Algorithm 1. Note
that z.s represents the solution for shift s.

a) Initial routes: The initial routes are generated using
two initialization criteria. In the first initialization criterion,
all routes are initialized with the most urgent tasks that
have deadlines closer to the shift start time. In the second
initialization criterion, tasks that have earlier available time
are inserted first.

The detail of the process of initializing a shift is described
as following. Assume that the algorithm is initializing the shift
s, the mandatory tasks of shift s is first considered. Sometimes
there are not enough mandatory task in shift s. This will leave
some trucks with no initial task at all. Thus, a strategy that
is similar to the insertion strategy is used. It tries to assign
mandatory tasks from the next shifts until all trucks have an



initial task or there is no more tasks in the optional task set
of s.

b) Insertion: In the insertion function, the algorithm
evaluates possible insertion points in all routes in this shift
for all tasks from set C’, which is passed from the parallel
insertion heuristic in Algorithm 1. The evaluation process is
done by function evaluateInsertion(). The evaluated result
is stored in the form of [task, route, slot, empty load distance
caused]. All evaluated results are stored in list L and sorted
in the increasing order of “empty load distance caused” . The
pseudo-code is shown in Algorithm 2.

Algorithm 1 Parallel Insertion Heuristic
Require: empty solution x
for s in S do
Initialise v routes of x for shift s.
insertTask(s.mandatory, z.s);
s =s;
while there is more shift(s) after s’ do
s’ = next shift after s’;
insertTask(s’.mandatory, x.s);
if s’ is the last shift in S then
insertTask(s’.optional, x.s);
end if
end while
end for
return z

Algorithm 2 Pseudo-code for insertTask()

Require: task list C’, solution z.s
L = evaluateInsertion(C’, x.s);
while L is not empty do
insert the best task stored in L into z.s;
remove all insertion points with same task/route in L;
end while
return z.s

C. VNS with Tabu List

We propose a variable neighbourhood search (VNS) meta-
heuristic approach, which operates once the starting solution
has been generated by insertion heuristic. The VNS uses
multiple neighbourhoods to explore the solution space. The
VNS is discussed in detail in [23] with several variants.
By exploring different neighbourhood structures, algorithms
would have increased possibilities to find better solutions than
single neighbourhood approaches.

The pseudo-code for the basic variable neighbourhood
search is shown in Algorithm 3. z is an starting solution to
be improved. m is the index of neighbourhood function. It
indicates that the m'" neighbourhood function will be used
in the shaking function. The shaking function picks a random
neighbouring solution generated by the m‘" neighbourhood. It
is implemented to avoid becoming trapped in a local optima.
Mmay 1S the index of last neighbourhood function.

Algorithm 3 Pseudo-Code for Variable Neighbourhood Search
Require: starting solution =, mazxTime, Muyqq.
while CpuTime() < maxT'ime do
m=12 =z
while m < my,q, do
2’ = shake(z’, m);
r = VND(J:/’ Minaz);
m = fitness(z, z’, m);
end while
end while
return z

Algorithm 4 Fitness Evaluation Function: fitness()

Require: original solution x, modified solution z’, m
if f(z) < f(z') then
m=1, =2
else
m=m+1;
end if
return m

The VNS in this paper uses variable neighbourhood descend
(VND) shown in Algorithm 5 to optimize a solution. The
bestImprove() function in VND picks the p*" neighbourhood
function and returns the best neighbouring solution generated
by that neighbourhood.

In this research, the VND and shaking uses three types of
neighbourhoods: Insertion, swap and remove. They are further
split into the following neighbourhood functions.

o Remove one task from a route and insert it into another
route in the same shift.

o Swap the position of two tasks from different routes in
the same shift.

e Remove one task from a route and insert it into another
route that belongs to an adjacent shift.

e Swap the position of two tasks from two routes that
belongs to an adjacent shifts.

« Insert one task from the mandatory task list of the current
shift into a route.

o Insert one task from the next day’s mandatory task list
into a route in the current shift.

« Insert one task in the optional task list of the current shift

Algorithm 5 Variable Neighbourhood Descent: VND()
Require: starting solution x, ftmaz
while improved(z) do
p=1 2 =ux
while 1 < g, do
x’ = bestImprove(z’, u);
u = fitness(z, o', p);
end while
end while
return




into a route.

« Remove an optional task from a route in the current shift.

The third and forth neighbourhood functions only swap or
move tasks between adjacent shifts. Moving or swapping tasks
from non-adjacent shifts may sometimes increase the work-
load of the next shift because there might be less tasks finished
in the next shift. The last neighbourhood function allows the
algorithm to remove tasks in the current route. This is more
useful in the shaking function as it allows the algorithm to try
different sets of tasks for a shift. Thus, regions of the solution
space that are further away from the current solution can be
explored. The mandatory tasks in the current shift and next
shift will not be removed in order to maintain the feasibility
of the solution during the search.

Neighbourhood functions of the above list are called one by
one in VND. Once a neighbourhood function can no longer
improve the current solution, the next one is called. If any
better solution is found, the algorithm will return to the first
neighbourhood function.

However, the shaking function alone was found to be
insufficient in our initial experiments. After VND, the solution
reached a local optimum. Thus, the new random solution by
shaking is always worse than the local optimum. In the next
loop, there is a good chance that the search will revert back
to the same local optimum, wasting computational resource.

In our implementation, this cycling issue is addressed by
incorporating a tabu list and repeating the shaking process
several times before the VND starts again. This proves to be
an effective way to increase the performance of the algorithm
based on our experimental results.

The tabu list stores the declaration form ID. Once a task has
been processed by a neighbourhood function, all tasks with the
same source, destination and time window will be prohibited
by neighbourhood functions. The purpose of incorporating this
tabu list is to prevent the solution from returning to the same
local optimum after the shaking function. Since the tabu list is
also effective during the VND search process, recently moved
tasks will not be moved back again. Thus, the algorithm is
encouraged to explore solutions farther away from the current
region. It was observed that the length of the tabu list should
be no less than the number of shakings after VND. After
trying different tabu lengths, it was found out that the tabu
list with a length of 7 enables a more effective search. Our
initial experiments also show that longer tabu list did not
obtain significant improvement but neither did it make the
performance worse.

V. DATA AND EXPERIMENT RESULTS

In this section, the results of the proposed algorithm are
shown. The possible improvement by using this method is
also discussed. We evaluate our algorithm’s performance by
the heavy load distance rate (LDR), which is calculated as:

DR — loaded distance
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The company currently does not have records of loaded
distance rate for single days. Thus, the average of results of

busier shifts is compared. As mentioned in section III-B, the
average LDR results of the company’s current software is less
than 70%. The criterion of choosing data is based on two
aspects: commodity quantity and diversity of nodes.

Busier shifts with about 200 - 300 commodities are pre-
ferred as the data input. It is observed that in most cases,
shifts with very few commodities will naturally reduce the
efficiency. This is understandable because trucks will usually
be assigned with just one task. The tests on busier days suits
the goal of the problem better.

Apart from the quantity of commodities, the diversity of
commodities in the data set is also considered. This is to test
the algorithm’s performance under more complex situations.
That is, whether the algorithm still performs well when tasks in
the shifts have very different sources and destinations. If the
most mandatory commodities in a shift have a same source
and a same destination, then longer empty load distance will
be inevitable. The improvement from algorithm becomes less
obvious.

We choose a night shift or a shift with less commodities
as a starting shift. This allows some mandatory tasks to be
finished before the busy shift starts. Otherwise, there might be
some unfinished mandatory tasks, which would have a chain
effect and result in unfinished tasks in later shifts.

Based on these two criteria, the following shifts are chosen
as the test case:

instance | Shift Starting Date number of shifts

NP1 27-3-2012 20:00:00 8

NP2 01-4-2012 08:00:00 8

NP3 24-4-2012 20:00:00 6
TABLE I

SHIFTS TESTED IN THREE INSTANCES AT NINGBO PORT IN CHINA

The commodity data is extracted from the declaration forms
from the company. The algorithm is run on a PC with single
core of a Intel 17-2672 processor. VNS is allowed to run for
50 seconds. By observation, the algorithm starts to converge
after about 20 seconds.

The two initialization criteria of the insertion heuristic
generates similar results as shown in Table II. The available
time based criterion generates slightly better results. The gap
is within 1 percent. However, it sometimes failed to allocate
mandatory tasks in the route. The reason might be that the
available time based criterion is not aware of some urgent
tasks. When multiple shifts are considered, the chance of
failing to assign mandatory tasks is greatly decreased. It is
observed that most tasks are finished before the current shift.
However, after the optimization of VNS, this infeasibility issue
is solved.

The final results are summarized in the Table III. N1/N2/N3-
a are optimized based on the starting solutions generated by
the insertion heuristic with available time based initialization
criterion. While N1/N2/N3-b are optimized based on the
starting solutions generated by the insertion heuristic with
deadline based initialization criterion. Result shows that VNS



Instance || Avg. of criterion 1 | Avg. of criterion 2
NP1 71.6% 71.5%
NP2 75.5% 75.2%
NP3 70.0% 70.0%

TABLE II
LDR OF THE SOLUTIONS OBTAINED BY INSERTION CRITERION 1 AND 2

Shift || NPl-a | NP2-a | NP3-a || NP1-d | NP2-d | NP3-d
1 87.9% | 76.5% | 93.3% || 86.3% | 76.4% | 92.2%
2 68.2% | 85.6% | 73.1% || 81.8% | 87.1% | 72.8%
3 87.7% | 78.7% | 69.2% || 82.8% | 80.4% | 69.7%
4 70.5% | 672% | 83.0% || 722% | 71.6% | 87.0%
5 81.0% | 68.8% | 93.7% || 79.6% | 69.6% | 92.6%
6 69.4% | 883% | 61.0% || 702% | 91.8% | 59.4%
7 75.4% | 84.3% - 742% | 95.5% -
8 72.1% | 85.3% - 73.4% | 86.3% -

Avg. || 76.0% | 79.0% | 76.6% || 77.1% | 80.1% | 76.6%

TABLE III

LDR OF FINAL SOLUTIONS BY VNS ALGORITHM WITH DIFFERENT
SETTINGS OF INSERTION HEURISTIC

with tabu list further improves the efficiency of routes. Some
shifts can be optimized to very high efficiency. In most results,
the LDRs range from 75 to 80 percent. This gives us about
5-10% of improvement over the current solution in practice.

VI. CONCLUDING REMARKS AND FUTURE RESEARCH

In this paper, we have developed a model for a real-world
problem that resembles a vehicle routing problem and a service
network design problem but has its own distinct features. A
task based modelling approach, which allows the use of node
based optimization algorithms on commodity flow problems, is
introduced. A two-stage algorithm based on this model shows
promising results when tested on real world data with an
improvement of 5-10% compared with the results in practice.
If this is integrated with the Ningbo Port company’s routing
software, the results can potentially provide useful information
for decision makers when they decided to build more relay
nodes or new ports in the long run. Though the context of this
project is based on the case of a local company in Ningbo
port, the model can be extended to solve other problems that
shared the same features by many other companies.

There still exists some uncertainty factors that can affect
this problem, making it even more challenging. In the future,
the uncertainty of travel time should be investigated as it is a
important factor that affects the actual efficiency of the routing
plan.
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