
A Task Duplication Based Bottom-Up Scheduling Algorithm for
Heterogeneous Environments

�

Doruk Bozdağ
�
, Umit Catalyurek

���
, Füsun Özgüner

�

�
The Ohio State University

�
The Ohio State University

Dept. of Electrical and Computer Engineering Dept. of Biomedical Informatics
Columbus, OH 43210 USA Columbus, OH 43210 USA�

bozdagd, ozguner � @ece.osu.edu umit@bmi.osu.edu

Abstract

We propose a new duplication-based DAG scheduling
algorithm for heterogeneous computing environments.
Contrary to the traditional approaches, proposed algo-
rithm traverses the DAG in a bottom-up fashion while
taking advantage of task duplication and task insertion.
Experimental results on random DAGs and three differ-
ent application DAGs show that the makespans gener-
ated by the proposed DBUS algorithm are much better
than those generated by the existing algorithms, HEFT,
HCPFD and HCNF.

1 Introduction

Task scheduling for multiprocessor systems has been
a well studied problem for many decades. Numerous
algorithms have been proposed to achieve speedup on
parallel applications represented in the form of directed
acyclic graphs (DAGs). Task scheduling problem is NP-
complete [9], therefore proposed approaches are mainly
heuristics except for some special cases [2, 6].

There are many algorithms that produce high qual-
ity solutions [1, 5] for the case of homogeneous com-
puting systems. However, scheduling in heterogeneous
computing systems is a far more complicated problem
due to non-uniform processor speeds and communica-
tion link bandwidths. Two of the most important classes
of scheduling algorithms are list-based and cluster-based�

This research was supported in part by the National Science
Foundation under Grants #CCF-0342615, #ANI-0330612, #CNS-
0426241, NIH NIBIB BISTI #P20EB000591, Ohio Board of Regents
BRTTC #BRTT02-0003, Sandia National Laboratories under Doc.No:
283793.

algorithms. List-based scheduling is very popular for
heterogeneous environments due to its low complexity
and good quality of resulting schedules [2, 3, 8, 10, 12,
13]. Cluster based scheduling on the other hand, is not
extensively investigated except a few studies [4, 7].

One of the most popular algorithms in heterogeneous
DAG scheduling is the HEFT algorithm [13]. HEFT
schedules each task on the processor that provides the
earliest possible finish time and employs task inser-
tion. However, HEFT does not allow task duplication.
HCPFD [10] is a duplication based algorithm and simi-
lar to HEFT, a task is scheduled on a processor that pro-
vides the earliest finish time. In addition, the critical
parent of the task is also duplicated on the selected pro-
cessor only if this duplication improves the task’s finish
time. HCPFD does not allow task insertion, therefore
tasks can only be scheduled after the latest scheduled
task on a processor. In contrast to HCPFD, another du-
plication based algorithm, HCNF [3], checks on all pro-
cessors if duplicating the task together with its critical
parent can yield a better finish time for the task, before
selecting where to schedule the task.

We have chosen the above three algorithms, HEFT,
HCPFD and HCNF, to compare with the DBUS algo-
rithm we are proposing in this work, since these algo-
rithms have different scheduling properties and compa-
rable time complexities (see Table 1). There are many
other algorithms for heterogeneous DAG scheduling
with slightly different focus. For example, LDBS algo-
rithm [8] aims at minimizing the schedule length at the
expense of a high time complexity of �	��
 ��
 �
 ��
�
 ��
 ��� ,
where
 ��
 and
 ��
 denote the number of tasks and
edges in a DAG and
 ��
 denotes the number of pro-
cessors. On the other hand, FCP algorithm [12] aims
just the opposite; the performance of this algorithm is

1-4244-0054-6/06/$20.00 ©2006 IEEE

Algorithm Task insertion Restrictions on duplication Complexity
HEFT [13] Yes No duplication ����� ��� ��� !� "
HCPFD [10] No Only critical parent of a task ����� ��� � � !� "
HCNF [3] No Only critical parent of a task ����� ��� ���$#�%'&(�)*�,+-� ./� "
DBUS Yes No restriction ����� ��� ��� !� �,"

Table 1. Comparison of scheduling algorithms

slightly worse than HEFT, however, it has a smaller time
complexity of �	�0
 ��
 132546
 ��
�78
 �9
 � . Finally, TDS algo-
rithm [2] is proved to produce optimal schedules if a set
of conditions is met. However, TDS algorithm is de-
signed for networks with homogeneous links and does
not handle heterogeneous links.

In this work, we propose a novel scheduling algo-
rithm DBUS that benefits both from task insertion and
task duplication. The proposed algorithm traverses the
DAG in a bottom-up fashion contrary to the traditional
approaches and does not impose any restrictions on the
number of task duplication. We start with some prelim-
inaries in the next section and the details of the DBUS
algorithm are presented in Section 3. Experimental re-
sults presenting the performance of DBUS in compari-
son with HEFT, HCPFD and HCNF algorithms are pre-
sented in Section 4 and we conclude with Section 5.

2 Preliminaries

A DAG :<;=�>�@?A�B� consists of a set of nodes �
representing the tasks and a set of directed edges � rep-
resenting dependencies among tasks. The edge set �
contains edges �$CEDF?ACHG5�JI-� for each task CHD (parent)
that CHG (child) depends on. A child task depends on its
parent tasks such that the execution of a child task can-
not start before it receives data from all of its parents. A
task having no parents is called an entry task whereas a
task having no children is called an exit task.

The set of processors in a heterogeneous computing
environment is denoted by � , where each processor in
this set is assumed to execute each task without preemp-
tion. The non-zero weight KML$N O of a task CPL represents
the expected execution time of the task on processor Q O
and it is assumed to be known a priori. There are several
techniques in the literature such as statistical prediction
[11] and analytical benchmarking [14] to estimate these
weights. The average execution time of a task C L can be
found as KRLS; TU V�UXW U V�UOZY T K[L3N O .

The communication volume associated with a di-
rected edge �3C6L�?ACHG\� is represented by]XL3N G . Let ^_O�N `
and aZO0N ` denote the communication startup cost and the
expected time required to transfer a single unit of data
between processors Q O and Q ` , respectively. The com-

munication cost from task C L scheduled on processor Q O
to task C G scheduled on processor Q ` is calculated asb �$C L ?3Q O ?AC G ?cQ ` �d;e^ O�N ` 7*] L$N Gdf a O0N ` . Here, it is assumed
that the links in the heterogeneous computing network is
contention free. The average communication cost asso-
ciated with edge �$C L ?AC G � is defined as b L3N G ; ^g7 a f] L$N G ,
where ^ is the average communication startup cost anda is the average time required to transfer a unit of data in
the network.

The DBUS algorithm to be introduced in the next sec-
tion schedules the tasks in the DAG in a bottom-up fash-
ion, scheduling all children of a task before scheduling
the task itself. Therefore, for the sake of simplicity in
the presentation, the finish time of the first scheduled
task (exit task) is taken to be 0 and the start time of a
task C L scheduled on processor Q O is computed as

^\a'�3C6L�?3Q(Oh�i;kjHa'�$C6LA?3QlO,�P7-K[L3N O
Here, jHa'�$C L ?3Q O � denotes the finish time of task C L on
processor Q O . If a task C L is not scheduled on a pro-
cessor Q O , its start time is set to 0, i.e. ^\a'�$C L ?3Q O ��;<m .
Schedule length is defined as

Schedule Length ; npo�qr�s't\u N D'v t V ^\a'�$CHGw?cQlO0�
The objective of proposed scheduling algorithm is to
schedule the tasks of a DAG such that the schedule
length is minimized.

We define b 2�]yx5z 1{^_a'�3C L ?3Q O ?3Q ` � as the latest start
time of task C L on processor Q ` such that the children
of CPL on QlO can receive data in time from the copy ofC6L on QE` . A special case, b 2�]�x\z 1{^\a'�$CPL�?cQ6| T ?3QE`�� , de-
notes the latest start time of CPL on QH` regardless of any
dependency between CPL and its children. b 2�]�x5z 1{^\a can
be computed as:

b 2�]�x5z 1c^\a'�$C L ?3Q O ?3Q ` �i;e^51c2�a'�}Q ` ?�K L$N ` ?�1c^\a O0N ` �$C L �A�
where ^\1c2�a'�}QE`�?�K!?AaA� denotes the start of first empty slot
on processor QE` of size K before time a . Recall that
our time line is backward, hence ^5132�a'�~Q�O_?AKJ?AaA����a .1c^\aZO0N `g�3C6L{� is the latest allowable start time of task CBL
on processor QE` to satisfy dependency requirements be-
tween C L and its children scheduled on Q O . 1c^\a O0N ` �$C L �
can be computed as follows:

1{^\aZO�N `y�$C6LZ�i;
������ �����
K L3N ` if ��;��/�npoXqH� rX� N r sA� tw� �{^\a'�$C G ?3Q O ���7-K L3N ` if ��;k�npoXqH� r � N r�s � tw� �{^\a'�$C G ?3Q O �07b �3C6LA?cQH`y?�CHGw?3QlO,�A�P7-KRL$N ` if ���;k�

3 DBUS: Duplication-based Bottom-Up
Scheduling Algorithm

The DBUS algorithm consists of a critical path-based
listing phase followed by a duplication-based schedul-
ing phase. In the traditional approach of top-down DAG
traversal, duplication is carried out when a task’s fin-
ish time can be improved with duplication of its critical
parent on the same processor with the task itself. This
means that a task with multiple children can be dupli-
cated on multiple processors if its duplication helps im-
proving its children’s finish time on those processors.
The drawback in this approach is that, the duplication of
the parent task on each of such processors is done inde-
pendently. Therefore the positions of the parent task on
relevant processors are decided without any optimiza-
tion with respect to each other. By traversing the DAG in
a bottom up fashion, the proposed algorithm first sched-
ules all children of a task before scheduling the task
on as many processors as necessary. Consequently, it
is more likely to make good duplication decisions since
all copies of the parent task are considered at the same
time. In addition, the stop criterion for duplication is
not determined by the number of duplications already
carried out, but by the quality of the current schedule.
Since the number of beneficial duplications may differ
significantly across different problems, DBUS offers su-
perior performance compared to algorithms that limit
duplication by the number of duplicates. Furthermore,
the DBUS algorithm is an insertion based algorithm that
allows tasks to be scheduled at the first available time
slot that can accommodate themselves. Task insertion
based algorithms have better chances of finding shorter
schedule lengths compared to non-insertion based ones.
In the remainder of this section, the phases of the DBUS
algorithm are presented in more detail.

�d�{� ���{���y�{�������� 6�X¡
DBUS algorithm schedules tasks in a bottom-up fash-

ion. Therefore, in order to prevent any dependency vi-
olation, a task is said to be ready for scheduling only if
all of its children are already scheduled. At any point
during the progress of the algorithm, there may be more
than one task ready for scheduling. Among these tasks,

¢(£ ¤i£$¥ ¦ ¤i£$¥ � ¤i£$¥ § ¤i£¢¨¦ 2 1 3 2.00¢ � 4 2 7 4.33¢(§ 6 5 8 6.33¢(© 2 2 1 1.67¢�ª 2 3 3 2.67

Table 2. Entry K L3N O represents execution
time of task C6L on processor Q(O .

which one to schedule next is a heuristic choice. There
are techniques in the literature that assigns priorities to
tasks, so that the task having the highest priority among
the ready tasks is selected to be scheduled next. We
have implemented 6 popular techniques, namely, prior-
itizing based on critical path, top-levels, bottom-levels,
static top-levels, static bottom-levels and average task
weights [13, 10]. While using one of these techniques as
the main method, we used another one as a tie breaker.
We tested every possible permutation of the mentioned
techniques and decided on prioritizing based on critical
path as the main method and static top-levels as the tie
breaker being the best choices for our DBUS algorithm.

In critical path based prioritizing, nodes on the crit-
ical path are determined and they are attempted to
be scheduled before other tasks. The bottom level« 13x5]�x51��$C L � of a task C L is computed by traversing
the DAG upward starting from the exit tasks. It is
defined as

« 1cx5]yx�1A�3C L �¬; K L 7n	oXqE� rX� N r s�� tw� � b L3N G 7« 13x5]�x51��$C G �A� . The
« 13x5]yx�1 of an exit task C L is defined

to be K L . Similarly, top level a 1cx5]yx�1A�3C L � for task C L
is computed by traversing the DAG downward starting
from the entry tasks and is defined as a 13x5]yx�1��$CBLc�®;npo�qH� r�s N r � � tw� � K�GS7 b G�N Lw7¯a 13x5]yx�1��$CHG_�A� . Static top level,
denoted by ^\a 13x5]�x�1 , is defined similar to a 13x5]�x�1 , how-
ever communication cost is not taken into account:^\a 13x5]yx�1��$C L �J;°npo�qH� r�s N r � � tw� � K G 7�a 13x5]yx�1��$C G �A� . Thea 13x5]�x51 and ^\a 13x5]�x�1 of an entry task are both defined to
be 0.

A node C6L is on the critical path (CP) if a 1cx\]�x�1A�3CPL3�_7« 13x5]�x51��$C6L3�±;²n	oXq r s t\u �3a 13x5]�x51��$CHG_�M7 « 1cx\]�x�1A�3CHG'��� .
The listing heuristic presented in Algorithm 1 deter-
mines and sorts the CP nodes in non-increasing a 1cx\]�x�1
order. In order to schedule a CP task, all of its children
should have been scheduled. The recursive ADDTOLIST
function makes sure that the children of each task are in-
serted into the priority list ³ at an earlier position than
the task itself. The child of the task that has a higher^\a 13x5]yx�1 will be considered for scheduling before others
and hence it is inserted into ³ at an earlier position.

In the example given in Figure 1, a DAG with 5 tasks
is to be scheduled on a heterogeneous system with three

Algorithm 1 Listing
1: function LISTING(:)
2: calculate

« 1cx5]yx�1A�3C6Lc� , a 13x5]�x51��$C6L3� and ^\a 13x5]�x�1A�$CPL3�J´HC6LSIp�
3: b Q 13µ�^_a·¶ CP tasks in non-increasing a 1cx\]�x�1 order
4: ADDTOLIST �$³¯?�ml? b Q 13µ¸^\aA�
5: return ³
6: function ADDTOLIST(³¯?3QH2X^w?01$µ�^\a)
7: for �R;em to 1cx\CE4�aA¹B�31$µ�^\aA� do
8: b ¹(µZ1cº 1$µ�^\a»¶ children of 13µ�^_a'¼ �,½�¾I¿³ in non-increasing ^\a 13x5]�x�1 order
9: Q�2X^�¶ ADDTOLIST �À³¯?3QH2X^g? b ¹(µ¸13º 1$µ�^\aA�

10: ³Á¼ QH2X^'½¨¶Â1$µ�^\a'¼ �,½
11: Q�2X^�¶ÃQ�2X^�7¬�
12: return QH2X^

Figure 1. An example DAG.] L3N G repre-
sents communication volume and b L3N G rep-
resents average communication time on
the example system between tasks C6L andCHG .

ÄyÅ Æ{Å ¥ ¦ Æ{Å ¥ � Æ{Å ¥ §Ä�¦ - 1 0.25Ä � 1 - 0.5Ä § 0.25 0.5 -

Table 3. Entry a O0N ` represents per unit data
transfer time from processor Q O to proces-
sor Q ` .

processors. Entry KML$N O in Table 2 represents the exe-
cution time of task C L on processor Q O and entry a O0N `
in Table 3 represents per unit data transfer time from
processor Q O to processor Q ` . For simplicity in the pre-
sentation, communication start time (^ O�N `) is considered
negligible. There are two weights associated with each
edge in the DAG. The first one corresponds to commu-
nication volume] L3N G , and the second one corresponds
to average communication cost b L$N G between tasks C L
and CHG . According to Table 3, the average per unit data
transfer time between two distinct processors, a , is com-
puted to be mlÇÉÈXÊ time units, therefore b L3N GË;¬mlÇÉÈXÊ f]XL$N G .
Please note that average execution and communication
times are only relevant for the listing phase, and have
no significance in the actual scheduling phase. The re-
sults of the listing phase for the example DAG is given
in Table 4. First, CPÌ is inserted into ³ since it is on
the critical path and has no child. It is followed by C ,
which is the only task other than CPÌ on the critical path.
Among the remaining tasks, C � and C¨Í have the largest^\a 13x5]yx�1{^ , and C � is randomly chosen as the next task.
Finally C¨Í and C T are inserted in ³ into last two posi-
tions.

�i�3Î Ï»ÐF��¡�Ñ[Ò�ÓZ�Z���@���d P�X¡
The pseudocode of the scheduling phase of the

DBUS algorithm is given in Algorithm 2. DBUS sched-
ules the tasks in a bottom-up fashion as determined in
the listing phase. The next task in ³ to be considered for
scheduling is denoted by CPÔ . Initially, C¨Ô is considered
for duplication on every processor, rather than only on
processors that a child of C Ô is scheduled. This choice
allows exploration of scheduling alternatives where a
better latest start time (1c^\a) for C Ô can be found by
scheduling C Ô on a processor that none of its children
has been scheduled. Therefore b 2�]yx5z 1c^\a'�3C6Ô0?3QHÕJ?cQ�Õ��
is calculated for each processor QEÕÖI×� . Note that

¢�£ Æ #�Ø'ÙXØ'#{� ¢(£ " Ú #ÛØ,ÙXØ'#{� ¢(£ " Æ #ÛØ,ÙXØ'#{� ¢(£ "(+ÜÚ #ÛØ,ÙXØ_#c� ¢�£ " Ý Æ #ÛØ,ÙXØ'#{� ¢(£ " position in Þ¢¨¦ 0.00 21.50 21.50 0.00 5¢ � 6.67 10.50 17.17 2.00 3¢(§ 0.00 32.33 32.33 0.00 2¢(© 3.17 18.33 21.50 2.00 4¢�ª 29.67 2.67 32.33 6.33 1

Table 4. Results of the listing phase (Algorithm 1) for the example DAG in Figure 1.

Algorithm 2 DBUS: Duplication-based Bottom-Up Scheduling Algorithm
1: for µ»;�m to 1cx\CE4�aA¹B�À³�� do
2: C¨Ô»¶ß³Á¼ µ{½
3: à¶âá
4: ãÜ¶=ä0Q�Õ�
 QHÕ�I�� and å¨�$C6Ô0?�C G �9I*� such that ^_a'�3C G ?cQ�ÕË���;�mFæ
5: if ãÜ;ká then ç±C Ô is an exit task
6: schedule C Ô on the processor that gives n	è�éFD'v t V b 2�]�x5z 1c^\a'�$C Ô ?3QP| T ?3QlO,�
7: else
8: INSERT �31{^\aAê	?3Q Õ ? b 2�]�x\z 1{^_a'�3C Ô ?3Q Õ ?3Q Õ ��� for all Q Õ I¿�
9: while ãë�;eá do

10: ì±Q O ?�1{^_a 1cx\]�x�1SíË¶ EXTRACTMAX �31{^\aAê!�
11: if Q O I¿ã then
12: î¿µZC b 2�]yx5z 1c^\ai¶ïn	è>é D\ð tXñ>ò Ô$ó b 2�]yx5z 1{^_a'�3C¨Ôh?3Q O ?3Q ` �
13: Q ` ¶ the processor associated with î�µZC b 2�]�x\z 1{^\a
14: if î�µZC b 2�]�x\z 1{^\ad��1c^\a 13x5]yx�1 then
15: SCHEDULE �$C6Ôh?3Q O ?�1{^_a 1cx\]�x�1c�
16: else
17: SCHEDULE �$C6Ôh?3Q ` ?Aî¿µ{C b 2�]�x5z 1c^\aA�
18: UPDATE �c1c^\aAê	?cQH`g?�î�µZC b 2�]�x\z 1{^\aA�
19: jHz�x�x 1c^\a»¶ b 2�]yx5z 1c^\a'�3C Ô ?cQ6| T ?3Q(Oh�
20: if jHz�x�x 1c^\adì�1c^\a 13x5]�x�1 then
21: INSERT �c1c^\aAê	?cQlO5?0jHz�x�x 1{^\aA�
b 2�]�x5z 1c^\a'�$C Ô ?3Q Õ ?cQ Õ � is the latest start time of C Ô onQ Õ such that C Ô will be executed before its children
scheduled on QHÕ . Processors are inserted into a pri-
ority queue (1{^\aAê) using their b 2�]�x\z 1{^\a times as their
keys by the INSERT function in step 8 of the algorithm.
If a task needs to be scheduled on a processor, the key
of that processor represents the task’s computed latest
start time. As a greedy choice, we will go over the pro-
cessors in that queue one-by-one in non-increasing key
order and check whether the duplication on that proces-
sor is required or another processor can cover for that
one.

The set ã is defined as the set of processors that
should be covered by task C6Ô . A processor Q O is re-
ferred to as covered for task C L only if all children of C L
on Q O are guaranteed to receive data from a copy of C L
before their scheduled start time. Initially, all processors
on which at least one of C6Ô ’s children is scheduled are
included in the set ã .

The while loop in steps 9-21 of the algorithm ter-

minates only after all processors in set ã are covered.
At each iteration of the loop, the maximum value in the1c^\aAê is extracted and assigned to 1c^\a 13x5]yx�1 and Q O is
assigned the processor associated with this value. If Q O
is in set ã , it is searched (step 12) if duplication of CPÔ
on a processor other than Q O can provide a better latest
start time than 1{^\a 1cx5]yx�1 while providing data to all chil-
dren of C¨Ô on Q O . If no such processor is found, C6Ô is
duplicated on Q O to start at 1{^_a 1cx\]�x�1 (step 15).

If a duplicate of C6Ô on another processor Q ` that
can cover its children on Q O with a smaller latest start
time (called î�µZC b 2�]�x5z 1c^\a) can be found, C6Ô is du-
plicated on Q ` to start at î¿µZC b 2�]yx5z 1{^_a . Then, Q ` ,î�µZC b 2�]�x5z 1c^\a pair is inserted into the 1c^\aAê by the UP-
DATE function as î�µZC b 2�]�x5z 1c^\a is smaller than the
current 1{^\a 1cx5]yx�1 . The reason is that, processor Q¨` may
be used to cover some other processor (by reschedulingC Ô on an earlier time on Q¨`) as long as î�µZC b 2�]�x\z 1{^\a
is not the maximum value in the 1c^\aAê (step 18). Since
the children of C6Ô on Q O are now covered by the dupli-

Algorithm 3 Schedule
1: function SCHEDULE(C Ô ?cQlO_?01c^\a)
2: if QlOMI¿à then
3: remove duplicate of C Ô on Q(O ç new copy can cover all tasks that the existing one covers
4: ^\a'�$C¨Ôh?3Q O �i¶Â1{^_a
5: à¶ßàkôÁä�Q O æ
6: for each QHÕ�I�ã do
7: if 1c^\ad� b 2�]�x5z 1c^\a'�$C¨Ô0?3QHÕJ?cQ O � then
8: ãÜ¶ßã¿�õä0Q�Õ/æ

#ÀÝ ÆZö¬÷PÄ Å , Älø , Dest.¢�ù ú %_ÙXØ,û #ÀÝ Æ ü�ý$¢ ú %\ÙXØ,û #ÀÝ Æ proc. Covered¢�ª ÄH¦ , 2 Ä�¦Ä � ¦ , 8 ÄF§ , 20 Ä�¦ ÄH¦¢(§ ÄF§ , 8Ä � , 5Ä � ¦ , 12 Ä � , 10 Ä � ÄH¦¢ � ÄF§ , 7Ä � , 2Ä � ¦ , 10 Ä § , 9 Ä § Ä ¦¢(© Ä � , 2ÄF§ , 1Ä �§ , 12 Ä � , 11 Ä � Ä � , Ä §¢ ¦ Ä �� , 11Ä � ¦ , 10Ä � , 11¢ ¦ Ä � ¦ , 10 Ä § , 8 Ä § Ä ¦Ä § , 3

Table 5. Scheduling steps for the example
DAG in Figure 1.

cate on QE` , C Ô is no longer required to start before its
children on Q O . Consequently, the latest start time ofC¨Ô on Q O regardless of any children dependency, calledjHz�x�x 1{^\a , is computed (step 19). If jHz�x�x 1c^\a is smaller
than the 1c^\a 13x5]�x�1 , Q O can still be used to cover other
processors, and hence Q O , jHz�x�x 1c^\a pair is inserted into1c^\aAê in step 21.

SCHEDULE function given in Algorithm 3 schedules
the given task C6Ô to start at the provided 1{^_a value on
the destination processor Q O . Notice that another copy
of task C6Ô may have already been scheduled on any of
the processors, therefore this scheduling may result in
duplication. If a duplicate of C Ô already exists on Q(O ,
then it is removed since the new one can cover all the
tasks that the existing one was covering. After dupli-
cation, all processors in set ã are examined to see if
they are also covered with the current duplication and
the covered ones are removed from set ã .

Figure 2. Schedule generated by the DBUS
algorithm for the example in Figure 2.

Table 5 shows the scheduling steps for the example
DAG in Figure 1. The identity of the tasks are given
under column C6Ô in the order they are considered for
scheduling. All Q O , b 2�]�x\z 1{^\a pairs in the 1{^\aAê are
listed in the second column. Here, b 2�]�x\z 1{^_a is used to
represent b 2�]yx5z 1c^\a'�3C¨Ô0?3Q O ?3Q O � . The processors marked
with an asterisk superscript in this column are the ones
in set ã during the current iteration. While considering a
pair in the 1{^_aAê , the corresponding Q¨` , î¿µZC b 2�]yx5z 1c^\a
pair is given in the next column, whenever it is calcu-
lated. The destination processor that the task being con-
sidered is duplicated at the end of the iteration and the
processors initially in set ã that are covered by this du-
plication are given in the last two columns, respectively.

The algorithm starts with scheduling the exit taskC6Ì on Q T which provides the shortest execution time.
Then C becomes the next task in ³ and correspond-
ing 1c^\aAê is constructed. C is considered for duplica-
tion on Q T since Q T is on top of 1{^\aAê , and Q T I�ã .
Since î�µZC b 2�]�x5z 1c^\a is greater than b 2�]�x5z 1c^\a , C is
scheduled on Q T to start at 8. Since Q T is the only
task in ã and it is covered, no more duplication is
considered for C . When scheduling C � , again Q T is
on top of 1{^\aAê initially. However, this time Q � pro-
vides a î¿µZC b 2�]�x\z 1{^_a of 10, which is smaller than

b 2�]�x5z 1c^\a . Therefore, C � is scheduled on Q � to start
at î�µZC b 2�]�x5z 1{^\a , and it covers Q T . C¨Í is scheduled
on Q in a similar way to C � . Note that by considering
all processors rather than just the ones in set ã , DBUS
algorithm was able to schedule tasks C � and C Í with
better start times that it would otherwise. Finally, when
scheduling C T , the set ã consists of all three proces-
sors, since each of them has at least one of C T ’s chil-
dren already scheduled on it. First, Q with b 2�]yx5z 1c^\a
of 12 is considered for scheduling C . However, sinceî¿µ{C b 2�]�x5z 1c^\a provided by Q � is smaller, C T is sched-
uled on Q � . This duplication helps covering Q � as well
as Q . Since set ã is still non-empty after this duplica-
tion, another duplication is considered for C T . Note that
since Q � and Q are now covered, jHz�x�x 1{^\a for each of
them is calculated and inserted into 1c^\aAê . In the next it-
eration for C T , Q � is on top of the 1c^\aAê . However, sinceQ � is no longer in set ã , it is skipped and the next pair,Q T , 10, in 1{^\aAê is considered. This time, î�µZC b 2�]�x5z 1c^\a
provided by Q is smaller than b 2�]�x\z 1{^\a , therefore C T
is duplicated on Q to cover the last processor Q T in ã .
Please note that using task insertion and making proces-
sor Q available for future duplications after it had been
covered allowed better utilization of idle slots. The re-
sulting schedule is presented in Figure 2.

The time complexity of the DBUS algorithm is domi-
nated by steps 12, 15 and 17 . Computation of b 2�]�x5z 1c^\a
requires �	��
 ��
 � by properly storing information about
which children of each task are duplicated on each
processor. Thus, step 12 introduces a complexity of�	��
 ��
�
 ��
 � which is also the complexity of SCHEDULE
function at steps 15 and 17. Together with the while
loop at step 9 and the for loop at step 1, the overall com-
plexity of the DBUS algorithm is �	��
 ��
 ��
 ��
 �\� .
4 Experimental Results

We evaluated the performance of the proposed DBUS
algorithm on random DAGs as well as three application
DAGs on random heterogeneous configurations. We
generated random DAGs with three varying parameters.
The first one is the average number of parents of a task
to control dependencies in the DAG. Usually this param-
eter does not change significantly with problem size for
DAGs of the same application. However, it may have
different values for different applications. We used ran-
dom DAGs to evaluate the effect of this parameter. The
second parameter is communication to computation ra-
tio (CCR), which is defined as the ratio of average com-
munication volume to average task execution weight.
Here, task execution weight is the amount of unit com-
putation to be carried out to completely execute a task.
As the third parameter, we varied the number of tasks to

see the impact of problem size on scheduling quality.
In random DAG experiments, the number of tasks

is selected from set ä�ÈXm(?_�5Èwml?hþwÈXm(?�ÿyÈXml?��gÈXml?0ÈwÈXmFæ , CCR
from set ä�mlÇ��w?�m(Ç Èl?_�g?0ÈF?\�\mlæ and average number of par-
ents from set ä��(?0Êl?\�5þF?\���(?0þXmlæ . For a given number
of tasks and average number of parents, first a random
DAG topology is generated. Then each task is assigned
an execution weight from interval �3ml?hþ f �5m��0½ with uni-
form probability. Finally, each edge is assigned a com-
munication volume from interval �3ml?hþ f �\m � f����
	 ½
to approximate the desired CCR.

We also tested the algorithms on tasks graphs from
LU decomposition (LU), Laplace equation (LE) and
Gaussian elimination (GE) applications. For these ap-
plications, the shape of the DAG is determined by the
application. Therefore, we only investigated the effects
of matrix size and CCR. The matrix size is chosen from
set ä�ÈF?_��ÈF?hþwÈF?0ÿgÈl?��yÈl?0ÈgÈ�æ while execution weights and
communication volumes are generated similar to ran-
dom DAG experiments.

We scheduled the generated DAGs on heterogeneous
configurations with 16 processors unless specified oth-
erwise. Heterogeneity of processors are simulated by
randomly choosing the time required to complete a unit
computation (a��) for each task from interval �cml?hþ f�\m | � ½ for each processor. Similarly, link heterogeneity
is simulated by randomly selecting the time required to
transfer a unit data (a�) from interval �cml?hþ f �5m | � ½ for
each link. For each and every combination of parameter
values and for each application, 30 DAGs are generated
and average results are presented. While presenting a
result for a varying parameter, the results are averaged
over all tested values of the remaining parameters. Fi-
nally, the schedule lengths generated by each algorithm
are normalized by that generated by HEFT.

The results on random DAGs (Figures 3 and 4) show
that the DBUS algorithm generates the shortest sched-
ules on the average among the four tested algorithms.
The performance of DBUS is especially better than
HEFT for small number of tasks and large CCR. The ef-
fect of CCR can be explained by the fact that task dupli-
cation is more useful when communication costs are rel-
atively high. With the same reasoning, the performance
of HCPFD and HCNF improves with increasing CCR
compared to HEFT as well. However HCNF outper-
forms HEFT only when the number of tasks is smaller
than 150 or CCR is greater than 7. As the number of par-
ents increases, task insertion becomes less effective. The
reason is that, greater number of dependencies impose
a larger earliest finish time for each task and prohibits
them to take advantage of idle slots. As shown in Fig-
ure 4, this leads to decreased performance gap between
HEFT and HCNF. On the other hand, task duplication

50 100 150 200 250 300 350 400 450 500 550

0.6

0.8

1

1.2

1.4

1.6

Number of tasks

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

1 2 3 4 5 6 7 8 9 10

0.6

0.8

1

1.2

1.4

1.6

CCR

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

Figure 3. Normalized schedule length for random DAGs while varying (a) number of tasks (b)
CCR.

4 6 8 10 12 14 16 18 20

0.6

0.8

1

1.2

1.4

1.6

Number of parents

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

Figure 4. Normalized schedule length for random DAGs while varying number of parents.

5 10 15 20 25 30 35 40 45 50 55
0.5

1

1.5

2

2.5

3

Matrix size

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

CCR

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

Figure 5. Normalized schedule length for Laplace Equation DAGs while varying (a) matrix size
(b) CCR.

5 10 15 20 25 30 35 40 45 50 55
0.5

1

1.5

2

2.5

3

Matrix size

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

CCR

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

Figure 6. Normalized schedule length for LU Decomposition DAGs while varying (a) matrix size
(b) CCR.

5 10 15 20 25 30 35 40 45 50 55
0.5

1

1.5

2

2.5

3

Matrix size

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

CCR

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

Figure 7. Normalized schedule length for Gaussian Elimination DAGs while varying (a) matrix
size (b) CCR.

still proves to be effective with increasing dependencies,
therefore DBUS performs better than HEFT as the num-
ber of parents increases.

For the application DAGs (Figures 5–7), DBUS sig-
nificantly outperforms other algorithms except for LE
task graphs where HEFT generates results with simi-
lar quality as DBUS. This can be explained by the the
fact that tasks in LE graphs have at most two parents.
Therefore, task duplication is not very useful except for
large CCR. Similar to random DAG results, duplication
based algorithms tend to improve their schedule quality
with increasing CCR compared to HEFT. However, with
increasing matrix size î , HCPFD and HCNF sched-
ule qualities get worse quickly compared to HEFT and
DBUS. The reason is that the number of tasks in these
application graphs grow proportional to îÜ� , whereas
average number of parents does not change significantly.
Therefore with increasing î there are relatively more
tasks independent of each other, which makes task in-
sertion more effective. Consequently, as î increases
non-insertion based algorithms suffer compared to inser-
tion based ones. Furthermore, task duplication may start
to be less effective than task insertion. Thus, utilizing
some of the idle slots with duplication instead of task in-
sertion may degrade the overall performance. This may
explain why DBUS performs worse than HEFT when
matrix size is large for the LE task graphs.

We also evaluated the impact of heterogeneity on
scheduling quality. We define link heterogeneity asÕ���� � Ô�� �Õ L r � Ô � � and processor heterogeneity as

Õ���� � Ô�� �Õ L r � Ô � � . In or-
der to obtain desired heterogeneity, a�� and a are cho-
sen from interval ¼>�S���P?\�67��l½ instead of the default in-
terval �3ml?hþ f �\m | � ½ . Therefore heterogeneity is equal to
the ratio T�� �T | � . With appropriate values for x, we varied

one type of heterogeneity from 1 to 200 while keeping
the other at 200. For this experiment, we used the GE
DAG with matrix size 55, since it was the largest appli-
cation DAG we had generated. We generated weights
corresponding to each CCR value, then averaged the re-
sults. Figure 8 shows that the effect of heterogeneity on
DBUS is almost the same relative to HEFT and HCNF
algorithms. In contrast, relative performance of HCPFD
is adversely affected with increasing heterogeneity espe-
cially with processor heterogeneity.

As the final experiment, the effect of number of avail-
able processors on schedule length is investigated. We
used the GE DAG with matrix size 55 for this experi-
ment as well. Results in Figure 9 shows that the per-
formance gap between DBUS and other algorithms first
increases then decreases with increasing number of pro-
cessors. The reason for decreasing performance gap is
due to law of diminishing returns. Since DBUS gener-
ates a high quality schedule with smaller number of pro-
cessors, it becomes more difficult to improve the sched-
ule length even though the number of processors is in-
creased. However, other algorithms have larger room for
improvement, therefore they benefit from additional pro-
cessors more than DBUS does. Still, DBUS performs
significantly better than other algorithms in all cases.

5 Conclusions

In this work, we have developed a novel duplication-
based bottom-up scheduling algorithm, called DBUS.
DBUS is a list-based scheduling algorithm that traverses
the DAG in a bottom-up fashion contrary to the tradi-
tional approaches and does not impose any restrictions
on the number of task duplication. We tested the DBUS

1 3 5 7
0.5

1

1.5

2

2.5

3

Link heterogeneity

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

1 3 5 7
0.5

1

1.5

2

2.5

3

Processor heterogeneity

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

Figure 8. Normalized schedule length while varying heterogeneity for (a) links (b) processors.

5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

Number of processors

N
or

m
al

iz
ed

 s
ch

ed
ul

e
le

ng
th

HEFT
HCPFD
HCNF
DBUS

Figure 9. Normalized schedule length while varying the number of available processors for
scheduling.

algorithm on combinations of three different application
DAGs on randomly generated heterogeneous computing
configurations. Experimental evaluation validated that
DBUS produces superior results compared to the exist-
ing algorithms HEFT, HCPFD and HCNF.

References

[1] I. Ahmad and Y.-K. Kwok. On exploiting task dupli-
cation in parallel program scheduling. IEEE Transac-
tions on Parallel and Distributed Systems, 9(9):872–892,
September 1998.

[2] R. Bajaj and D. Agrawal. Improving scheduling of
tasks in a heterogeneous environment. IEEE Transac-
tions on Parallel and Distributed Systems, 15(2):107–
118, February 2004.

[3] S. Bakiyar and P. SaiRanga. Scheduling directed a-cyclic
task graphs on heterogeneous network of workstations
to minimize schedule length. Proceedings of the Inter-
national Conference on Parallel Processing Workshops,
pages 97–103, October 2003.

[4] C. Boeres, J. Filho, and V. Rebello. A cluster-based
strategy for scheduling task on heterogeneous proces-
sors. Symposium on Computer Architecture and High
Performance Computing, pages 214–221, October 2004.

[5] D. Bozdağ, F. Özgüner, E. Ekici, and U. Catalyurek. A
task duplication based scheduling algorithm using par-
tial schedules. Proceedings of International Conference
on Parallel Processing, pages 630–637, June 2005.

[6] T.-Y. Choe and C.-I. Park. A task duplication based
scheduling algorithm with optimality condition in het-
erogeneous systems. Proceedings of the International
Conference on Parallel Processing Workshops, pages
531–536, August 2002.

[7] B. Cirou and E. Jeannot. Triplet: A clustering schedul-
ing algorithm for heterogeneous systems. Proceedings
of the International Conference on Parallel Processing
Workshops, pages 231–236, September 2001.

[8] A. Doğan and F. Özgüner. LDBS: A duplication based
scheduling algorithm for heterogeneous computing sys-
tems. Proceedings of the International Conference on
Parallel Processing, pages 352–359, August 2002.

[9] M. Garey and D. Johnson. Computers and Intractabil-
ity, A Guide to the Theory of NP Completeness. W.H.
Freeman and Co., 1979.

[10] T. Hagras and J. Janecek. A high performance, low
complexity algorithm for compile-time task scheduling
in heterogeneous systems. Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium,
pages 107–115, April 2004.

[11] M. Iverson, F. Özgüner, and L. Potter. Statistical predic-
tion of task execution times through analytical bench-
marking for scheduling in a heterogeneous environment.
IEEE Transactions on Computers, 48(12):1374–1379,
December 1999.

[12] A. Radulescu and A. van Gemund. Fast and effective
task scheduling in heterogeneous systems. Proceedings
of the Heterogeneous Computing Workshop, pages 229–
238, May 2000.

[13] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-
effective and low-complexity task scheduling for hetero-
geneous computing. IEEE Transactions on Parallel and
Distributed Systems, 13(3):260–274, March 2002.

[14] J. Yang, A. Khokhar, S. Sheikh, and A. Ghafoor. Es-
timating execution time for parallel tasks in heteroge-
neous processing (hp) environment. International Paral-
lel Processing Symposium Workshop on Heterogeneous
Computing, pages 23–28, April 1994.

Biographies

Doruk Bozdağ is a graduate student in the Depart-
ment of Electrical and Computer Engineering at The
Ohio State University. His research interests include
scheduling algorithms for multiprocessor systems,
parallel graph algorithms and high-performance com-
puting. He received his M.S. in Electrical and Computer
Engineering from The Ohio State University in 2005
and B.S. in Electrical and Electronic Engineering and
B.S. in Physics from Boğaziçi University, Turkey, in
2002.

Umit Catalyurek is an Assistant Professor in the
Department of Biomedical Informatics at The Ohio
State University, and has a joint faculty appointment
in the Department of Electrical and Computer Engi-
neering. His research interests include combinatorial
scientific computing, grid computing, and runtime
systems and algorithms for high-performance and
data-intensive computing. He received his PhD, M.S.
and B.S. in Computer Engineering and Information
Science from Bilkent University, Turkey, in 2000, 1994
and 1992, respectively.

Füsun Özgüner received the M.S. degree in electri-
cal engineering from the Istanbul Technical University
in 1972, and the Ph.D. degree in electrical engineer-
ing from the University of Illinois, Urbana-Champaign,
in 1975. She worked at the I.B.M. T.J. Watson Re-
search Center with the Design Automation group for
one year and joined the faculty at the Department of
Electrical Engineering, Istanbul Technical University in
1976. Since January 1981 she has been with The Ohio
State University, where she is presently a Professor and
the Interim Chair of Electrical and Computer Engineer-
ing. Her current research interests are parallel and fault-
tolerant architectures, heterogeneous distributed com-
puting, reconfiguration and communication in parallel
architectures, real-time parallel computing and commu-
nication, and wireless networks. Dr. Özgüner has served
as an associate editor of the IEEE Transactions on Com-
puters and on program committees of several interna-
tional conferences.

