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Abstract—Passive brain-computer interfacing allows 
computer systems direct access to aspects of their user’s 
cognition. In essence, a computer system can gain information 
about its user without this user needing to explicitly 
communicate it. Based on this information, human-computer 
interaction can be made more symmetrical, solving an age-old 
but still fundamental problem of present-day interaction 
techniques. For practical real-world application of this 
technology, it is important that cognitive states can be identified 
accurately and efficiently. Here we present preliminary data 
demonstrating it is possible to calibrate a task-independent 
classifier to identify when a user is under heavy workload across 
different activities. We used different types of mental arithmetic 
and even a semantic task. Task-independent classification is an 
important step towards real-world practical application of this 
technology. 
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I. INTRODUCTION

Already in 1990, Edward Tufte recognized that the vast 
amount of information computers can process and the 
relatively slow and cumbersome methods to program and 
control them constitute a communication bottleneck and a 
source of potential error [1]. Today’s computers are 
considerably more powerful, and, despite efforts towards the 
development of more natural interaction techniques, human-
computer interaction (HCI) remains vastly asymmetrical. 
Beyond the explicit communication bottleneck, this is due to a) 
an information asymmetry: the human operator potentially has 
access to any and all details concerning the machine’s 
operational state, whereas the machine only has access to the 
instructions it receives from the operator, supposed to encode 
their exact intentions; and b) while the human user is capable 
of dealing with and working around errors and inconsistencies 
in the communication, the machine is not [2]. Fischer [3] 
argues that human-computer interaction, just as human-human 
interaction, can be improved by an increased understanding 
between the communication partners. This requires that both 
agents in the interaction have an appropriate amount of 
understandable information about the other. For the machine to 
“understand” its user, it would require a more detailed model 
of its user, fed by more than merely behavioral data and 
sequential commands. In order to make the machine a true 

“team player” [4] with independent agency rather than a mere 
servant, it would need to know about its human partner’s 
underlying intentions, interpretations, opinions...  

The communication bottleneck inherent in common 
present-day interaction techniques prevents users from 
efficiently communicating such information themselves. 
However, novel approaches to HCI based on physiological 
measurements are able to provide input to the machine without 
placing additional burdens on the users [5]. In particular, 
passive brain-computer interfacing (pBCI; [6]) has our 
attention as it involves real-time access to the seat of human 
cognition—the brain. pBCI uses traditional BCI methodology 
to unobtrusively detect covert aspects of user state, reflecting 
the user’s cognitive and/or affective state. For BCI, brain 
activity is recorded, usually noninvasively through e.g. 
electroencephalography (EEG), and automatically interpreted 
using signal processing and machine learning techniques [7]. 
Rather than enabling direct, explicit control via the central 
nervous system by means of coupling voluntary “thought 
patterns” to specific machine responses, passive BCI interprets 
ongoing measurements of brain activity in order to assess and 
evaluate the user’s ongoing or transient state. As such, passive 
BCI can provide a continuous stream of implicit input coming 
from the user, but not consciously communicated by them 
[8,9].  

Online assessments of user state can be co-registered 
against other available information pertaining to current 
parameters of the interaction. By correlating subjective 
cognitive/affective user states with external events, a machine 
can learn how this user interprets these events. In this way, a 
rich and detailed user model can be generated and continuously 
updated without placing additional demand on the user. If 
specific system states consistently lead to an increased 
assessment of stress levels, overtime, the machine can learn to 
avoid such states by instead steering towards states that were 
previously associated with lower levels. Such neuroadaptive 
technology based on implicit input may in certain cases be 
controlled entirely without conscious interaction.  

For pBCI-based neuroadaptive technology to be efficiently 
used in everyday or professional life, some shortcomings 
shared by all BCI applications must still be overcome [10]. For 
example, based on electroencephalography recordings (EEG), 
the required hardware needs to be made more comfortable to 
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wear for longer periods of time, and easier to apply. Because 
brain activity is heavily context-dependent and changes over 
time, it is currently still necessary to calibrate separate 
classifiers for separate tasks and separate sessions, i.e. even for 
the same person, the machine must re-learn their activity 
patterns in every new context. This is commonly done by 
applying supervised machine learning methods to EEG 
recordings representing known user states [11], “teaching” a 
classifier to recognize those user states in new data. In this 
conference contribution, we present work done towards 
generalizing a classifier, calibrated in a short amount of time, 
across different tasks.  

A much researched cognitive state is the state of high task- 
or workload. Different levels of load can have a large influence 
on human wellbeing and performance in almost all tasks (e.g. 
[12], [13]), making it an important state to be aware of 
especially in safety-critical environments, but it can also serve 
as a meaningful indicator in educational [14] or leisure 
contexts (also see [14] for a review). An advantage of task load 
in the context of neuroadaptive technology is that it is reflected 
in the oscillatory power of specific frequency bands. In 
particular, an increase frontal theta power and a simultaneous 
decrease in parietal alpha power have been consistently found 
to accompany increased load levels [15]. Band power estimates 
can be obtained continuously from ongoing EEG and may thus 
provide a continuous measure of load, e.g. feeding into a user 
model that controls adaptive automation [16]. 

Still, a classifier calibrated to evaluate online levels of 
workload induced by one task may not necessarily be able to 
accurately evaluate workload induced, in the same person, by 
another task. (But see e.g. [17] for a classifier calibrated on the 
same task in different contexts.) Here, we present preliminary 
data showing the generalizability of a classifier trained on a 
mental arithmetic task towards two other mathematical and 
semantic tasks. Calibrated offline on a subtraction task, in 
online conditions the classifier could accurately classify 
subtraction, multiplication, and word finding tasks from the 
ongoing EEG. 

The experimental paradigm furthermore exhibited an 
example of neuroadaptive behavior. During low load 
conditions, as assessed automatically during online blocks, 
visual distraction elements would be shown on the screen to 
keep participants from getting bored. These would again 
disappear once levels of high load were detected, in order not 
to distract the participants from their task. As such, the 
continuous evaluation of user load was used as implicit input to 
control the level of distraction that may be needed to keep the 
participants engaged during the experiment. 

II. METHODS

A. Participants
Six participants aged 24-27 participated in this study. None

had a history of neurological disease and all had normal or 
corrected-to-normal vision. All gave written consent to 
participate in this study, which falls under a general-coverage 
approval of the local ethics committee. Participants were given 
EUR 10,- per hour or course credit for their participation.  

B. Experimental Set-Up and Procedure
Participants were seated in a padded chair approximately

one meter away from a computer display. EEG was recorded 
continuously using 64 active Ag/AgCl electrodes mounted 
according to the extended 10-20 system on an elastic cap. The 
signal was sampled at 5000 Hz and amplified using BrainAmp 
DC amplifiers (Brain Products GmbH, Gilching, Germany). 
All electrodes were referenced to FCz and the ground electrode 
was placed at position AFz. 

After having read the instructions and given time to 
acquaint themselves with the task, participants first performed 
a calibration block of 40 trials: 20 with high load, 20 with low 
load. During high load, participants were presented with an 
equation of the form a – b, instructing them to count 
backwards from a in steps of b (i.e. a modified Brown-Peterson 
distraction technique). a was any integer between 200 and 
1200; b ranged from 6 to 19, excluding 10 and 15. During low 
load conditions, the absence of such an equation instructed 
participants to relax, with eyes open, calling to mind a specific 
a freely chosen but consistent scene from memory to focus 
attention inwards. Both high and low load trials could or could 
not (50% chance) be accompanied by visual sparkles. These 
were 10 small sparkles wandering smoothly over the screen in 
random walks governed by perlin noise, providing visual 
distraction. In low load conditions without sparkles, a crosshair 
was shown. This 50% chance of sparkles was chosen so as to 
evenly balance the sparkles between classes, preventing the eye 
movements they likely induce from being class-specific during 
calibration. A self-paced break was implemented after every 10 
trials. Each trial lasted 10 seconds, for a total of 200 seconds of 
EEG data per task load class. Based on this data, a classifier 
was calibrated as described below. 

The calibrated classifier was applied online in a second, 
online block, repeating the previous block. The only difference 
was that the visual sparkles were now controlled online by the 
classifier output: a detected high load resulted in a reduction of 
sparkles, and a detected low load in an increase. The number of 
sparkles on the screen varied linearly between 0 and 15, 
representing the online evaluated mean task load in the 
previous 2 seconds. To this end, the classifier was applied to 
the last second of data from the ongoing stream at a frequency 
of 10 Hz. Only classifier output representing an 80% certainty 
or more for one or the other class was included in the 
calculation of the mean 

A third and final online block consisted of 208 trials in 
blocks of 26: 13 high, and 13 low load alternately in two new 
tasks. Instead of the subtraction equation, per block the display 
showed either a multiplication task, or a scrambled word to be 
recovered. The multiplication equations consisted of one 
number between 6 and 19, and one between 21 and 79. The 
words were randomly scrambled 5- or 7-letter German words 
(nouns, verbs, adjectives, and adverbs). Participants pressed the 
enter button when they had found the solution, ending the trial. 

Two pilot participants, 1 and 2, did not perform the word 
task and instead only performed 40 trials of multiplication.  
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C. Classification and Analysis
Individual classifiers were calibrated on the data from the

first block. The data was divided into consecutive 1-second 
epochs of high versus low condition data. Filter bank common 
spatial patterns (FBCSP; [18]) was applied to extract features 
describing the power in approximately the theta (4-7 Hz) and 
alpha (8-13) bands using three patterns per band. Linear 
discriminant analysis (LDA) was used to separate the classes, 
using a 5-fold nested cross validation with margins of 5. The 
reported offline accuracy estimations were calculated using the 
same cross validation scheme. 

The calibrated classifier was then applied to 1-second 
epochs taken from the subtraction, multiplication, and word 
data, respectively and binary classification was made between 
“high” and “low” task load. Accuracies reflect the percentage 
of correct classifications. 

Calibration and classification was done using the open-
source MATLAB-based toolbox BCILAB (version 1.2) [19]. 

TABLE I.  CLASSIFIER ACCURACY 

Offline accuracy (%) Online accuracy (%) 
Partic. TP TN Acc. Subtr. Multi. Words 

1 81 76 78 72 57 
2 60 70 65 72 64 
3 81 85 83 83 89 85 
4 53 65 59 56 76 72 
5 68 67 67 58 53 57 
6 70 69 69 65 75 92 

Mean 69 72 70 68 69 76 
St.dev. 11 7 09 10 13 15 

Table 1. True positive (TP), true negative (TN), and overall accuracy 
(Acc.) measures for the offline cross-validated accuracy estimations, and online 
accuracy measures for the three tasks: subtraction (Subtr.), multiplication 
(Multi.), and words.  

TABLE II. ONLINE OUTPUT AND REACTION TIMES 

Mean continuous classifier output 
Subtraction Multiplication Words Mean RT (s) 

Partic. High Low High Low High Multi. Words 
1 1.63 1.29 1.57 1.49 4.97 
2 1.70 1.41 1.53 1.36 5.39 
3 1.74 1.28 1.80 1.55 1.79 5.95 5.12 
4 1.67 1.54 1.71 1.57 1.72 5.99 5.41 
5 1.41 1.34 1.48 1.48 1.51 6.37 4.42 
6 1.52 1.30 1.73 1.63 1.83 7.02 7.29 

Mean 1.61 1.36 1.64 1.51 1.71 5.95 5.56 
St.dev 0.12 0.10 0.13 0.09 0.14 0.72 1.23 
t-Test  p = 0.004 p = 0.008 p=0.022 

Table 2. Mean continuous classifier output (scaled between 2 = 
100%”high” and 1 = 100% “low”) for the three online conditions, and mean 
reaction times for multiplication (Multi.) and words conditions. t-Test results 
compare high versus low conditions in the indicated condition. Since 
multiplication and words were done in one block, both “high” measures were 
tested against the shared mean “low”.  

III. RESULTS

Table 1 lists all classification accuracies. The mean 
estimated offline classification accuracy for the subtraction 
task over all six participants comes to 70%±9. Mean online 
accuracies of this classifier are 68%±10 for subtraction data, 
69%±13 for multiplication data, and 76%±15 for word data. 
Chance level is at 50%. 

Table 2 lists the mean of all classification values produced 
during the online blocks determining the amount of sparkles, 
including the values ignored during the online feedback. 
Values could vary between 1 and 2, with 1.5 representing 
complete uncertainty between the classes. One-tailed paired-
samples t-tests between high and low conditions were 
significant for all tasks at α < 0.025. During online subtraction, 
the high condition was significantly different from the low 
condition (t(6) = 5.15, p = 0.004), as  well as for multiplication 
(t(6) = 4.19, p = 0.008), and words (t(6) = 3.22, p = 0.022).  

Also listed are the mean reaction times indicating when the 
participants had solved the multiplication and word tasks. The 
mean reaction times were 5.9 and 5.6 seconds, respectively.  

IV. DISCUSSION

For all but participant number 4, the classifier was able to 
separate the offline subtraction classes with acceptable 
accuracy, and for all but number 5 the classifier calibrated on 
subtraction performed well—in most cases even better—on the 
other two tasks: multiplication and word finding. Even for 
number 4, where the classifier was less able to detect the 
subtraction task offline or online, the multiplication and word 
tasks were detected with surprising accuracy. 

Although visual distraction was balanced between classes 
during classification, it could be noted that the different tasks 
themselves may elicit different eye movements. For the 
subtraction task, only the initial condition was given on the 
screen: the subsequent steps were all represented internally by 
the participant. For the words, however, it is likely participants 
would have continued to look at the stimulus to be reminded of 
the available letters. If indeed the subtraction task evokes no 
systematic eye movements, then so too the classifier ought to 
be independent of eye movement artefacts in the EEG. Visual 
inspection of the FBCSP topographies indeed revealed no 
profuse influence of eye movements.  

It should also be noted that the low-workload condition was 
the same for all three high-workload tasks. Subsequent steps 
will include additional low-workload conditions (e.g. different 
difficulty levels of the tasks), and will additionally investigate 
classification accuracies between different high-workload 
conditions. This will shed further light on the 
neurophysiological similarities and differences between the 
different conditions, and the ability to calibrate both task-
specific and task-independent workload classifiers. 

Having said that, this preliminary data does support to the 
idea of developing a task-independent workload classifier that 
can be quickly calibrated (i.e. in under 7 minutes, but we have 
reason to believe that this is not the minimum) and applied to a 
number of tasks that it was not explicitly trained on. 
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A task-independent, generalized workload classifier would 
continue to work reliably even when the human switches tasks, 
greatly enhancing their applicability in modern working 
environments.  

When properly controlled for confounding variables, 
successful task-independent application of a classifier points to 
a general validity of the underlying construct. Although 
workload remains a construct of varied scientific definitions, it 
is also a term in common parlance with an intuitive meaning. 
Perhaps a data-driven approach across different tasks that are 
intuitively understood to induce “workload” could point to 
neurophysiological commonalities, i.e. features identifiable by 
a single classifier, and help elucidate the construct. 

Further investigations will include a larger variety of tasks 
and an evaluation of the role of the neuroadaptively controlled 
sparkles in maintaining the participants’ engagement. We will 
also look into the generalizability of this classifier between-
subjects, i.e. take further steps towards a universal workload 
classifier, both task- and person-independent. 
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