
A Task-Oriented Approach for Cost-sensitive Recognition

Roozbeh Mottaghi1 Hannaneh Hajishirzi2 Ali Farhadi1,2

1Allen Institute for Artificial Intelligence
2University of Washington

Abstract

With the recent progress in visual recognition, we have

already started to see a surge of vision related real-world

applications. These applications, unlike general scene un-

derstanding, are task oriented and require specific informa-

tion from visual data. Considering the current growth in

new sensory devices, feature designs, feature learning meth-

ods, and algorithms, the search in the space of features and

models becomes combinatorial. In this paper, we propose

a novel cost-sensitive task-oriented recognition method that

is based on a combination of linguistic semantics and visual

cues. Our task-oriented framework is able to generalize to

unseen tasks for which there is no training data and outper-

forms state-of-the-art cost-based recognition baselines on

our new task-based dataset.

1. Introduction

In recent years we have witnessed a dramatic stride in the

performance of classification and detection methods. Vi-

sual recognition algorithms become more reliable and have

started getting considerable traction from real world appli-

cations. Most of these applications are centered around spe-

cific tasks (e.g., autonomous navigation, autonomous vac-

uum cleaning, automated lawn mowing, etc.) rather than

being as general as scene understanding. Considering the

state of visual recognition methods, we believe, it is the

right time to rethink task-oriented recognition.

Task-oriented recognition involves addressing a wide

range of problems. A very first issue that needs to be ad-

dressed is to find a set of cheap but effective features for the

given task. Suppose we want to design a system or a robot

to efficiently perform certain tasks such as “Put the cup on

the table” or “Walk towards the desk”. The first question

to answer is what features should we use? Should we use

surface normal estimates? How about RGB-D data? Do we

need high frequency texture information? What about ob-

ject recognition? Are support surfaces useful? For a specific

task, among all possible information that one could extract

from visual data, only a small subset would be useful (the

 find desk

find bed

find shelf

find bottle

find cup

put

sit

surface
normals

 3d shape object
cubes

material
support

relationship

unseen

Putting Cup Table

Figure 1. We create a syntactic parse of a given task to obtain

part-of-speech tags (noun, verb, etc). Then, we find a mapping

from each extracted noun (NN) and verb (VB) to the vocabulary

of known Shared Unit Tasks (SHUTs) for which we have training

data. If the noun or verb does not exist in our vocabulary (e.g.,

table in this example), we assign it to a cluster of SHUTs in our

vocabulary and use the feature selection strategy of that cluster for

the unseen part of the task. The bottom row shows examples of

features used in our framework.

majority of the information extracted might be irrelevant,

and some portion might be an overkill). For example, for

the task of “Walk on the floor”, surface normal and height

features might be relevant while texture of the carpet and

fine-grained object categories might not.

Often combination of features have shown to be effec-

tive, but picking the right combination is an exponential

search. One common approach is to consider all possible

information we could possibly extract and hope that our

model can benefit from the right subset of it. Such an ap-

proach has the following implicit assumptions that might

not hold in several application domains: (1) there exist

enough training data for such a high dimensional represen-

tation; (2) there exists a high capacity learning model that

can tolerate the inherent noise in the high dimensional rep-

resentation; and (3) computational resources are free. A

natural solution to this problem is to learn to select a subset

2203

of features in a discriminative fashion.

Various methods have been proposed [1, 9, 24] to find a

suitable set of features, however, it is not practical to find

the right set of features for every task since the space of

possible tasks is huge (consider the number of combinations

one can make with English nouns and verbs). Therefore, it

is infeasible to create a comprehensive list of possible tasks

and collect training data for them. In this paper, we use a

combination of visual and linguistic cues to better handle

this huge space of possible tasks.

Our idea is to decompose tasks into a set of Shared Unit

Tasks (SHUTs) using simple syntactic cues (extracting rele-

vant part-of-speech tags). For example, putting is a SHUT

that is shared between “Put the cup on the table” and “Put

the bottle in the sink”. So we can perform training only

once for putting for all tasks that involve this meaning of

putting. Although there are fewer SHUTs compared to

tasks, it is still impractical to gather training data for all

possible SHUTs. Hence, a practical solution should have a

mechanism to handle unseen SHUTs. In this paper, we also

introduce a novel cost-sensitive method to select features

for unseen SHUTs (and consequently unseen tasks). To be

able to handle both known and unseen SHUTs, we propose

a discriminative co-clustering method that groups similar

SHUTs based on similarities in visual features and linguis-

tic semantics. Such a clustering allows us to assign the un-

seen SHUTs to a group of SHUTs and use the learned fea-

ture selection strategy of that group for the unseen SHUT.

Figure 1 shows the overview of the approach.

Our experiments show that our proposed method outper-

forms state-of-the-art cost-based feature selection methods

for known SHUTs. We additionally show that the proposed

method is effective in performing feature selection for un-

seen SHUTs. Moreover, we show that our method obtains

reasonable results for tasks when none of their constituent

SHUTs is known. To train and evaluate our method we cre-

ate a new dataset by augmenting NYUv2 dataset [35] with

task-based annotations.

2. Related Work

Task-based computer vision. Two schools of computer vi-

sion are compared by Ikeuchi and Hebert [19]: (1) general

purpose oriented, where the idea is to have a single archi-

tecture to solve all computer vision problems; (2) task ori-

ented, which argues the architecture should change so that

an optimal set of components are chosen for each different

task. In this paper, we advocate the second approach and ar-

gue that instead of running a pre-defined set of components

or features in a fixed order, we should learn which features

or components are useful for the given task to better utilize

computational resources.

Neuroscience. Task-based visual processing has been in-

vestigated by the neuroscientists as well. Wurtz et al. [39]

show that the brain performs a selective reduction of the vi-

sual stimuli, which is modulated by the task and attention.

Also, on the modeling side, Geisler and Kersten [12] pro-

pose a perception model that considers a task-based utility

function to compute the probability of each possible state of

the environment given the image formed on the retina. Also,

researchers in the field of visual attention believe there is

a task-dependent component that directs visual processing

[41, 32, 2].

Cost-sensitive feature selection. Similar to our approach,

some methods (e.g., [11, 40, 4, 14]) take feature cost into

account for selecting features. Karayev et al. [22] consider

the problem of ‘anytime’ recognition, where a reinforce-

ment learning framework is employed to optimize feature

computation cost at test time while preserving a high perfor-

mance. Xu et al. [40] proposes a stage-wise regression that

minimizes cpu-time during testing. None of these methods

are designed for or can handle unseen categories. More-

over, our experiments show improved results compared to

these state-of-the-art methods [22, 40] in selecting features

for known categories.

Zero-shot learning. Conventional solutions to zero-shot

learning use visual attributes [8, 26]. Direct extension of

these method to our problem is not possible because we do

not have visual attributes of the task; we are only given a

textual name for the unseen tasks. Recent methods use a

joint embedding between visual and textual cues for zero

shot learning [36, 10, 33]. These methods are also not appli-

cable to our problem because different tasks share the same

images (many tasks can be performed in the same scene),

or a single region may have multiple semantic labels (e.g., a

surface can be suitable for both sitting and putting depend-

ing on the intention of the agent). Similar to our method,

Elhoseiny et al. [7] learn classifiers for unseen categories

purely based on textual descriptions for those categories. In

contrast, we perform zero-shot learning jointly with feature

selection. Moreover, the unseen SHUTs in our paper are

only associated with their names which are single words,

not long textual descriptions. [20] have studied a joint train-

ing approach for a group of attributes that have semantic

ties. In contrast, we study the problem of task-based recog-

nition.

Affordance. Object or scene affordances [15, 13, 21] can

be useful in predicting suitable regions for some SHUTs.

However, there are some SHUTs, such as finding cup, that

cannot be effectively predicted from affordances. Most re-

lated to ours is zero-shot learning for affordances [44]. This

work, however, does not consider cost or selection of fea-

tures, which is the main focus of our paper.

NLP for robotics. There is a vast amount of literature on

using Natural Language Processing techniques for robotics

applications (e.g., [6, 31, 38, 16]). The most related work to

ours is a method for grounding natural language to mobile

2204

manipulation instructions [31]. This work relies on linguis-

tic similarity to decompose a task description into sub-tasks.

However, our goal in this paper is quite different – we study

the relevance of features to different tasks, and we aim to

find suitable features for unseen tasks.

3. Overview of Problem and Approach

Problem. In this paper, we address the problem of identify-

ing the most discriminative, but least expensive set of fea-

tures for task-oriented recognition. More formally, given a

set of features F = {f1, . . . , fM}, the cost ci for each fea-

ture fi, and parameter λ that specifies the trade-off between

the total cost of the features and training loss, our goal is to

find a subset of features F̃ that are most discriminative for

a task t. Our assumption is that each task t can be decom-

posed into a disjoint set of Shared Unit Tasks (SHUTs) in

our vocabulary of SHUTs S = {s1, s2, . . . , sL}. For exam-

ple, the task “Put the cup on the table” can be decomposed

into three SHUTs of putting, finding cup, and finding table.

SHUTs can be known or unseen in the training data.

Each known SHUT is annotated in the training data accord-

ing to the regions that are suitable for that SHUT. For ex-

ample, annotated regions for putting are flat surfaces that

can support objects. The features capture different repre-

sentations and levels of details for tasks, and are computed

at different levels of run-time complexity. Some examples

of features include 2D appearance features, 3D shape, ma-

terial, and support relationship. We use the running time

of computing features as a proxy of their cost. Our goals

are (a) to decompose the task t into a set of disjoint SHUTs

(possibly unseen), (b) find the most discriminative, but least

expensive set of features for each known SHUT, and (c)

map the unseen SHUT to a group of known SHUTs, which

are grouped based on linguistic and visual characteristics

among the SHUTs.

Overview of Approach. We decompose the tasks into

SHUTs using a simple syntactic parse of the tasks (as shown

in Figure 1). We then introduce a cost-sensitive method for

finding subsets of features for known SHUTs and their cor-

responding weights (Section 4). Finally, we extend the cost-

sensitive method to unseen SHUTs (Section 5).

4. Known SHUTs
We first assume that all the SHUTs are observed at train-

ing. Our goal is to find a subset of discriminative but

least expensive features for each SHUT, and to estimate the

weights of the features in that subset.

We need a framework that allows us to switch on/off the

features, and can easily incorporate the feature cost. We

form M groups of feature weights wG1
, . . . ,wGM

that cor-

respond to M feature types f1, . . . , fM in our model. For

example, all of the weights for 2D appearance feature form

one group. Setting a group of weights to zero means its

corresponding feature will not be active.

We use a formulation similar to Group Lasso [42] pe-

nalized logistic regression to find the best set of informa-

tive features by predicting relevant image regions for each

SHUT. For example, for walking, the formulation is to pre-

dict which regions are suitable for walking. The training

data is available in the form of {xi, yi}i=1:n, where xi rep-

resents the computed features for the ith image region (con-

catenation of all features in the set F), yi specifies if the re-

gion is suitable for a particular SHUT or not. Our goal is to

find the best set of active features F̃s by optimizing:

min
w

n�

i=1

log(1+exp(−yi(w
T
xi+b)))+λ

M�

m=1

√
cm �wGm

�2 ,

(1)

where the feature weights w are divided into M non-

overlapping groups wG1
, . . . ,wGM

, cm corresponds to the

cost of the feature group fGm
, and λ controls the balance

between loss and total cost of selected features.

We solve the optimization problem in Eq. 1 using stan-

dard methods for Group Lasso and find the set of active

features F̃s for each SHUT s. In particular, we set F̃s to be

equal to the group of features whose weights wG are non-

zero. By varying λ different subsets of features are activated

– setting λ to a very large value results in selecting no fea-

ture, while setting λ to zero makes all features active. We

store the the weights for active features for SHUT s in ws.

5. Generalization to Unseen SHUTs

In many scenarios, we might encounter unseen SHUTs

for which the training data is not available. For instance,

walking is a known SHUT in our vocabulary, but running is

unseen. However, running and walking should have more or

less the same trend for selection of feature subsets and fea-

ture weights. More specifically, for both SHUTs, we expect

to see similar subsets of active features with similar weights

as we change λ. The question is how we can find the most

similar SHUT or group of SHUTs to the unseen SHUT (a

form of zero-shot learning).

At training, we group known SHUTs with similar visual

and linguistic characteristics into clusters. At inference, this

allows us to assign an unseen SHUT to a group of known

SHUTs and borrow their corresponding feature subset and

feature weights for the unseen SHUT. Therefore, we extend

Eq. 1 to take the clustering into account:

min
w,z.a

n�

i=1

log(1 + exp(−yzi (w
T
xi + b))) + λ

M�

m=1

√
cm �wGm

�2
� �� �

Selecting features

−
�

a

�

sk,sj∈a

zkazjaΦ(sk, sj ,w)

� �� �

Clustering

s.t.
�

a

zka = 1,
�

k

zka ≥ 1,

(2)

2205

walking sitting putting grasping finding trash bin finding door

Figure 2. Annotations for examples of SHUTs.

input : (1) {xi}, features for training regions

(2) {yi} for each SHUT

(3) Linguistic similarity function φw for all pairs of SHUTs

(4) cost c for each feature

(5) # of clusters

(6) parameter λ

output: For each SHUT cluster a:

(1) Subset of selected features F̃a.

(2) Feature weights wa.

1 Initialize φf (feature similarity) ;

2 for t ← 1 to # of iterations do

3 Perform clustering on all SHUTs based on Φ = φw + αφf ;

4 foreach cluster a do

5 Solve Eq. 2 feature selection for the input λ, where yz
i = 1 if

yi = 1 for at least one of the SHUTs in the cluster a;

6 Update F̃a and w
a, which are the selected subset of features and

their weights for cluster a, respectively;

7 foreach SHUT s ∈ a do

8 F̃s = F̃a;ws = w
a

9 end

10 end

11 Update visual similarity φf according to ws (Section 6).

12 end

Algorithm 1: Learning clusters of SHUTs and feature sub-

sets for each cluster (Eq. 2).

where, zka is an indicator variable for cluster assignments

(zka = 1 if SHUT sk is assigned to cluster a, and zka = 0
otherwise), the region label yzi is the union of labels for all

SHUTs in the cluster, and Φ is a similarity function for a

pair of SHUTs. We use a similarity function based on visual

and linguistic cues (described in Section 6). The training is

performed on the SHUTs in our vocabulary S , so we have

annotations to perform the optimization.

We use block coordinate descend to solve the optimiza-

tion problem: for a fixed λ, (1) we solve for w assuming

that a clustering of the SHUTs is given. (2) We solve for

clustering assignment z.a given the updated similarity func-

tion Φ (the visual similarity function depends on w). Then,

we iterate between these two steps. The details of learning

clusters of SHUTs are described in Algorithm 1.

To solve step (1), we use Group Lasso as before. The

only difference with Eq. 1 is that the feature weights are

learned for the cluster of SHUTs instead of individual

SHUTs (i.e., the region label yzi is the union of labels for

all SHUTs in the cluster). Step (2) is a form of spectral

clustering based on similarities of the SHUTs. As the out-

put of the optimization, we obtain a set of SHUT clusters,

the subset of features that is selected for each cluster, and

feature weights for different subsets. Note that there is no

guarantee that this procedure obtains the optimal solution.

At inference, our goal is to select the best subset

of features for a new unseen SHUT snew. We com-

pute the linguistic similarity (described in Section 6)

between the new SHUT snew and the SHUTs si in

our vocabulary. We then choose the cluster a∗ whose

average similarity (averaged over the SHUTs in the

cluster) is highest for the unseen SHUT i.e., a∗ =
argmaxa 1/size(a)

�

sj∈a φ
w(snew, sj). To classify the

regions for the new SHUT snew, we use the selected subset

of features for the chosen cluster a∗ and borrow the weights

for those selected features.

6. Similarity Functions for SHUTs

We measure the similarity function Φ in Eq. 2 by incor-

porating both linguistic φw and visual φf characteristics of

SHUTs. The linguistic similarity encodes similarities be-

tween textual names of the SHUTs, while the visual simi-

larity encodes similarities in the visual feature space and the

activation of features for each SHUT.

We compute the linguistic similarity φw(sk, sj) be-

tween pairs of SHUTs using syntagmatic (association) and

paradigmatic (similarity) relations between SHUT textual

names. For example, washing and dish are associated as

they tend to occur together, while dish and plate are sim-

ilar as they tend to occur in similar contexts. To capture

similarity, we use Word2Vec [30] (trained on Google News

dataset), which computes continuous vector representation

for words. The similarity of two words is defined as the

cosine distance of their vectors. To capture the degree of

association between two words, we use Pointwise Mutual

Information (PMI), which is a measure of the strength of

co-occurrence between two words [5]. We compute PMI on

the Wumpus corpus [3]. We compute φw as a linear com-

bination of these measures for pairs of SHUTs sk and sj
in our vocabulary S . We envision using dependency-based

word similarity [18] can improve the linguistic similarity.

We compute the visual similarity based on the activation

ordering of features for each SHUT as well as the weights

of the features for each SHUT. Two SHUTs are visually

similar if the order of activation of features for those two

SHUTs is highly correlated. We compute the activation or-

der of features by iteratively optimizing Eq. 1 (or first part

2206

of Eq. 2) when the number of selected feature groups is

increased at every iteration. For example, Table 2 shows

the order of feature activation for two SHUTs putting and

grasping. We compute the similarity between SHUTs by

measuring the correlation between the order of activation of

SHUTs. More specifically, we use Kendall rank correlation

[23]. The order of activation for all SHUTs are shown in the

supplementary material.

Additionally, two SHUTs are visually similar if their fea-

ture weights are similar. We compute the Euclidean dis-

tance between the feature weights of two SHUTs when all

of the features can be switched on. We use a logistic func-

tion to normalize the distances between 0 and 1 and con-

vert distances to similarity. Finally, the visual similarity

φf (sk, sj) is computed based on the linear combination of

the rank correlation term and the weight similarity term.

We compute Φ in Eq. 2 as a linear of combination of

visual and linguistic similarities Φ(sk, sj) = φw(sk, sj) +
αφf (sk, sj). We use α = 4 in our experiments. For the

linguistic similarity φw, the weights are 0.2 and 0.8 for PMI

and Word2Vec. For visual similarity φf , the weights are 0.3

and 0.7 for weight similarity and ordering, respectively.

7. SHUTs and Features

The vocabulary S includes 25 types of SHUTs: walk-

ing, sitting, putting, grasping, and finding X, where X cor-

responds to 21 most frequent object categories in NYUv2

dataset [35]. The annotation of SHUTs is performed by la-

beling regions that are suitable for a particular SHUT.

Regions. The features are defined on regions that span a

volume in 3D, and correspond to a set of pixels in the 2D

image. In this paper, we use RGB-D data and employ the

region generation method of [35].

7.1. Annotating SHUTs

We augment NYUv2 dataset [35] with our task-based an-

notations by annotating regions relevant to SHUTs. Some

example annotations are shown in Figure 2.

• Walking. Suitable regions include floor, carpet, rug, the

flat part of treadmill and so on. We label all pixels that

belong to any of these categories as walking regions.

• Sitting. Sitting can be performed on the flat regions of

sofas, chairs, beds, etc. For annotating sitting, we auto-

matically find regions in those categories whose surface

normal points upward.

• Putting. Suitable regions for placing objects include flat

surfaces e.g., tables, counters, and shelves. We label all

the pixels that belong to these surfaces as putting regions.

• Grasping. Most of the objects can be grasped with some

exceptions such as floor, wall or stairs (64 categories of

the NYUv2 dataset [35] cannot be grasped). We label all

objects that can be grasped as regions for grasping.

• Finding X. The goal is to look for objects of a certain

category X. We use 21 most frequent categories in the

NYUv2 dataset [35] (in terms of the numbers of regions).

7.2. Features

Our features capture different representations and lev-

els of detail for objects’ appearance or context with differ-

ent levels of computational complexity. The features range

from low-level features such as height, which can be ob-

tained by simple processing of the output of an RGB-D

sensor to higher level features such as support relationship,

which is computed based on more complex reasoning.

The cost associated with each feature is the average time

for computing that feature for an image. Running time is

an important factor in various applications such as robotics

or autonomous driving. However, it can be easily replaced

with other notions of cost such as the usage of memory, the

battery usage, etc. We provide a brief description of fea-

tures here. For more implementation details and the feature

costs, refer to the supplementary material. These are just

representatives of commonly used features in the recogni-

tion frameworks. Our framework can be adapted to use any

other features.

Height. Region height is useful for some SHUTs, e.g., it is

unlikely to sit on surfaces with more than a certain height.

Surface Normals. The surface normal feature is useful for

some SHUTs (e.g., putting). We compute the histogram of

surface normals for the pixels of a region.

Material Attributes. Material of the regions is important

for some SHUTs (e.g., glass is not used in a sitting surface).

For computing this feature, we train an attribute classifier

using the material annotations of [43]: wood, painted, cot-

ton, glass, glossy, plastic, shiny, and textured.

2D Appearance. We capture the 2D appearance or texture

of the regions using the descriptors of [34].

3D Shape. 3D shape features play an important role in most

human tasks which are performed in 3D environments, and

2D images alone are ambiguous in that the entire 3D struc-

ture of the scene is projected onto a 2D image. We compute

3D shape features using four different 3D cues introduced

in [37]: point density, scatter-ness, linear-ness, and 3D nor-

mals.

Distance to any Object. This feature is informative for

SHUTs (e.g., walking) that only require the distance to the

surrounding objects, but do not require the actual appear-

ance of the surrounding objects. For example, the rough

estimate of the distance to nearby objects, trees, and build-

ings is important for walking, but their detailed appearance

can be ignored. We compute this feature by estimating dis-

tances between the region and a set of hypotheses cuboids

that are generated by the method of [27]. Figure 3 illustrates

the cubes and their distance to a region.

2207

Figure 3. We compute the distance between all of the regions to

the cubes generated by [27].

Distance to Instances of a Particular Category. In com-

puting the previous feature, we ignored the category of the

object, but for some SHUTs the category of the surround-

ing objects (contextual information) is very informative for

a task. For instance, a surface next to a cup is most likely to

be a suitable surface for putting. For this feature we again

use the method of [27] to detect cuboids and use their object

classification algorithm to detect their categories. Although

this feature is more informative than the previous distance

feature, it is more computationally expensive.

Support Relations. Support relationships are important for

task-oriented reasoning (e.g., a supporter surface for an ob-

ject is a good candidate for putting). Following [35], we

compute this feature from the four types of support rela-

tionships between pairs of regions: supported from behind,

from below, by a hidden object, or not supported.

Object Size. Object size is important for task-oriented

recognition (e.g., a large object such as bed cannot be

grasped). We approximate the object size by computing the

volume of the object cuboids generated by [27] (used above)

that has the largest overlap with the object region. The over-

lap is defined as the size of the intersection of the region

and the cuboid in 3D divided by the region size. The feature

for each region is the cuboid volume, the area of the largest

surface and the area of the smallest surface of the cuboid.

8. Experiments

8.1. Experimental Setup

Dataset. We use NYUv2 [35] RGB-D dataset for our ex-

periments. This dataset contains 1449 RGB-D images. We

use the same split as NYUv2 for training and test that in-

cludes 795 training images and 654 test images, containing

76,837 and 60,872 regions, respectively. We provide ad-

ditional annotations for the dataset in terms of 25 types of

SHUTs using the procedure described in Section 7.1.

Evaluation and Implementation Details. We evaluate

our task-oriented recognition framework in three parts: (1)

Image GL Cost GL No Cost L1

cost = 0.04 cost = 0.48 cost = 0.11

Figure 4. A qualitative example showing predictions of some of

the methods for walking. These heat maps show the probability of

the prediction. On top of each image, the fraction of total cost for

making the prediction is shown.

known SHUTs for which we have training data (2) zero-shot

learning and generalization to unseen SHUTs (3) handling

known and unseen tasks.

For known SHUTs, our method called GL COST opti-

mizes Eq. 1; for learning the weights, we use the SLEP

implementation [28] for Group Lasso. For inference, we

apply the learned weights w in Eq. 1 to the features com-

puted for regions of a test image and predict the score of re-

gions. For unseen SHUTs, our method called ZERO SHOT

first optimizes Eq. 2 on known SHUTs to find the clusters

and feature selections for clusters. For inference for an un-

seen SHUT, we use the linguistic similarity function φw to

find the most similar cluster a to the unseen SHUT and bor-

row the features of a. For zero-shot learning, we set the

number of clusters to 20. For tasks, our method decom-

poses tasks into SHUTs by deriving the part-of-speech tags

(nouns, verbs, etc.) for the given task description using

Stanford CoreNLP [29]. For experiments, we use the re-

gions generated in the 5th level of the hierarchical segmen-

tation since they provide a reasonable overlap with object

and non-object instances. Further details can be found in

the supplementary material.

Evaluation Metric. We use an evaluation metric (called

area under AP-cost curve) that measures the classification

accuracy vs. the cost of selected features. For each λ, a

subset of features get activated by optimizing Eqs. 1 and

2. We compute the classification accuracy for that subset

and we have the total cost of features in that subset. We

plot curves whose x axes correspond to region classification

Average Precision (AP) and y axes correspond to 1− Csel

Ctot
,

where Csel is the cost of the selected features and Ctot is the

total cost of all features. We plot these curves by varying λ,

where each λ corresponds to one point on the curve.

8.2. Results for Known SHUTs

We evaluate our method, GL COST, for cost-sensitive

feature selection for a known SHUT and compare it with

the previous work and baselines.

Comparisons. L1 is a baseline that uses L1 regularization

for linear SVM. In other baselines, the weights for the en-

tire feature are switched on/off, but for the L1 baseline, a

subset of the dimensions of the weights might be switched

off. GREEDY is a baseline, which selects the features in the

2208

w
al

k

si
t

p
u
t

g
ra

sp

fi
n
d

b
ag

fi
n
d

b
ed

fi
n
d

b
li

n
d
s

fi
n
d

b
o
o
k

fi
n
d

b
o
tt

le

fi
n
d

b
o
x

fi
n
d

ca
b
in

et

fi
n
d

cl
o
th

es

fi
n
d

cu
p

fi
n
d

d
es

k

fi
n
d

d
o
o
r

fi
n
d

tr
as

h
b
in

fi
n
d

la
m

p

fi
n
d

li
g
h
t

fi
n
d

p
ap

er

fi
n
d

p
ic

tu
re

fi
n
d

p
il

lo
w

fi
n
d

sh
el

v
es

fi
n
d

si
n
k

fi
n
d

so
fa

fi
n
d

w
in

d
o
w

A
v
g
.

Results for Known SHUTs
L1 48.8 4.9 6.1 52.0 0.3 19.6 7.1 0.2 1.4 0.5 9.9 0.8 0.0 3.6 3.1 0.5 1.9 3.2 1.5 7.5 6.4 12.4 4.5 13.6 6.4 8.64

GREEDY 65.9 10.0 21.9 75.8 0.7 20.4 7.7 0.8 2.7 0.0 9.5 1.0 0.8 5.3 5.5 0.8 1.4 10.4 2.9 10.7 7.5 11.0 4.2 15.7 11.0 12.16

ANYTIME [22] 56.9 12.5 19.9 76.5 0.8 33.9 17.1 0.8 3.7 0.1 16.4 1.1 0.6 5.2 4.7 0.4 1.6 12.4 3.2 13.9 13.2 21.4 8.7 24.5 10.5 14.41

GREEDY MISER [40] 57.1 25.3 19.5 70.6 0.3 40.2 23.9 0.9 3.3 0.2 19.7 0.8 0.0 3.6 4.6 0.4 1.5 7.2 2.4 17.2 10.7 24.6 1.1 33.0 15.2 15.34

GL NO COST 62.1 13.1 22.8 76.4 0.9 29.2 12.8 1.0 3.7 1.1 9.1 2.1 0.8 6.9 6.6 1.1 3.5 14.7 5.1 14.3 12.5 19.4 12.8 18.5 15.3 14.63

GL COST (OURS) 66.2 15.6 27.0 77.4 1.0 38.5 20.1 2.2 8.4 1.7 13.0 3.7 2.2 7.0 7.4 2.0 8.6 19.5 8.7 17.7 17.2 21.5 19.7 22.6 22.6 18.06

Results for Unseen SHUTs

RANDOM 5.5 1.2 4.4 65.0 0.4 3.9 1.5 0.9 0.7 0.9 3.7 1.1 0.0 2.3 0.5 0.8 0.4 1.0 0.6 1.1 3.5 6.9 0.1 4.2 1.9 4.50

NO TEXT 19.6 1.0 19.6 63.5 0.0 5.4 3.2 1.6 3.9 1.0 3.9 1.0 0.5 2.9 1.4 0.0 1.0 0.0 2.9 4.8 3.3 3.3 1.3 9.1 4.7 6.37

NO VISUAL 17.6 1.0 19.7 64.0 0.0 8.9 4.6 1.6 0.9 1.0 3.3 1.0 1.0 2.8 2.9 0.8 1.0 1.0 2.8 4.3 3.5 6.8 0.0 9.6 5.4 6.60

ZERO SHOT (OURS) 19.6 1.0 19.6 63.5 0.0 23.0 4.9 1.6 1.9 1.0 3.9 1.7 1.5 2.9 2.9 0.0 1.0 0.0 2.9 4.8 6.9 3.9 1.3 9.2 4.9 7.46

ORACLE BEST 17.5 6.5 19.7 72.0 1.8 16.6 4.5 3.0 3.9 1.0 5.0 2.0 1.0 3.4 2.9 1.0 1.9 1.1 2.9 7.8 7.6 7.0 1.0 9.6 9.4 8.41

ORACLE CLUSTER 19.6 10.8 19.6 71.6 1.0 23.0 4.9 1.6 4.0 1.0 4.0 2.0 1.5 2.9 3.0 0.5 1.0 9.8 3.0 6.8 6.9 5.9 1.3 9.2 6.9 8.87

Table 1. The results for known SHUTs (top) and unseen SHUTS (bottom). The evaluation metric is the area under the classification AP vs.

(1-fraction of total cost) curves.

classification AP
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

1
 -

 f
ra

c
ti
o
n
 o

f
to

ta
l
c
o
s
t

0

0.2

0.4

0.6

0.8

1
put

Greedy

Anytime

Greedy Miser

GL w cost (ours)

(a)

classification AP
0 0.05 0.1 0.15 0.2 0.25

1
 -

 f
ra

c
ti
o
n
 o

f
to

ta
l
c
o
s
t

0

0.2

0.4

0.6

0.8

1
find pillow

Greedy

Anytime

Greedy Miser

GL w cost (ours)

(b)

Figure 5. classification AP vs. (1-fraction of total cost) curves for

some example known SHUTs.

order of their cost (from low to high). ANYTIME [22] and

GREEDY MISER [40] are the two state-of-the-art cost-based

feature selection methods. We use their publicly available

implementation and train (and tune) them on our data (more

details in supplementary material). Both methods gradually

add one feature to the existing selection of features, while

our method sometimes removes a selected feature and adds

a new feature (as we vary λ). GL NO COST is a cost-

agnostic variation of our method, in which the cost is re-

placed by the feature length similar to the original formula-

tion of Group Lasso.

Results. Figure 5 shows the AP-cost curves for a few

SHUTs. The supplementary material includes the rest of the

curves. Table 1 shows the the area under AP-cost curves for

all the SHUTs. Our method outperforms the baselines and

the state of the art across most of the known SHUTs. As

shown in the curves, given a fixed cost, GL COST achieves

the highest AP compared to the other methods. Similarly,

for a fixed AP, GL COST selects the features with the least

cost. As shown on the curves, the region classification AP

usually increases as more features are selected. The point

on the x axis shows the region classification AP when all

the features are selected.

Qualitative Examples. Figure 4 shows a few qualitative

Feature IDs

putting (2) (1) (3) (8) (5) (6) (9) (7) (4)

grasping (1) (3) (2) (5) (7) (4) (8) (9) (6)

Table 2. The order feature activations for two SHUTs (from left

to right). (1) Height, (2) Surface Normal, (3) Material, (4) 2D

appearance, (5) 3D Shape, (6) Distance to any cube, (7) Distance

to cubes of certain categories, (8) Support relationship, (9) Object

size. The ID assignment is based on feature cost.

examples for predicting walking. GL COST achieves the

best result for walking with much lower cost, confirming

that we do not always need complex and costly features to

achieve the best performance. In Table 2, we show the or-

der of activation of features for some example SHUTs. For

example, support relationship feature appears earlier in the

ordering of putting compared to the ordering for grasping.

On the other hand, 3D Shape feature appears earlier in the

ordering of grasping.

8.3. Results for Unseen SHUTs (Zero-shot)

We evaluate how well our method (ZERO SHOT) gener-

alizes to unseen SHUTs and compare the results with base-

lines and ablations. We report results in Table 1 (bottom).

For this experiment, we remove one of the SHUTs from the

SHUT vocabulary and measure how well our method se-

lects features for the removed SHUT (which is now unseen)

using the remaining SHUTs.

Comparisons. RANDOM selects the features of one of the

randomly chosen remaining SHUTs to make predictions for

the unseen SHUT. The results reported in the table are the

average of 5 trials. NO TEXT is a variant of our method

that ignores the linguistic information for clustering. Note

that it is impossible to remove linguistic information from

the inference step since the only available information for

an unseen SHUT is its name. NO VISUAL is a variant of

2209

����������������������

����� �������� �����������

������������������������������

���� ��������� ����������

�����������������������

���� ��������� ����������������������
Figure 6. Example results of mapping unseen tasks to the SHUTs in the vocabulary.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

A
vg
.

A
vg
.<a
re
a
<u
n
d
e
r<
co
st
&A
P
<c
u
rv
e
s AllSeen&indep. AllSeen&joint AllUnseen

Figure 7. Task results. The x axis denotes the 15 defined tasks.

our method that ignores the visual similarity φf . ORACLE

BEST is an oracle zero shot method; it selects the features

of one of the remaining SHUTs which produces the best

results for the unseen SHUT.

Results. Table 1 shows the comparisons in terms of the

area under AP-cost curves. Our ZERO SHOT method out-

performs its variants, NO TEXT and NO VISUAL, and the

RANDOM baseline for most of the SHUTs. This shows the

importance of both visual and textual similarities in cluster-

ing and optimizing Eq. 2. A drop in performance for a few

SHUTs is due to the fact that we have used a fixed parame-

ter for the number of clusters for all the SHUTs, while using

different numbers of clusters for different SHUTs improve

results. For example, the performance for sitting improves

dramatically when the number of clusters is changed to 10.

The ORACLE CLUSTER row in Table 1 shows the results for

the case that an oracle chooses the best number of clusters

for each SHUT. Supplementary material includes the results

for different number of clusters.

It is interesting to observe that for some SHUTs e.g.,

finding book and finding cup, our ZERO SHOT method (Ta-

ble 1(bottom)) outperforms some of the supervised methods

in Table 1(top). We conjecture that this is due to lack of

training examples in the supervised setting. The zero-shot

method takes advantage of more training examples by clus-

tering SHUTs together.

8.4. Results for Tasks

We evaluate how well our method performs on tasks,

which can be decomposed into a set of SHUTs. We de-

sign a set of 15 tasks (such as “Put the box next to the cabi-

net” and “Sit on the sofa”) – the complete list can be found

in the supplementary material. In order to quantitatively

evaluate these tasks, we define them such that they can be

decomposed into the SHUTs in our vocabulary. The par-

ticipating SHUTs are extracted nouns and verbs appearing

in the task description, derived from the part-of-speech tags

(nouns, verbs, etc.) for the given description.

Quantitative Results. We experiment in three settings:

ALL SEEN-INDEP.: If each SHUT appearing in the task de-

scription can be aligned to a SHUT in our vocabulary S and

we train for each SHUT independently. ALL SEEN-JOINT:

We train for SHUTs in a task jointly i.e., the labels are the

union (logical OR) of the constituent SHUT labels. ALL

UNSEEN: If None of the SHUTs appearing in the task de-

scription are known. As before, for unseen SHUTs, we use

the features of the most similar cluster. Figure 7 reports

the average of area under AP-cost curve for all the SHUTs

in each task. It is interesting to observe that our zero shot

method for ALL UNSEEN performs reasonably well com-

pared to ALL SEEN cases. For example, the results for 8th
and 11th tasks, are about 80% of results of ALL SEEN -

INDEP., which is a supervised case.

Qualitative Examples. The above tasks are decomposed

into SHUTs in the vocabulary. However, for some tasks

(e.g., “Bring the book from the shelf’) some of the extracted

nouns or verbs (bring) do not exist in the vocabulary, and

hence the quantitative evaluation is not feasible. Figure 6

shows interesting qualitative examples of mappings using

our method; hold has been mapped to grasp or bring has

been mapped to walk. There are, however, some mistakes

in finding similarities – e.g., the verb open is mapped to the

cluster of find door and find window, while a better mapping

could be grasp.

9. Conclusion

We addressed the problem of task-driven recognition.

Collecting training data for all tasks is impractical, so we

decomposed the tasks into simpler unit tasks that can be

shared among tasks. We introduced a cost-sensitive method

for selecting appropriate features/representations for the

unit tasks. We showed that our method generalizes to un-

seen unit tasks which are not available in training data.

This work only addresses the problem of selecting fea-

tures and representations for task-driven recognition. Han-

dling other aspects of task-driven recognition (e.g., search-

ing over the models) will be our future work. Additionally,

we plan to extend the same framework for videos. Finally,

we plan to explore more sophisticated language processing

techniques [17, 25] to decompose task descriptions.

Acknowledgments: This research was partially supported

by ONR N00014-13-1-0720, NSF IIS-1338054, NSF IIS-

1352249, and Allen Distinguished Investigator Award.

2210

References

[1] A. Blum and P. Langley. Selection of relevant features and

examples in machine learning. AI, 1997. 2

[2] A. Borji, D. N. Sihite, and L. Itti. Learning of task-specific

visual attention. In CVPR, 2012. 2

[3] S. Büttcher and C. L. A. Clarke. Efficiency vs. effectiveness

in terabyte-scale information retrieval. In TREC, 2005. 4

[4] M. Chen, Z. Xu, K. Q. Weinberger, O. Chapelle, and D. Ke-

dem. Classifier cascade for minimizing feature evaluation

cost. In AISTATS, 2012. 2

[5] K. W. Church and P. Hanks. Word association norms, mutual

information and lexicography. In ACL, 1989. 4

[6] F. Duvallet, T. Kollar, and A. Stentz. Imitation learning for

natural language direction following through unknown envi-

ronments. In ICRA, 2013. 2

[7] M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classi-

fier: Zero-shot learning using purely textual descriptions. In

ICCV, 2013. 2

[8] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing

objects by their attributes. In CVPR, 2009. 2

[9] Y. Freund and R. E. Schapire. A decision-theoretic general-

ization of on-line learning and an application to boosting. In

EuroCOLT, 1995. 2

[10] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,

M. Ranzato, and T. Mikolov. Devise: A deep visual-semantic

embedding model. In NIPS, 2013. 2

[11] T. Gao and D. Koller. Active classification based on value of

classifier. In NIPS, 2011. 2

[12] W. S. Geisler and D. Kersten. Illusions, perception and

bayes. Nature Neuroscience, 2002. 2

[13] H. Grabner, J. Gall, and L. V. Gool. What makes a chair a

chair? In CVPR, 2011. 2

[14] A. Grubb and J. A. Bagnell. Speedboost: Anytime prediction

with uniform near-optimality. In AISTATS, 2012. 2

[15] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert. From 3d

scene geometry to human workspace. In CVPR, 2011. 2

[16] H. Hajishirzi, J. Hockenmaier, E. T. Mueller, and E. Amir.

Reasoning about robocup soccer narratives. In UAI, 2011. 2

[17] H. Hajishirzi, M. Rastegari, A. Farhadi, and J. K. Hod-

gins. Semantic understanding of professional soccer com-

mentaries. In UAI, 2012. 8

[18] W. Hwang, H. Hajishirzi, M. Ostendorf, and W. Wu. Align-

ing sentences from standard wikipedia to simple wikipedia.

In NAACL, 2015. 4

[19] K. Ikeuchi and M. Hebert. Task oriented vision. In IROS,

1991. 2

[20] D. Jayaraman, F. Sha, and K. Grauman. Decorrelating se-

mantic visual attributes by resisting the urge to share. In

CVPR, 2014. 2

[21] Y. Jiang, H. S. Koppula, and A. Saxena. Hallucinated hu-

mans as the hidden context for labeling 3d scenes. In CVPR,

2013. 2

[22] S. Karayev, M. Fritz, and T. Darrell. Anytime recognition of

objects and scenes. In CVPR, 2014. 2, 7

[23] M. G. Kendall. Rank Correlation Methods. 1970. 5

[24] D. Koller and M. Sahami. Toward optimal feature selection.

In ICML, 1996. 2

[25] R. Koncel-Kedziorski, H. Hajishirzi, and A. Farhadi. Se-

mantic understanding of professional soccer commentaries.

In EMNLP, 2014. 8

[26] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to

detect unseen object classes by between-class attribute trans-

fer. In CVPR, 2009. 2

[27] D. Lin, S. Fidler, and R. Urtasun. Holistic scene understand-

ing for 3d object detection with rgbd cameras. In ICCV,

2013. 5, 6

[28] J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with Efficient

Projections, 2009. 6

[29] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J.

Bethard, and D. McClosky. The Stanford CoreNLP natural

language processing toolkit. In ACL, 2014. 6

[30] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

estimation of word representations in vector space. In ICLR

Workshop, 2013. 4

[31] D. K. Misra, J. Sung, K. Lee, and A. Saxena. Tell me dave:

Context-sensitive grounding of natural language to mobile

manipulation instructions. In RSS, 2014. 2, 3

[32] V. Navalpakkam and L. Itti. Modeling the influence of task

on attention. Vision Research, 2005. 2

[33] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens,

A. Frome, G. S. Corrado, and J. Dean. Zero-shot learning

by convex combination of semantic embeddings. In ICLR,

2014. 2

[34] X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features

and algorithms. In CVPR, 2012. 5

[35] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

ECCV, 2012. 2, 5, 6

[36] R. Socher, M. Ganjoo, C. Manning, and A. Ng. Zero-shot

learning through cross-modal transfer. In NIPS, 2013. 2

[37] S. Song and J. Xiao. Sliding shapes for 3d object detection

in depth images. In ECCV, 2014. 5

[38] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee,

S. Teller, and N. Roy. Imitation learning for natural lan-

guage direction following through unknown environments.

In AAAI, 2011. 2

[39] R. H. Wurtz, M. E. Goldberg, and D. L. Robinson. Behav-

ioral modulation of visual responses in the monkey: Stimu-

lus selection for attention and movement. Progress in Psy-

chobiology and Physiological Psychology, 1980. 2

[40] Z. Xu, K. Weinberger, and O. Chapelle. The greedy miser:

Learning under test-time budgets. In ICML, 2012. 2, 7

[41] A. Yarbus. Eye Movements and Vision. 1967. 2

[42] M. Yuan and Y. Lin. Model selection and estimation in re-

gression with grouped variables. Journal of the Royal Statis-

tical Society, Series B, 2007. 3

[43] S. Zheng, M.-M. Cheng, J. Warrell, P. Sturgess, V. Vineet,

C. Rother, and P. H. Torr. Dense semantic image segmenta-

tion with objects and attributes. In CVPR, 2014. 5

[44] Y. Zhu, A. Fathi, and L. Fei-Fei. Reasoning about object

affordances in a knowledge base representation. In ECCV,

2014. 2

2211

