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Abstract— We present a task-parameterized probabilistic
model encoding movements in the form of virtual spring-
damper systems acting in multiple frames of reference. Each
candidate coordinate system observes a set of demonstrations
from its own perspective, by extracting an attractor path whose
variations depend on the relevance of the frame at each step of
the task. This information is exploited to generate new attractor
paths in new situations (new position and orientation of the
frames), with the predicted covariances used to estimate the
varying stiffness and damping of the spring-damper systems,
resulting in a minimal intervention control strategy. The ap-
proach is tested with a 7-DOFs Barrett WAM manipulator
whose movement and impedance behavior need to be modulated
in regard to the position and orientation of two external objects
varying during demonstration and reproduction.

I. INTRODUCTION

Two important challenges in learning by imitation are

to generalize an observed skill to new situations and to

generate movements that are natural, efficient and safe for

the surrounding users [1], [2]. We present an approach com-

bining a statistical mixture model with a dynamical system to

encode movements, exploiting the predicted task variations

and couplings to regulate the impedance of virtual spring-

damper systems acting in several frames of reference. The

model shares links with optimal feedback control strategies

in which deviations from an average trajectory are corrected

only when they interfere with task performance, such as in

the minimal intervention principle [3], [4].

A widespread approach for movement primitives learning

in robotics is to combine dynamical systems in sequence

and in parallel such as in the dynamic movement primitives

(DMP) model [5]. In DMP, a forcing term for each dimen-

sion of the movement modulates a spring-damper system

centered on a target, where the different forcing terms are

synchronized by another dynamical system acting as a decay

term. After converting an observed movement into forcing

term trajectories, and after setting a set of basis functions

sequentially activated through the decay term, the learning

task consists of individually approximating the forcing term

profiles.

Although the DMP formulation does not restrict the way

in which forcing terms are learned [5], most work relied

in practice on locally weighted regression to train the model

parameters with predefined basis functions (e.g., equal band-

width and equal interval spacing). The forcing terms in
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Fig. 1. Illustration of the challenges addressed in the paper. The first
challenge consists of generalizing the movement to new situations (new po-
sitions and orientations of the cones, plausibly moving during the execution
of the task). The second challenge consists of exploiting the redundancy
of the task to regulate the stiffness and damping gains of a virtual spring-
damper system actuating the robot. This is achieved by using the predicted
variability along the movement with a minimal intervention control strategy
based on linear quadratic regulators.

such dynamical systems can however be learned by other

learning strategies. Several regression techniques have been

developed for multidimensional inputs and unidimensional

output problems [6]. Here, representing movements as a

set of univariate outputs can be restrictive if we want to

exploit different sources of local correlations among inputs,

among outputs, and in-between input-output variables (e.g.,

to discover and re-use sensorimotor patterns or synergies in

the output variables). This paper explores the use of multi-

output regression in the context of proportional-derivative

control systems, by exploiting the predicted task regularities

modeled from consecutive demonstrations of a task.

We presented in [7] a probabilistic formulation of dynamic

movement primitives, by encoding the joint evolution of the

input (decay term) and the output (forcing terms) within

a multivariate Gaussian mixture model (GMM). Gaussian

mixture regression (GMR) [8] could then be used to retrieve

at each iteration the forcing terms corresponding to the

current input (either time-dependent or time-invariant). We

showed in [9] that such mixture model formulation could be

exploited to adapt the centers and covariances of a GMM

to the location and orientation of multiple objects, virtual

landmarks or coordinate systems. The model allows the au-

tomatic transitions between different coordinate systems that

are potentially relevant for the task. This task-parameterized

GMM probabilistically encodes the changing relevance of

candidate frames throughout the task. The combination of the

two approaches [7], [9] extends the generalization capability

of dynamic movement primitives, offering the possibility to

adapt movements with respect to multiple viapoints (which



can be in the middle of the movement), with local position,

orientation and shape modulation.

The contributions of the current paper are threefold: 1)

An improved formulation of the task-parameterized mixture

model [9], making its computation more efficient; 2) A

method to include end-effector orientation data in the model;

and 3) A minimal intervention control strategy using the

predicted covariances to reduce the control commands, by

adapting the tracking gains in regard to the current relevance

of the reference signal for the completion of the task.

Fig. 1 illustrates the tackled challenges. The proposed ap-

proach is detailed in Section II. The experiment is described

in Section III. Conclusion and future work are presented in

Section IV.

II. PROPOSED APPROACH

The complete procedure consists of a demonstration phase,

a learning phase and a reproduction phase. In the demonstra-

tion phase, a set of movements is recorded as position and

orientation of the robot end-effector (output) with associated

time stamp (input). The multiple demonstrations are aligned

in time with dynamic time warping. The position and orien-

tation of a set of candidate frames (related to objects in the

robot workspace) is also collected. In our application, the

orientation of the robot end-effector is represented with pan-

tilt angles, while the orientations of objects are represented

as rotation matrices whose columns form the orthogonal

basis of a frame of reference. The recorded movements are

projected in these frames (observation of the same movement

from multiple viewpoints). The input and output variables

are concatenated for each frame, forming a 3rd order tensor

dataset. Here, time is used as input variable, but a decay term,

the robot state or other external object position variables can

similarly be employed [7].

In the learning phase, a task-parameterized mixture model

is fit to the tensor training set by following an expectation-

maximization (EM) procedure (subsection II-A). The training

set can then be discarded. In the reproduction phase, for a sit-

uation involving new position and orientation of objects, the

learned model is first used to estimate a temporary Gaussian

mixture model (GMM), that is automatically updated if there

is a change in position/orientation of the objects. Depending

on the application, this temporary GMM either needs to

be updated at each time step (e.g., adapting movements

to moving targets), or for each new reproduction attempt

(planning approach). Gaussian mixture regression (GMR) is

then used to retrieve statistical information about the current

reference to track, corresponding to the equilibrium point

of a virtual spring-damper system (subsection II-B). This

information is finally used by a linear quadratic regulator to

form a minimal intervention controller (subsection II-C).

The source codes of the proposed approach are available at

http://programming-by-demonstration.org/ICRA2014/.

A. Task-parameterized model

The task parameters are represented as P coordinate sys-

tems, defined at time step n by {bn,j ,An,j}
P
j=1, representing

respectively the origin of the observer and a set of basis

vectors {e1, e2, ...} forming a transformation matrix A =
[e1e2 · · · ].

A movement ξ ∈ R
D×N is observed from these differ-

ent viewpoints, forming a third order tensor dataset X ∈
R

D×N×P , composed of P trajectory samples X(j)∈R
D×N

observed in P candidate frames, corresponding to matrices

composed of D-dimensional observations at N time steps.

In our application, D=6, corresponding to the aggregation

of time variable (1 dimension), Cartesian position attractors

(3 dimensions), and pan-tilt orientation attractors (2 dimen-

sions).

The parameters of a model with K components are defined

by {πi, {µ
(j)
i ,Σ

(j)
i }Pj=1}

K
i=1, where πi are the mixing coef-

ficients. µ
(j)
i and Σ

(j)
i are the mode-j center and covariance

matrix of the i-th Gaussian component.

Learning of the parameters is achieved with the con-

strained problem of maximizing the log-likelihood under

the constraints that the data in the different frames are

generated from the same source, resulting in an EM process

to iteratively update the model parameters until convergence.

E-step:

γn,i =

πi

P
∏

j=1

N
(

X(j)
n | µ

(j)
i ,Σ

(j)
i

)

∑K

k=1 πk

P
∏

j=1

N
(

X(j)
n | µ

(j)
k ,Σ

(j)
k

)

.

M-step:

πi =

∑N

n=1 γn,i
N

, µ
(j)
i =

∑N

n=1 γn,i X
(j)
n

∑N

n=1 γn,i
,

Σ
(j)
i =

∑N

n=1 γn,i (X
(j)
n − µ

(j)
i )(X(j)

n − µ
(j)
i )⊤

∑N

n=1 γn,i
. (1)

The model parameters are initialized with a k-means

procedure. Model selection is compatible with the techniques

employed in standard GMM (Bayesian information criterion

[10], Dirichlet process [11], etc.). In a standard GMM, the

role of EM is to estimate constant Gaussian parameters µi

and Σi. Here, EM is used to estimate task-parameterized

model parameters µ
(j)
i and Σ

(j)
i by incrementally modeling

the local importance of the candidate frames. In the proposed

experiment, the overall learning process typically takes 1 to

4 sec. The reproduction is much faster and can be computed

online (below 1 msec).

The above model is equivalent to the model presented

in [9], but is computationally more efficient. The E-step as

formulated above involves a product of probabilities (multi-

plication of scalars), while the E-step in [9] first computes

the intersection of Gaussians (products of Gaussians) before

evaluating the likelihoods. With the above formulation, there

is no need of explicitly providing the parameters An,j

and bn,j in the learning phase (this information is already

contained in the third order tensor dataset X , with the

demonstrations observed from different perspectives).



The learned model can then be used to reproduce move-

ments in other situations (for new positions and orientations

of candidate frames). The model first retrieves at each

time step n a GMM by computing a product of linearly

transformed Gaussians

N (µn,i,Σn,i) ∝
P
∏

j=1

N
(

An,jµ
(j)
i +bn,j , An,jΣ

(j)
i A⊤

n,j

)

,

⇔ Σn,i =
(

P
∑

j=1

(An,jΣ
(j)
i A⊤

n,j)
−1)−1

, (2)

µn,i = Σn,i

P
∑

j=1

(An,jΣ
(j)
i A⊤

n,j)
−1(An,jµ

(j)
i +bn,j).

B. Gaussian mixture regression

Gaussian mixture regression (GMR) is used to generate

the movements [8], [12]. GMR can be viewed as a trade-

off between a global and local approach in the sense that

the placement and spread of the basis functions are learned,

together with their response, as a soft partitioning problem

through expectation-maximization (EM),1 while the predic-

tion is a weighted superposition of locally linear systems.

The prediction provides information about the local varia-

tions allowed by the task and about the correlations among

the different output terms, thus allowing the extraction of

local coordination patterns. It allows the robot to generate

natural movements with a co-variability following the es-

sential characteristics of the task, which can be exploited

for stochastic exploration [13] or for natural interaction in

human-robot collaboration [14].

In GMR, the underlying representation as mixture of

Gaussians is independent from the training algorithm used

to estimate the model parameters. Various methods can be

employed depending on the application requirements, such

as expectation-maximization (EM) [15], online EM [16]

or spectral learning [17]. If the application requires the

encoding of high-dimension data from few observations,

subspace learning techniques such as mixtures of factor

analyzers (MFA) [18] can be used to locally reduce the

dimensionality without modifying the representation (full

covariances can be reconstructed from the MFA parameters).

Common synergy information can be shared among the

Gaussians with parsimonious GMM [19] (e.g., to re-use and

adapt previously discovered coordination patterns).

The superscripts I and O will be further used to describe

the dimensions that span for input and output variables (for

vectors and matrices). For the movement data, at iteration

n, ξI

n and ξO

n represent the input and output variables, while

ξn represents the same datapoint in a concatenated form. For

trajectory encoding in task space, I corresponds to the time

input dimension, and O corresponds to the output dimensions

describing a path in task space (position and orientation).

1Competition/collaboration arise due to the weighting term γn,i in Eq.
(1) summing over the influence of the other Gaussian components.

With this notation, a block decomposition of the datapoints

ξn, vectors µn,i and matrices Σn,i can be written as

ξn =

[

ξI

n

ξO

n

]

, µn,i =

[

µI

n,i

µO

n,i

]

, Σn,i =

[

Σ
I

n,i Σ
IO

n,i

Σ
OI

n,iΣ
O

n,i

]

.

By using the temporary GMM parameters computed in

Eq. (2), GMR relies on the joint distribution P(ξI

n, ξ
O

n )
to estimate P(ξO

n |ξ
I

n). At each reproduction step n, this

conditional probability is estimated as an output distribution

N (ξ̂O

n , Σ̂
O

n ), that is also Gaussian, with parameters

ξ̂O

n =
∑

i

hn,i(ξ
I

n)
[

µO

n,i +Σ
OI

n,iΣ
I

n,i
−1

(ξI

n − µI

n,i)
]

,

Σ̂
O

n =
∑

i

h2
n,i(ξ

I

n)
[

Σ
O

n,i −Σ
OI

n,iΣ
I

n,i
−1

Σ
IO

n,i

]

, (3)

and activation functions hn,i defined as

hn,i(ξ
I

n) =
πi N (ξI

n| µ
I

n,i,Σ
I

n,i)
∑K

k=1 πk N (ξI

n| µ
I

n,k,Σ
I

n,k)
.

The estimated output in Eq. (3) encapsulates variation and

correlation information in the form of a probabilistic flow

tube [20], continuously differentiable in time.

C. Minimal intervention controller

With the above method, a reference trajectory is estimated

as a full distribution N (ξ̂O

n , Σ̂
O

n ) varying at each time step

n given by Eq. (3). Similarly as the solution proposed by

Medina et al. in the context of risk-sensitive control for hap-

tic assistance [21], the predicted variability can be exploited

to form a minimal intervention controller (in task space or

in joint space). The procedure will first be described for a

controller in task space, where an acceleration command

un = K̂P

n(x̂n − xn)− K̂V

nẋn (4)

is used to control the robot, with x̂n estimated by GMR in

Eq. (3).

K̂P

n and K̂V

n are full stiffness and damping matrices

estimated by a linear quadratic regulator (LQR) with time-

varying weights. For a finite horizon LQR, this is achieved

by minimizing the cost function

c(1) =
T
∑

n=1

(x̂n−xn)
⊤Qn(x̂n−xn) + u⊤

nR un, (5)

subject to the constraints of a double integrator system.

The solution can be computed by backward integration of

a Riccati ordinary differential equation with varying full

weighting matrix Qn = Σ̂
x

n

−1
estimated with Eq. (3). It

provides a time-varying feedback control law in the form

of Eq. (4) with full stiffness and damping matrices K̂P

n and

K̂V

n.

To solve the above minimization problem, a boundary

condition needs to be set on the final feedback term, which

is set to zero in our experiment. Namely, we assume that

the task is fulfilled at the end of the movement and that the

robot can become compliant again.



(a) Reproductions for the same 6 situations as in the training set. (b) New reproductions with test set.

Fig. 2. (a) Reconstruction results from the model parameters. The dark cones are the candidate frames (the frames that were part of the training set
are shown in lighter color). The ellipsoids represent the temporary GMM with Gaussians N (µn,i,Σn,i) computed in Eq. (2). The light and dark lines
represent respectively demonstrations and reproductions. (b) Reproductions of movements for the 4 new situations that were not part of the training set.

At iteration n, the backward recursion to minimize Eq.

(5) requires the estimation of Σ̂x

t for t ∈ {n, n+1, ... , T}. If

the position and orientation of external objects are changing

over time, the predicted trajectory and associated covariances

need to be recomputed during the movement, providing a

new recursion path for the Riccati equation.

In some situations, it might be computationally expen-

sive to recompute at each iteration n a prediction on the

remaining movement. An approximation can in this case be

locally computed by considering an infinite horizon LQR

formulation to estimate a feedback term at iteration n by

considering only the current estimate Σ̂
x

n. This corresponds

to the estimation of a feedback controller that does not know

in advance whether the precision at which it should track a

target will vary. The corresponding cost function at iteration

n corresponds to

c(2)n =
∞
∑

t=n

(x̂n−xt)
⊤Qn(x̂n−xt) + u⊤

tR ut, ∀n∈{1,..., T}

(6)

which can be solved iteratively through the algebraic Riccati

equation, providing a feedback controller in the form of Eq.

(4) with full stiffness and damping matrices K̂P

n and K̂V

n.

In [22], a similar feedback controller was heuristically

estimated by computing a stiffness matrix at each iteration n

as proportional to the estimated precision matrix Qn=Σ̂
x

n

−1

of the current point to be tracked. The LQR approaches

minimizing Eqs (5) and (6) result in a controller sharing

similar characteristics, but it provides a formal way of

adapting the impedance parameters.

The approach described above can similarly be applied in

configuration space by computing a reference trajectory in

joint space with inverse kinematics, and locally projecting the

covariance information through the Jacobian at the current

configuration. This variant will be used in the experiment to

reduce the control commands at the joints level.

III. EXPERIMENT

A torque-controlled Barrett WAM 7 DOFs manipulator

is used in the experiment. The aim of the task is to move a

conic peg from one place to another, by moving the peg from

one extruded cone to an other extruded cone.2 The task is

recorded 10 times with different positions and orientations

of the holes, by physically moving the robot through the

task while actively compensating for the gravity (kinesthetic

teaching process). While demonstrating the task, the robot

records the position and orientation of the peg attached to

its end-effector. The position and orientation of the extruded

cones are pre-recorded by bringing the robot to these two

candidate frames prior to the demonstration of the movement.

For the first 8 recordings, only the second cone is moved

from one demonstration to the other. For the remaining 2

recordings, both cones are moved to new poses.

The first 6 recordings are used as training set. The last

4 recordings are used as test set, in order to compare

the generalized movements reproduced by the robot with

the recordings of the user achieving the task in the same

situation. Thus, for two reproduction attempts, the robot will

not only need to generalize the movement to new ending

frames (characterized by position and orientation), but it will

also need to adapt the movement to new starting frames

(even though only the same starting frame was observed

in the training phase). A task-parameterized model with 3

components is used to learn the movement (selected by

Bayesian information criterion [10]).

In this experiment, ξn and {bn,j ,An,j}
P
j=1 are defined as

ξn=





tn
xp
n

xr
n





}

ξI

n
}

ξO

n

, bn,j=





0
pn,j

rn,j



,An,j=





1 0 0

0 Rn,j 0

0 0 I



, (7)

2We focus here on the transportation aspect, i.e., the peg is smaller than
the extruded cones and no insertion force is considered.



where tn is a time step, xp
n is a 3-dimensional Cartesian

position variable, and xr
n is a 2-dimensional orientation

variable (pan-tilt angles). pn,j denotes the 3-dimensional

Cartesian position of frame j. rn,j and Rn,j both represent

the orientations of frame j, expressed respectively as pan-

tilt angles and rotation matrices. 0 and I are zeros matri-

ces/vectors and identity matrices of appropriate size.

Note that this choice of coordinate system remains valid

for a wide range of tasks. It corresponds to the situation in

which time is not modulated by the frames, and in which

pan-tilt data should be shifted with rn,j to obtain a relative

orientation (no additional rotation).

Currently, this parameterization of the candidate frames is

left to the experimenter. A potential solution to omit this step

it is to pre-select many candidate frames and let the system

discover which are the most relevant (at the expense of

requiring more demonstrations to obtain sufficient statistical

information to learn the model).

The optimal control part is implemented in configuration

space, with the aim of reducing the acceleration control

commands at the joint angles level. for this control strategy,

the only parameter left to the experimenter is the weight

matrix R in Eqs (5) and (6). It is set in our experiment

to R = I (identity matrix). Alternatively, another strategy

would be to set Rn in an online manner to apply the local

minimal intervention selectively to the joints (e.g., to cope

with temporary damaged, unpowered or weak motors, or

to preserve some degrees of freedom for additional task

constraints).

In order to analyze the effects of the LQR methods, the re-

productions are also achieved with a proportional-derivative

controller of constant diagonal stiffness and damping gains,

as in Eq. (4), with a stiffness empirically tuned by the

experimenter (K̂P

n = I · 100), and a damping adjusted to

obtain a damping ratio of 1/
√
2.

A. Experimental results

Fig. 2 shows the generalization capability of the approach

(with a controller of constant gains). We can see that smooth

movements are reproduced and that the system can easily

extrapolate the task to new situations that are far from the

demonstrations.

Fig. 3 presents the results when combining the probabilis-

tic estimation with an optimal control strategy. The results

show only little difference in the movements retrieved by

the two methods. We can see that the two LQR approaches

with finite and infinite horizons, minimizing costs in Eqs

(5) and (6), efficiently exploit the predicted task redundancy

(red flow tube). This is achieved according to the predicted

precision requirements varying along the movement, by priv-

ileging control commands oriented towards the most relevant

directions of the task (corrections in the most invariant

directions).

Fig. 4-(a-b) presents the averages and standard deviations

of the cumulated accelerations and jerks over the four

reproduction attempts in Fig. 3. Compared to a proportional-

derivative controller with constant gains, the LQR methods

User recording (for comparison)

Spring−damper with constant gains

Finite horizon LQR

Infinite horizon LQR

Fig. 3. Reproduction results for the 4 new situations with minimal
intervention control (green and orange lines). For comparison, the user
recordings (not provided in the training set) and the reproductions with
constant gains are also depicted (gray and red lines). The transparent flow

tube in red depicts the series of Gaussians N (ξ̂xn, Σ̂
x

n) computed in Eq.
(3), estimated at each time step n. We can see that the volume is larger in
the middle of the motion than at the beginning and at the end.

0

1000

2000

3000

4000

P
n
|
u

n
|

(a)

0

1

2

3

4

x 10
4

P
n
|
_u
n
|

(b)

0 0.5 1 1.5 2 2.5
0

20

40

60

80

t

|
u

n
|

(c)

0 0.5 1 1.5 2 2.5
0

5

10
x 10

9

t

|
K

P n
|

(d)

Spring−damper with constant gains Finite horizon LQR Infinite horizon LQR

Fig. 4. Effects of the minimal intervention controller.

with finite and infinite horizons could, on average, reduce

the cumulated accelerations in joint space by 36% and 37%.

The average jerks in joint space were respectively reduced

by 55% and 49%. Fig. 4-(c) shows the evolution of the joint

accelerations for the first reproduction attempt.

Fig. 4-(d) depicts the evolution of the stiffness matrix

determinant for the first reproduction attempt. The profile

for the controller with constant gains is out of the range and

not depicted (constant determinant of 1014). We can observe

that both LQR controllers first require to guide the peg out

of the first cone and can then reduce the gains in the phase

of the transportation that does not require high precision.

When reaching the second cone, the stiffness increases to



guide the robot toward the cone. When the peg reaches its

final destination, the solution with finite horizon returns to

a fully compliant mode (desired final feedback terms set by

the experimenter), while the solution with infinite horizon

regulates the movement based on the latest estimate of the

required precision QT .

Qualitatively, the difference of behaviors between the two

versions of LQR is in this experiment very small (see

also accompanying video3). However, this difference could

increase for other types of movements in which we can

expect LQR with finite horizon to provide a better estimate,

due to the consideration of the varying precision in the

remaining part of the movement during the adjustment of

the gains.

For tasks in which the candidate frames can change be-

tween two consecutive reproduction trials but will not change

during the execution of the task, both LQR approaches can

be computed with an iteration time slightly below 1 msec on

a standard laptop. For coordinate systems moving during the

execution of the task, the infinite horizon LQR conserves the

same computation time, while the finite horizon LQR varies

from 0.1 sec to 1 msec depending on the remaining part of

the motion to be completed.

IV. CONCLUSION AND FUTURE WORK

We presented an approach capable of adapting the cen-

ters and covariance matrices of a GMM to external task

parameters represented as candidate frames of reference.

This task-parameterized model is applied in the context of

learning from demonstration to encode and generalize a

demonstrated task to new situations. We showed that the

approach could be combined with a virtual spring-damper

system with variable impedance gains. For new position

and orientation of candidate frames, the system generates

a flow tube predicting the path of the virtual spring and

its variations. The covariance information is exploited in

an optimal control strategy to locally reduce the control

commands according to the precision required at each step

of the task. Two different minimization strategies were

considered to estimate varying full stiffness and damping

matrices for the regulation of the movement, depending on

the (non-)availability of the predicted covariances over the

whole movement.

Our future work aims at exploiting the current model

within a context-based inverse optimal control (IOC) ap-

proach developed in [23]. After providing candidate rewards

such as minimizing torques, torque-changes, target tracking

errors, etc, IOC could first be used to determine the parts of

the tasks in which these costs are prominent. The variability

of the task could then be exploited in different manners

depending on the context and on the most salient objective

functions extracted during demonstrations.
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