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Fog computing (FC) is an emerging paradigm that extends computation, communication, and storage facilities towards the edge
of a network. In this heterogeneous and distributed environment, resource allocation is very important. Hence, scheduling will
be a challenge to increase productivity and allocate resources appropriately to the tasks. We schedule tasks in fog computing
devices based on classi
cation data mining technique. A key contribution is that a novel classi
cation mining algorithm I-Apriori
is proposed based on the Apriori algorithm. Another contribution is that we propose a novel task scheduling model and a TSFC
(Task Scheduling in Fog Computing) algorithm based on the I-Apriori algorithm. Association rules generated by the I-Apriori
algorithm are combined with the minimum completion time of every task in the task set. Furthermore, the task with the minimum
completion time is selected to be executed at the fog node with theminimum completion time.We 
nally evaluate the performance
of I-Apriori and TSFC algorithm through experimental simulations. 	e experimental results show that TSFC algorithm has better
performance on reducing the total execution time of tasks and average waiting time.

1. Introduction

Many applications, such as health monitoring application
or intelligent tra�c control application may need to receive
feedback in a short amount of time, and the latency due to
sending data to the cloud and then returning the response
from the cloud to the operator of these programs has bad
e�ects [1]. So, in 2012, Bonomi presented a novel concept
called the fog computing [2]. Fog computing consists of
a large number of geographically distributed fog servers
which can be cellular base stations, access points, gateways,
switches, and routers with limited capabilities, as compared
to specialized computing facilities such as data centers [3–
5]. In fog computing, the massive data generated by di�erent
kinds of Internet of 	ings (IoT) [6, 7] devices can be
processed at the network edge instead of transmitting it to the
centralized cloud infrastructure due to bandwidth and energy
consumption concerns [8]. Fog computing has become a new
computing model in providing local computing resources
and storage for end-users rather than cloud computing.

	e contradiction [9, 10] between computation intensive
applications and resource limited devices becomes the bot-
tleneck for providing satisfactory quality of experience. 	is
contradiction needs to be solved by task scheduling in fog
computing environment. Task scheduling is widely applied
in distributed computing systems and the cloud computing
environment [11, 12]. Task scheduling in fog computing is to
allocate appropriate resources for application tasks. How to
select appropriate resources for the application task to meet
the minimum completion time, to satisfy the users’ quality of
service (QoS) requirements, to improve the fog computing
throughput, and to achieve the load balancing scheduling
can be de
ned as task scheduling problem in fog computing
environment. 	erefore, it is of great practical signi
cance to
achieve e�cient resource utilization and higher performance
in the fog computing environment.

In fog computing environment, task scheduling depends
on whether there are dependencies between the tasks that are
scheduled. It can be divided into independent task scheduling
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and related task scheduling. Related task scheduling is o�en
referred to as dependent task scheduling [13]. 	ere is no
dependency relationship and data communication among
tasks in independent task scheduling [14, 15]. Dependent task
scheduling has some dependence and there is data communi-
cation among tasks. A typical task scheduling model is built
on the basis of graphs, usually called task graphs. 	e most
common task graph is Directed Acyclic Graph (DAG), so the
dependent task scheduling is also called DAG scheduling.

Before tasks are scheduled, tasks have two ways to arrive.
One is the batch mode. When all tasks arrive, they are allo-
cated to the corresponding fog nodes through a scheduling
algorithm. Another is the online mode. 	e arrival time
of each task is random and a task is scheduled to a fog
node as soon as it arrives at the RMS (resource management
system). Task scheduling of fog nodes has been proved to
be a NP-complete problem [16]. 	e research work of task
scheduling is a very important aspect and has been widely
and deeply studied by researchers [17]. At present, although
many research achievements have been obtained for task
scheduling, researchers are still continuing to explore and
study [18]. Research of scheduling tasks in fog computing
environment has not been well-established yet due to the
lack of fog architecture that manages and allocates resources
e�ciently. Our research also has a positive in�uence on some
optimization problems [19–22].

	e rest of the paper is organized as follows. In Section 2
we describe the related work of the research. In Section 3,
we introduce the classi
cation mining algorithm and an
improved I-Apriori algorithm. In Section 4, we introduce
a task scheduling model, the scheduling algorithm, and
the scheduling process in fog computing. 	e analysis of
the experimental process and experimental results of task
scheduling algorithm are given in Section 5, followed by our
conclusion made in Section 6.

2. Related Work

2.1. Related Work of Classi�cation Mining. Classi
cation
mining algorithms are widely used in text, image, video,
tra�c, medical, big data, and other application scenarios. A
pipelined architecture for the implementation of axis parallel
binary DTC was proposed in [23] that dramatically improves
the execution time of the algorithm while consuming min-
imal resources in terms of area. Reference [24] proposed a
fast and accurate data classi
cation approach which can learn
classi
cation rules from a possibly small set of records that
are already classi
ed. 	e proposed approach is based on the
framework of the so-called Logical Analysis of Data (LAD).
	e accuracy and stability of the proposed algorithm are
better than that of the standard LAD algorithm. Sequence
classi
cation was introduced in [25] using rules composed of
interesting patterns found in a dataset of labelled sequences
and accompanying class labels.	eymeasure the interesting-
ness of a pattern in a given class of sequences by combining
the cohesion and the support of the pattern. 	ey use the dis-
covered patterns to generate con
dent classi
cation rules and
present twodi�erentways of building a classi
er.	epatterns
that the algorithm discovers represent the sequences well and

are proved to be more e�ective for the classi
cation tasks
than other machine learning algorithms. A Bayesian classi
-
cation approach for automatic text categorization using class-
speci
c features was proposed in [26]. Unlike conventional
text categorization approaches, the method selects a speci
c
feature subset for each class. One noticeable signi
cance of
the algorithm is that most feature selection criteria such as
Information Gain (IG) and Maximum Discrimination (MD)
can be easily incorporated into the algorithm. Compared
with other algorithms, it demonstrates that the algorithm is
e�ective and further indicates its wide potential applications
in data mining. Furthermore, we will apply this algorithm to
other areas, such as oblivious RAM [27, 28], string mapping
[29], and match problem [30].

2.2. RelatedWork of Independent Task Scheduling. For a large
scale environment, e.g., cloud computing system, there had
been also numerous scheduling approaches proposed with
the goal of achieving the better task execution time for
cloud resources [31]. Independent task scheduling algorithms
mainly include MCT algorithm [32], MET algorithm [32],
MIN-MIN algorithm [33], MAX-MIN algorithm [33], PMM
algorithm, and genetic algorithm. 	e MCT (Minimum
Completion Time) algorithm assigns each task in any order
to the processor core that causes the task to be 
nished at the
earliest time. It makes some tasks unable to be allocated to
the fastest processor core. 	e MET (Minimum Execution
Time) algorithm assigns each task to a processor core in
any order that minimizes the execution time of the task.
Contrary to the MCT algorithm, the MET algorithm does
not consider the processor core’s ready time, which may
lead to serious load imbalance across processor cores. 	e
MIN-MIN algorithm calculates the minimum completion
time of all unscheduled tasks 
rstly, and then selects the
task with the minimum completion time and assigns the
task to the processor core that can minimize its completion
time, repeating the process many times until all tasks are
scheduled. 	e same as the MCT algorithm, the MIN-MIN
algorithm is also based on the minimum completion time.
	e MIN-MIN algorithm considers all tasks that are not
scheduled, but the MCT algorithm considers only one task at
a time.	eMAX-MIN algorithm is similar to the MIN-MIN
algorithm, which also calculates minimum completion time
without scheduled tasks 
rstly and then selects the task with
the largest minimum completion time and assigns the task
to the processor core with the minimum completion time.
	ePMM(Priority MIN-MIN) algorithm is an improvement
of the MIN-MIN algorithm. It does not choose the smallest
task with the earliest complete time, but it selects � tasks with
smaller earliest completion time and schedules the task with
highest priority in the � tasks. 	e PMM algorithm takes the
standard deviation of the task on each processor core as the
priority of the task. 	e higher the standard deviation, the
higher the task priority.

On one hand, literature of existing classi
cation algo-
rithms applies decision tree algorithm and Bayes classi
ca-
tion algorithm to various application scenarios. On the other
hand, combined with cloud computing, distributed com-
puting, big data, grammatical evolution [34, 35], and other
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technologies, researchers are focused on how to optimize and
improve the performance of classi
cation algorithms. In task
scheduling, few researchers apply the classi
cation mining
algorithm to schedule tasks.

3. Classification Data Mining

3.1. Overview. Classi
cation mining algorithm [36] is the
key technology of data mining. As a supervised learning
algorithm, it is based on existing training data sets to set
up a model to predict the categories of new data sets. It
can 
nd classi
cation rules and predict new data types
through analysis of the training data set. A classi
cation
mining algorithm consists of two stages which are building
the model phase and using the model phase. In the 
rst
stage, it analyzes the existing training data set and builds a
corresponding model and then generates some classi
cation
rules. In the second stage, it classi
es new data sets based on
the constructed classi
cation model.

Major classi
cation mining algorithms include random
decision forests [37], decision tree algorithm, Bayes algo-
rithm, genetic algorithm, arti
cial neural network algorithm
[34], and classi
cation algorithm based on association rules.
Classi
cation algorithm is widely used in wireless sensor
networks, network intrusion detection, call logs, and risk
assessment in banks. In this paper, the classi
cation algo-
rithm based on association rules is introduced and the
Apriori algorithm is improved and evaluated.

3.2.MiningModel. Apriori [35, 38, 39] is a classical classi
ca-
tion algorithm based on association rules (CBA). It generates
frequent itemsets through an iterative process. 	e Apriori
algorithm includes two steps. First of all, it 
nds frequent
itemsets from a known transaction in which the frequency is
greater than or equal tominimum support threshold through
pruning and connection operation of frequent itemsets.
	en, it generates association rules based on the frequent
itemsets and minimum con
dence degree.

	e improved association rule mining model is imple-
mented in two steps. (1) Firstly, the transaction database
� is scanned to store the transaction identi
cation TID for
each itemset, and the candidate 1-itemset �1 is generated.
Delete the itemsets from�1 which are less than theminimum
support threshold, and get the frequent 1-itemsets of �1. (2)
Loop execution of the process is done until ��-1 is empty.
Firstly, let ��-1 and ��-1 be joined to generate candidate
itemset ��. Secondly, a new transaction identi
er list can be
obtained through the intersection of the transaction identi
er
list, and the count of the itemsets can be obtained directly
through ��. 	irdly, comparing the count of �� with the
minimum support thresholdmin sup, reserve itemsets which
are more than or equal to minimum support threshold
min sup, and delete the rest of itemsets; then the 
nal frequent
itemset � is generated.

3.3. Improved Association RuleMining Algorithm. In the pro-
cess of producing frequent itemsets in the Apriori algorithm,
there are two factors that a�ect the performance of the
algorithm. Firstly, it needs to scan the original transaction

1 Input: transaction database D;min sup
2 Output: frequent itemsets L
3 C1=
nd candidate 1-itemsets(D);
4 int count=the number of TID in D;
5 for each itemset s of C1{
6 s.item-set=s;
7 s.count=count of s in C1;
8 s.tid-list=the set of all TID includes s;
9 if s.count<min sup∗count
10 delete s in C1;
11 }
12 L1=C1 ;
13 for (k=2; ��-1 ̸= 0; k++){
14 for each itemset l1 in ��-1{
15 for each itemset l2 in ��-1{
16 c=l1⋈l2;
17 c.tid-list= l1.tid-list∧l2.tid-list;
18 c.count=count TID in c.tid-list;
19 }
20 }
21 if c.count>=min sup∗count
22 add c to �k;
23 Lk=Ck ;
24 }

Algorithm 1: I-Apriori algorithm.

database every time to generate the frequent k-itemsets, so
the number of scanned transaction databases is too much,
which can result in the decline of algorithm performance.
Secondly, in the process of tree cutting, the algorithm needs
to scan candidate k-1 sets to get candidate itemset. 	erefore,
the algorithm scans itemsets many times; it also leads to
the decline of algorithm performance. In view of the above
problems, we improve the process of frequent itemsets in the
algorithm, and an improved I-Apriori algorithm is proposed
based on the Apriori algorithm. 	e I-Apriori algorithm is
described as follows in Algorithm 1.

In the I-Apriori algorithm, during the process of generat-
ing the candidate itemset�� every time, except for storing the
itemset and the count of support degree, it is more important
to store the transaction identi
er list attribute Tid-list. A�er
completing the connection operation between itemsets, the
algorithm can get the list of transaction identi
ers and the
count of itemsets directly through the attribute Tid-list and
does not need to scan the transaction database again. Based
on the above reasons, I-Apriori algorithm can improve the
performance e�ectively.

3.4. Algorithm Evaluation. 	e e�ciency of Apriori algo-
rithm and I-Apriori algorithm is evaluated based on time
complexity and algorithm execution time.

3.4.1. Time Complexity. Suppose the number of transactions
and items in the transaction database � is � and m, and the
iteration times of frequent itemsets in the algorithm is �. 	e
time complexity of classical Apriori algorithm is composed
of three layers nested for loops, apriori gen subroutine and
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Figure 1: Comparison of execution time.

has infrequent subset subroutine called apriori gen subrou-
tine in the main algorithm. It is easy to 
nd that the time

complexity of Apriori algorithm is O(�4 ∗ �∗n). According
to the I-Apriori algorithm shown in Algorithm 1, because
only one time is needed to scan the transaction database D,

the time complexity of I-Apriori algorithm is O(m+n+�3).
Obviously, O(m+n+�3) is better than O(�4 ∗ �∗n). 	e
greater the transaction database D, the more the number of
items, the more iterations, and the higher e�ciency of the I-
Apriori algorithm.

3.4.2. Experimental Analysis. 	e Java language is used
to realize the classic Apriori algorithm and the I-Apriori
algorithm, respectively. 	e hardware environment is Intel
2.5GHz CPU, 4GB memory, and the operation system is
Windows 7. We generated corresponding frequent itemsets
for the transaction database.

When the number of transactions in the transaction
database is 200 and the number of items is 20, the execution
time needed for the two algorithms to generate frequent
itemsets under di�erent minimum support degree (0.4∼0.8)
is shown in Figure 1. When the number of items in the
transaction database is 20 and the minimum support degree
is 0.4 and 0.6 (several experiments show that the execution
time of the algorithms is longer when the minimum support
degree is 0.4, while the algorithm has a shorter execution
time when the minimum support degree is 0.6; therefore,
0.4 and 0.6 are chosen to compare the execution time of
the two algorithms under di�erent transaction numbers), the
execution time needed for the two algorithms to generate
frequent itemsets under di�erent number of transactions
(50∼400) is shown in Figure 2.

From Figure 1, when the minimum support degree of
Apriori algorithm and I-Apriori algorithm is small, the
execution time of generating frequent itemsets of I-Apriori
algorithm is smaller than that of Apriori algorithm. With the

increase of minimum support degree, there is little di�erence
in execution time of the two algorithms. When the minimum
support degree is large, the execution time of generating
frequent itemsets of I-Apriori algorithm is larger than that
of Apriori algorithm. When the minimum support degree is
small and the number of iterations is greater, the e�ciency
of the I-Apriori algorithm is higher. When the minimum
support degree is large and the number of iterations is smaller,
the e�ciency of the Apriori algorithm is higher. 	erefore,
the I-Apriori algorithm is suitable for smaller minimum
support degree and more iterations in classi
cation mining.
When the minimum support degree is small, the number
of iterations of classi
cation mining will increase. 	e I-
Apriori algorithm will reduce the times of scanning the
transaction database signi
cantly, and the execution time of
the algorithm is shorter. On the contrary, when theminimum
support degree is large, the number of iterations will be
decreased. Although the I-Apriori algorithm also can reduce
the times of scanning the transaction database, I-Apriori
algorithm has no advantage over Apriori algorithm.

In the case of smaller minimum support degree in
Figure 3, when the number of transactions is smaller, the
execution time of generating frequent itemsets of the Apriori
algorithm is smaller than that of the I-Apriori algorithm.
With the increase of the number of transactions, the e�-
ciency of I-Apriori algorithm is obviously higher than that
of Apriori algorithm. In the case of larger minimum support
degree in Figure 4, the execution time of generating frequent
itemsets of the Apriori algorithm is larger than that of
the I-Apriori algorithm when the number of transactions
is small. With the increase of the number of transactions,
the Apriori algorithm is more e�cient than the I-Apriori
algorithm. Generally speaking, the I-Apriori algorithm is
suitable for smallminimum support degree and large number
of transactions when generating frequent itemsets.

4. Task Scheduling of Fog Computing

Task scheduling of fog computing is to schedule tasks to fog
nodes with di�erent computing powers, and arrange their
execution order reasonably, so that the total execution time
is shortest. All notations utilized in the paper are listed in
Table 1.

4.1. Fog Computing System Architecture. Fog computing sys-
tem [40] has three tiers in a hierarchy network, as represented
in Figure 3. 	e front-end tier consists of IoT devices, which
serve as user interfaces that send requests fromusers viaWiFi
access points or Internet. IoT devices are always subject to
strict constraints on their resource such as CPU, memory,
and, when run, a very complex application. 	e fog tier,
which is formed by a set of near-end fog nodes, receives
and processes part of a workload of users’ request. 	e
fog tier is generally deployed near IOT terminals, which
provides limited computing resources for users. Users can
access the computing resources in the fog tier directly, so it
can avoid additional communication delays. 	e cloud tier
consists of multiple servers or cloud nodes.	e remote cloud
can provide abundant computing resources, but it is located
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Figure 2: (a) Comparison of execution time under the minimum support degree 0.4. (b) Comparison of execution time under the minimum
support degree 0.6.
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Figure 3: Fog computing system architecture.

physically far from the users and the transmission delay is
large.

4.2. Task Scheduling Model. In order to implement the task
scheduling of fog computing e�ectively, the classi
cation
algorithm is integrated into the task scheduling process of
fog computing. Figure 4 presents the task scheduling model
of fog computing. In order to realize an e�ective scheduling
process between the fog node set � and the task set T, the
scheduling module consists of two algorithms, i.e., I-Apriori
algorithm and TSFC (Task Scheduling in Fog Computing)

fog node set N

I-Apriori

association rules

TSFC

scheduling
relational R

transaction set D

task set T

...

...

t0

tn−1

P0

P1

Pm−1

Figure 4: Task scheduling model of fog computing.

algorithm. Firstly, based on the scheduling transaction set D,
association rules of the node set and the task set are generated
by the I-Apriori algorithm. Secondly, the association rules
are used as the input of TSFC algorithm to get the task
scheduling relationship between the fog node set and the task
set. Finally, the task scheduling relationship � is inserted into
the scheduling transaction set� to provide input data for the
next task scheduling.

4.3. TSFC Scheduling Algorithm. Based on the I-Apriori
algorithm, TSFC algorithm is designed and is shown in
Algorithm 2. 	e basic idea of the algorithm is to schedule
tasks in the task scheduling relational table with higher
priority. Set the completion time of these tasks in the table
to a larger value, and then select the fog node with the
minimum completion time. Execute a loop from the rest of
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Table 1: Summary of the notations.

var de�nition

TS(k) TS contains k task sets that needs to be scheduled

T T={t1,t2,⋅ ⋅ ⋅ ,tn} is a set of n tasks. In this set, all of the tasks in T are independent tasks

N N={P0, P1, . . ., ��-1} denotes the set of processors
D An edge ���∈D denotes a link between processor Pi and Pj

b��� the bandwidth between processor Pi and Pj

P P=(N,D) denotes the topology of a fog computing network

Time[�, �] Time[�, �] descripts the estimated running time of the task ti on fog node Pj

D[�] Scheduling transaction set contains z transactions

R[�, �] Task scheduling relationship contains the scheduling relationship between the task set T and the fog node N

STi 	e start execution time of task ti
ATi Actual arrival time of task ti
FTi the completion time of the task ti
TST Total task scheduling execution time is the maximum value of all tasks’ completion time

AWT Average waiting time is TST divided by n, AWT=∑�j=1 (��� − ���)/�

1 Input: Time[�, �], R[�, �], TS
2 Output: TST, AWT
3 double ST[�], FT[�],min FT, Total Time, Time, TST, AWT,WT;
4 int Total node, Total Task, Task, Total TaskSet, best node ID;
5 read every taskset from TS;
6 for (i=0; i<Total TaskSet; i++){
7 read a task from taskset;
8 for (j=0; j<Task; j++){
9 for (k=0; k<Total node; k++){
10 if (R[�, �]=-1)
11 FT[�]=Time[�, �];
12 else
13 FT[�]=ST[�]-R[�, �];
14 }
15 
nd minimalmin FT and corresponding k in FT[�] with task j;
16 ST[�]=ST[�]+min FT;
17 sort all tasks in taskset i from small to large according to FT[�];
18 ST[ ]=0; FT[ ]=0;
19 }
20 while (taskset i is not empty) {
21 select task tTask with the largest FT[�] in taskset;
22 if tTask=null
23 break;
24 select the node with smallest FT[�] of tTask and return best node ID;
25 WT=WT+ST[best node ID];
26 ST[best node ID]=FT[best nodee ID];
27 delete tTask ;
28 Task=Task-1;
29 recalculate every FT[�] of the rest of tasks;
30 sort all tasks in taskset i from small to large according to FT[�];
31 }
32 write the largest ST[�] to Time of all tasks;
33 Total Time=Total Time+Time;
34 Total Task=Total Task+Task;
35 TST=Total Time;
36 AWT=WT/Total Task;
37 }

Algorithm 2: TSFC algorithm.
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Table 2: Execution time matrix Time[�,�] of task set T and fog
node set N.

task P0 P1 P2 P3
t0 200 211 180 223

t1 102 122 91 130

t2 81 92 88 95

t3 55 59 57 61

t4 32 33 29 36

t5 155 160 149 173

t6 287 291 267 305

t7 135 142 122 160

t8 228 237 204 251

t9 178 183 161 195

the tasks to select the task with minimum completion time
to schedule and assign the selected task to the fog node
with minimum completion time until all of the tasks are
scheduled. Supposing the number of task sets, tasks, and fog
nodes is k,n, and�, respectively, the time complexity of TSFC

algorithm is O(k∗�2+k∗�∗m).

4.4. Analysis of Scheduling Process. In order to understand
and analyze the TSFC algorithm, a complete case is used to
analyze the scheduling process of the TSFC algorithm. We
analyze the whole process of task scheduling algorithm of fog
computing. Suppose that the task set � contains 10 tasks and
the node set � includes 4 fog nodes; that is, n=10 and m=4.
	e execution time matrix Time[�,�] of task set � and node
set � is shown in Table 2.

(1) Transaction database. Transaction setD[�] is shown in
Table 3. Each scheduling information between the task set �
and the fog node set� is stored as a transaction information.
A Boolean value is used to describe whether the task or node
is scheduled or not. 	e Boolean true value representing
the task or node is scheduled. On the contrary, the Boolean
false value representing the task or node is not scheduled. In
addition, it is assumed that the transaction set � contains 10
transactions; that is, z=10.

(2) Classi
cation mining. 	e transaction database � is
used as the input of I-Apriori algorithm, and the minimum
support degree min sup=0.5. Frequent itemsets {�1,�0,�3,�7}
and {�2,�0,�3,�7} are generated by the I-Apriori algorithm.
Association rules �7=> �1 ∨ �0 ∨ �3 (minimum con
dence
degree is equal to 0.833) and �7=> �2 ∨ �0 ∨ �3 (con
dence
degree is equal to 1.0) are generated with the minimum
con
dence degreemin conf=0.8.

(3) Task scheduling relational table. According to the
association rules generated by the I-Apriori algorithm, the
scheduling relationship between the task set and fog node
set is shown in Table 4. In the task scheduling relational
table R[�, �], there are three kinds of values of task ��
corresponding to fog node ��. In the 
rst case, if the task ��
and the fog node �� do not appear in the association rules,
every value of the row corresponding to task �� is equal to
−1. In the second case, if task �� and fog node �� appear in
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Figure 5: Scheduling diagram between tasks and fog node.

the association rules, then calculate the con
dence degree of
task �� on the fog node ��. Let the con
dence degree of tsk
�� corresponding to each fog node �� be tP�(k∈[1,�]), and
the value of task �� and fog node �� is equal to ���/∑�−1�=0 t��
in the task scheduling relational table R[�,�]. For example,
the scheduling relationship value between �7 and �1 is
0.833/(0.833 + 0.833 + 0.833 + 1.0 + 1.0 + 1.0)∗100=11.15.
In the last case, the corresponding scheduling relationship
value is equal to 0 when the fog node does not appear in the
association rules.

(4) Scheduled tasks TS. Scheduled tasks TS is a task list
that needs to be scheduled in an experiment. Suppose the
arrival time (AT�) of all tasks is equal to 0. 	e task set to be
scheduled is shown in Table 5.

(5) Task scheduling. Because all of the tasks are indepen-
dent, the communication cost among tasks is not considered
in TSFC algorithm. 	e value of every element of the
communication matrix is equal to 0.	e task set is scheduled
based on the TSFC algorithm with Tables 2, 4, and 5 as input.
	en, output the execution time of (TST) and the average
waiting time (AWT) of the scheduled tasks.

Take the 
rst task set{�0,�1,�3,�7} in the scheduled tasks TS
as an example. Task �7 is scheduled to fog node 
rstly because
the task �7 appears in the association rules, and task �7 is
scheduled on fog node �0 or �3. Recalculate the minimum
completion time of the three tasks {�0,�1,�3} in the task set
1, and select task �0 with the largest minimum completion
time to be scheduled on fog node �2. Next, recalculate the
minimum completion time of the remaining two tasks {�1,�3}
again, and task �1 is scheduled on fog node �1. Finally, task
�3 is scheduled on fog node �3. 	e scheduling relationship
between the task and fog node in the task set 1 is shown in
Figure 5.
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Table 3: Transaction database.

transaction P0 P1 P2 P3 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
T1 T T T T T F T F F T F T F F

T2 F T F T F F F T F F F F T F

T3 T T T T F T T F T F F T F F

T4 T F T T F F F F F T F T F T

T5 F T F T F T T F F F F F F F

T6 F F F T F F F T F F F F F F

T7 T T F T F F F T F T F T F F

T8 F T T F T F F F F F F F T F

T9 T T T T F F F T T F F T F T

T10 T T T T F T T F F F T F F T

Table 4: Relationship between task and fog node R[�,�].

task P0 P1 P2 P3
t0 -1 -1 -1 -1

t1 -1 -1 -1 -1

t2 -1 -1 -1 -1

t3 -1 -1 -1 -1

t4 -1 -1 -1 -1

t5 -1 -1 -1 -1

t6 -1 -1 -1 -1

t7 35.33 11.15 18.19 35.33

t8 -1 -1 -1 -1

t9 -1 -1 -1 -1

Table 5: Scheduled tasks TS.

No. Task set

1 t0,t1,t3,t7
2 t1,t2,t6,t7
3 t3,t4,t5,t8,t9
4 t1,t2,t3,t5,t7,t8
5 t0,t1,t6,t7,t8,t9

5. Simulation Experiment and
Result Discussion

5.1. Experimental Purpose. In order to verify the TSFC algo-
rithm proposed in this paper, we compare the performance
of TSFC algorithm under the same experimental conditions
with other three independent task scheduling algorithms,
MCT, MET, and MIN-MIN.

5.2. Simulation Environment. Based on the simulator toolkit
provided by SimGrid [41–43], the simulation environment for
heterogeneous multiprocessors is built as follows:

(1) Internodes are interconnected through high speed
networks.

(2) Each fog node can perform task execution at the same
time and communicate with other fog nodes without
competition.

(3) Every task is not preempted on the fog node.

(4) 	e fog nodes are heterogeneous.

	e computer used in the experiment is con
gured as
follows: Intel Core i5-3210M@2.5GHz dual core processor,
8GBmemory.	enumber of the fog nodes in the experiment
is 4 and 6, respectively.

5.3. Test Data Set. 	e input data of TSFC algorithm include
the task execution time matrix, the task scheduling relational
table, and the task set. 	e task execution time matrix
includes execution time of 10 tasks and 4 fog nodes as well
as 10 tasks and 6 fog nodes. 	e execution time of each
node is generated by a random program.	e task scheduling
relational table is based on the task scheduling model of fog
nodes with the I-Apriori algorithm. 	e number of tasks in
the experiment starts from 100, increasing 50 tasks each time,
until the number of tasks reaches 500 tasks.

5.4. Discussion of Experimental Results

5.4.1. Result Analysis under 4 Fog Nodes. 	e TSFC, MCT,
MET, and MIN-MIN algorithms are used to schedule the
task set under 4 fog nodes, respectively. TST and AWT under
di�erent number of tasks in the four algorithms are shown in
Figure 6.

5.4.2. Result Analysis under 6 Fog Nodes. 	e TSFC, MCT,
MET, andMIN-MIN algorithms are used to schedule the task
set under 6 fog nodes, respectively. A�er scheduling, TST and
AWT under di�erent number of tasks in the four algorithms
are shown in Figure 7.

We can see from Figures 6(a) and 7(a) that, with the
number of tasks increases, the value of TST generated by
TSFC, MCT, MET, and MIN-MIN algorithms is increasing.
However, the value of TST generated by the TSFC algorithm
is smaller than those by MCT and MIN-MIN algorithms.
As the number of tasks increases, the e�ciency of TSFC
algorithm is higher than MCT and MIN-MIN algorithms.
When the number of tasks is small, the value of TST
generated by the TSFC algorithm is lower than that by the
MET algorithm. As the number of tasks increases, the value
of TST generated by the TSFC algorithm is larger than that
by the MET algorithm. Because TSFC algorithm takes task
completion time as a main parameter, as the number of tasks
increases, the total completion time of scheduled tasks will be
closer to the optimal solution.
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Figure 7: (a) Comparison of execution time under 6 nodes. (b) Comparison of average waiting time under 6 fog nodes.

	e values of AWT generated by TSFC, MCT, MET, and
MIN-MIN algorithms are stable from Figures 6(b) and 7(b).
	e value of AWT generated by the TSFC algorithm is less
than that by MCT, MET, and MIN-MIN algorithms (the
value ofAWT of MIN-MIN algorithm in Figure 6(b) is better
when the number of tasks is larger). 	e minimum value of
AWT generated by TSFC algorithm in Figure 6(b) is only
3.7% of MET’s, and the maximum value of AWT is only
35.1% of MET’s. 	e minimum value of AWT generated by
TSFC algorithm in Figure 7(b) is equal to 0. Because theMET

algorithm takes the shortest execution time of tasks as the
main scheduling parameter, the execution time of di�erent
tasks on the same fog nodes is proportional, so it will cause
most of the tasks to be scheduled on the same fog node and
resulting in a much higher AWT value. 	e TSFC algorithm
schedules tasks which have minimum value in minimum
completion time, and it shortens the value of task waiting
time as much as possible, so the value of AWT is smaller.

In summary, the value of TST and AWT generated by
TSFC algorithm is better than MCT, MET, and MIN-MIN



10 Wireless Communications and Mobile Computing

algorithms. 	e TSFC algorithm is superior to MCT, MET,
and MIN-MIN algorithms in the experiments.

6. Conclusion

	e fog computing is a new paradigm which attracts lots of
attention. Providing satisfactory computation performance
is a great challenge in the fog computing environment. In
this paper, we proposed an I-Apriori algorithm by improving
the Apriori algorithm. Experimental results show that the I-
Apriori algorithm can improve the e�ciency of generating
frequent itemsets e�ectively. A novel task scheduling model
and a novel TSFC algorithm of fog computing environment
are proposed based on the I-Apriori algorithm. Association
rules are generated by the I-Apriori algorithm which act as
an important parameter of TSFC task scheduling algorithm.
Experimental results show that TSFC algorithm has better
performance than other similar algorithms in terms of task
total execution time and average waiting time.

In this article, there are some other issues that do
not involve, for example, bandwidth between processors,
multilayer task scheduling in fog computing, and others. In
future work, we will explore these areas. Furthermore, we will
apply TSFC algorithm to other areas, such as oblivious RAM,
string mapping, and match problems.
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