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Abstract

This paper presents the results of the depth estima-

tion challenge for dense light fields, which took place at

the second workshop on Light Fields for Computer Vision

(LF4CV) in conjunction with CVPR 2017. The challenge

consisted of submission to a recent benchmark [7], which

allows a thorough performance analysis. While individual

results are readily available on the benchmark web page

http://www.lightfield-analysis.net, we take this

opportunity to give a detailed overview of the current par-

ticipants. Based on the algorithms submitted to our chal-

lenge, we develop a taxonomy of light field disparity esti-

mation algorithms and give a report on the current state-of-

the-art. In addition, we include more comparative metrics,

and discuss the relative strengths and weaknesses of the al-

gorithms. Thus, we obtain a snapshot of where light field

algorithm development stands at the moment and identify

aspects with potential for further improvement.

1. Introduction

Over the last decade, light field analysis has grown from

a niche topic to an active and established part of the com-

puter vision community. The key difference to the classi-

cal multi-view scenario is the dense and regular sampling,

which allows to develop novel and highly accurate methods

for depth reconstruction which can correctly take occlusions

into account to recover fine details. In recent years, a vari-

ety of algorithms was published [9, 11, 12, 16, 19, 20, 23,

25, 27, 29], but objective comparison of their strengths and

weaknesses is not straight-forward.

While the HCI Light Field Benchmark by Wanner et

al. [26] provided several popular data sets and could be con-

sidered a default for testing in the past three years, eval-

uation on it was not standardized with respect to which

metrics and datasets should be included in the evaluation.

To establish a comparable performance analysis, Honauer,

Johannsen et al. [7] introduced a novel benchmark with

synthetic light field data and a comprehensive evaluation

methodology. They presented an evaluation of five algo-

rithms as a baseline but their focus was on validating the

proposed scenes and metrics.

In order to capture and analyze a representative state-of-

the-art, we initiated the light field depth estimation chal-

lenge as part of the second workshop on Light Fields for

Computer Vision (LF4CV), held at CVPR 2017. The chal-

lenge was open to submissions of novel as well as al-

ready published light field methods. Challenge participants

submitted their estimated disparity maps and runtimes for

the four stratified and eight photorealistic scenes on fig-

ure 1. Ground truth is unknown for four of the photorealis-

tic scenes, the other scenes can be used to train parameters,

which however have to be the same for all scenes.

In this paper, we present the results of the depth estima-

tion challenge. With seven challenge participants, two ad-

ditional benchmark submissions, and five baseline submis-
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Figure 1. The 12 benchmark scenes used for evaluation: four stratified and four photorealistic training scenes with publicly available ground

truth and four test scenes with hidden ground truth.
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Figure 2. Light field coordinates and projection. Note that by con-

vention, we parameterize (x, y)-coordinates relative to the princi-

pal point of a pinhole camera located at (s, t).

sions, we analyze a total of 14 algorithms. We believe this

to be a good basis for a taxonomy and thorough evaluation

of the current state-of-the-art. In line with [7], the aim is not

to identify a single best algorithm for the entire benchmark

or for all light field data sets - indeed, we believe this is not

possible. Instead, we try to compare relative strengths and

weaknesses of different approaches in order to learn which

components lead to good results for certain scene properties

or structures, and to learn for which scenarios there is still

room for improvement.

2. Light field depth estimation

In this section, we will give a short introduction to the

structure of light fields and briefly review possible strategies

to infer depth. These can roughly be classified according to

the different representations of the light field they rely upon,

and thus give one category for a taxonomy of algorithms.

For the purpose of this paper, we understand a 4D light

field as the radiance function sampled on a space of rays.

This 4D ray space is parameterized by the two intersection

points of each ray r with two different planes. The image

plane Ω is parameterized in p = (x, y) coordinates, while

the focus plane Π is parameterized in c = (s, t) coordinates.

Both planes are parallel to each other. Thus, the 4D light

field is a function

L : Ω×Π → R,

(x, y, s, t) 7→ L(x, y, s, t) = L(p, c). (1)

In practice, it often has several components, i.e. takes values

in RGB color space R
3.

Subaperture views and disparity. The light field can

be resampled into several popular representations, see also

Levoy [13] for a more fundamental introduction into light

field principles and parameterizations. In the maybe most

intuitive representation, we fix (s, t) coordinates. If (x, y)
coordinates vary, we obtain for each pair (s, t) an image

I(s,t) as captured by an ideal pinhole camera. These cam-

eras have parallel optical axes orthogonal to the planes and

identical focal length, corresponding to the distance be-

tween the planes. The pinhole views obtained in this way

are called subaperture images (see figure 3).

Let a 3D scene point be at a distance Z from the focal

plane, then the coordinates of its projections in the subaper-

ture views follow the pinhole projection. Two different rays

r1, r2 passing through this point thus are related by

L(p2, c2) = L(p1 −
f

Z
(c2 − c1), c1), (2)

see figure 2. The quantity d = Z
f

is called the disparity.

It relates all rays emanating from a single point in space

whose radiance is captured in the light field. Thus, if this

3D point lies on the scene surface and the scene is Lamber-

tian, all those rays should share the same radiance. This as-

sumption is the basis for all disparity estimation algorithms

discussed in this paper, and it is exploited to infer depth.

The disparity correspondence relation (2) gives rise to

multi-view stereo matching methods, for which there is a

vast literature [17]. Indeed, it implies the intensity relation-

ship

Ic1
(p1) = Ic2

(p1 − d(c2 − c1)) (3)
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Figure 3. Different representations of the light field. In the most common form, the light field is given as a collection of subaperture

views on a regular grid of pinhole cameras with parallel optical axes (center). If one takes viewpoints along a line (red), stacks them on

top of each other and computes a cut through the stack (right), one obtains an epipolar plane image (green). Scene points are projected

onto lines in the epipolar plane image. To obtain angular patches (left), one collects all the corresponding projections of a 3D point in all

of the subaperture views. If the 3D point lies in front of an unoccluded Lambertian surface, the patch is constant (solid yellow). If the

virtual 3D point does not lie on a surface, the different view show different colors. The pattern is mirrored horizontally and vertically when

considering points at a certain distance in front of or behind the surface, respectively (dashed and dotted yellow rays).

between subaperture views, where d is the disparity of the

scene point visible in the pixels related by the equation.

Multi-view stereo typically works on the principle of patch

comparison and finds the best correspondence among the

images for a range of disparities. One of the subaperture

views is sometimes special, called the reference or center

view, as it is frequently in the center of the sampling range

within Π. By convention, we assign it the focal coordinate

c = 0. Most algorithms we discuss later on compute dis-

parity only on the reference view.

Epipolar plane images. Besides subaperture views, it

is common to consider other 2D slices through the 4D ray

space. If we fix a pair (t, y) or (s, x), we obtain horizon-

tal or vertical epipolar plane images (EPIs) [3], respec-

tively, see figure 3. According to (2), 3D points project onto

lines on the epipolar plane images, whose slope is related to

depth. This leads to their characteristic structure, which for

Lambertian scenes seems to consist of patterns of overlap-

ping lines. Several methods thus turn the problem of esti-

mating depth into estimating the slope of these patterns. An

additional advantage of the rich structure of the EPIs is that

it gives an elegant way to analyze more complex scenes.

For example, one can simultaneously estimate the slope of

superimposed line patterns as they occur in semitransparent

or partially reflective regions [25, 12].

Surface cameras (SCams). The angular patch or sur-

face camera (SCam) Ap,d for a pixel p in the reference view

and disparity d is a function of focal point c, and samples

radiance for all corresponding projections of a scene point

at the respective depth [28]. From (2),

Ap,d(c) = L(p− dc, c). (4)

See figure 3 for an illustration. Again, for a Lambertian

surface, the angular patch will have constant radiance for an

unoccluded point sampled at the correct depth. Thus, a cost

function for depth reconstruction can e.g. be built based on

minimizing angular patch variance [5].

Angular patches can be leveraged to analyze occlusions.

If a scene point is visible only in a subset of cameras, only a

subset of the patch will have low variance. This observation

can help to determine both, the cameras which see a point

and the correct disparity [4]. Another interesting insight is

that the separating line between occluded and non-occluded

cameras in the angular patch has the same orientation as the

image edge in the subaperture views. This has also been

leveraged for sophisticated occlusion analysis [23].

We briefly remark on the relation to the previous repre-

sentations. First, a line on an EPI with disparity d corre-

sponds to the sampling of an angular patch along a line of

viewpoints at disparity d. Hence, EPI-based methods use

a subset of the angular patch. Second, a multi-view stereo

method based on (3) which uses only a single pixel in each

view per disparity constructs the cost solely on the angu-

lar patch, and is thus equivalent to a SCam-based method.

Typically, however, they use spatial patches in the views,

i.e. also aggregate more information to increase robustness.

Focal stack. A useful feature of the light field structure

is that it becomes possible to construct a refocused image IZ
as captured by a virtual camera focused at a specific depth

Z. For this, one needs to sample the aperture in the focus

plane over all rays which emanate from a point at this spe-

cific depth,
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Figure 4. To construct a refocused image at pixel p in the refer-

ence view, with camera focused at depth Z, one has to sample over

all rays in the subaperture views which correspond to p. The solid

lines correspond to the rays in the refocused light field, while the

dotted rays correspond to the actual rays in a metric light field.

IZ(p) =

∫

Π

w(c)L

(

p−
f

Z
c, c

)

dc

=

∫

Π

w(c)Ap,d(c) dc,

(5)

where w is an aperture filter. See figure 4 for an illustration.

In effect, refocusing thus means integrating over the angular

patches at that depth. By varying Z, one generates a focus

stack over the center view, where the individual views are

focused to different depth layers. A focus measure can then

be used to compute classical depth from focus [15]. In light

field algorithms, this is typically used to augment other cost

functions [22].

Angular patch and focal stack symmetry. An interest-

ing aspect of angular patches is their behavior if sampled

away from the correct surface. Under the assumption that

the surface is fronto-parallel at correct disparity d, the angu-

lar patch at d−δ will be a copy of the angular patch at d+δ,

but mirrored both vertically and horizontally, see figure 3.

As focal stack values are computed by integrating over the

angular patches as in (5), this means that in disparity units,

the focal stack is also symmetric around the correct dispar-

ity value [14]. This idea was extended to partial focal stack

symmetry with occlusion awareness in [20].

3. Challenge participants

Before we commence with the taxonomy of current

state-of-the-art light field algorithms, we will first give a

short description of each of the algorithms considered in

this paper. The algorithms are divided into three groups:

baseline, challenge, and other algorithms. The baseline al-

gorithms are marked with an asterisk and were included in

the initial evaluation of [7]. Two algorithms were not sub-

mitted for the challenge but to the benchmark and pose in-

teresting concepts/insights for this survey and thus were in-

cluded. They are marked with '.
∗EPI1 [12] analyzes the orientation of patterns in EPIs.

They build a dictionary with atoms of fixed disparity, and

use sparse coding on patches of the EPI to find those dic-

tionary elements which best describe the patch. The key

idea is that only those patches with the correct orientation

will be selected by sparse coding. Thus, from the coding

coefficients, an initial depth map can be constructed which

is later refined using anisotropic TGV smoothing. This ap-

proach also allows the reconstruction of multi-layered depth

maps, e.g. in regions with transparencies.
∗EPI2 [27, 25] analyze the orientations of patterns on

the EPIs. They take an analytic approach and compute the

orientation of epipolar lines using the structure tensor. Dif-

ferent approaches can be taken to construct a depth map

from the structure tensor, reaching from occlusion consis-

tent depth labeling [24] to faster regularization-based ap-

proaches [27]. By applying the second order structure ten-

sor, this approach also allows the reconstruction of multi-

layered depth maps [25].
∗LF [9] uses the sum of absolute differences as well as

the sum of gradient differences in small rectangular patches

to build a cost volume. Each slice of the cost volume is

regularized individually using the center view as guidance.

Afterwards, a multilabel optimization using graph cuts is

performed using sparse SIFT features as guidance. The

discrete disparity map is refined in a final step by fitting

quadratic functions.
∗LF OCC [23] builds upon the method of Tao et al. [21]

and refines occlusion boundaries. Candidates for refine-

ments are areas around edges in the center view. For these

regions the angular patches are divided according to the

edge orientation in occluded and non-occluded regions. Af-

terwards, an MRF is regularized with binary costs that in-

clude an occlusion prediction.
∗MV is a lab implementation of an occlusion aware multi-

view algorithm. It uses the crosshair of views. Four differ-

ent cost volumes are built comparing the center view pixels

to pixels in views to the left, right, top, and bottom, respec-

tively. As a cost function the average of the L1-norm is

used. Afterwards, the cost volumes are combined by sum-

ming the minimum costs in horizontal and vertical direc-

tion. Finally, an initial disparity map is generated using the

winner-takes-all strategy, which is regularized using TGV-

L1 denoising.

'OFSY 330DNR [20] builds a cost volume based on fo-

cal stack symmetry. By selecting views only along certain

directions for constructing the focal stacks, the cost compu-

tation is made robust to occlusion. From the cost volume,
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they compute an initial disparity map using sub-label accu-

rate global optimization. This disparity map is refined in a

final step to not only smoothen the disparities but also the

normals.

OMG occ [1] models the case of multiple occluders and

derives a relationship between angular and spatial patches

of the light field for this case. Selecting the non-occluded

views given an initial disparity estimation and a k-means

clustering yields a cleaner cost volume which is later reg-

ularized using an MRF with weights of the pairwise term

adjusted to occlusion boundaries.

PS RF [10] uses four different cost volumes based upon

the sum of absolute differences, the sum of gradient dif-

ferences, zero-mean normalized cross correlation, and the

census transform. All are implemented using the phase

shift theorem for warping. Afterwards, two cascade ran-

dom forests are built. One for classification, i.e. choosing

the important combinations of costs and one for regression

to infer a disparity value with sub-pixel precision.

RM3DE[16] computes the L2 differences between the

center view and the outer views in small 1D windows. To

account for occlusions they take the minimum residual be-

tween the costs for a view c and the opposite view −c. Ad-

ditionally, they only consider the window in one of the di-

rections depending on the baseline between the views. This

dataterm is implemented in a course-to-fine scheme to ac-

count for regions with little to no texture.

SC GC [19] computes the average residual of the 50%

views of each SCam patch with the lowest error and com-

bines these costs patchwise into a cost volume. This cost

volume is optimized in an edge and occlusion aware man-

ner. Afterwards local plane fitting refines the estimate.

SPO [29] operates on epipolar plane images and esti-

mates the orientation of the epipolar lines. Two regions -

slightly to the left and right of the line in question - are de-

fined and histograms are computed for both. As weights for

the contribution of each pixel the derivative of Gaussian is

used. Comparing these histograms yields a cost function

over different discrete disparities. The costs volumes for

horizontal and vertical direction are combined according to

a confidence measure. Afterwards, the cost volume is regu-

larized for each depth label individually and a disparity map

generated by the winner-takes-all strategy. No sub label re-

finement is performed.

ZCTV and OBER [2] are two alternative post-processing

steps to a sparse EPI based line fit algorithm. Edges in

the EPI are detected with subpixel accuracy using the zero

crossings of the second derivative in the horizontal direc-

tion. Lines are then constructed using a RANSAC-like

procedure. ZCTV uses a total variation approach to per-

form inpainting and denoising from the sparse depth map.

The total variation parameters are adapted by an edge map

and the line fit variance. For each pixel, OBER iteratively

minimizes a smoothness metric plus the variance along the

corresponding line in the EPI, discounting occluded pix-

els. The smoothness term is based on a bilateral filter.

'OBER-cross uses the crosshair of views and combines

the horizontal and vertical information into a joint disparity

map.

4. Taxonomy of light field algorithms

The algorithms submitted to the challenge differ greatly

in the representation of the light field they are based upon,

as well as the optimization steps they take. The typical

pipeline is to build a cost volume based on one or more rep-

resentations, then perform global optimization to build an

initial disparity map, and then perform further refinement

steps.

Unfortunately, optimization and refinement steps seem

too different to employ them for a useful grouping. We nev-

ertheless give a brief overview on these. The most expres-

sive classification comes from the light field representations

the methods work on. However, a method might be based

on several different representations and work with them in

very different ways.

One additional aspect should be mentioned at that point.

For light fields, the desired accuracy is far less than one

pixel, thus there has been discussion on whether standard

bilinear or bicubic interpolation is sufficient to obtain ac-

curately shifted images. Some algorithms [10, 9] therefore

follow [18] and make use of the phase shift theorem to per-

form shifting in the Fourier domain. Specific interpolation

examples indeed show that the use of this method is superior

to the other two. Due to the high variance between the dif-

ferent algorithms in terms of data terms and final optimiza-

tion, however, we cannot really determine the influence of

this factor on the final result, More specifically controlled

experiments are required at this point, however, it seems

reasonable to believe that if an approach is actually better in

practice, then it will be indeed phase shifting. An overview

of the different algorithm aspects is given in table 1.

4.1. Classification according to representation

Methods based on EPIs. Five different methods esti-

mate disparity by analyzing orientation on EPIs. ∗EPI1

builds a disparity aware dictionary and uses sparse cod-

ing, ∗EPI2 estimates the slope of epipolar lines by using

the structure tensor, SPO builds a cost volume for a dis-

crete set of disparities by comparing regions left and right

of epipolar lines, and finally the zero crossings based meth-

ods ZCTV, OBER and 'OBER-cross perform a low level

feature search in each row of the EPI and match lines using

a RANSAC scheme.

For ∗EPI1, the recommended patch size is 5 × 5. The

dictionary elements model patches as constant in dispar-

ity. Thus, larger patches are less flexible to local disparity
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algorithm dataterm views

occlusion

aware

dataterm

interpolation cost volume optimization refinement

∗EPI1 EPI crosshair (5× 5) no - 50 variational variational TGV-L1

∗EPI2 EPI crosshair no - - - variational TGV-L2

∗LF MultiView full no phase shift 100 MRF iterative refinement
∗LF OCC SCam full yes linear 200 MRF occlusion aware MRF
∗MV MultiView crosshair yes linear 100 variational variational TGV-L1

'OBER-cross EPI crosshair no linear - - bilateral refinement

'OFSY 330DNR Focus crosshair yes linear 330 variational variational normal regularization

OBER EPI horizontal no linear - - bilateral refinement

OMG occ SCam full yes linear 100 MRF occlusion aware MRF

PS RF MultiView full no phase shift 151 random forest weighted median

RM3DE MultiView crosshair + diagonals yes - - - weighted median

SC GC SCam full yes linear 256 MRF second order smoothness in MRF

SPO EPI crosshair no linear 256 winner takes all guided filtering (on cost volume)

ZCTV EPI horizontal no - - - second order TV

Table 1. This table gives a simplified overview of the examined algorithms and labels them according to the taxonomy presented.

changes, produce smoother depth maps, but decrease accu-

racy at occlusion boundaries. ∗EPI2 computes EPI gradi-

ents and disparity needs to be small enough to allow this in a

robust way. Thus, disparity range is limited to around −1.5
to 1.5px, but can be increased by pre-shearing at the cost of

runtime [6].

In contrast, the other two methods are not inherently re-

stricted with respect to disparity range and the views close

to the center view. Thus, they can utilize the larger baseline

of the outer views to estimate depth more precisely. Zero

crossing based approaches have the advantage that the ac-

curacy is very high due to subpixel accurate features and

matching. On the other hand, SPO seems to be very robust

as not only individual pixels/features/points are compared,

but small weighted regions. Maximizing the histogram dis-

tance between the two regions appears to be robust in the

presence of occlusions as well. A problem for all EPI based

approaches is how to integrate the estimates on horizontal

and vertical EPIs. Usually, a weighting between the two es-

timates is performed based upon a residual or statistics of

the estimated cost volume/distribution function.

Methods based on angular patches. Methods solely

based on angular patches are ∗LF OCC, OMG occ and

SC GC. The first two explicitly estimate the distribution of

non-occluded pixels in the angular patch by analyzing ori-

entations of edges in the angular as well as spatial patches.

While ∗LF OCC only models the case of single occlusions,

OMG occ models the case where multiple occluders are

present and thus more than one occlusion edge can exist

in an angular patch. SC GC skips the explicit segmentation

of the patches into occluded or non-occluded regions by just

considering the 50% pixels that are closest in radiance to the

center view pixel. In general, approaches based on angular

patches are not significantly limited by the number of views

or disparity range.

Methods based on the focal stack. Although more ex-

ist in the literature, e.g. [22], the only method based on the

focal stack evaluated so far is 'OFSY 330DNR, which ex-

ploits focal stack symmetry. They build an occlusion-aware

cost volume by computing the minimum of the cost function

over partial focal stacks integrated along the directions of a

crosshair within the angular patch. The reasoning - which

is also used in multi-view stereo methods - is that occlusion

occurs only in one direction, so they can always compare

the parts of the stack which are occlusion free. However,

this does not account for multiple or very small occluders.

into account.

Methods based on multi-view stereo (MVS). The most

straight-forward method is a baseline multi-view-stereo al-

gorithm ∗MV with a point-wise L1-dataterm based on (3).

In addition, similar to the idea above, the minimum residual

of the view c and the view −c on the opposite side of the

center view is taken to reduce occlusion effects. This sim-

ple approach builds the cost volume based only on angular

patches, so in principle, it would fit into the category above

as well. Typically, however, MVS algorithms compare not

only point- but patch-wise. Three algorithms fall into this

category, ∗LF, PS RF and RM3DE.

The first one builds a cost volume based upon a com-

bination of the sum of absolute differences and the sum of

gradient differences for small rectangular patches. The cost

volume is later smoothed using weighted median filtering to

preserve occlusion boundaries.

PS RF additionally uses the zero-mean normalized cross

correlation and the census transform as data terms. They

build individual cost volumes for all four of the data terms,

and train random forests to choose an optimal weighting of

dataterms as well as infer disparity.

RM3DE in contrast considers the L2-differences of small

1D patches. The orientation of the 1D patches corresponds

to the orientation of the baseline between the center view

and the other views. This improves performance at occlu-

sion boundaries.
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In general, patch based approaches make the depth esti-

mation more robust to noise compared to approaches based

only on the angular patch, as also the spatial neighborhood

in a view is considered. However, if not modeled explic-

itly, they tend to run into more problems in the presence of

occlusions.

4.2. Initial depth map extraction

Methods based on cost volume computation at this point

have to extract an initial depth map from the cost volume.

Typically, these are either MRF/graph cut or variational

approaches, which employ additional regularization, often

adapted to center view edges and other factors. Many al-

gorithms first perform edge-aware regularization of the re-

spective cost volume slices.

In general, the methodology in this step varies greatly,

see section 3, and it is hard to determine a useful classifi-

cation based on the applied technique. We therefore only

briefly mention it in the overview table 1.

4.3. Refinement

The last step for generating a dense depth map might

have even greater variance than the one before, and there is

no eminent common strategy. The goal is often just to regu-

larize the initial result further, and tends to be quite heuristic

in nature. It is difficult to evaluate which of these heuristics

are really a universal improvement.

Some techniques employ local filtering approaches for

post processing, i.e. weighted median (RM3DE, PS RF),

or bilateral filters (OBER, 'OBER-cross). A second type

consists of global regularization models for the disparity

map, with different kinds of image adaptive or occlusion

aware weighting. ∗LF OCC and OMG occ build an MRF,

while ∗EPI1, ∗EPI2, ∗MV, ZCTV, and 'OFSY 330DNR

use variational models with different dataterms and differ-

ent regularizers to obtain a regularized depth map.

We would again like to point out some unique ap-

proaches. SC GC performs local plane fitting. Although

this obviously leads to problems with curved surfaces, it

also has a very nice property, as it can regularize different

layers of the scene even across holes. Another interesting

special case is 'OFSY 330DNR, which performs regular-

ization directly on the normals and not on the depth labels,

yielding very smooth surfaces.

As all of these approaches are fairly different in detail,

the influence of this final step is also hard to predict and

requires targeted additional research.

5. Evaluation methodology

The evaluation methodology is largely based on the met-

rics, scenes, and concepts as introduced in the original light

field benchmark paper [7]. In addition, we add the concepts

of the PerPixBest and PerPixMedian algorithms as well as

additional high accuracy and surface reconstruction metrics.

5.1. Challenge details

Challenge participants had to submit estimated disparity

maps and runtimes on the four stratified and eight photore-

alistic scenes as depicted in figure 1. As input, 9×9×512×
512 RGB input images and the disparity range are provided

for each scene. The outer views are shifted towards the cen-

ter view, thus, the approximate disparity range of the scenes

is [−2, 2]px (see supplemental material of [7] for details).

For algorithm validation and parameter tuning, ground

truth depth and disparity maps of the center views are avail-

able for the stratified and training scenes as well as for

16 additional scenes. On all scenes, a boundary region of

15 pixels is ignored during evaluation of the error metrics.

While this allows for a certain sloppiness in the handling of

image boundaries, we decided for it as the algorithms can-

not make use of the complete range of views at the bound-

aries due to pixels mapped into non-captured regions. For

the submission, a single choice of parameters is required

for all scenes. While automated adaptations to local scene

properties are accepted, scene-specific parameter settings

are not.

Please note that all runtimes have been reported by the

authors, and are not the result of running the algorithm on

a standardized system. Due to different hardware configu-

rations and implementation details, runtime should only be

used as a rough indicator on whether an algorithm is “rather

fast” or “rather slow”.

5.2. Additional algorithms

We evaluate the 14 algorithms as described in section 3.

In addition, we use two artificial algorithms in our evalu-

ation: PerPixBest and PerPixMedian. For the PerPixBest

algorithm, we take the disparity estimate with the lowest

absolute difference to the ground truth at each individual

pixel, based on the estimates of all 14 algorithms. This algo-

rithm is used as an approximate “upper limit” of algorithm

performance. For the PerPixMedian, we take the disparity

estimate of the algorithm with the median absolute error for

each pixel. This algorithm is used as an approximate “aver-

age” algorithm performance.
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Figure 5. Surface reconstruction performance is quantified with

the median angular error (MAE ) between the ground truth nor-

mals and algorithm normals. For the evaluation, it is computed

separately on planar and non-planar continuous surfaces.

5.3. Additional metrics

Based on observations on the submitted algorithms, we

add two types of additional metrics.

High accuracy metrics Figure 11 shows the percentage

of correct pixels with increasingly higher error thresholds.

The relative rankings between algorithms change signifi-

cantly for different thresholds, e.g. between 0.01 and 0.03.

Moreover, the relative performance differences between al-

gorithms are very small for high error thresholds though

quite significant for lower thresholds. Figure 12 illustrates

that this is especially true for easier scenes such as Cotton.

We therefore add BadPix(0.01) and BadPix(0.03) as addi-

tional BadPix scores.

Furthermore, we add Q25 , representing the accuracy at

the 25th percentile of the disparity estimates on a given

scene. Thus, it measures the maximum error on the

best 25% of pixels for each algorithm (see third row in fig-

ure 12). In effect, it provides an idea of the “best case ac-

curacy” of a given algorithm. In line with the MSE , the

absolute disparity difference is multiplied by 100.

Surface reconstruction metrics The bumpiness score as

defined in [7] quantifies local smoothness, but it does not ac-

count for situations like a smoothly estimated plane which is

rotated with respect to the ground truth. However, accurate

surface orientations play an important role when depth esti-

mation is incorporated into more sophisticated algorithms

which also try to estimate shading/illumination or mate-

rial properties. Therefore, we add the median angular er-

ror (MAE ) of the depth map surface normals as a gener-

alization of the local misorientation metric as proposed by

Honauer et al. [8]. An example of ground truth and algo-

rithm surface normals as well as the per-pixel angular error

is shown in figure 5. Similar to the bumpiness metrics, we

compute the MAE separately on planar and non-planar con-

tinuous surfaces.

6. Evaluation of algorithms

In this section, we thoroughly assess and compare the

depth estimation performance of the 14 algorithms. We also

hypothesize and gain insights on which specific approaches

and algorithm aspects lead to good performance at planar

surfaces, occlusion areas etc. However, without reference

implementations, these insights cannot be thoroughly vali-

dated and should therefore be treated with caution.

6.1. Performance overview

The radar charts on figure 6 provide a notion of the rel-

ative performance of the 14 algorithms for each metric, de-

picting the median score per metric across (a) all stratified

scenes and (b) all photorealistic scenes. Lower scores to-

wards the center represent better performance.

According to these charts, there is no single best al-

gorithm which outperforms all other algorithms. Instead,

some algorithms have very specific strengths which also

come with certain drawbacks. For example, on the pho-

torealistic scenes 'OBER-cross is best on high accu-

racy metrics but struggles with fine thinning (figure 6b).

'OFSY 330DNR is best on the surface metrics but not on

fine structures. SPO features the best tradeoff on disconti-

nuities and fine structures but not on surface metrics. By

contrast, RM3DE is rarely among the top three algorithms

on the photorealistic scenes but it shows a good overall per-

formance and - in contrast to most other algorithms - no

explicitly strong weakness.

Even though there is no clear winner algorithm, some al-

gorithms do outperform other algorithms in most aspects.

On the stratified scenes, RM3DE outperforms OMG occ

on all axes (see figure 6a). On the photorealistic scenes,

RM3DE outperforms ∗EPI1 and ∗LF OCC on all aspects.

'OBER-cross outperforms ∗LF, ∗LF OCC, OMG occ,

and PS RF on all aspects except for fine thinning. Similarly,

OBER outperforms ∗EPI1, ∗LF, ∗MV, ∗LF OCC, OMG occ,

and PS RF on all aspects except for fine thinning and
∗EPI2 on all aspects except for runtime. 'OFSY 330DNR

beats ∗EPI2 everywhere except for runtime and ∗LF every-

where except for fine thinning.

Figures 7 and 8 explicitly depict disparity maps, ground

truth error maps, and median error maps for all algorithms

on the stratified and training scenes. For the median er-

ror map, the median of the absolute disparity differences

|Algo − GT | of all algorithms is computed for each pixel.

For the visualization, |Algo − GT | of the respective algo-

rithm is then subtracted from the “median error”. This error

map gives a notion on which image regions algorithms per-

form above or below average algorithm performance.

As depicted on the training scenes in figure 8, most al-

gorithms tend to be either good at discontinuities or contin-

uous surfaces. On Cotton, Dino, and Boxes, OBER, PS RF,

RM3DE, and SPO are very good at depth discontinuities but
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Figure 6. The radar chart illustrates how the scores of all evaluated algorithms compare against each other, depicting one metric per axis

with the median score per metric across (a) all stratified scenes and (b) all photorealistic scenes. Lower scores towards the center are better.

We recommend using the interactive visualization on the benchmark website for a less cluttered version of the radar charts. There is no

clear winner algorithm which outperforms all other algorithms. 'OBER-cross is best on high accuracy metrics but not on fine thinning,

'OFSY 330DNR is best on the surface metrics but not on fine structures, and SPO features the best tradeoff on discontinuities and fine

structures but not on surface metrics.

below average at reconstructing e.g. the surface of the Cot-

ton statue. By contrast, 'OFSY 330DNR and ZCTV per-

form well on continuous surfaces but below average at dis-

continuity regions. 'OBER-cross performs well on both

regions but struggles with the planar background on Cotton.

Performance on the stratified scenes is shown in figure 7.

On Backgammon, 'OBER-cross, 'OFSY 330DNR,

OBER, SPO, and ZCTV excel with low fattening artefacts

between the peaks. On Stripes, ∗EPI1, ∗EPI2, PS RF,

and RM3DE prove very robust towards the low-texture areas

on the lower part of the scene. On Dots, most algorithms

tend to be either good at reconstructing the dots or the back-

ground. ∗LF OCC and SPO manage to get a good tradeoff

performance in reconstructing both.

6.2. Individual performance analysis

According to the radar chart on figure 6b, the baseline

algorithm ∗EPI1 features an average overall performance.

It does not score very well on the surface metrics, which

may also cause the rather high scores on the per-pixel met-

rics. ∗EPI1 uses only 50 depth labels in the disparity aware

dictionary and is limited in the maximum disparity range it

can handle. This may lead to high error rates at background

planes such as on Herbs. Additionally, the TGV-L1 smooth-

ing used in this implementation does not perform as well as

an L2 smoothing when it comes to the bumpiness metrics as

e.g. used by ∗EPI2. This is reflected by the noisier normal

map of ∗EPI1 as compared to ∗EPI2 (see figure 9). As no

edge awareness is built into the regularizer, the occlusion

performance is subpar.
∗EPI2 is very good at smoothly estimating the surfaces

on Pyramids and good at estimating the surfaces on the pho-

torealistic scenes in general. By contrast, it struggles at

discontinuities and fine structures. The TGV-L2 smooth-

ing leads to good bumpiness scores, while the missing edge

awareness leads to heavy fattening.
∗LF scores average on most metrics and well for fine

thinning on the photorealistic scenes. It produces the high-

est overall MSE error. This is most likely routed in the

way regularization is performed. The algorithm uses 100

depth labels and tries to fit quadratic functions as a refine-

ment step. This works fine for surfaces roughly perpendic-

ular to the optical axis, but produces heavy staircasing in

regions with slanted surfaces (see Pyramids on figure 7 and

walls in Dino on figure 8).
∗LF OCC features an average overall performance. It

does not score very well on the surface and high accuracy

metrics but above average on the MSE . The below-average

scores for surface and high accuracy metrics may be due to

the use of a discrete set of disparity labels and could proba-

bly be improved by applying some kind of refinement step.

OBER scores second to fourth on almost all metrics with

intermediate fine thinning scores and no strong weakness.

'OBER-cross outperforms OBER on most aspects, ex-

cept for much stronger fine structure thinning and a longer

runtime. It scores best at discontinuities and the high ac-

curacy metrics. On the stratified scenes, 'OBER-cross

has difficulties on Stripes and Dots. The strength of the two

90



Figure 7. The first column for each of the stratified scenes illustrates the disparity maps of the 14 algorithms. The second column depicts the

disparity difference to the ground truth. Estimates are highly accurate at white areas, too close at blue areas and too far at red areas. Please

note that the visualization is scaled to [−0.1, 0.1]. The third column illustrates how algorithms perform relative to the median algorithm

performance. Yellow represents average, green above-average and red below-average performance.
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Figure 8. Please see figure 7 for an explanation of the visualization. The Dino scene illustrates nicely how algorithms perform differently on

discontinuity regions and planar surfaces. For example, PS RF, RM3DE, and SPO tend to be above-average at occlusion regions but below

average on the background planes. By contrast, 'OFSY 330DNR and ZCTV have the opposite strengths and weaknesses. 'OBER-cross

performs well on both areas.
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Figure 9. The third and sixth row depict the angular error between the ground truth normals and algorithm normals. Scores are computed

separately for non-planar and planar surfaces. 'OFSY 330DNR performs best at reconstructing both kinds of surfaces, featuring smooth

and accurate normals. For SC GC the locally fitted planes are clearly visible on the normal map.

OBER methods may be due to the high accuracy of the ini-

tial depth estimate (zero crossings) which is then refined in

an occlusion aware way resulting in very good occlusion

boundaries (see Bicycle disparity maps on figure 10) and

smooth surfaces (see Cotton normal maps on figure 9). We

would speculate that the key here is that for the final re-

finement step the variance along the corresponding epipolar

lines is taken into account, thus linking the final refinement

step to the input data.

'OFSY 330DNR performs very well on reconstructing

planar and non-planar surfaces (see normal maps on fig-

ure 9) but it features mediocre to poor performance at fine

structures. On figure 6b, 'OFSY 330DNR scores well on

the high accuracy metrics Q25 , BadPix(0.01) , and Bad-

Pix(0.03) . The good surface reconstruction and good over-

all accuracy may be due to the data term, the large amount

of labels, the sub-label accurate cost volume optimization,

or the normal smoothing. Occlusion performance is only

mediocre (see Bicycle disparity map on figure 10), despite

explicit occlusion handling for the data term as well as the

anisotropic/binary weighting of the regularizer.

OMG occ scores well at fine thinning, average on dis-

continuities and fattening, and below average on the sur-

face metrics. Unfortunately, it is hard to speculate about

OMG occ as we have limited information about this algo-

rithm. The specific selection of unoccluded views from

SCams is theoretically sound but seems to yield only av-

erage results at discontinuities. This might be due to the

optimization and refinement of the cost volume. OMG occ

struggles at the surface metrics as it does not perform any

sublabel refinement, thus, heavy staircasing is present (see

e.g. Sideboard and Boxes in figure 8).

PS RF scores above average on most aspects except

for the high accuracy metrics and fine fattening. PS RF

is remarkably robust on Stripes. The offset in the Pyra-

mids background plane and the below-average high accu-

racy scores may be caused by the comparatively low num-

ber of depth labels.
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Figure 10. Most algorithms struggle with accurately reconstructing the fine details of the bicycle. Almost all algorithms suffer from

“bleeding” of the foreground structure into the low texture background. SC GC, 'OBER-cross, and SPO perform remarkably well on

this difficult situation.

RM3DE scores well to average on all aspects of the pho-

torealistic and stratified scenes. It is among the best al-

gorithms for the MSE and discontinuity scores. RM3DE

suffers from fine structure fattening on Backgammon but is

very robust on Stripes and Dots. The rather good tradeoff

between background and reconstructed dots in the presence

of noise may be due to the multi-resolution approach and

the occlusion aware patch wise data term.

SC GC shows a similarly strong but slightly inferior per-

formance profile compared to 'OBER-cross (see fig-

ure 6b). It performs among the top five algorithms on all

aspects except for fine thinning and runtime. It outper-

forms all algorithms on reconstructing planar surfaces ex-

cept for the comparable performance of 'OFSY 330DNR.

SC GC performs particularly well at the background planes

of Dino and Sideboard but has difficulties with strong dis-

continuities and some continuous, non-planar surfaces (see

figure 8). The plane fitting allows the algorithm to regular-

ize surfaces jointly which are partially occluded. This be-

havior can be observed in the Bicycle scene (see figure 10).

SC GC produces very crisp boundaries and an accurate esti-

mation of the poorly textured door in the background where

most algorithms suffer from heavy fattening.

SPO is the only algorithm performing very well at both,

fine structure thinning and fattening as well as general dis-

continuities (see radar chart on figure 6b and the bicycle on

figure 10). By contrast, it performs below average at surface

reconstruction. SPO is rather robust on Dots and very good

at Backgammon but it has difficulties at the low texture ar-

eas of Stripes. This behavior could be altered by changing

the number of histogram bins used.

ZCTV performs very well at high accuracy metrics and

well on reconstructing surfaces but it features heavy edge

fattening (see Cotton and Dino on figure 8 and Bicycle on

figure 10). The strong smoothing seems to cause problems

on Dots and Stripes. The good performance on Backgam-

mon is probably positively influenced by the fact that only

views of the horizontal line are used.

6.3. High accuracy and surface reconstruction

In this section, we assess and compare the maximum ac-

curacy achieved by the algorithms. Figure 11 shows the per-

centage of correct disparity estimates on the photorealistic

scenes for increasing error thresholds.

One important observation from this figure is that

the order of algorithms changes for different thresh-

olds. For the joint percentage over all test and train-

ing scenes 'OBER-cross scores best from 0.01 on-

wards, while 'OFSY 330DNR scores slightly better for

even smaller thresholds. One interpretation might be that

'OFSY 330DNR can handle simple, well textured surfaces

very well, but runs into problems when occlusions or other

complicated surfaces are introduced, while 'OBER-cross

can handle these regions with higher accuracy.

The curve of ZCTV has almost the same amount of cor-

rectly estimated pixels for the 0.03 and the 0.07 threshold,

i.e. it already “saturates” at 0.03px accuracy. Apparently,

ZCTV can estimate depth with high accuracy, but is prone
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Figure 11. For each algorithm, the percentage of correct disparity estimates on the photorealistic scenes is plotted for the increasing error

thresholds on the x-axis. The PerPixBest algorithm is shown as an approximate upper bound of algorithm performance. Relative algorithm

rankings change significantly for different thresholds: ZCTV performs well at strict thresholds but only moderately for bigger thresholds.

By contrast, RM3DE is among the top methods at a threshold of 0.07 but only moderate for very strict thresholds.

Figure 12. Visualizations for BadPix(0.07) , BadPix(0.01) and Q25 performance are shown for the eight most accurate algorithms. On

Cotton, algorithm performance is very similar for BadPix(0.07) on all regions except for strong discontinuities. With BadPix(0.01) the

smooth surface reconstruction of 'OFSY 330DNR and plane fitting artefacts of SC GC become visible. The third row shows the absolute

error of the 25% of the best pixels for each algorithm.
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to problems at more complicated image regions like occlu-

sions or discontinuities.

Another interesting curve is the one of PS RF. Com-

pared to most other curves, it has relatively few estimates

with an error below 0.01, but is among the better algorithms

at 0.03 and 0.07. This might be due to few labels (151) or

the tuning of the algorithm for a certain threshold (amount

of trees in the random forests). A similar behavior can be

observed for SPO, which starts slow but is the second best

among all algorithms at a threshold of 0.05.

Figure 12 illustrates how the accurate pixels of the top

performing algorithms of figure 11 are distributed locally

on Cotton and Boxes. It depicts the regions that fall into the

BadPix(0.07) and BadPix(0.01) areas as well as the accu-

racy for those pixels that fall into the Q25 , i.e. the regions

with the 25% best accuracy for each algorithm. The visual-

ization suggests that the top performing algorithms for the

smaller error thresholds on figure 11 are those which are

best at estimating the big, continuous surfaces which make

up a huge proportion of the total pix count.

For three of the top four algorithms - 'OFSY 330DNR,

OBER, and 'OBER-cross - the regions in which the high

accuracy is achieved is mostly continuous. Figure 9 shows

that these algorithms also feature the smoothest and most

accurate normal maps. Comparing the zero crossing based

algorithms OBER, 'OBER-cross, and ZCTV one can see

that the variational regularization of ZCTV does not perform

on par with the bilateral filter approach used by OBER when

it comes to continuously high accurate surfaces. This is also

apparent on the normals of the Cotton statue in figure 9

which are much noisier for ZCTV as compared to OBER

and 'OBER-cross. The clustering of high accuracy re-

gions can also be observed for 'OFSY 330DNR, and might

be rooted in the use of the normal regularization as well as

the use of 330 labels and the sublabel accurate cost volume

optimization. By contrast, the Q25 regions of less accurate

algorithms are very discontinuous.

For SC GC, the Q25 visualization on figure 12 and the

normal map on figure 9 illustrate how the plane fitting ef-

fects the position and kind of error. Despite the obvious

drawbacks, this approach has one major advantage as it can

jointly regularize discontinuous surfaces like e.g. the fore-

ground grid at the bottom of Boxes. It is the only algorithm

to correctly estimate that large regions on the grid with high

accuracy (see BadPix(0.01) row on figure 12).

6.4. Occlusion handling

In this section, we evaluate the occlusion handling per-

formance of different algorithms. Next to the metrics, a

good way to evaluate algorithm performance at discontinu-

ities is to take a look at figures 7 and 8. Algorithms with

above average occlusion performance will show green ha-

los at discontinuities. An important question is the influence

of the explicit modeling of occlusions in data terms as well

as regularizers.

Two algorithms, ∗LF OCC and OMG occ, explicitly

model occlusion boundaries in SCams. For the complicated

case of occlusions at the grid in Boxes (see figure 15 for an

explanation why it is challenging) it can be seen that they

perform above average. For easier cases of occlusions, both

generally perform below average on discontinuities as is re-

flected by the discontinuity metric and a view at the median

comparison figures.

SC GC uses a very similar approach as these two algo-

rithms, but selects the correct views automatically by choos-

ing the 50% best views. SC GC seems to generally perform

better at occlusion boundaries, except it introduces fine thin-

ning. It remains unclear if the difference in performance is

due to the dataterm or the post processing.

Algorithms that perform above average at occlusion

boundaries are 'OBER-cross, SPO, RM3DE, OBER, and

SC GC. It is especially interesting that SPO performs that

well in this category as their dataterm does not model occlu-

sion boundaries explicitly. Apparently, comparing region

based histograms is quite robust to occlusion boundaries.

The way views are selected and combined to yield oc-

clusion awareness is particularly interesting. Looking at

the top performing algorithms for the discontinuities met-

ric, only SC GC uses the whole light field. It seems like

for discontinuities the size of the input light field is not as

important as the technique applied.

6.5. Influence of view configuration

As shown in figure 13, most algorithms either use the

full light field or the crosshair. As special cases, RM3DE

uses the diagonals in addition to the crosshair, ∗EPI1 uses

only a subset of the crosshair. OBER and ZCTV use only a

horizontal line.

Looking at the BadPix(0.03) and Q25 metrics in fig-

ure 13, no definite connection between the number of views

and the performance is visible. However, more views gen-

erally tend to lead to higher runtimes. The crosshair might

be the best trade-off between the amount of data used (and

thus runtime) and the achieved accuracy. But runtime and

accuracy vary strongly, especially among algorithms with

crosshair setups. Hence, individual algorithm aspects seem

to be more important than view configuration.

Another interesting question is the relation between

the number of depth labels and the maximum accuracy

achieved by an algorithm. As depicted on the right of fig-

ure 13, algorithms with more than 200 depth labels tend to

have better Q25 scores, though the correlation is not very

strong.
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Figure 13. Colors represent the view configuration while shapes indicate scenes and numbers identify algorithms. Left: The 6 algorithms

taking into account the full 81 views (yellow) tend to be slower than other algorithms. However, the additional views or runtimes do not

lead to significantly better BadPix scores. Right: Algorithms with more than 200 depth labels tend to have better Q25 scores.

7. Analysis of local scene difficulty

Figure 14 illustrates the absolute disparity errors of the

artificial PerPixMedian and PerPixBest algorithms as intro-

duced in Section 5.2. The PerPixMedian results show that

“the average algorithm” struggles mostly with occlusions,

the noisy image regions on Dots and with low texture re-

gions such as the lower part of Stripes, the lamps on Bed-

room, or the door in Bicycle. By contrast, the planar walls

and floors as well as most continuous surfaces are accu-

rately reconstructed.

The spatial variation of scene characteristics on Dots and

Stripes makes these scenes challenging to be solved with a

single algorithm and parameterization. However, the Per-

PixBest results on these scenes indicate that the individual

parts can be solved accurately. Three other types of im-

age areas remain challenging, even for the PerPixBest al-

gorithm: complex occlusions, very thin structures, and low

texture areas.

Figure 15 illustrates why these areas are particularly

complicated. Figure 15c shows a vertical slice of the left

part of Backgammon. Both ends of the background EPIs

are cut off, making estimation difficult. Similar challenges

with complex occlusion occur on the grids of Boxes and the

plants on Herbs and Bicycle. Figure 15d and 15e show that

these situations are particularly challenging on Boxes. The

books in the background of the box have very little texture,

making it almost impossible to estimate the slope of the cor-

responding EPIs.

Figure 15b demonstrates how the very thin tips of

Backgammon merge with the background due to aliasing

effects. This leads to problems while estimating disparity,

as it appears like a scene where two different depth lay-

ers are superimposed, breaking the Lambertian assumption.

Similarly, the shoes on Sideboard and the cap on Origami

are non-Lambertian and pose additional challenges to the

algorithms. Looking at these regions from the perspec-

tive of EPIs, specularities create non-linear patterns, which

can only partially be handled by algorithms that build on

the Lambertian assumption. Thus, objects with arbitrary

BRDFs represent an interesting direction for future datasets.

8. Conclusion and outlook

In this paper, we review representations of the light field

and strategies for disparity estimation to introduce a taxon-

omy of current light field depth estimation algorithms. We

characterize and categorize algorithms according to their

data terms, optimization techniques, and refinement steps.

We thoroughly evaluate 14 algorithms in a variety of ways,

e.g. with respect to their occlusion handling performance,

their robustness to errors on the input images and their abil-

ity to produce smooth surfaces. In addition to the bench-

mark proposed in [7], we introduce novel metrics to evalu-

ate the algorithm’s best-case accuracy as well as the error in

surface normal estimation.

The evaluation reveals that most challenge partici-

pants easily outperform the initial baseline algorithms pro-

vided with the benchmark. Algorithms with consider-

ably strong performance in certain aspects are SPO at dis-

continuities, 'OFSY 330DNR at continuous surfaces, and

'OBER-cross for highest accuracy and overall good per-

formance. However, there is no single algorithm that excels

in every category.

Most algorithms consist of multiple components and it

is difficult to establish which of these are most influential

for performance. While our experiments indicate that oc-

clusion aware dataterms and a good approach to surface

regularization which does not oversmooth at depth discon-

tinuities play a crucial role for excellent algorithm results,

it seems necessary to separate the evaluation of cost func-

tions and optimization or post-processing techniques, re-

spectively. For a more in-depth taxonomy and evaluation,

algorithm components should be analyzed individually. A
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Figure 15. The selected EPIs of Backgammon and Boxes illustrate why these scenes are particularly challenging. Top: On Backgammon,

disparity estimation is challenging due to (a) superimposed orientations caused by aliasing (b) thin structures merging with the background,

and (c) complex occlusions where epipolar lines are cut off at both ends. Bottom: Similar problems can be observed on Boxes. The books

of the background are occluded at both ends of the epipolar line. The low texture of the books makes disparity estimation particularly

challenging.

Figure 14. Based on the average and optimum performance of the

PerPixMedian and PerPixBest algorithms, the three biggest chal-

lenges are: complex occlusions (e.g. grid on Boxes, plants on

Herbs), low texture areas (e.g. shoes on Sideboard), and very thin

structures (e.g. peaks on Backgammon).

first approach could be to provide standardized cost vol-

umes together with the datasets in order to evaluate opti-

mization and post-processing, as well as standardized opti-

mization schemes to evaluate individual dataterms.

Although the evaluation demonstrates an overall very

good performance of the state-of-the-art algorithms, there

are still challenging open problems. Among these are better

occlusion modeling, better discontinuity-aware regulariza-

tion, improving runtime while keeping quality similar, and a

good way of deciding which light field representation yields

optimal results in which situation.

In addition, open challenges lie in the reconstruction of

non-Lambertian surfaces and BRDF estimation, which are

hard to impossible to tackle with only a sparse set of views.

Here, the structure of light fields can help to arrive at unique

and novel solutions. Thus, for future work, we aim at creat-

ing more datasets and evaluation methodology for more di-

verse and challenging scenes including challenging BRDFs

and geometry, and also include real world datasets with

carefully measured ground truth.
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