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Abstract. Stereo matching is one of the most active research areas in computer vision. While a large number of

algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing

their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods. Our taxonomy is

designed to assess the different components and design decisions made in individual stereo algorithms. Using

this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many

different variants. In order to establish a common software platform and a collection of data sets for easy evaluation,

we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components

and that can easily be extended to include new algorithms. We have also produced several new multi-frame stereo

data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a

comparative evaluation of a large set of today’s best-performing stereo algorithms.
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1. Introduction

Stereo correspondence has traditionally been, and con-

tinues to be, one of the most heavily investigated topics

in computer vision. However, it is sometimes hard to

gauge progress in the field, as most researchers only

report qualitative results on the performance of their

algorithms. Furthermore, a survey of stereo methods

is long overdue, with the last exhaustive surveys dat-

ing back about a decade (Barnard and Fischler, 1982;

Dhond and Aggarwal, 1989; Brown, 1992). This paper

provides an update on the state of the art in the field,

with particular emphasis on stereo methods that (1)

operate on two frames under known camera geometry,

and (2) produce a dense disparity map, i.e., a disparity

estimate at each pixel.

Our goals are two-fold:

1. To provide a taxonomy of existing stereo algorithms

that allows the dissection and comparison of indi-

vidual algorithm components design decisions;

2. To provide a test bed for the quantitative evalua-

tion of stereo algorithms. Towards this end, we are

placing sample implementations of correspondence

algorithms along with test data and results on the

Web at www.middlebury.edu/stereo.

We emphasize calibrated two-frame methods in or-

der to focus our analysis on the essential compo-

nents of stereo correspondence. However, it would be

relatively straightforward to generalize our approach

to include many multiframe methods, in particular
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multiple-baseline stereo (Okutomi and Kanade, 1993)

and its plane-sweep generalizations (Collins, 1996;

Szeliski and Golland, 1999).

The requirement of dense output is motivated by

modern applications of stereo such as view synthe-

sis and image-based rendering, which require disparity

estimates in all image regions, even those that are oc-

cluded or without texture. Thus, sparse and feature-

based stereo methods are outside the scope of this

paper, unless they are followed by a surface-fitting

step, e.g., using triangulation, splines, or seed-and-

grow methods.

We begin this paper with a review of the goals

and scope of this study, which include the need for

a coherent taxonomy and a well thought-out evalu-

ation methodology. We also review disparity space

representations, which play a central role in this pa-

per. In Section 3, we present our taxonomy of dense

two-frame correspondence algorithms. Section 4 dis-

cusses our current test bed implementation in terms

of the major algorithm components, their interactions,

and the parameters controlling their behavior. Section 5

describes our evaluation methodology, including the

methods we used for acquiring calibrated data sets with

known ground truth. In Section 6 we present experi-

ments evaluating the different algorithm components,

while Section 7 provides an overall comparison of 20

current stereo algorithms. We conclude in Section 8

with a discussion of planned future work.

2. Motivation and Scope

Compiling a complete survey of existing stereo meth-

ods, even restricted to dense two-frame methods, would

be a formidable task, as a large number of new meth-

ods are published every year. It is also arguable whether

such a survey would be of much value to other stereo re-

searchers, besides being an obvious catch-all reference.

Simply enumerating different approaches is unlikely to

yield new insights.

Clearly, a comparative evaluation is necessary to as-

sess the performance of both established and new algo-

rithms and to gauge the progress of the field. The pub-

lication of a similar study by Barron et al. (1994) has

had a dramatic effect on the development of optical flow

algorithms. Not only is the performance of commonly

used algorithms better understood by researchers, but

novel publications have to improve in some way on the

performance of previously published techniques (Otte

and Nagel, 1994). A more recent study by Mitiche and

Bouthemy (1996) reviews a large number of methods

for image flow computation and isolates central prob-

lems, but does not provide any experimental results.

In stereo correspondence, two previous comparative

papers have focused on the performance of sparse fea-

ture matchers (Hsieh et al., 1992; Bolles et al., 1993).

Two recent papers (Szeliski, 1999; Mulligan et al.,

2001) have developed new criteria for evaluating the

performance of dense stereo matchers for image-based

rendering and telepresence applications. Our work is a

continuation of the investigations begun by Szeliski and

Zabih (1999), which compared the performance of sev-

eral popular algorithms, but did not provide a detailed

taxonomy or as complete a coverage of algorithms. A

preliminary version of this paper appeared in the CVPR

2001 Workshop on Stereo and Multi-Baseline Vision

(Scharstein et al., 2001).

An evaluation of competing algorithms has limited

value if each method is treated as a “black box” and only

final results are compared. More insights can be gained

by examining the individual components of various al-

gorithms. For example, suppose a method based on

global energy minimization outperforms other meth-

ods. Is the reason a better energy function, or a better

minimization technique? Could the technique be im-

proved by substituting different matching costs?

In this paper we attempt to answer such questions by

providing a taxonomy of stereo algorithms. The taxon-

omy is designed to identify the individual components

and design decisions that go into a published algorithm.

We hope that the taxonomy will also serve to structure

the field and to guide researchers in the development

of new and better algorithms.

2.1. Computational Theory

Any vision algorithm, explicitly or implicitly, makes

assumptions about the physical world and the image

formation process. In other words, it has an under-

lying computational theory (Marr and Poggio, 1979;

Marr, 1982). For example, how does the algorithm mea-

sure the evidence that points in the two images match,

i.e., that they are projections of the same scene point?

One common assumption is that of Lambertian sur-

faces, i.e., surfaces whose appearance does not vary

with viewpoint. Some algorithms also model specific

kinds of camera noise, or differences in gain or bias.

Equally important are assumptions about the world

or scene geometry and the visual appearance of ob-

jects. Starting from the fact that the physical world
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consists of piecewise-smooth surfaces, algorithms have

built-in smoothness assumptions (often implicit) with-

out which the correspondence problem would be un-

derconstrained and ill-posed. Our taxonomy of stereo

algorithms, presented in Section 3, examines both

matching assumptions and smoothness assumptions in

order to categorize existing stereo methods.

Finally, most algorithms make assumptions about

camera calibration and epipolar geometry. This is ar-

guably the best-understood part of stereo vision; we

therefore assume in this paper that we are given a pair

of rectified images as input. Recent references on stereo

camera calibration and rectification include (Zhang,

1998, 2000; Loop and Zhang, 1999; Hartley and

Zisserman, 2000; Faugeras and Luong, 2001).

2.2. Representation

A critical issue in understanding an algorithm is the rep-

resentation used internally and output externally by the

algorithm. Most stereo correspondence methods com-

pute a univalued disparity function d(x , y) with respect

to a reference image, which could be one of the input

images, or a “cyclopian” view in between some of the

images.

Other approaches, in particular multi-view stereo

methods, use multi-valued (Szeliski and Golland,

1999), voxel-based (Seitz and Dyer, 1999; Kutulakos

and Seitz, 2000; De Bonet and Viola, 1999;

Culbertson et al., 1999; Broadhurst et al., 2001), or

layer-based (Wang and Adelson, 1993; Baker et al.,

1998) representations. Still other approaches use full

3D models such as deformable models (Terzopoulos

and Fleischer, 1988; Terzopoulos and Metaxas, 1991),

triangulated meshes (Fua and Leclerc, 1995), or level-

set methods (Faugeras and Keriven, 1998).

Since our goal is to compare a large number of meth-

ods within one common framework, we have chosen to

focus on techniques that produce a univalued dispar-

ity map d(x , y) as their output. Central to such meth-

ods is the concept of a disparity space (x , y, d). The

term disparity was first introduced in the human vi-

sion literature to describe the difference in location of

corresponding features seen by the left and right eyes

(Marr, 1982). (Horizontal disparity is the most com-

monly studied phenomenon, but vertical disparity is

possible if the eyes are verged.)

In computer vision, disparity is often treated as

synonymous with inverse depth (Bolles et al., 1987;

Okutomi and Kanade, 1993). More recently, several re-

searchers have defined disparity as a three-dimensional

projective transformation (collineation or homogra-

phy) of 3-D space (X , Y , Z ). The enumeration of

all possible matches in such a generalized disparity

space can be easily achieved with a plane sweep al-

gorithm (Collins, 1996; Szeliski and Golland, 1999),

which for every disparity d projects all images onto a

common plane using a perspective projection (homog-

raphy). (Note that this is different from the meaning of

plane sweep in computational geometry.)

In general, we favor the more generalized interpre-

tation of disparity, since it allows the adaptation of

the search space to the geometry of the input cameras

(Szeliski and Golland, 1999; Saito and Kanade, 1999);

we plan to use it in future extensions of this work to

multiple images. Note that plane sweeps can also be

generalized to other sweep surfaces such as cylinders

(Shum and Szeliski, 1999).

In this study, however, since all our images are taken

on a linear path with the optical axis perpendicular to

the camera displacement, the classical inverse-depth in-

terpretation will suffice (Okutomi and Kanade, 1993).

The (x , y) coordinates of the disparity space are taken

to be coincident with the pixel coordinates of a refer-

ence image chosen from our input data set. The corre-

spondence between a pixel (x , y) in reference image r

and a pixel (x ′, y′) in matching image m is then given

by

x ′ = x + sd(x, y), y′ = y, (1)

where s = ±1 is a sign chosen so that disparities are

always positive. Note that since our images are num-

bered from leftmost to rightmost, the pixels move from

right to left.

Once the disparity space has been specified, we can

introduce the concept of a disparity space image or

DSI (Yang et al., 1993; Bobick and Intille, 1999). In

general, a DSI is any image or function defined over

a continuous or discretized version of disparity space

(x , y, d). In practice, the DSI usually represents the

confidence or log likelihood (i.e., cost) of a particular

match implied by d(x , y).

The goal of a stereo correspondence algorithm is

then to produce a univalued function in disparity space

d(x , y) that best describes the shape of the surfaces

in the scene. This can be viewed as finding a surface

embedded in the disparity space image that has some

optimality property, such as lowest cost and best (piece-

wise) smoothness (Yang et al., 1993). Figure 1 shows
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Figure 1. Slices through a typical disparity space image (DSI): (a) original color image; (b) ground-truth disparities; (c–e) three (x , y) slices

for d = 10, 16, 21; (f) an (x , d) slice for y = 151 (the dashed line in Fig. (b)). Different dark (matching) regions are visible in Fig. (c)–(e),

e.g., the bookshelves, table and cans, and head statue, while three different disparity levels can be seen as horizontal lines in the (x , d) slice

(Fig. (f)). Note the dark bands in the various DSIs, which indicate regions that match at this dispartiy. (Smaller dark regions are often the result

of textureless regions.)

examples of slices through a typical DSI. More figures

of this kind can be found in Bobick and Intille (1999).

3. A Taxonomy of Stereo Algorithms

In order to support an informed comparison of stereo

matching algorithms, we develop in this section a tax-

onomy and categorization scheme for such algorithms.

We present a set of algorithmic “building blocks” from

which a large set of existing algorithms can easily be

constructed. Our taxonomy is based on the observa-

tion that stereo algorithms generally perform (subsets

of) the following four steps (Scharstein and Szeliski,

1998; Scharstein, 1999):

1. matching cost computation;

2. cost (support) aggregation;

3. disparity computation/optimization; and

4. disparity refinement.

The actual sequence of steps taken depends on the spe-

cific algorithm.

For example, local (window-based) algorithms,

where the disparity computation at a given point de-

pends only on intensity values within a finite win-

dow, usually make implicit smoothness assumptions

by aggregating support. Some of these algorithms can

cleanly be broken down into steps 1, 2, 3. For exam-

ple, the traditional sum-of-squared-differences (SSD)

algorithm can be described as:

1. the matching cost is the squared difference of inten-

sity values at a given disparity;

2. aggregation is done by summing matching cost over

square windows with constant disparity;

3. disparities are computed by selecting the minimal

(winning) aggregated value at each pixel.

Some local algorithms, however, combine steps 1 and

2 and use a matching cost that is based on a support re-

gion, e.g. normalized cross-correlation (Hannah, 1974;

Bolles et al., 1993) and the rank transform (Zabih and

Woodfill, 1994). (This can also be viewed as a prepro-

cessing step; see Section 3.1.)

On the other hand, global algorithms make explicit

smoothness assumptions and then solve an optimiza-

tion problem. Such algorithms typically do not per-

form an aggregation step, but rather seek a disparity

assignment (step 3) that minimizes a global cost func-

tion that combines data (step 1) and smoothness terms.

The main distinction between these algorithms is the

minimization procedure used, e.g., simulated annealing

(Marroquin et al., 1987; Barnard, 1989), probabilistic

(mean-field) diffusion (Scharstein and Szeliski, 1998)

or graph cuts (Boykov et al., 2001).

In between these two broad classes are certain it-

erative algorithms that do not explicitly state a global

function that is to be minimized, but whose behavior

mimics closely that of iterative optimization algorithms

(Marr and Poggio, 1976; Scharstein and Szeliski, 1998;

Zitnick and Kanade, 2000). Hierarchical (coarse-to-

fine) algorithms resemble such iterative algorithms, but

typically operate on an image pyramid, where results

from coarser levels are used to constrain a more local

search at finer levels (Witkin et al., 1987; Quam, 1984;

Bergen et al., 1992).
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3.1. Matching Cost Computation

The most common pixel-based matching costs in-

clude squared intensity differences (SD) (Hannah,

1974; Anandan, 1989; Matthies et al., 1989; Simoncelli

et al., 1991), and absolute intensity differences (AD)

(Kanade, 1994). In the video processing community,

these matching criteria are referred to as the mean-

squared error (MSE) and mean absolute difference

(MAD) measures; the term displaced frame difference

is also often used (Tekalp, 1995).

More recently, robust measures, including truncated

quadratics and contaminated Gaussians have been

proposed (Black and Anandan, 1993; Black and

Rangarajan, 1996; Scharstein and Szeliski, 1998).

These measures are useful because they limit the in-

fluence of mismatches during aggregation.

Other traditional matching costs include normalized

cross-correlation (Hannah, 1974; Ryan et al., 1980;

Bolles et al., 1993), which behaves similar to sum-

of-squared-differences (SSD), and binary matching

costs (i.e., match/no match) (Marr and Poggio, 1976),

based on binary features such as edges (Baker, 1980;

Grimson, 1985; Canny, 1986) or the sign of the

Laplacian (Nishihara, 1984). Binary matching costs are

not commonly used in dense stereo methods, however.

Some costs are insensitive to differences in cam-

era gain or bias, for example gradient-based measures

(Seitz, 1989; Scharstein, 1994) and non-parametric

measures such as rank and census transforms (Zabih

and Woodfill, 1994). Of course, it is also possible to cor-

rect for different camera characteristics by performing

a preprocessing step for bias-gain or histogram equali-

zation (Gennert, 1988; Cox et al., 1995). Other match-

ing criteria include phase and filter-bank responses

(Marr and Poggio, 1979; Kass, 1988; Jenkin et al.,

1991; Jones and Malik, 1992). Finally, Birchfield and

Tomasi have proposed a matching cost that is insensi-

tive to image sampling (Birchfield and Tomasi, 1998a).

Rather than just comparing pixel values shifted by in-

tegral amounts (which may miss a valid match), they

compare each pixel in the reference image against a

linearly interpolated function of the other image.

The matching cost values over all pixels and all dis-

parities form the initial disparity space image C0(x ,

y, d). While our study is currently restricted to two-

frame methods, the initial DSI can easily incorpo-

rate information from more than two images by sim-

ply summing up the cost values for each matching

image m, since the DSI is associated with a fixed

reference image r (Eq. (1)). This is the idea behind

multiple-baseline SSSD and SSAD methods (Okutomi

and Kanade, 1993; Kang et al., 1995; Nakamura et al.,

1996). As mentioned in Section 2.2, this idea can be

generalized to arbitrary camera configurations using

a plane sweep algorithm (Collins, 1996; Szeliski and

Golland, 1999).

3.2. Aggregation of Cost

Local and window-based methods aggregate the

matching cost by summing or averaging over a sup-

port region in the DSI C(x , y, d). A support region

can be either two-dimensional at a fixed disparity (fa-

voring fronto-parallel surfaces), or three-dimensional

in x-y-d space (supporting slanted surfaces). Two-

dimensional evidence aggregation has been imple-

mented using square windows or Gaussian convo-

lution (traditional), multiple windows anchored at

different points, i.e., shiftable windows (Arnold, 1983;

Bobick and Intille, 1999), windows with adaptive sizes

(Okutomi and Kanade, 1992; Kanade and Okutomi,

1994; Veksler, 2001; Kang et al., 2001), and windows

based on connected components of constant disparity

(Boykov et al., 1998). Three-dimensional support func-

tions that have been proposed include limited disparity

difference (Grimson, 1985), limited disparity gradient

(Pollard et al., 1985), and Prazdny’s coherence princi-

ple (Prazdny, 1985).

Aggregation with a fixed support region can be per-

formed using 2D or 3D convolution,

C(x, y, d) = w(x, y, d) ∗ C0(x, y, d), (2)

or, in the case of rectangular windows, using efficient

(moving average) box-filters. Shiftable windows can

also be implemented efficiently using a separable slid-

ing min-filter (Section 4.2). A different method of ag-

gregation is iterative diffusion, i.e., an aggregation (or

averaging) operation that is implemented by repeatedly

adding to each pixel’s cost the weighted values of its

neighboring pixels’ costs (Szeliski and Hinton, 1985;

Shah, 1993; Scharstein and Szeliski, 1998).

3.3. Disparity Computation and Optimization

Local Methods. In local methods, the emphasis is on

the matching cost computation and on the cost aggre-

gation steps. Computing the final disparities is trivial:
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simply choose at each pixel the disparity associated

with the minimum cost value. Thus, these methods per-

form a local “winner-take-all” (WTA) optimization at

each pixel. A limitation of this approach (and many

other correspondence algorithms) is that uniqueness

of matches is only enforced for one image (the refer-

ence image), while points in the other image might get

matched to multiple points.

Global Optimization. In contrast, global methods

perform almost all of their work during the dispar-

ity computation phase and often skip the aggregation

step. Many global methods are formulated in an energy-

minimization framework (Terzopoulos, 1986). The ob-

jective is to find a disparity function d that minimizes

a global energy,

E(d) = Edata(d) + λEsmooth(d). (3)

The data term, Edata(d), measures how well the dispar-

ity function d agrees with the input image pair. Using

the disparity space formulation,

Edata(d) =
∑

(x,y)

C(x, y, d(x, y)), (4)

where C is the (initial or aggregated) matching cost

DSI.

The smoothness term Esmooth(d) encodes the

smoothness assumptions made by the algorithm. To

make the optimization computationally tractable, the

smoothness term is often restricted to only measuring

the differences between neighboring pixels’ disparities,

Esmooth(d) =
∑

(x,y)

ρ(d(x, y) − d(x + 1, y))

+ ρ(d(x, y) − d(x, y + 1)), (5)

where ρ is some monotonically increasing function

of disparity difference. (An alternative to smoothness

functionals is to use a lower-dimensional representa-

tion such as splines (Szeliski and Coughlan, 1997).)

In regularization-based vision (Poggio et al., 1985),

ρ is a quadratic function, which makes d smooth every-

where and may lead to poor results at object boundaries.

Energy functions that do not have this problem are

called discontinuity-preserving and are based on robust

ρ functions (Terzopoulos, 1986; Black and Rangarajan,

1996; Scharstein and Szeliski, 1998). Geman and

Geman’s seminal paper (Geman and Geman, 1984)

gave a Bayesian interpretation of these kinds of

energy functions (Szeliski, 1989) and proposed a

discontinuity-preserving energy function based on

Markov Random Fields (MRFs) and additional line

processes. Black and Rangarajan (1996) show how line

processes can be often be subsumed by a robust regu-

larization framework.

The terms in Esmooth can also be made to depend on

the intensity differences, e.g.,

ρd(d(x, y) − d(x + 1, y)) · ρI (‖I (x, y)

− I (x + 1, y)‖), (6)

where ρI is some monotonically decreasing function

of intensity differences that lowers smoothness costs

at high intensity gradients. This idea (Gamble and

Poggio, 1987; Fua, 1993; Bobick and Intille, 1999;

Boykov et al., 2001), encourages disparity discontinu-

ities to coincide with intensity/color edges and appears

to account for some of the good performance of global

optimization approaches.

Once the global energy has been defined, a variety of

algorithms can be used to find a (local) minimum. Tra-

ditional approaches associated with regularization and

Markov Random Fields include continuation (Blake

and Zisserman, 1987), simulated annealing (Geman

and Geman, 1984; Marroquin et al., 1987; Barnard,

1989), highest confidence first (Chou and Brown, 1990)

and mean-field annealing (Geiger and Girosi, 1991).

More recently, max-flow and graph-cut methods

have been proposed to solve a special class of global

optimization problems (Roy and Cox, 1998; Ishikawa

and Geiger, 1998; Boykov et al., 2001; Veksler, 1999;

Kolmogorov and Zabih, 2001). Such methods are more

efficient than simulated annealing and have produced

good results.

Dynamic Programming. A different class of global

optimization algorithms are those based on dynamic

programming. While the 2D-optimization of Eq. (3)

can be shown to be NP-hard for common classes

of smoothness functions (Veksler, 1999), dynamic

programming can find the global minimum for inde-

pendent scanlines in polynomial time. Dynamic pro-

gramming was first used for stereo vision in sparse,

edge-based methods (Baker and Binford, 1981; Ohta

and Kanade, 1985). More recent approaches have fo-

cused on the dense (intensity-based) scanline opti-

mization problem (Belhumeur and Mumford, 1992;

Belhumeur, 1996; Geiger et al., 1992; Cox et al.,

1996; Bobick and Intille, 1999; Birchfield and Tomasi,
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Figure 2. Stereo matching using dynamic programming. For each

pair of corresponding scanlines, a minimizing path through the ma-

trix of all pairwise matching costs is selected. Lowercase letters (a–k)

symbolize the intensities along each scanline. Uppercase letters rep-

resent the selected path through the matrix. Matches are indicated

by M, while partially occluded points (which have a fixed cost) are

indicated by L and R, corresponding to points only visible in the

left and right image, respectively. Usually, only a limited disparity

range is considered, which is 0–4 in the figure (indicated by the non-

shaded squares). Note that this diagram shows an “unskewed” x-d

slice through the DSI.

1998b). These approaches work by computing the

minimum-cost path through the matrix of all pairwise

matching costs between two corresponding scanlines.

Partial occlusion is handled explicitly by assigning a

group of pixels in one image to a single pixel in the

other image. Figure 2 shows one such example.

Problems with dynamic programming stereo include

the selection of the right cost for occluded pixels and

the difficulty of enforcing inter-scanline consistency,

although several methods propose ways of address-

ing the latter (Ohta and Kanade, 1985; Belhumeur,

1996; Cox et al., 1996; Bobick and Intille, 1999;

Birchfield and Tomasi, 1998b). Another problem is that

the dynamic programming approach requires enforc-

ing the monotonicity or ordering constraint (Yuille and

Poggio, 1984). This constraint requires that the rela-

tive ordering of pixels on a scanline remain the same

between the two views, which may not be the case in

scenes containing narrow foreground objects.

Cooperative Algorithms. Finally, cooperative algo-

rithms, inspired by computational models of human

stereo vision, were among the earliest methods pro-

posed for disparity computation (Dev, 1974; Marr

and Poggio, 1976; Marroquin, 1983; Szeliski and

Hinton, 1985). Such algorithms iteratively perform

local computations, but use nonlinear operations that

result in an overall behavior similar to global optimiza-

tion algorithms. In fact, for some of these algorithms,

it is possible to explicitly state a global function that

is being minimized (Scharstein and Szeliski, 1998).

Recently, a promising variant of Marr and Poggio’s

original cooperative algorithm has been developed

(Zitnick and Kanade, 2000).

3.4. Refinement of Disparities

Most stereo correspondence algorithms compute a set

of disparity estimates in some discretized space, e.g.,

for integer disparities (exceptions include continuous

optimization techniques such as optic flow (Bergen

et al., 1992) or splines (Szeliski and Coughlan, 1997)).

For applications such as robot navigation or people

tracking, these may be perfectly adequate. However

for image-based rendering, such quantized maps lead

to very unappealing view synthesis results (the scene

appears to be made up of many thin shearing layers).

To remedy this situation, many algorithms apply a sub-

pixel refinement stage after the initial discrete corre-

spondence stage. (An alternative is to simply start with

more discrete disparity levels.)

Sub-pixel disparity estimates can be computed in a

variety of ways, including iterative gradient descent

and fitting a curve to the matching costs at discrete

disparity levels (Ryan et al., 1980; Lucas and Kanade,

1981; Tian and Huhns, 1986; Matthies et al., 1989;

Kanade and Okutomi, 1994). This provides an easy

way to increase the resolution of a stereo algorithm with

little additional computation. However, to work well,

the intensities being matched must vary smoothly, and

the regions over which these estimates are computed

must be on the same (correct) surface.

Recently, some questions have been raised about

the advisability of fitting correlation curves to integer-

sampled matching costs (Shimizu and Okutomi,

2001). This situation may even be worse when

sampling-insensitive dissimilarity measures are used

(Birchfield and Tomasi, 1998a). We investigate this

issue in Section 6.4 below.

Besides sub-pixel computations, there are of course

other ways of post-processing the computed dispar-

ities. Occluded areas can be detected using cross-

checking (comparing left-to-right and right-to-left dis-

parity maps) (Cochran and Medioni, 1992; Fua, 1993).

A median filter can be applied to “clean up” spurious

mismatches, and holes due to occlusion can be filled by

surface fitting or by distributing neighboring disparity
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estimates (Birchfield and Tomasi, 1998b; Scharstein,

1999). In our implementation we are not performing

such clean-up steps since we want to measure the per-

formance of the raw algorithm components.

3.5. Other Methods

Not all dense two-frame stereo correspondence algo-

rithms can be described in terms of our basic taxonomy

and representations. Here we briefly mention some ad-

ditional algorithms and representations that are not cov-

ered by our framework.

The algorithms described in this paper first enumer-

ate all possible matches at all possible disparities, then

select the best set of matches in some way. This is a use-

ful approach when a large amount of ambiguity may ex-

ist in the computed disparities. An alternative approach

is to use methods inspired by classic (infinitesimal) op-

tic flow computation. Here, images are successively

warped and motion estimates incrementally updated

until a satisfactory registration is achieved. These tech-

niques are most often implemented within a coarse-to-

fine hierarchical refinement framework (Quam, 1984;

Bergen et al., 1992; Barron et al., 1994; Szeliski and

Coughlan, 1997).

A univalued representation of the disparity map is

also not essential. Multi-valued representations, which

can represent several depth values along each line of

sight, have been extensively studied recently, especially

for large multiview data set. Many of these techniques

use a voxel-based representation to encode the recon-

structed colors and spatial occupancies or opacities

(Szeliski and Golland, 1999; Seitz and Dyer, 1999;

Kutulakos and Seitz, 2000; De Bonet and Viola, 1999;

Culbertson et al., 1999; Broadhurst et al., 2001). An-

other way to represent a scene with more complexity

is to use multiple layers, each of which can be repre-

sented by a plane plus residual parallax (Baker et al.,

1998; Birchfield and Tomasi, 1999; Tao et al., 2001).

Finally, deformable surfaces of various kinds have also

been used to perform 3D shape reconstruction from

multiple images (Terzopoulos and Fleischer, 1988;

Terzopoulos and Metaxas, 1991; Fua and Leclerc,

1995; Faugeras and Keriven, 1998).

3.6. Summary of Methods

Table 1 gives a summary of some representative

stereo matching algorithms and their corresponding

taxonomy, i.e., the matching cost, aggregation, and

optimization techniques used by each. The methods

are grouped to contrast different matching costs (top),

aggregation methods (middle), and optimization tech-

niques (third section), while the last section lists some

papers outside the framework. As can be seen from this

table, quite a large subset of the possible algorithm de-

sign space has been explored over the years, albeit not

very systematically.

4. Implementation

We have developed a stand-alone, portable C++ im-

plementation of several stereo algorithms. The imple-

mentation is closely tied to the taxonomy presented

in Section 3 and currently includes window-based al-

gorithms, diffusion algorithms, as well as global opti-

mization methods using dynamic programming, simu-

lated annealing, and graph cuts. While many published

methods include special features and post-processing

steps to improve the results, we have chosen to imple-

ment the basic versions of such algorithms, in order to

assess their respective merits most directly.

The implementation is modular and can easily be

extended to include other algorithms or their compo-

nents. We plan to add several other algorithms in the

near future, and we hope that other authors will con-

tribute their methods to our framework as well. Once a

new algorithm has been integrated, it can easily be com-

pared with other algorithms using our evaluation mod-

ule, which can measure disparity error and reprojection

error (Section 5.1). The implementation contains a so-

phisticated mechanism for specifying parameter values

that supports recursive script files for exhaustive per-

formance comparisons on multiple data sets.

We provide a high-level description of our code using

the same division into four parts as in our taxonomy.

Within our code, these four sections are (optionally)

executed in sequence, and the performance/quality

evaluator is then invoked. A list of the most important

algorithm parameters is given in Table 2.

4.1. Matching Cost Computation

The simplest possible matching cost is the squared or

absolute difference in color/intensity between corre-

sponding pixels (match fn). To approximate the effect

of a robust matching score (Black and Rangarajan,

1996; Scharstein and Szeliski, 1998), we truncate

the matching score to a maximal value match max.

When color images are being compared, we sum the
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Table 1. Summary taxonomy of several dense two-frame stereo correspondence methods. The methods are grouped to contrast

different matching costs (top), aggregation methods (middle), and optimization techniques (third section). The last section lists

some papers outside our framework. Key to abbreviations: hier.—hierarchical (coarse-to-fine), WTA—winner-take-all, DP—dynamic

programming, SA—simulated annealing, GC—graph cut.

Method Matching cost Aggregation Optimization

SSD (traditional) Squared difference Square window WTA

Hannah (1974) Cross-correlation (Square window) WTA

Nishihara (1984) Binarized filters Square window WTA

Kass (1988) Filter banks -None- WTA

Fleet et al. (1991) Phase -None- Phase-matching

Jones and Malik (1992) Filter banks -None- WTA

Kanade (1994) Absolute difference Square window WTA

Scharstein (1994) Gradient-based Gaussian WTA

Zabih and Woodfill (1994) Rank transform (Square window) WTA

Cox et al. (1995) Histogram eq. -None- DP

Frohlinghaus and Buhmann (1996) Wavelet phase -None- Phase-matching

Birchfield and Tomasi (1998a) Shifted abs. diff -None- DP

Marr and Poggio (1976) Binary images Iterative aggregation WTA

Prazdny (1985) Binary images 3D aggregation WTA

Szeliski and Hinton (1985) Binary images Iterative 3D aggregation WTA

Okutomi and Kanade (1992) Squared difference Adaptive window WTA

Yang et al. (1993) Cross-correlation Non-linear filtering Hier. WTA

Shah (1993) Squared difference Non-linear diffusion Regularization

Boykov et al. (1998) Thresh. abs. diff. Connected-component WTA

Scharstein and Szeliski (1998) Robust sq. diff. Iterative 3D aggregation Mean-field

Zitnick and Kanade (2000) Squared difference Iterative aggregation WTA

Veksler (2001) Abs. diff-avg. Adaptive window WTA

Quam (1984) Cross-correlation -None- Hier. Warp

Barnard (1989) Squared difference -None- SA

Geiger et al. (1992) Squared difference Shiftable window DP

Belhumeur (1996) Squared difference -None- DP

Cox et al. (1996) Squared difference -None- DP

Ishikawa and Geiger (1998) Squared difference -None- Graph cut

Roy and Cox (1998) Squared difference -None- Graph cut

Bobick and Intille (1999) Absolute difference Shiftable window DP

Boykov et al. (2001) Squared difference -None- Graph cut

Kolmogorov and Zabih (2001) Squared difference -None- Graph cut

Birchfield and Tomasi (1999) Shifted abs. diff. -None- GC + planes

Tao et al. (2001) Squared difference (Color segmentation) WTA + regions

squared or absolute intensity difference in each chan-

nel before applying the clipping. If fractional dispar-

ity evaluation is being performed (disp step < 1), each

scanline is first interpolated up using either a linear

or cubic interpolation filter (match interp) (Matthies

et al., 1989). We also optionally apply Birchfield and

Tomasi’s sampling insensitive interval-based match-

ing criterion (match interval) (Birchfield and Tomasi,

1998a), i.e., we take the minimum of the pixel match-

ing score and the score at ± 1
2
-step displacements, or

0 if there is a sign change in either interval. We apply

this criterion separately to each color channel, which
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Table 2. The most important stereo algorithm parameters of our implementation.

Name Typical values Description

disp min 0 Smallest disparity

disp max 15 Largest disparity

disp step 0.5 Disparity step size

match fn SD, AD Matching function

match interp Linear, Cubic Interpolation function

match max 20 Maximum difference for truncated SAD/SSD

match interval false 1/2 disparity match (Birchfield and Tomasi, 1998a)

aggr fn Box, Binomial Aggregation function

aggr window size 9 Size of window

aggr minfilter 9 Spatial min-filter (shiftable window)

aggr iter 1 Number of aggregation iterations

diff lambda 0.15 Parameter λ for regular and membrane diffusion

diff beta 0.5 Parameter β for membrane diffusion

diff scale cost 0.01 Scale of cost values (needed for Bayesian diffusion)

diff mu 0.5 Parameter µ for Bayesian diffusion

diff sigmaP 0.4 Parameter σP for robust prior of Bayesian diffusion

diff epsP 0.01 Parameter ǫP for robust prior of Bayesian diffusion

opt fn WTA, DP, SA, GC Optimization function

opt smoothness 1.0 Weight of smoothness term (λ)

opt grad thresh 8.0 Threshold for magnitude of intensity gradient

opt grad penalty 2.0 Smoothness penalty factor if gradient is too small

opt occlusion cost 20 Cost for occluded pixels in DP algorithm

opt sa var Gibbs, Metropolis Simulated annealing update rule

opt sa start T 10.0 Starting temperature

opt sa end T 0.01 Ending temperature

opt sa schedule Linear Annealing schedule

refine subpix true Fit sub-pixel value to local correlation

eval bad thresh 1.0 Acceptable disparity error

eval textureless width 3 Box filter width applied to ‖∇x I‖2

eval textureless thresh 4.0 Threshold applied to filtered ‖∇x I‖2

eval disp gap 2.0 Disparity jump threshold

eval discont width 9 Width of discontinuity region

eval ignore border 10 Number of border pixels to ignore

eval partial shuffle 0.2 Analysis interval for prediction error

is not physically plausible (the sub-pixel shift must be

consistent across channels), but is easier to implement.

4.2. Aggregation

The aggregation section of our test bed implements

some commonly used aggregation methods (aggr−fn):

• Box filter: use a separable moving average filter (add

one right/bottom value, subtract one left/top). This

implementation trick makes such window-based ag-

gregation insensitive to window size in terms of com-

putation time and accounts for the fast performance

seen in real-time matchers (Kanade et al., 1996;

Kimura et al., 1999).
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• Binomial filter: use a separable FIR (finite impulse

response) filter. We use the coefficients 1/16{1, 4,

6, 4, 1}, the same ones used in Burt and Adelson’s

Laplacian pyramid (Burt and Adelson, 1983).

Other convolution kernels could also be added later,

as could recursive (bi-directional) IIR filtering, which

is a very efficient way to obtain large window sizes

(Deriche, 1990). The width of the box or convolution

kernel is controlled by aggr window size.

To simulate the effect of shiftable windows (Arnold,

1983; Bobick and Intille, 1999; Tao et al., 2001), we

can follow this aggregation step with a separable square

min-filter. The width of this filter is controlled by the

parameter aggr minfilter. The cascaded effect of a box-

filter and an equal-sized min-filter is the same as evalu-

ating a complete set of shifted windows, since the value

of a shifted window is the same as that of a centered

window at some neighboring pixel (Fig. 3). This step

adds very little additional computation, since a moving

1-D min-filter can be computed efficiently by only re-

computing the min when a minimum value leaves the

window. The value of aggr minfilter can be less than

that of aggr window size, which simulates the effect of

a partially shifted window. (The converse doesn’t make

much sense, since the window then no longer includes

the reference pixel.)

We have also implemented all of the diffusion meth-

ods developed in Scharstein and Szeliski (1998) except

for local stopping, i.e., regular diffusion, the membrane

model, and Bayesian (mean-field) diffusion. While this

last algorithm can also be considered an optimiza-

tion method, we include it in the aggregation mod-

ule since it resembles other iterative aggregation algo-

rithms closely. The maximum number of aggregation

iterations is controlled by aggr iter. Other parameters

Figure 3. Shiftable window. The effect of trying all 3 × 3 shifted

windows around the black pixel is the same as taking the minimum

matching score across all centered (non-shifted) windows in the same

neighborhood. (Only 3 of the neighboring shifted windows are shown

here for clarity.)

controlling the diffusion algorithms are listed in

Table 2.

4.3. Optimization

Once we have computed the (optionally aggregated)

costs, we need to determine which discrete set of dis-

parities best represents the scene surface. The algorithm

used to determine this is controlled by opt fn, and can

be one of:

• winner-take-all (WTA);

• dynamic programming (DP);

• scanline optimization (SO);

• simulated annealing (SA);

• graph cut (GC).

The winner-take-all method simply picks the lowest

(aggregated) matching cost as the selected disparity

at each pixel. The other methods require (in addition

to the matching cost) the definition of a smoothness

cost. Prior to invoking one of the optimization algo-

rithms, we set up tables containing the values of ρd in

Eq. (6) and precompute the spatially varying weights

ρI (x , y). These tables are controlled by the parame-

ters opt smoothness, which controls the overall scale

of the smoothness term (i.e., λ in Eq. (3)), and the pa-

rameters opt grad thresh and opt grad penalty, which

control the gradient-dependent smoothness costs. We

currently use the smoothness terms defined by Veksler

(1999):

ρI (�I ) =

{

p if �I < opt grad thresh

1 if �I ≥ opt grad thresh,
(7)

where p = opt grad penalty. Thus, the smoothness

cost is multiplied by p for low intensity gradients to

encourage disparity jumps to coincide with intensity

edges. All of the optimization algorithms minimize the

same objective function, enabling a more meaningful

comparison of their performance.

Our first global optimization technique, DP, is a dy-

namic programming method similar to the one pro-

posed by Bobick and Intille (1999). The algorithm

works by computing the minimum-cost path through

each x, d slice in the DSI (see Fig. 2). Every point in

this slice can be in one of three states: M (match), L

(left-visible only), or R (right-visible only). Assuming

the ordering constraint is being enforced, a valid path
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can take at most three directions at a point, each associ-

ated with a deterministic state change. Using dynamic

programming, the minimum cost of all paths to a point

can be accumulated efficiently. Points in state M are

simply charged the matching cost at this point in the

DSI. Points in states L and R are charged a fixed occlu-

sion cost (opt occlusion cost). Before evaluating the

final disparity map, we fill all occluded pixels with the

nearest background disparity value on the same scan-

line.

The DP stereo algorithm is fairly sensitive to this

parameter (see Section 6). Bobick and Intille address

this problem by precomputing ground control points

(GCPs) that are then used to constrain the paths through

the DSI slice. GCPs are high-confidence matches that

are computed using SAD and shiftable windows. At

this point we are not using GCPs in our implementation

since we are interested in comparing the basic version

of different algorithms. However, GCPs are potentially

useful in other algorithms as well, and we plan to add

them to our implementation in the future.

Our second global optimization technique, scanline

optimization (SO), is a simple (and, to our knowledge,

novel) approach designed to assess different smooth-

ness terms. Like the previous method, it operates on

individual x, d DSI slices and optimizes one scanline

at a time. However, the method is asymmetric and does

not utilize visibility or ordering constraints. Instead, a

d value is assigned at each point x such that the over-

all cost along the scanline is minimized. (Note that

without a smoothness term, this would be equivalent to

a winner-take-all optimization.) The global minimum

can again be computed using dynamic programming;

however, unlike in traditional (symmetric) DP algo-

rithms, the ordering constraint does not need to be en-

forced, and no occlusion cost parameter is necessary.

Thus, the SO algorithm solves the same optimization

problem as the graph-cut algorithm described below,

except that vertical smoothness terms are ignored.

Both DP and SO algorithms suffer from the well-

known difficulty of enforcing inter-scanline consis-

tency, resulting in horizontal “streaks” in the computed

disparity map. Bobick and Intille’s approach to this

problem is to detect edges in the DSI slice and to lower

the occlusion cost for paths along those edges. This has

the effect of aligning depth discontinuities with inten-

sity edges. In our implementation, we achieve the same

goal by using an intensity-dependent smoothness cost

(Eq. (6)), which, in our DP algorithm, is charged at all

L-M and R-M state transitions.

Our implementation of simulated annealing supports

both the Metropolis variant (where downhill steps are

always taken, and uphill steps are sometimes taken),

and the Gibbs Sampler, which chooses among several

possible states according to the full marginal distri-

bution (Geman and Geman, 1984). In the latter case,

we can either select one new state (disparity) to flip

to at random, or evaluate all possible disparities at a

given pixel. Our current annealing schedule is linear,

although we plan to add a logarithmic annealing sched-

ule in the future.

Our final global optimization method, GC, imple-

ments the α-β swap move algorithm described in

Boykov et al. (2001) and Veksler (1999). (We plan to

implement the α-expansion in the future.) We random-

ize the α-β pairings at each (inner) iteration and stop

the algorithm when no further (local) energy improve-

ments are possible.

4.4. Refinement

The sub-pixel refinement of disparities is controlled

by the boolean variable refine subpix. When this is

enabled, the three aggregated matching cost values

around the winning disparity are examined to com-

pute the sub-pixel disparity estimate. (Note that if

the initial DSI was formed with fractional disparity

steps, these are really sub-sub-pixel values. A more

appropriate name might be floating point disparity

values.) A parabola is fit to these three values (the

three ending values are used if the winning dispar-

ity is either disp min or disp max). If the curvature

is positive and the minimum of the parabola is within

a half-step of the winning disparity (and within the

search limits), this value is used as the final disparity

estimate.

In future work, we would like to investigate whether

initial or aggregated matching scores should be used, or

whether some other approach, such as Lucas-Kanade,

might yield higher-quality estimates (Tian and Huhns,

1986).

5. Evaluation Methodology

In this section, we describe the quality metrics we

use for evaluating the performance of stereo corre-

spondence algorithms and the techniques we used

for acquiring our image data sets and ground truth

estimates.



A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms 19

5.1. Quality Metrics

To evaluate the performance of a stereo algorithm or

the effects of varying some of its parameters, we need

a quantitative way to estimate the quality of the com-

puted correspondences. Two general approaches to this

are to compute error statistics with respect to some

ground truth data (Barron et al., 1994) and to evaluate

the synthetic images obtained by warping the refer-

ence or unseen images by the computed disparity map

(Szeliski, 1999).

In the current version of our software, we compute

the following two quality measures based on known

ground truth data:

1. RMS (root-mean-squared) error (measured in dis-

parity units) between the computed disparity map

dC (x , y) and the ground truth map dT (x , y), i.e.,

R =

(

1

N

∑

(x,y)

|dC(x, y) − dT (x, y)|2

)
1
2

, (8)

where N is the total number of pixels.

2. Percentage of bad matching pixels,

B =
1

N

∑

(x,y)

(|dC(x, y) − dT (x, y)| > δd), (9)

where δd (eval bad thresh) is a disparity error tol-

erance. For the experiments in this paper we use

δd = 1.0, since this coincides with some previously

published studies (Szeliski and Zabih, 1999; Zitnick

and Kanade, 2000; Kolmogorov and Zabih, 2001).

In addition to computing these statistics over the

whole image, we also focus on three different kinds of

regions. These regions are computed by pre-processing

the reference image and ground truth disparity map

to yield the following three binary segmentations

(Fig. 4):

• textureless regionsT : regions where the squared hor-

izontal intensity gradient averaged over a square win-

dow of a given size (eval textureless width) is below

a given threshold (eval textureless thresh);

• occluded regions O: regions that are occluded in the

matching image, i.e., where the forward-mapped dis-

parity lands at a location with a larger (nearer) dis-

parity; and

• depth discontinuity regions D: pixels whose neigh-

boring disparities differ by more than eval disp gap,

dilated by a window of width eval discont width.

These regions were selected to support the analysis

of matching results in typical problem areas. For the

experiments in this paper we use the values listed in

Table 2.

The statistics described above are computed for each

of the three regions and their complements, e.g.,

BT =
1

NT

∑

(x,y)∈T

(|dc(x, y) − dt (x, y)| < δd),

and so on for RT , BT̄ , . . . , RD̄.

Table 3 gives a complete list of the statistics we

collect. Note that for the textureless, textured, and

depth discontinuity statistics, we exclude pixels that

are in occluded regions, on the assumption that algo-

rithms generally do not produce meaningful results in

such occluded regions. Also, we exclude a border of

eval ignore border pixels when computing all statis-

tics, since many algorithms do not compute meaningful

disparities near the image boundaries.

The second major approach to gauging the quality

of reconstruction algorithms is to use the color images

and disparity maps to predict the appearance of other

views (Szeliski, 1999). Here again there are two major

flavors possible:

1. Forward warp the reference image by the computed

disparity map to a different (potentially unseen)

view (Fig. 5), and compare it against this new image

to obtain a forward prediction error.

2. Inverse warp a new view by the computed disparity

map to generate a stabilized image (Fig. 6), and

compare it against the reference image to obtain an

inverse prediction error.

There are pros and cons to either approach.

The forward warping algorithm has to deal with tear-

ing problems: if a single-pixel splat is used, gaps can

arise even between adjacent pixels with similar dispar-

ities. One possible solution would be to use a two-pass

renderer (Shade et al., 1998). Instead, we render each

pair of neighboring pixel as an interpolated color line in

the destination image (i.e., we use Gouraud shading).

If neighboring pixels differ by more that a disparity of

eval disp gap, the segment is replaced by single pixel

spats at both ends, which results in a visible tear (light

grey regions in Fig. 5).
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Figure 4. Segmented region maps: (a) original image, (b) true disparities, (c) textureless regions (white) and occluded regions (black),

(d) depth discontinuity regions (white) and occluded regions (black).

For inverse warping, the problem of gaps does not

occur. Instead, we get “ghosted” regions when pixels

in the reference image are not actually visible in the

source. We eliminate such pixels by checking for visi-

bility (occlusions) first, and then drawing these pixels

in a special color (light grey in Fig. 6). We have found

that looking at the inverse-warped sequence, based on

the ground-truth disparities, is a very good way to de-

termine if the original sequence is properly calibrated

and rectified.

In computing the prediction error, we need to decide

how to treat gaps. Currently, we ignore pixels flagged

as gaps in computing the statistics and report the per-

centage of such missing pixels. We can also option-

ally compensate for small misregistrations (Szeliski,

1999). To do this, we convert each pixel in the origi-

nal and predicted image to an interval, by blending the

pixel’s value with some fraction eval partial shuffle of

its neighboring pixels’ min and max values. This idea

is a generalization of the sampling-insensitive dissim-

ilarity measure of Birchfield and Tomasi (1998a) and

the shuffle transformation of Kutulakos (2000). The re-

ported difference is then the (signed) distance between

the two computed intervals. We plan to investigate these

and other sampling-insensitive matching costs in the

future (Szeliski and Scharstein, 2002).

5.2. Test Data

To quantitatively evaluate our correspondence algo-

rithms, we require data sets that either have a ground

truth disparity map, or a set of additional views that can

be used for prediction error test (or preferably both).

We have begun to collect such a database of im-

ages, building upon the methodology introduced in

Szeliski and Zabih (1999). Each image sequence con-

sists of 9 images, taken at regular intervals with a cam-

era mounted on a horizontal translation stage, with

the camera pointing perpendicularly to the direction
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Table 3. Error (quality) statistics computed by our eval-

uator. See the notes in the text regarding the treatment of

occluded regions.

Name Symb. Description

rms error all R RMS disparity error

rms error nonocc R
Ō

” (no occlusions)

rms error occ RO ” (at occlusions)

rms error textured RT ” (textured)

rms error textureless R
T̄

” (textureless)

rms error discont RD ” (near discontinuities)

bad pixels all B Bad pixel percentage

bad pixels nonocc B
Ō

” (no occlusions)

bad pixels occ BO ” (at occlusions)

bad pixels textured BT ” (textured)

bad pixels textureless B
T̄

” (textureless)

bad pixels discont BD ” (near discontinuities)

predict err near P View extr. error (near)

predict err middle P1/2 View extr. error (mid)

predict err match P1 View extr. error (match)

predict err far P+ View extr. error (far)

of motion. We use a digital high-resolution camera

(Canon G1) set in manual exposure and focus mode

and rectify the images using tracked feature points. We

then downsample the original 2048 × 1536 images to

512 × 384 using a high-quality 8-tap filter and finally

crop the images to normalize the motion of background

objects to a few pixels per frame.

Figure 5. Series of forward-warped reference images. The reference image is the middle one, the matching image is the second from the right.

Pixels that are invisible (gaps) are shown in light grey.

Figure 6. Series of inverse-warped original images. The reference image is the middle one, the matching image is the second from the right.

Pixels that are invisible are shown in light grey. Viewing this sequence (available on our web site) as an animation loop is a good way to check

for correct rectification, other misalignments, and quantization effects.

All of the sequences we have captured are made up

of piecewise planar objects (typically posters or paint-

ings, some with cut-out edges). Before downsampling

the images, we hand-label each image into its piece-

wise planar components (Fig. 7). We then use a direct

alignment technique on each planar region (Baker et al.,

1998) to estimate the affine motion of each patch. The

horizontal component of these motions is then used to

compute the ground truth disparity. In future work we

plan to extend our acquisition methodology to handle

scenes with quadric surfaces (e.g., cylinders, cones, and

spheres).

Of the six image sequences we acquired, all of which

are available on our web page, we have selected two

(“Sawtooth” and “Venus”) for the experimental study

in this paper. We also use the University of Tsukuba

“head and lamp” data set (Nakamura et al., 1996), a

5 × 5 array of images together with hand-labeled in-

teger ground-truth disparities for the center image. Fi-

nally, we use the monochromatic “Map” data set first

introduced by Szeliski and Zabih (1999), which was

taken with a Point Grey Research trinocular stereo

camera, and whose ground-truth disparity map was

computed using the piecewise planar technique de-

scribed above. Figure 7 shows the reference image

and the ground-truth disparities for each of these four

sequences. We exclude a border of 18 pixels in the

Tsukuba images, since no ground-truth disparity val-

ues are provided there. For all other images, we use

eval ignore border = 10 for the experiments reported

in this paper.
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Figure 7. Stereo images with ground truth used in this study. The Sawtooth and Venus images are two of our new 9-frame stereo sequences

of planar objects. The figure shows the reference image, the planar region labeling, and the ground-truth disparities. We also use the familiar

Tsukuba “head and lamp” data set, and the monochromatic Map image pair.
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In the future, we hope to add further data sets to our

collection of “standard” test images, in particular other

sequences from the University of Tsukuba, and the

GRASP Laboratory’s “Buffalo Bill” data set with reg-

istered laser range finder ground truth (Mulligan et al.,

2001). There may also be suitable images among the

CMU Computer Vision Home Page data sets. Unfortu-

nately, we cannot use data sets for which only a sparse

set of feature matches has been computed (Bolles et al.,

1993; Hsieh et al., 1992).

It should be noted that high-quality ground-truth data

is critical for a meaningful performance evaluation. Ac-

curate sub-pixel disparities are hard to come by, how-

ever. The ground-truth data for the Tsukuba images, for

example, is strongly quantized since it only provides

integer disparity estimates for a very small disparity

range (d = 5, . . . , 14). This is clearly visible when the

images are stabilized using the ground-truth data and

viewed in a video loop. In contrast, the ground-truth

disparities for our piecewise planar scenes have high

(subpixel) precision, but at the cost of limited scene

complexity. To provide an adequate challenge for the

best-performing stereo methods, new stereo test im-

ages with complex scenes and sub-pixel ground truth

will soon be needed.

Synthetic images have been used extensively for

qualitative evaluations of stereo methods, but they are

often restricted to simple geometries and textures (e.g.,

random-dot stereograms). Furthermore, issues arising

with real cameras are seldom modeled, e.g., aliasing,

slight misalignment, noise, lens aberrations, and fluc-

tuations in gain and bias. Consequently, results on

synthetic images usually do not extrapolate to images

taken with real cameras. We have experimented with

the University of Bonn’s synthetic “Corridor” data set

(Frohlinghaus and Buhmann, 1996), but have found

that the clean, noise-free images are unrealistically

easy to solve, while the noise-contaminated versions

are too difficult due to the complete lack of texture in

much of the scene. There is a clear need for synthetic,

photo-realistic test imagery that properly models real-

world imperfections, while providing accurate ground

truth.

6. Experiments and Results

In this section, we describe the experiments used to

evaluate the individual building blocks of stereo algo-

rithms. Using our implementation framework, we ex-

amine the four main algorithm components identified

in Section 3 (matching cost, aggregation, optimiza-

tion, and sub-pixel fitting). In Section 7, we perform

an overall comparison of a large set of stereo algo-

rithms, including other authors’ implementations. We

use the Tsukuba, Sawtooth, Venus, and Map data sets in

all experiments and report results on subsets of these

images. The complete set of results (all experiments

run on all data sets) is available on our web site at

www.middlebury.edu/stereo.

Using the evaluation measures presented in Sec-

tion 5.1, we focus on common problem areas for stereo

algorithms. Of the 12 ground-truth statistics we collect

(Table 3), we have chosen three as the most important

subset. First, as a measure of overall performance, we

use BŌ, the percentage of bad pixels in non-occluded

areas. We exclude the occluded regions for now since

few of the algorithms in this study explicitly model

occlusions, and most perform quite poorly in these re-

gions. As algorithms get better at matching occluded

regions (Kolmogorov and Zabih, 2001), however, we

will likely focus more on the total matching error B.

The other two important measures are BT̄ and

BD, the percentage of bad pixels in textureless ar-

eas and in areas near depth discontinuities. These

measures provide important information about the

performance of algorithms in two critical problem

areas. The parameter names for these three mea-

sures are bad pixels nonocc, bad pixels textureless,

and bad pixels discont, and they appear in most of the

plots below. We prefer the percentage of bad pixels

over RMS disparity errors since this gives a better in-

dication of the overall performance of an algorithm.

For example, an algorithm is performing reasonably

well if BŌ < 10%. The RMS error figure, on the other

hand, is contaminated by the (potentially large) dis-

parity errors in those poorly matched 10% of the im-

age. RMS errors become important once the percent-

age of bad pixels drops to a few percent and the

quality of a sub-pixel fit needs to be evaluated (see

Section 6.4).

Note that the algorithms always take exactly two

images as input, even when more are available. For

example, with our 9-frame sequences, we use the third

and seventh frame as input pair. (The other frames are

used to measure the prediction error.)

6.1. Matching Cost

We start by comparing different matching costs, in-

cluding absolute differences (AD), squared differences



24 Scharstein and Szeliski

(SD), truncated versions of both, and Birchfield and

Tomasi’s (Birchfield and Tomasi, 1998a) sampling-

insensitive dissimilarity measure (BT).

An interesting issue when trying to assess a single

algorithm component is how to fix the parameters that

control the other components. We usually choose good

values based on experiments that assess the other algo-

rithm components. (The inherent boot-strapping prob-

lem disappears after a few rounds of experiments.)

Since the best settings for many parameters vary de-

pending on the input image pair, we often have to com-

promise and select a value that works reasonably well

for several images.

Figure 8. Experiment 1. Performance of different matching costs aggregated with a 9×9 window as a function of truncation values match max

for three different image pairs. Intermediate truncation values (5–20) yield the best results. Birchfield-Tomasi (BT) helps when truncation values

are low.

Experiment 1: In this experiment we compare the

matching costs AD, SD, AD + BT, and SD + BT using

a local algorithm. We aggregate with a 9 × 9 window,

followed by winner-take-all optimization (i.e., we use

the standard SAD and SSD algorithms). We do not

compute sub-pixel estimates. Truncation values used

are 1, 2, 5, 10, 20, 50, and ∞ (no truncation); these

values are squared when truncating SD.

Results: Figure 8 shows plots of the three evalua-

tion measures BŌ, BT̄ , and BD for each of the four

matching costs as a function of truncation values, for

the Tsukuba, Sawtooth, and Venus images. Overall,
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there is little difference between AD and SD. Trunca-

tion matters mostly for points near discontinuities. The

reason is that for windows containing mixed popula-

tions (both foreground and background points), trun-

cating the matching cost limits the influence of wrong

matches. Good truncation values range from 5 to 50,

typically around 20. Once the truncation values drop

below the noise level (e.g., 2 and 1), the errors be-

come very large. Using Birchfield-Tomasi (BT) helps

for these small truncation values, but yields little im-

provement for good truncation values. The results are

consistent across all data sets; however, the best trun-

cation value varies. We have also tried a window size

of 21, with similar results.

Figure 9. Experiment 2. Performance of different matching costs aggregated with a 9 × 9 shiftable window (min-filter) as a function of

truncation values match max for three different image pairs. Large truncation values (no truncation) work best when using shiftable windows.

Conclusion: Truncation can help for AD and SD, but

the best truncation value depends on the images’ signal-

to-noise-ratio (SNR), since truncation should happen

right above the noise level present (see also the discus-

sion in Scharstein and Szeliski (1998)).

Experiment 2: This experiment is identical to the pre-

vious one, except that we also use a 9 × 9 min-filter (in

effect, we aggregate with shiftable windows).

Results: Figure 9 shows the plots for this experiment,

again for Tsukuba, Sawtooth, and Venus images. As be-

fore, there are negligible differences between AD and

SD. Now, however, the non-truncated versions perform
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consistently the best. In particular, for points near dis-

continuities we get the lowest errors overall, but also

the total errors are comparable to the best settings of

truncation in Experiment 1. BT helps bring down larger

errors, but as before, does not significantly decrease the

best (non-truncated) errors. We again also tried a win-

dow size of 21 with similar results.

Conclusion: The problem of selecting the best trun-

cation value can be avoided by instead using a shiftable

window (min-filter). This is an interesting result, as

both robust matching costs (truncated functions) and

shiftable windows have been proposed to deal with out-

liers in windows that straddle object boundaries. The

above experiments suggest that avoiding outliers by

shifting the window is preferable to limiting their in-

fluence using truncated cost functions.

Experiment 3: We now assess how matching costs

affect global algorithms, using dynamic programming

(DP), scanline optimization (SO), and graph cuts (GC)

as optimization techniques. A problem with global

techniques that minimize a weighted sum of data and

smoothness terms (Eq. (3)) is that the range of match-

ing cost values affects the optimal value for λ, i.e., the

relative weight of the smoothness term. For example,

squared differences require much higher values for λ

than absolute differences. Similarly, truncated differ-

ence functions result in lower matching costs and re-

quire lower values for λ. Thus, in trying to isolate the

effect of the matching costs, we are faced with the prob-

lem of how to choose λ. The cleanest solution to this

dilemma would perhaps be to find a (different) optimal

λ independently for each matching cost under consid-

eration, and then to report which matching cost gives

the overall best results. The optimal λ, however, would

not only differ across matching costs, but also across

different images. Since in a practical matcher we need

to choose a constant λ, we have done the same in this

experiment. We use λ = 20 (guided by the results dis-

cussed in Section 6.3 below) and restrict the match-

ing costs to absolute differences (AD), truncated by

varying amounts. For the DP algorithm we use a fixed

occlusion cost of 20.

Results: Figure 10 shows plots of the bad pixel per-

centages BŌ, BT̄ , and BD as a function of truncation

values for Tsukuba, Sawtooth, and Venus images. Each

plot has six curves, corresponding to DP, DP + BT,

SO, SO + BT, GC, GC + BT. It can be seen that the

truncation value affects the performance. As with the

local algorithms, if the truncation value is too small (in

the noise range), the errors get very large. Intermediate

truncation values of 50–5, depending on algorithm and

image pair, however, can sometimes improve the per-

formance. The effect of Birchfield-Tomasi is mixed; as

with the local algorithms in Experiments 1 and 2, it

limits the errors if the truncation values are too small.

It can be seen that BT is most beneficial for the SO al-

gorithm, however, this is due to the fact that SO really

requires a higher value of λ to work well (see Experi-

ment 5), in which case the positive effect of BT is less

pronounced.

Conclusion: Using robust (truncated) matching costs

can slightly improve the performance of global algo-

rithms. The best truncation value, however, varies with

each image pair. Setting this parameter automatically

based on an estimate of the image SNR may be pos-

sible and is a topic for further research. Birchfield

and Tomasi’s matching measure can improve results

slightly. Intuitively, truncation should not be neces-

sary for global algorithms that operate on unaggregated

matching costs, since the problem of outliers in a win-

dow does not exist. An important problem for global

algorithms, however, is to find the correct balance be-

tween data and smoothness terms (see Experiment 5

below). Truncation can be useful in this context since

it limits the range of possible cost values.

6.2. Aggregation

We now turn to comparing different aggregation meth-

ods used by local methods. While global methods typi-

cally operate on raw (unaggregated) costs, aggregation

can be useful for those methods as well, for example to

provide starting values for iterative algorithms, or a set

of high-confidence matches or ground control points

(GCPs) (Bobick and Intille, 1999) used to restrict the

search of dynamic-programming methods.

In this section we examine aggregation with square

windows, shiftable windows (min-filter), binomial

filters, regular diffusion, and membrane diffusion

(Scharstein and Szeliski, 1998). Results for Bayesian

diffusion, which combines aggregation and optimiza-

tion, can be found in Section 7.

Experiment 4: In this experiment we use (non-

truncated) absolute differences as matching cost

and perform a winner-take-all optimization after the



A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms 27

Figure 10. Experiment 3. Performance of different matching costs for global algorithms as a function of truncation values match max for three

different image pairs. Intermediate truncation values (∼20) can sometimes improve the performance.

aggregation step (no subpixel estimation). We compare

the following aggregation methods:

1. square windows with window sizes 3, 5, 7, . . . , 29;

2. shiftable square windows (min-filter) with window

sizes 3, 5, 7, . . . , 29;

3. iterated binomial (1-4-6-4-1) filter, for 2, 4, 6, . . . ,

28 iterations;

4. regular diffusion (Scharstein and Szeliski, 1998) for

10, 20, 30, . . . , 150 iterations;

5. membrane diffusion (Scharstein and Szeliski, 1998)

for 150 iterations and β = 0.9, 0.8, 0.7, . . . , 0.0.

Note that for each method we are varying the parame-

ter that controls the spatical extent of the aggregation

(i.e., the equivalent of window size). In particular, for

the binomial filter and regular diffusion, this amounts

to changing the number of iterations. The membrane

model, however, converges after sufficiently many it-

erations, and the spatial extent of the aggregation is

controlled by the parameter β, the weight of the orig-

inal cost values in the diffusion equation (Scharstein

and Szeliski, 1998).

Results: Figure 11 shows plots of BŌ, BT̄ , and BD as

a function of spatial extent of aggregation for Tsukuba,

Sawtooth, and Venus images. Each plot has five curves.

corresponding to the five aggregation methods listed

above. The most striking feature of these curves is the

opposite trends of errors in textureless areas (BT̄ ) and



28 Scharstein and Szeliski

Figure 11. Experiment 4. Performance of different aggregation methods as a function of spatial extent (window size, number of iterations, and

diffusion β). Larger window extents do worse near discontinuities, but better in textureless areas, which tend to dominate the overall statistics.

Near discontinuities, shiftable windows have the best performance.

at points near discontinuities (BD). Not surprisingly,

more aggregation (larger window sizes or higher num-

ber of iterations) clearly helps to recover textureless

areas (note especially the Venus images, which contain

large untextured regions). At the same time, too much

aggregation causes errors near object boundaries (depth

discontinuities). The overall error in non-occluded re-

gions, BŌ, exhibits a mixture of both trends. Depending

on the image, the best performance is usually achieved

at an intermediate amount of aggregation. Among the

five aggregation methods, shiftable windows clearly

perform best, most notably in discontinuity regions,

but also overall. The other four methods (square win-

dows, binomial filter, regular diffusion, and membrane

model) perform very similarly, except for differences in

the shape of the curves, which are due to our (somewhat

arbitrary) definition of spatial extent for each method.

Note however that even for shiftable windows, the opti-

mal window size for recovering discontinuities is small,

while much larger windows are necessary in untextured

regions.

Discussion: This experiment exposes some of the

fundamental limitations of local methods. While large
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windows are needed to avoid wrong matches in regions

with little texture, window-based stereo methods per-

form poorly near object boundaries (i.e., depth discon-

tinuities). The reason is that such methods implicitly

assume that all points within a window have similar

disparities. If a window straddles a depth boundary,

some points in the window match at the foreground

disparity, while others match at the background dis-

parity. The (aggregated) cost function at a point near

a depth discontinuity is thus bimodal in the d direc-

tion, and stronger of the two modes will be selected

as the winning disparity. Which one of the two modes

will win? This depends on the amount of (horizontal)

texture present in the two regions.

Consider first a purely horizontal depth disconti-

nuity (top edge of the foreground square in Fig. 12).

Whichever of the two regions has more horizontal tex-

ture will create a stronger mode, and the computed

disparities will thus “bleed” into the less-textured re-

gion. For non-horizontal depth boundaries, however,

the most prominent horizontal texture is usually the

object boundary itself, since different objects typically

have different colors and intensities. Since the ob-

ject boundary is at the foreground disparity, a strong

preference for the foreground disparity at points near

the boundary is created, even if the background is

textured. This is the explanation for the well-known

Figure 12. Illustration of the “foreground fattening” effect, using the Map image pair and a 21 × 21 SAD algorithm, with and without a

min-filter. The error maps encode the signed disparity error, using gray for 0, light for positive errors, and dark for negative errors. Note that

without the min-filter (middle column) the foreground region grows across the vertical depth discontinuity towards the right. With the min-filter

(right column), the object boundaries are recovered fairly well.

“foreground fattening” effect exhibited by window-

based algorithms. This can be seen at the right edge of

the foreground in Fig. 12; the left edge is an occluded

area, which can’t be recovered in any case.

Adaptive window methods have been developed to

combat this problem. The simplest variant, shiftable

windows (min-filters) can be effective, as is shown in

the above experiment. Shiftable windows can recover

object boundaries quite accurately if both foreground

and background regions are textured, and as long as the

window fits as a whole within the foreground object.

The size of the min-filter should be chosen to match

the window size. As is the case with all local methods,

however, shiftable windows fail in textureless areas.

Conclusion: Local algorithms that aggregate support

can perform well, especially in textured (even slanted)

regions. Shiftable windows perform best, in particular

near depth discontinuities. Large amounts of aggrega-

tion are necessary in textureless regions.

6.3. Optimization

In this section we compare the four global optimization

techniques we implemented: dynamic programming

(DP), scanline optimization (SO), graph cuts (GC), and

simulated annealing (SA).
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Experiment 5: In this experiment we investigate the

role of opt smoothness, the smoothness weight λ in

Eq. (3). We compare the performance of DP, SO, GC,

and SA for λ = 5, 10, 20, 50, 100, 200, 500, and

1000. We use unaggregated absolute differences as the

matching cost (squared differences would require much

higher values for λ), and no sub-pixel estimation. The

number of iterations for simulated annealing (SA) is

500.

Results: Figure 13 shows plots of BŌ, BT̄ , and BD

as a function of λ for Tsukuba, Venus, and Map im-

ages. (To show more varied results, we use the Map im-

ages instead of Sawtooth in this experiment.) Since DP

has an extra parameter, the occlusion cost, we include

Figure 13. Experiment 5. Performance of global optimization techniques as a function of the smoothness weight λ (opt smoothness) for Map,

Tsukuba, and Venus images. Note that each image pair requires a different value of λ for optimal performance.

three runs, for opt occlusion cost = 20, 50, and 80. Us-

ing as before BŌ (bad pixels nonocc) as our measure

of overall performance, it can be seen that the graph-

cut method (GC) consistently performs best, while the

other three (DP, SO, and SA) perform slightly worse,

with no clear ranking among them. GC also performs

best in textureless areas and near discontinuities. The

best performance for each algorithm, however, requires

different values for λ depending on the image pair. For

example, the Map images, which are well textured and

only contain two planar regions, require high values

(around 500), while the Tsukuba images, which con-

tain many objects at different depths, require smaller

values (20–200, also depending on the algorithm). The

occlusion cost parameter for the DP algorithm, while
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not changing the performance dramatically, also affects

the optimal value forλ. Although GC is the clear winner

here, it is also the slowest algorithm: DP and SO, which

operate on each scanline independently, typically run

in less than 2 seconds, while GC and SA require 10–

30 minutes.

Conclusion: The graph-cut method consistently out-

performs the other optimization methods, although at

the cost of much higher running times. GC is clearly su-

perior to simulated annealing, which is consistent with

other published results (Boykov et al., 2001; Szeliski

and Zabih, 1999). When comparing GC and scanline

methods (DP and SO), however, it should be noted

that the latter solve a different (easier) optimization

problem, since vertical smoothness terms are ignored.

While this enables the use of highly efficient dynamic

programming techniques, it negatively affects the per-

formance, as exhibited in the characteristic “streaking”

in the disparity maps (see Figs. 17 and 18 below).

Several authors have proposed methods for increasing

inter-scanline consistency in dynamic-programming

approaches, e.g., (Belhumeur, 1996; Cox et al., 1996;

Birchfield and Tomasi, 1998b). We plan to investigate

this area in future work.

Experiment 6: We now focus on the graph-cut op-

timization method to see whether the results can be

Figure 14. Experiment 6. Performance of the graph-cut optimization technique with different gradient-dependent smoothness penalties

(p1, p2, p4) and with and without Birchfield-Tomasi (BT).

improved. We try both Birchfield-Tomasi matching

costs and a smoothness cost that depends on the in-

tensity gradients.

Results: Figure 14 shows the usual set of perfor-

mance measures BŌ, BT̄ , and BD for four different

experiments for Tsukuba, Sawtooth, Venus, and Map

images. We use a smoothness weight of λ = 20, ex-

cept for the Map images, where λ = 50. The matching

cost are (non-truncated) absolute differences. The pa-

rameters for the gradient-dependent smoothness costs

are opt grad thresh = 8 (same in all experiments), and

opt grad penalty = 1, 2, or 4 (denoted p1, p2, and p4

in the plots). Recall that the smoothness cost is mul-

tiplied by opt grad penalty if the intensity gradient is

below opt grad thresh to encourage disparity jumps

to coincide with intensity edges. Each plot in Fig. 14

shows 4 runs: p1, p1 + BT, p2 + BT, and p4 + BT. In

the first run, the penalty is 1, i.e., the gradient depen-

dency is turned off. This gives the same results as in

Experiment 5. In the second run, we add Birchfield-

Tomasi, still without a penalty. We then add a penalty

of 2 and 4 in the last two runs. It can be seen that the

low-gradient penalty clearly helps recovering the dis-

continuities, and also in the other regions. Which of

the two penalties works better depends on the image

pair. Birchfield-Tomasi also yields a slight improve-

ment. We have also tried other values for the threshold,
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with mixed results. In future work we plan to replace

the simple gradient threshold with an edge detector,

which should improve edge localization. The issue of

selecting the right penalty factor is closely related to se-

lecting the right value for λ, since it affects the overall

relationship between the data term and the smoothness

term. This also deserves more investigation.

Conclusion: Both Birchfield-Tomasi’s matching cost

and the gradient-based smoothness cost improve the

performance of the graph-cut algorithm. Choosing the

right parameters (threshold and penalty) remains diffi-

cult and image-specific.

We have performed these experiments for scanline-

based optimization methods (DP and SO) as well, with

similar results. Gradient-based penalties usually in-

crease performance, in particular for the SO method.

Birchfield-Tomasi always seems to increase overall

performance, but it sometimes decreases performance

in textureless areas. As before, the algorithms are

highly sensitive to the weight of the smoothness term

λ and the penalty factor.

6.4. Sub-Pixel Estimation

Experiment 7: To evaluate the performance of the

sub-pixel refinement stage, and also to evaluate the in-

fluence of the matching criteria and disparity sampling,

we cropped a small planar region from one of our im-

age sequences (Fig. 15(a), second column of images).

The image itself is a page of newsprint mounted on

cardboard, with high-frequency text and a few low-

frequency white and dark regions. (These textureless

regions were excluded from the statistics we gath-

ered.) The disparities in this region are in the order

of 0.8–3.8 pixels and are slanted both vertically and

horizontally.

Results: We first run a simple 9 × 9 SSD window

(Fig. 15(b)). One can clearly see the discrete dispar-

ity levels computed. The disparity error map (second

column of images) shows the staircase error, and the

histogram of disparities (third column) also shows the

discretization. If we apply the sub-pixel parabolic fit

to refine the disparities, the disparity map becomes

smoother (note the drop in RMS error in Fig. 15(c)), but

still shows some soft staircasing, which is visible in the

disparity error map and histogram as well. These results

agree with those reported by Shimizu and Okutomi

(2001).

In Fig. 15(d), we investigate whether using

the Birchfield-Tomasi sampling-invariant measure

(Birchfield and Tomasi, 1998a) improves or degrades

this behavior. For integral sampling, their idea does

help slightly, as can be seen by the reduced RMS value

and the smoother histogram in Fig. 15(d). In all other in-

stances, it leads to poorer performance (see Fig. 16(a),

where the sampling-invariant results are the even data

points).

In Fig. 15(e), we investigate whether lightly blurring

the input images with a (1/4, 1/2, 1/4) kernel helps sub-

pixel refinement, because the first order Taylor series

expansion of the imaging function becomes more valid.

Blurring does indeed slightly reduce the staircasing ef-

fect (compare Fig. 15(e) to Fig. 15(c)), but the overall

(RMS) performance degrades, probably because of loss

of high-frequency detail.

We also tried 1/2 and 1/4 pixel disparity sampling at

the initial matching stages, with and without later sub-

pixel refinement. Sub-pixel refinement always helps to

reduce the RMS disparity error, although it has negli-

gible effect on the inverse prediction error (Fig. 16(b)).

From these prediction error plots, and also from vi-

sual inspection of the inverse warped (stabilized) im-

age sequence, it appears that using sub-pixel refinement

after any original matching scheme is sufficient to re-

duce the prediction error (and the appearance of “jit-

ter” or “shearing”) to negligible levels. This is despite

the fact that the theoretical justification for sub-pixel

refinement is based on a quadratic fit to an adequately

sampled quadratic energy function. At the moment, for

global methods, we rely on the per-pixel costs that go

into the optimization to do the sub-pixel disparity es-

timation. Alternative approaches, such as using local

plane fits (Baker et al., 1998; Birchfield and Tomasi,

1999; Tao et al., 2001) could also be used to get sub-

pixel precision.

Conclusion: To eliminate “staircasing” in the com-

puted disparity map and to also eliminate the appear-

ance of “shearing” in reprojected sequences, it is nec-

essary to initially evaluate the matches at a fractional

disparity (1/2 pixel steps appear to be adequate). This

should be followed by finding the minima of local

quadratic fits applied to the computed matching costs.

7. Overall Comparison

We close our experimental investigation with an overall

comparison of 20 different stereo methods, including
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Figure 15. RMS disparity errors for cropped image sequence (planar region of newspaper). The reference image is shown in row (a) in

the “disp. error” column. The columns indicate the disparity step, the sub-pixel refinement option, Birchfield-Tomasi’s sampling-insensitive

matching option, the optional initial blur, and the RMS disparity error from ground truth. The first image column shows the computed disparity

map, the second shows the signed disparity error, and the last column shows a histogram of computed disparities.

5 algorithms implemented by us and 15 algorithms im-

plemented by their authors, who have kindly sent us

their results. We evaluate all algorithms using our fa-

miliar set of Tsukuba, Sawtooth, Venus, and Map im-

ages. All algorithms are run with constant parameters

over all four images. Most algorithms do not compute

sub-pixel estimates in this comparison.

Among the algorithms in our implementation frame-

work, we have selected the following five:

(1) SSD–21 × 21 shiftable window SSD,

(2) DP–dynamic programming,

(3) SO–scanline optimization,

(4) GC–graph-cut optimization, and

(5) Bay–Bayesian diffusion.

We chose shiftable-window SSD as best-performing

representative of all local (aggregation-based) algo-

rithms. We are not including simulated annealing here,

since GC solves the same optimization problem better

and more efficiently. For each of the five algorithms,

we have chosen fixed parameters that yield reasonably
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Figure 16. Plots of RMS disparity error and inverse prediction errors as a function of disp step and match interval. The even data points

are with sampling–insensitive matching match interval turned on. The second set of plots in each figure is with preproc blur enabled (1 blur

iteration).

good performance over a variety of input images (see

Table 4).

We compare the results of our implementation with

results provided by the authors of the following algo-

rithms:

(6) Max-flow/min-cut algorithm, Roy and Cox

(1998) and Roy (1999) (one of the first methods

to formulate matching as a graph flow problem);

(7) Pixel-to-pixel stereo, Birchfield and Tomasi

(1998b) (scanline algorithm using gradient-

modulated costs, followed by vertical disparity

propagation into unreliable areas);

(8) Multiway cut, Birchfield and Tomasi (1999) (al-

ternate segmentation and finding affine parame-

ters for each segment using graph cuts);

Table 4. Parameters for the five algorithms implemented by us.

SSD DP SO GC Bay

Matching cost

match fn SD AD AD AD AD

Truncation no no no no no

Birchfield/Tomasi no yes yes yes no

Aggregation

aggr window size 21 — — — —

aggr minfilter 21 — — — —

aggr iter 1 — — — 1000

diff mu — — — — 0.5

diff sigmaP — — — — 0.4

diff epsP — — — — 0.01

diff scale cost — — — — 0.01

Optimization

opt fn WTA DP SO GC Bayesian

opt smoothness (λ) — 20 50 20 —

opt occlusion cost — 20 — — —

opt grad thresh — 8 8 8 —

opt grad penalty — 4 2 2 —

(9) Cooperative algorithm, Zitnick and Kanade

(2000) (a new variant of Marr and Poggio’s al-

gorithm (Marr and Poggio, 1976));

(10) Graph cuts, Boykov et al. (2001) (same as our GC

method, but a much faster implementation);

(11) Graph cuts with occlusions, Kolmogorov and

Zabih (2001) (an extension of the graph-cut

framework that explicitly models occlusions);

(12) Compact windows, Veksler (2001) (an adaptive

window technique allowing non-rectangular win-

dows);

(13) Genetic algorithm, Gong and Yang (2002)

(a global optimization technique operating on

quadtrees);

(14) Realtime method, Hirschmüller (2002) (9 × 9

SAD with shiftable windows, followed by con-

sistency checking and interpolation of uncertain

areas);

(15) Stochastic diffusion, Lee et al. (2002) (a variant

of Bayesian diffusion (Scharstein and Szeliski,

1998));

(16) Fast correlation algorithm, Mühlmann et al.

(2002) (an efficient implementation of cor-

relation-based matching with consistency and

uniqueness validation);

(17) Discontinuity-preserving regularization, Shao

(2002) (a multi-view technique for virtual view

generation);

(18) Maximum-surface technique, Sun (2002) (a fast

stereo algorithm using rectangular subregions);

(19) Belief propagation, Sun et al. (2002) (a MRF for-

mulation using Bayesian belief propagation);

(20) Layered stereo, Lin and Tomasi (in prepara-

tion) (a preliminary version of an extension of

the multiway-cut method (Birchfield and Tomasi,

1999)).
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Some of these algorithms do not compute disparity

estimates everywhere, in particular those that explicitly

model occlusions (3 and 11), but also (16) which leaves

low-confidence regions unmatched. In these cases we

fill unmatched areas as described for the DP method in

Section 4.3.

Table 5 summarizes the results for all algo-

rithms. As in the previous section, we report BŌ

(bad pixels nonocc) as a measure of overall perfor-

mance, as well as BT̄ (bad pixels textureless), and BD

(bad pixels discont). We do not report BT̄ for the Map

images since the images are textured almost every-

where. The algorithms are listed roughly in order of

overall performance.

The disparity maps for Tsukuba and Venus images

are shown in Figs. 17 and 18. The full set of dispar-

ity maps, as well as signed and binary error maps

are available on our web site at www.middlebury.

edu/stereo.

Table 5. Comparative performance of stereo algorithms, using the three performance measures B
Ō

(bad pixels nonocc), B
T̄

(bad pixels textureless), and BD (bad pixels discont). All algorithms are run with constant parameter settings across all images. The small

numbers indicate the rank of each algorithm in each column. The algorithms are listed roughly in decreasing order of overall performance,

and the minimum (best) value in each column is shown in bold. Algorithms implemented by us are marked with a star.

Tsukuba Sawtooth Venus Map

B
Ō

B
T̄

BD B
Ō

B
T̄

BD B
Ō

B
T̄

BD B
Ō

BD

20 Layered 1.58 3 1.06 4 8.82 3 0.34 1 0.00 1 3.35 1 1.52 3 2.96 10 2.62 2 0.37 6 5.24 6

*4 Graph cuts 1.94 5 1.09 5 9.49 5 1.30 6 0.06 3 6.34 6 1.79 7 2.61 8 6.91 4 0.31 4 3.88 4

19 Belief prop. 1.15 1 0.42 1 6.31 1 0.98 5 0.30 5 4.83 5 1.00 2 0.76 2 9.13 6 0.84 10 5.27 7

11 GC + occl. 1.27 2 0.43 2 6.90 2 0.36 2 0.00 1 3.65 2 2.79 12 5.39 13 2.54 1 1.79 13 10.08 12

10 Graph cuts 1.86 4 1.00 3 9.35 4 0.42 3 0.14 4 3.76 3 1.69 6 2.30 6 5.40 3 2.39 16 9.35 10

8 Multiw. cut 8.08 17 6.53 14 25.33 18 0.61 4 0.46 8 4.60 4 0.53 1 0.31 1 8.06 5 0.26 3 3.27 3

12 Compact win. 3.36 8 3.54 8 12.91 9 1.61 9 0.45 7 7.87 7 1.67 5 2.18 4 13.24 9 0.33 5 3.94 5

14 Realtime 4.25 12 4.47 12 15.05 13 1.32 7 0.35 6 9.21 8 1.53 4 1.80 3 12.33 7 0.81 9 11.35 15

*5 Bay. diff. 6.49 16 11.62 19 12.29 7 1.45 8 0.72 9 9.29 9 4.00 14 7.21 16 18.39 13 0.20 1 2.49 2

9 Cooperative 3.49 9 3.65 9 14.77 11 2.03 10 2.29 14 13.41 13 2.57 11 3.52 11 26.38 17 0.22 2 2.37 1

*1 SSD + MF 5.23 15 3.80 10 24.66 17 2.21 11 0.72 10 13.97 15 3.74 13 6.82 15 12.94 8 0.66 8 9.35 10

15 Stoch. diff. 3.95 10 4.08 11 15.49 15 2.45 14 0.90 11 10.58 10 2.45 9 2.41 7 21.84 15 1.31 12 7.79 9

13 Genetic 2.96 6 2.66 7 14.97 12 2.21 12 2.76 16 13.96 14 2.49 10 2.89 9 23.04 16 1.04 11 10.91 14

7 Pix-to-pix 5.12 14 7.06 17 14.62 10 2.31 13 1.79 12 14.93 17 6.30 17 11.37 18 14.57 10 0.50 7 6.83 8

6 Max flow 2.98 7 2.00 6 15.10 14 3.47 15 3.00 17 14.19 16 2.16 8 2.24 5 21.73 14 3.13 17 15.98 18

*3 Scanl. opt. 5.08 13 6.78 15 11.94 6 4.06 16 2.64 15 11.90 11 9.44 19 14.59 19 18.20 12 1.84 14 10.22 13

*2 Dyn. prog. 4.12 11 4.63 13 12.34 8 4.84 19 3.71 19 13.26 12 10.10 20 15.01 20 17.12 11 3.33 18 14.04 17

17 Shao 9.67 18 7.04 16 35.63 19 4.25 17 3.19 18 30.14 20 6.01 16 6.70 14 43.91 20 2.36 15 33.01 20

16 Fast Correl. 9.76 19 13.85 20 24.39 16 4.76 18 1.87 13 22.49 18 6.48 18 10.36 17 31.29 18 8.42 20 12.68 16

18 Max surf. 11.10 20 10.70 18 41.99 20 5.51 20 5.56 20 27.39 19 4.36 15 4.78 12 41.13 19 4.17 19 27.88 19

Looking at these results, we can draw several conclu-

sions about the overall performance of the algorithms.

First, global optimization methods based on 2-D MRFs

generally perform the best in all regions of the image

(overall, textureless, and discontinuities). Most of these

techniques are based on graph-cut optimization (4, 8,

10, 11, 20), but belief propagation (19) also does well.

Approaches that explicitly model planar surfaces (8,

20) are especially good with piecewise planar scenes

such as Sawtooth and Venus.

Next, cooperative and diffusion-based methods

(5, 9, 15) do reasonably well, but often get the bound-

aries wrong, especially on the more complex Tsukuba

images. On the highly textured and relatively simple

Map sequence, however, they can outperform some

of the full optimization approaches. The Map se-

quence is also noisier than the others, which works

against algorithms that are sensitive to internal pa-

rameter settings. (In these experiments, we asked
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Figure 17. Comparative results on the Tsukuba images. The results are shown in decreasing order of overall performance (B
Ō

). Algorithms

implemented by us are marked with a star.

everyone to use a single set of parameters for all four

datasets.)

Lastly, local (1, 12, 14, 16) and scanline methods (2,

3, 7) perform less well, although (14) which performs

additional consistency checks and clean-up steps does

reasonably well, as does the compact window approach

(12), which uses a sophisticated adaptive window. Sim-

pler local approaches such as SSD + MF (1) generally

do poorly in textureless areas (if the window size is

small) or near discontinuities (if the window is large).

The disparity maps created by the scanline-based algo-

rithms (DP and SO) are promising and show a lot of

detail, but the larger quantitative errors are clearly a re-

sult of the “streaking” due to the lack of inter-scanline

consistency.

To demonstrate the importance of parameter set-

tings, Table 6 compares the overall results (BŌ) of al-

gorithms 1–5 for the fixed parameters listed in Table 4
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Figure 18. Comparative results on the Venus images. The results are shown in decreasing order of overall performance (B
Ō

). Algorithms

implemented by us are marked with a star.

with the “best” results when parameters are allowed to

vary for each image. Note that we did not perform a

true optimization over all parameters values, but rather

simply chose the overall best results among the en-

tire set of experiments we performed. It can be seen

that for some of the algorithms the performance can be

improved substantially with different parameters. The

global optimization algorithms are particularly sensi-

tive to the parameter λ, and DP is also sensitive to the

occlusion cost parameter. This is consistent with our

observations in Section 6.3. Note that the Map image

pair can virtually be “solved” using GC, Bay, or SSD,
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Table 6. Overall performance B
Ō

(bad pixels nonocc) for algo-

rithms 1–5, both using fixed parameters across all images, and best

parameters for each image. Note that for some algorithms signif-

icant performance gains are possible if parameters are allowed to

vary for each image.

Tsukuba Sawtooth Venus Map

fixed best fixed best fixed best fixed best

1 SSD 5.23 5.23 2.21 1.55 3.74 2.92 0.66 0.22

2 DP 4.12 3.82 4.84 3.70 10.10 9.13 3.33 1.21

3 SO 5.08 4.66 4.06 3.47 9.44 8.31 1.84 1.04

4 GC 1.94 1.94 1.30 0.98 1.79 1.48 0.31 0.09

5 Bay 6.49 6.49 1.45 1.45 4.00 4.00 0.20 0.20

since the images depict a simple geometry and are well

textured. More challenging data sets with many occlu-

sions and textureless regions may be useful in future

extensions of this study.

Finally, we take a brief look at the efficiency of

different methods. Table 7 lists the image sizes and

number of disparity levels for each image pair, and

the running times for 9 selected algorithms. Not

surprisingly, the speed-optimized methods (14 and

16) are fastest, followed by local and scanline-based

methods (1 − SSD, 2 − DP, 3 − SO). Our implemen-

tations of Graph cuts (4) and Bayesian diffusion (5)

are several orders of magnitude slower. The authors’

implementations of the graph cut methods (10 and

11), however, are much faster than our implemen-

tation. This is due to the new max-flow code by

Boykov and Kolmorogov (2002), which is available at

Table 7. Running times of selected algorithms on the four image

pairs.

Tsukuba Sawtooth Venus Map

Width 384 434 434 284

Height 288 380 383 216

Disparity levels 16 20 20 30

Time (seconds):

14–Realtime 0.1 0.2 0.2 0.1

16–Efficient 0.2 0.3 0.3 0.2

∗1–SSD + MF 1.1 1.5 1.7 0.8

∗2–DP 1.0 1.8 1.9 0.8

∗3–SO 1.1 2.2 2.3 1.3

10–GC 23.6 48.3 51.3 22.3

11–GC + occlusions 69.8 154.4 239.9 64.0

∗4–GC 662.0 735.0 829.0 480.0

∗5–Bay 1055.0 2049.0 2047.0 1236.0

www.cs.cornell.edu/People/vnk/software.

html.

In summary, if efficiency is an issue, a simple

shiftable-window method is a good choice. In partic-

ular, method 14 by Hirschmüller (2002) is among the

fastest and produces very good results. New imple-

mentations of graph-cut methods give excellent results

and have acceptable running times. Further research is

needed to fully exploit the potential of scanline meth-

ods without sacrificing their efficiency.

8. Conclusion

In this paper, we have proposed a taxonomy for dense

two-frame stereo correspondence algorithms. We use

this taxonomy to highlight the most important features

of existing stereo algorithms and to study important

algorithmic components in isolation. We have imple-

mented a suite of stereo matching algorithm compo-

nents and constructed a test harness that can be used to

combine these, to vary the algorithm parameters in a

controlled way, and to test the performance of these al-

gorithm on interesting data sets. We have also produced

some new calibrated multi-view stereo data sets with

hand-labeled ground truth. We have performed an ex-

tensive experimental investigation in order to assess the

impact of the different algorithmic components. The

experiments reported here have demonstrated the lim-

itations of local methods, and have assessed the value

of different global techniques and their sensitivity to

key parameters.

We hope that publishing this study along with our

sample code and data sets on the Web will encourage

other stereo researchers to run their algorithms on our

data and to report their comparative results. Since pub-

lishing the initial version of this paper as a technical

report (Scharstein and Szeliski, 2001), we have already

received experimental results (disparity maps) from 15

different research groups, and we hope to obtain more

in the future. We are planning to maintain the on-line

version of Table 5 that lists the overall results of the cur-

rently best-performing algorithms on our web site. We

also hope that some researchers will take the time to add

their algorithms to our framework for others to use and

to build upon. In the long term, we hope that our efforts

will lead to some set of data and testing methodology

becoming an accepted standard in the stereo correspon-

dence community, so that new algorithms will have to

pass a “litmus test” to demonstrate that they improve

on the state of the art.
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There are many other open research questions we

would like to address. How important is it to devise the

right cost function (e.g., with better gradient-dependent

smoothness terms) in global optimization algorithms

vs. how important is it to find a global minimum?

What are the best (sampling-invariant) matching met-

rics? What kind of adaptive/shiftable windows work

best? Is it possible to automatically adapt parameters

to different images? Also, is prediction error a useful

metric for gauging the quality of stereo algorithms? We

would also like to try other existing data sets and to pro-

duce some labeled data sets that are not all piecewise

planar.

Once this study has been completed, we plan to move

on to study multi-frame stereo matching with arbitrary

camera geometry. There are many technical solutions

possible to this problem, including voxel representa-

tions, layered representations, and multi-view repre-

sentations. This more general version of the correspon-

dence problem should also prove to be more useful for

image-based rendering applications.

Developing the taxonomy and implementing the al-

gorithmic framework described in this paper has given

us a much deeper understanding of what does and

does not work well in stereo matching. We hope that

other researchers will also take the time to carefully

analyze the behavior of their own algorithms using

the framework and methodology developed in this pa-

per, and that this will lead to a deeper understand-

ing of the complex behavior of stereo correspondence

algorithms.
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