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F 
lynn’s classification of architec- 
tures does not discriminate clearly 
between different multiprocessor 

architectures. Since the number of multi- 
processor architectures has increased sub- 
stantially, it has become important to find 

a useful way to describe them-a way that 
distinguishes those that are significantly 
different while revealing the underlying 
similarities between apparently divergent 
designs. 

This taxonomy 

extends Flynn’s 

l single instruction, multiple data 
(SIMD) 

. multiple instruction, single data 
(MISD) 

* multiple instruction, multiple data 
(MIMD) 

classification of 

architectures to be 

more discriminating. 

In particular, the 

growing variety of 

multiprocessors can 

be categorized and 

related. 

In this article, I present a classification 
scheme, or taxonomy, that extends 
Flynn’s to make it more discriminating. It 
is based on a functional view of architec- 
ture and on information flow between 
units. I will show that this scheme classi- 
fies existing architectures well and also 
suggests new possibilities. 

This article presents a taxonomy for 
computer architectures that extends 
Flynn’s, especially in the multiprocessor 
category. It is a two-level hierarchy in 
which the upper level classifies architec- 
tures based on the numbers of processors 
for data and for instructions and the inter- 
connections between them. A lower level 
can be used to distinguish variants even 
more precisely; it is based on a state 
machine view of processors. I suggest why 
taxonomies are useful in studying architec- 
ture and show how mine applies to a num- 
ber of modern architectures. 

There has been a rapid growth in the 
number of proposed and constructed 
architectures over the past 10 years. Many 
of these have been highly parallel in nature 
because the applications envisaged 
demand increased performance that 
uniprocessor systems cannot continue to 
provide. The relationships between the 
large number of parallel architectures are 

difficult to appreciate because of the lack 
of a sufficiently rich taxonomy. Only one 
formal taxonomy, due to Flynn,’ is in 
general use and it does not begin to 
differentiate the large number of possible 
multiprocessor architectures. Flynn clas- 
sifies architectures by the number of 
instruction and data streams that they can 
process simultaneously. The categories 
are: 

l single instruction, single data (SISD) 

Taxonomies are important in classifying 
the world. Good taxonomies should group 
together those objects that are strongly 
related in important rather than unimpor- 
tant ways. For example, biologists group 
whales with other mammals (warm- 
blooded, live-bearing) rather than with 
fish (swim in water) because their relation- 
ship to mammals is more important-if 
less obvious-than their relationship to 
fish. 

Biologists have also shown that realis- 
tic taxonomies are hierarchically struc- 
tured. My taxonomy is a two-level 
structure that subsumes Flynn’s classifica- 
tion. Gross discriminations can be made at 
the higher level, with finer distinctions 
made at the second level. 

Other classification schemes have been 
described in the literature. Feng’s classifi- 
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cation is perhaps the best known.2 It is a 
performance-oriented classification that 
describes the parallelism of the set of 
processors in a machine in terms of the 
number of bits that can be processed 
simultaneously. Machines are described by 
a pair, the first element giving the width of 
a word, and the second the depth-the 
number of words that can be operated on 
simultaneously. It does enable compari- 
sons of performance between widely 
differing architectures, but precisely 
because it relates diverse architectures it 
does not highlight their differences. 

More descriptive classifications also 
exist. An early classification of Reddi and 
Feurste13 uses physical organization, 
information flow, and representation and 
transformation of information as the basis 
for classification. Information flow can be 
a powerful and general way of describing 
architectures, but their other attributes are 
very implementation oriented. Another 
popular descriptive classification is due to 
HBndler.4 His classification describes 
architectures by giving the number of 
processors and how they can be pipelined 
together, and the width and depth of the 
arithmetic/logic units. While this works 
well for describing conventional vectorized 
machines, it is not clear how to generalize 
it to newer multiprocessor architectures. 

Reasons for an architectural model. 
There are three reasons for classifying 
architectures. 

The first is to understand what has 
already been achieved. Until the past two 
decades, almost all computer systems used 
a von Neumann architecture. Even when 
the underlying hardware began to contain 
a limited amount of parallelism (for exam- 
ple, systems such as the CDC6600), it was 
generally concealed from the user. How- 
ever, since that time, the growth in systems 
with different kinds of parallelism has 
been explosive, and it is not at all clear 
which architectures have the best prospects 
for the future. 

The second reason for having a classi- 
fication of architectures is that it reveals 
possible configurations that might not 
have otherwise occurred to a system 
designer. Once existing systems have been 
classified, the gaps in the classification can 
suggest other possibilities. Of course, not 
all such possibilities will be improvements. 
They may already have been thought of 
and discarded as worthless. However, 
until the search space has been clearly 
delimited, there can be no assurance that 
all the possibilities have been examined. 
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The third reason for a classification 
scheme is that it allows useful models of 
performance to be built and used. I have 
already mentioned that a drive for greater 
performance lies behind almost all new 
architectural ventures. A good classifica- 
tion scheme should reveal why a particu- 
lar architecture is likely to provide a 
performance improvement. It can also 
serve as a model for performance analysis. 

Approaching classification. If we con- 
sider the whole question of computation 
and machines that provide it, it seems help- 
ful to think at several different abstraction 
levels. At the highest, most abstract level, 
we can consider the model of computation 
being employed. Most computers still 
employ a model of computation called the 
von Neumann model. In this view of com- 
putation, primitive operations consist of 
the usual operations of mathematics: addi- 
tion, multiplication, comparison, and so 
on (in suitably restricted domains). Prim- 
itive data, however, are kept in named 
locations, and correct computational 
behavior is enforced by the programmer 
who describes the exact order in which 
computations are to be performed. In fact, 
the execution order is over-constrained in 
the sense that there are other orderings of 
all but trivial programs that compute the 
same result; but there is no way to express 
this in the computational model. 

The von Neumann model of computa- 
tion seems natural to those whose pro- 
gramming experience was developed using 
languages that support it. However, it sim- 
ply does not contain any concept of com- 
puting more than one thing at once 
(parallelism), nor does it contain any way 
in which the possibility of ordering com- 
putations dynamically can be expressed. 

It is not surprising that the first new 
computation models developed were 
extensions to the von Neumann model, to 
which concepts such as communication 
primitives were added. Later, other, more 
unusual, computation models-such as 
dataflow and graph reduction-were 
developed. 

As we move to a more detailed level, we 

can consider abstract machines as the 
implementation of models of computa- 
tion. The mapping from model of compu- 
tation to abstract machine is not 
necessarily a l-to-l mapping; some models 
of computation can be implemented by 
more than one type of abstract machine, 
although there is usually a better fit for 
some than others. An abstract machine 
captures the essence of a particular archi- 

tecture form, without distinguishing 
different technologies, implementation 
sizes, or the like. For instance, the tradi- 
tional von Neumann abstract machine can 
be evoked for most programmers by a 
summary such as program counter, 
addressing modes, condition codes, con- 
trol unit, and arithmetic/logic unit. This 
abstract machine does not distinguish 
between the different von Neumann 
implementations that exist, nor does it dis- 
tinguish between reduced-instruction-set 
computers and complex-instruction-set 
computers. It is nevertheless a useful level 
at which to consider architectures, and it 
is this level that forms my taxonomy’s 
highest level. 

At the next, more detailed, level we can 
consider machine implementations. This 
need not necessarily concern only the tech- 
nology used to implement the machine. 
Rather, this level represents one definition 
of computer architecture, the picture of 
the machine presented to an assembly lan- 
guage programmer. (This definition is 
itself embedded in the world of von Neu- 
mann machines, since in many other 
architectures it is not clear what an assem- 
bly language programmer is, let alone 
what his or her view of the machine would 
be.) This level corresponds to the second 
level of my taxonomy. One could also 
envisage a level below this in which details 
of the physical implementation are used to 
distinguish between different processors. 

I have not discussed the role of pro- 
gramming languages in this classification 
because, in some sense, the language used 
on a particular machine corresponds to the 
model of computation that it uses. If this 
is not the case, then there is a very bad 
“fit” between language and implementa- 
tion and, since our goal is (implicitly at 
least) performance, this sort of situation 
can be ignored. Of course, when the von 
Neumann machine was all that there was, 
many different languages were used on the 
same machine. However, there is a grow- 
ing trend towards building the architecture 
and the language together, and there are 
good reasons for that trend. Even for the 
von Neumann architecture, it is clear that 
Algol-like languages are a better “fit” 
than, say, Lisp. 

Functions of a computer architecture. 
In my classification of computer architec- 
tures, I use four types of functional units 
from which any abstract machine can be 
constructed. These are 

l An instruction processor, a func- 
tional unit that acts as an interpreter 
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Figure 1. Arrangement of the von Neumann abstract machine functional units. 

for instructions, when such things 
explicitly exist in the model of com- 
putation. 

l A data processor, a functional unit 
that acts as a transformer of data, 
usually in ways that correspond to 
basic arithmetic operations. 

l A memory hierarchy, an intelligent 
storage device that passes data to and 
from the processors. 

l A switch, an abstract device that pro- 
vides connectivity between other 
functional units. 

In the next section, I illustrate how these 
functional units capture the behavior of an 
abstract machine, using the von Neumann 
architecture as an example. 

The von Neumann 
abstract machine 

The von Neumann abstract machine 
consists of a single instruction processor 
(IP), a single data processor (DP), and two 
memory hierarchies. The switch func- 
tional unit plays no role in describing the 
von Neumann abstract machine. 

These functional units are arranged as 
shown in Figure 1. The instruction proces- 
sor connects to one of the memory hierar- 
chies from which it can fetch instructions. 
To do so, it must provide the memory hier- 
archy with a label (address) that identifies 
the instruction to be fetched. It also con- 
nects to the data processor, to which it 
sends information about operations to be 
performed and the labels of the values on 
which they are to be performed, and from 
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which it receives state information (condi- 
tion codes). 

The functions of the instruction proces- 
sor are to 

(1) Determine the label of the next 
instruction to be executed, using 
information from its own internal 
storage and the state information 
conveyed to it by the data 
processor. 

(2) Instruct the memory hierarchy to 
provide the instruction with that 
label. 

(3) Receive the instruction and decode 
it. This involves determining which 
operation, if any, the data proces- 
sor will be required to do to “exe- 
cute” the instruction. 

(4) Inform the data processor of the 
operation required. 

(5) Determine the labels of the oper- 
ands and pass them to the data 
processor. 

(6) Receive the state information from 
the data processor (after comple- 
tion of the operation). 

Any architecture with an instruction 
processor will require it to carry out steps 
such as these. There is no presumption, in 
the description, that these steps need be 
carried out in the order given or that cer- 
tain steps may not be skipped. At the first 
level of the taxonomy, only the existence 
of certain functional units, connected in a 
particular way, is specified. 

For the von Neumann machine, the 
order of operations is usually that given 
above. It is called the instruction execution 
sequence. If we wish to indicate the precise 

order of the steps, then we move to the sec- 
ond level of the taxonomy and represent 
these various operations as states in a state 
diagram. At this second level, the instruc- 
tion processor can be represented as in Fig- 
ure 2, in which each state represents an 
operation and the arrows represent the 
dependencies between states. The dotted 
lines represent communication between 
the instruction processor and the other 
functional units in the system. If we visual- 
ize a “token” that can be placed on a state, 
then this state diagram-together with the 
token’s location-gives a complete 
description of what the instruction proces- 
sor is doing at any given moment. The 
token then follows the arrows between 
states, circling the loop once for each 
executed instruction. 

We can continue to differentiate 
machines that operate according to the 
state diagrams given above by providing 
implementation level details. These might 
include exact mechanisms or timings for 
each state, or the way in which logical enti- 
ties are mapped to physical ones. One such 
example is the following: Most von Neu- 
mann machines implement the selection of 
the next instruction using a program 
counter updated by the length of the cur- 
rent instruction (ignoring branch instruc- 
tions). However, in some systems, the 
address of the next instruction is included 
in the instruction itself. Neither of these 
strategies is more von Neumann than the 
other. They are implementation choices 
and should be indistinguishable at the 
abstract machine level. 

The data processor carries out the fol- 
lowing steps: 

(1) Receive an instruction type from the 
instruction processor. 

(2) Receive operand labels from the 
instruction processor. 

(3) Instruct the memory hierarchy (sep- 
arate from that of the instruction 
processor) to provide the values of 
the operands. 

(4) Receive operand values from the 
memory hierarchy. 

(5) Carry out the required operation 
(the execute phase). 

(6) Return state information to the 
instruction processor. 

(7) Provide a result value to the mem- 
ory hierarchy. 

Once again, this can be represented by a 
state diagram consisting of a loop of 
states. The greatest difference between the 
instruction processors is that the execute 
phase of the data processor consists of a 
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Figure 2. The internal structure of a von Neumann instruction processor. 
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Figure 3. The internal structure of a von Neumann data processor. 

potentially large number of parallel states, 
representing those operations that the data 
processor regards as primitive. The state 
diagram is shown in Figure 3. 

Certain actions taken in both the 
instruction processor and data processor 
must be synchronized. Places where this 
occurs, shown using dotted lines in the 
state diagrams, represent communication 
between the processors. Their behavior 
follows: A token must be present on the 
state at the beginning and end of commu- 
nication path for communication to occur. 
Neither token can leave that state until the 
communication is complete (that is, com- 
munication is synchronous). 

A memory hierarchy is an intelligent 
storage device that attempts to provide the 
data requested by its attached processor as 
quickly as possible. I begin by justifying 
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my treatment of a storage as a hierarchy. 
Consider the ultimate (at least with the 
physics we now understand) storage 
device. At its center is the processor. The 
data are stored in a sphere around it and 

can be accessed at light speed. As we 
increase the amount of storage, we are 
forced to place some storage locations on 
the outer surface of the sphere at a greater 
radius from the processor. Hence, the time 
to access those locations must increase. 
The surface area at the larger radius is 
greater as well, so more data can be stored 
there. 

Therefore, we can see that storage must 
inherently be organized in a hierarchy. 
Data stored close to the processor will have 
short access times but must always be of 
limited capacity. Adding capacity forces 
an increase in access time for some storage. 

But storage with longer access times can be 
more plentiful. Thus, a storage system 
should be regarded as a pyramid or, more 

accurately, as a ziggurat, since the data 
stored are discrete and successive “layers” 
get larger in steps. 

A memory hierarchy attempts to keep 
the next piece of data required by its 
attached processor at the top of the hier- 
archy where the access time is smallest. A 
perfect memory hierarchy would always 
achieve this goal. However, there is no 
optimal way to determine which piece of 
data will be required next. Hence, all mem- 
ory hierarchies must approximate this goal 
using heuristics. 

Clearly, the average access time is 
minimized when the data objects refer- 
enced most often are kept at the top of the 
hierarchy and those referenced least often 
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Figure 4. A faster von Neumann data processor. 

are kept at the bottom. When the data 
accesses have some locality, either tem- 
poral or spatial, average access perfor- 
mance can be improved by keeping data 
that have been accessed recently or that are 
close to accessed data at the top of the hier- 
archy. Fortunately, almost all computa- 
tion models do appear to exhibit 
substantial locality. 

We can now see why a von Neumann 
abstract machine contains two memory 
hierarchies. Data in the instruction mem- 
ory hierarchy flows towards the processor; 
instructions are absorbed by the instruc- 
tion processor and do not themselves get 
modified. On the other hand, the data 
memory hierarchy has to manage data 
movement in both directions. Hence, the 
implementation of the two memory hier- 
archies may have substantially different 
properties. In principle, a von Neumann 
architecture does not distinguish between 
data and instructions; but, almost all real 
machines make it difficult for a program- 
mer to use this equivalence, and program- 
ming environments enforce a separation. 
It seems useful to make the distinction in 
the abstract machine. Memory hierarchies 
are usually implemented using a single 
hierarchy of storage except at the top 
level-the cache-in which instruction and 
data storage are often differentiated. The 
cache is at the top of the memory hierar- 
chy, above the main memory, which in 
turn is above disk storage (such as swap 

space) and longer term storage such as 
tapes. I/O takes place at the bottom of the 
memory hierarchy. In a sense, I/O is an 
access to a very large storage mechanism, 
the outside world. 

Ways to increase 
performance 

Most of the other computational models 
are motivated by a desire for increased per- 
formance, so it is instructive at this point 
to consider how the von Neumann abstract 
machine could achieve better perfor- 
mance. There are three major ways: rear- 
ranging the state diagrams so that it takes 
less time for a token to circulate; allowing 
more than one token and, hence, more 
than one active step at a time; and, 
replicating functional units to permit con- 
current activity. All three ways do increase 
performance, and the third is especially 
fruitful, leading to a large and diverse class 
of architectures. Notice how explicit these 
possible mechanisms are made by the 
abstract machine representation. 

The first method of increasing speed- 
rearranging the state diagram-does not 
really generate a new architecture class, 
although my classification scheme does 
allow differences to be distinguished in the 
descriptions of the processors’ state dia- 
grams. As an example, in the data proces- 

sor, the operations of informing the 
instruction processor of the state informa- 
tion derived from the result and of storing 
the result in the memory hierarchy are 
independent. They can, therefore, occur 
simultaneously. This leads to the revised 
state diagram shown in Figure 4, which 
shows that, regardless of the time each step 
takes, the new arrangement will be faster. 

Pipelining. The second possible speed- 
up, permitting more than one token in the 
state diagram, is called pipelining. Sup- 
pose that the number of stages in a state 
diagrams is n. If each stage takes the same 
amount of time, say t, then the time to exe- 
cute one instruction is n t. If we allow n 
tokens to be present in the state diagram 
simultaneously, we represent n different 
instructions in various stages of execution. 
The time it takes to execute each instruc- 
tion is still n t. However, the average rate 
at which instructions are completed is l/t 
instructions per unit of time. Thus, we 
have achieved an n-fold speedup in our 
machine, as long as there are always n 
tokens in the state diagram. Of course, 
there are practical difficulties in making 
this work-instructions such as branches 
and jumps, external interrupts, and simul- 
taneous needs to access the same data 
cause real pipeline performance to be 
much worse than this simple analysis 
would suggest. However, it does serve to 
show why pipelines were interesting to sys- 
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tern designers trying to improve the perfor- 
mance of von Neumann machines. 

Pipelines have another interesting prop- 
erty. If we subdivide each of the states in 
our state diagram into two substates, each 
of which takes time t/2, and allow 2n 
tokens in the state diagram, then an 
instruction completes every t/2 time units 
thus increasing the completion rate of 
instructions to 2/t instructions per unit of 
time. Thus, we have a total speedup of 2n. 
Making each stage smaller allows us to 
increase the completion rate, but at the 
expense of complicating the handling of 
unforeseen interactions. 

Within our abstract machine model, 
pipelined behavior can be described with- 
out adding any new functional units. 
Instead, we label each functional unit as 
one of two types: simple or pipelined. 

Array processors. Replicating func- 
tional units is the third way to improve sys- 
tem performance. There are many 
different possibilities for replication, and 
we begin with the simplest-array proces- 
sors. A typical array processor consists of 
an instruction unit that broadcasts instruc- 
tions to a set of slave processors. Each of 
the slave processors executes the broadcast 
instruction, interpreting the operand 
addresses as lying in its own memory. 
Instructions are usually provided to allow 
processors to exchange data, directly or 
indirectly. It is also common for each 
processor to have access to its own iden- 
tity, allowing for different relative loca- 
tions to be accessed in different processors. 
An array processor is straightforwardly 
classified as an abstract machine with a 
single instruction processor, a single 
instruction memory, multiple data proces- 
sors, and multiple data memories. 

nxn 

Figure 6. A Type 2 array processor. 

Because there are multiple functional 
units, we must describe the ways in which 
they can be connected. Connections 
between functional units are made using 
abstract switches that can be implemented 
in different ways: by buses, dynamic 
switches, or static interconnection net- 
works. Four different forms of abstract 
switch connect functional units together: 

to the ith unit of another. This type of 
switch is a l-to-l connection replicated n 
times. 

l l-to-l-A single functional unit of 
one type connects to a single functional 
unit of another. Of course, there may be 
more than one physical connection and 
information may flow in both directions, 
as in the von Neumann abstract machine 
described earlier. This is not really a 
switch, but I include it for completeness. 

l l-to-n-In this configuration, one 
functional unit connects to all n devices of 
another set of functional units. 

l n-by-n-In this configuration, each 
device of one set of functional units can 
communicate with any device of a second 
set and vice versa. 

l n-to-n-In this configuration, the ith 
unit of one set of functional units connects 

All array processors have a l-to-n switch 
connecting the single instruction processor 
to the data processors. Two different sub- 
families can be distinguished, based on the 
types of switch used to connect the data 
processors and data memory hierarchies. 

Figure 5. A Type 1 array processor. 

IP 

R Instruction 

hy:!:;y 

The first kind is shown in Figure 5. Here, 
the data processor-data memory connec- 
tion is n-to-n and the data processor-data 
processor connection is n-by-n. This con- 
nection scheme is used in machines such as 
the Connection Machine.’ 

The second type is shown in Figure 6. In 
this case, the data processor-data memory 
connection is n-by-n and there is no con- 
nection between the data processors. This 
form of switch is usually called an align- 
ment network. One example of such an 
architecture is the Burroughs Scientific 
Processor.6 

We can now introduce our taxonomy 
informally. We classify architectures by 
the number of instruction processors and 
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Figure 7. The abstract machine of a typical tightly coupled multiprocessor. 

Figure 8. The abstract machine of a typical loosely coupled multiprocessor. 

nxn 

nxn 

Figure 9. The abstract machine for Figure 10. The abstract machine for 
graph reduction. dataflow (Dennis type). 

data processors they have, by the number 
of memory hierarchies they have, and by 
the way in which these functional units are 
interconnected by abstract switches. Thus, 
a von Neumann uniprocessor can be clas- 
sified as 

l number of instruction processors is I 
l number of instruction memory hier- 

archies is I 
l switch between instruction processor 

and instruction memory is l-to-l 
l number of data processors is 1 
l number of data memories is I 
l switch between data processor and 

data memory is l-to-l 
l switch between instruction processor 

and data processor is l-to-l 

A Type 1 array processor can be classi- 
fied as 

number of instruction processors is 1 
number of instruction memory hier- 
archies is 1 
switch between instruction processor 
and instruction memory is l-to-l 
number of data processors is n 
number of data memories is n 
switch between data processors and 
data memories is n-to-n 
switch between instruction processor 
and data processor is l-to-n 
switch between data processors is n- 

by-n 

We shall see more complex descriptions in 
the next section. As the number of func- 
tional units increases, so do the possibili- 
ties for interconnecting them. 

Parallel von Neumann 
machines 

Array processors rely on the existence of 
many pieces of data that can be manipu- 
lated in the same way at the same time. 
Many problems do not fit this paradigm 
well. Therefore, it is natural to consider 
replicating the instruction processor as 
well as the data processor and creating 
multiple control “threads.” This is the 
approach taken in parallel von Neumann 
machines. Two very different architecture 
types result from this approach: tightly 
coupled systems and loosely coupled 
systems. 

Tightly coupled systems consist of a set 

of processors connected to a set of mem- 
ories through a dynamic switch. Any 
processor can access any location in the 
memories with about the same latency. 
Communication and synchronization 
between processes is achieved by the use of 
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shared variables. Examples of such 
machines include the BBN Butterfly, the 
IBM 3081 and 3090, and C.mmp. Loosely 
coupled systems consist of a set of proces- 
sors, each with its own local memory. 
Communication takes place by explicit 
request from one processor to another 
over an interconnection network, by mes- 
sage passing, or by remote procedure calls. 
Examples of such machines include the 
Intel and NCube hypercube machines, 
Transputer-based systems such as Super- 
node (Esprit project 1085) and the Meiko 
MK40, as well as older systems such as 
CM*. 

In tightly coupled systems, both data 

and instruction processors are replicated, 
but the data processors share a common 
data memory. The corresponding abstract 
machine is shown in Figure 7. I show it 
with multiple data memories and an n-by- 
n switch between data processors and data 
memories because it is slightly more sug- 
gestive of the usual implementation. Func- 
tionally, it is indistinguishable from a 
common shared memory. 

Loosely coupled systems also have rep- 
licated data and instruction processors, 
but the switches in the data subsystem dif- 
fer. A typical loosely coupled system is 
shown in Figure 8. The connection 
between data processors and data memo- 
ries is n-to-n, and there is an n-by-n con- 
nection between the data processors. 

Machines using other 
models of computation 

Von Neumann machines are all based 
on a model of computation with threads 
of instructions executed sequentially, 
except where the order is explicitly altered. 
I have already commented that such order- 
ing is over-constrained. This difficulty gets 
worse when computation models with 
multiple threads of control are used, since 
programmers must consider not only the 
ordering of instructions in a particular 
thread but the possible orderings of 
instructions in different interacting 
threads. It is not surprising that those 
involved in designing highly parallel 
machines have examined other models of 
computation that do not have this awk- 
ward property. These new models of com- 
putation are characterized by a complete 
absence of programmer description of the 
order of evaluation, other than an order 
implied by data dependencies. This allows 
any possible evaluation order to be consid- 

ered for execution, and the one with the 
greatest performance can be selected by 
the compiler or the runtime environment. 
Models of computation with this property 
are usually expressed in functional lan- 
guages. 

Graph reduction machines. In graph 
reduction, a computation is encoded as a 
graph of functions and arguments that 
(recursively) have the property that the 
root node is an Apply, the left subtree is 
the description of a function, and the right 
subtree is the description of an argument. 

The description of a function or an 
argument can be either a value or a 

description of how to compute the value. 
If both the function and the argument 
have already been evaluated, then the 
subtree-called a redex-is available for 
execution. When it has been executed, its 
value overwrites the subtree. If either has 
not yet been evaluated, then some subtree 
must be a redex or the computation can- 
not proceed. Thus, in general, redexes 
available for execution are found at the 
leaves of the tree. Typically, multiple 
redexes are available for evaluation at any 
moment, so multiple processors can be 
involved in evaluation simultaneously. 

The abstract machine for graph reduc- 
tion is shown in Figure 9. It differs from 
the abstract machines of the von Neumann 
type primarily in the absence of an instruc- 
tion unit and instruction memory. The 
graph being reduced plays the role of both 
instructions (in its structure) and data (in 
its content). The data processors and their 
associated data memories are like those of 
a tightly coupled multiprocessor, which is 
not surprising since the graph is a large 
shared-data structure. 

Since there is no instruction processor to 
provide data labels to the data processor, 
it must generate them itself. There are two 
equivalent ways to model this. The first is 
to provide the data processor with a selec- 
tor that selects any available redex from 
the data memory. The other is to regard 
the data memory as actively pushing the 
available redexes towards the data 
processor. 

Work on graph reduction has mainly 
taken place in Europe and the United 
Kingdom and has been very successful. 
Several machines have been designed or 
built. Some examples are Alice’ and 
Flagship.8 

Dataflow machines. Dataflow machines 
are another class of machine that does not 
have an instruction sequencing mecha- 

nism, other than that implied by data 
dependencies. Its model of computation is 
a graph with directed edges, along which 
data flows, and vertices representing oper- 
ations that transform the data. Certain 
edges have a vertex at only one end; these 
represent the inputs or outputs of the com- 
putation. A vertex, or operator, fires 
according to some firing rule specified by 
the particular form of dataflow. In 
general, a firing absorbs a datum from 
each input arc and produces a result that 
then departs along the outgoing arc(s). 

Most proposed dataflow machines are 
based on a ring consisting of a matching 
store (where data values wait until a com- 
plete set of operands is present), a memory 
containing the operators, and a set of pro- 
cessing elements that execute the opera- 
tors, producing result values that flow 
around the ring to the matching store. 

The abstract machine for a dataflow 
processor can take two forms, correspond- 
ing to the two possible forms of data 
processor arrangement in an array proces- 
sor. In the first form, all of the data mem- 
ory is equally visible to all processors. This 
approach has been taken in the Man- 
chester Dataflow Machine’ and in 
Arvind’s machine.” This form of proces- 
sor is functionally identical to parallel 
graph-reduction machines and, hence, it 
has the same abstract machine diagram 
(Figure 9). In the second form, shown in 
Figure 10, each processor has its own local 
memory, and data values needed by other 
processors flow across the inter-data- 
processor switch. The second form is per- 
haps more intuitive; in the limit, each 
processor executes only a single operator. 
As before, a data processor can be 

modelled as having a selector or as being 
sent executable operators by a data 
memory. 

The formal model 

Considering the major types of proces- 
sors that exist today has shown some of the 
properties that must be captured by a for- 
mal classification scheme. My scheme con- 
sists of two levels of increasing detail and 
discrimination. The first level describes an 
architecture by specifying 

l the number of instruction processors, 
l the number of instruction memories, 
l the type of switch connecting IPs to 

instruction memories, 
l the number of data processors, 
l the number of data memories, 
l the type of switch connecting DPs 
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Abstract machine model 

No. of instruction processors 
No. of data processors 
connection structure 
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state diagram 
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Implementation model 
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speed 

Figure 11. The classification method. 

Table 1. Possible architectures. 

and data memories, 
l the type of switch connecting IPs and 

DPs, and 
l the type of switch connecting DPs to 

DPs. 

The first level refines Flynn’s classification 
by expanding the classes of SIMD and 
MIMD into a set of subclasses that capture 
important existing architectures. 

The second level allows further refine- 
ment by describing whether or not the 
processors can be pipelined and to what 
degree, and by giving the state diagram 
behavior of the processors. A third level 
describing implementation details is also 
possible. The approach is illustrated in 
Figure Il. 

As we have seen, this classification 
scheme captures the differences between 
architectures that are significantly differ- 
ent, while ignoring differences that are 
primarily a matter of implementation. 
Table 1 illustrates the set of simple 
architectures possible under the assump- 
tions that the number of memories 
matches the number of processors for each 

subsystem. Although there may be 
interesting architectures for which these 
assumptions do not hold, we will ignore 
them in the interest of a clear exposition. 

Classes 1 through 5 are the 
dataflow/reduction machines that do not 
have instructions in the usual sense. Class 
6 is the von Neumann uniprocessor. 
Classes 7 through 10 are the array proces- 

sors. Note that classes 5 and IO represent 
extensions to the common architectures of 
their respective types in that they have a 
double connectivity for their data 
processors. 

Classes 11 and 12 are the MISD 
architectures. Although these classes have 
been treated as an aberration, there are 
languages for which this type of execution 
is appropriate. For example, in NIAL 
(Nested Interactive Array Language),” it 
is possible to write 

V-shlx 

that is the parallel application of functions 
A g, and h tox. I am not aware of any exist- 
ing architecture of this type, but the con- 

Class IPS DPs IP-DP IP-IM DP-DM DP-DP Name 

1 0 I none none l-l none reduct/dataflow uniprocessor 

2 0 n none none n-n none separate machines 

3 0 n none none n-n nxn loosely coupled reduct/dataflow 
4 0 n none none nxn none tightly coupled reduct/dataflow 

5 0 n none none nxn nxn 
6 1 1 l-l l-l l-l none von Neumann uniprocessor 
7 1 n l-n l-l n-n none 
8 1 n l-n l-l n-n nxn Type 1 array processor 

9 1 n l-n l-l nxn none Type 2 array processor 
10 1 n l-n l-l nxn nxn 
11 n 1 l-n n-n l-l none 
I2 n 1 l-n nxn l-l none 
13 n n n-n n-n n-n none separate von Neumann uniprocessors 
14 n n n-n n-n n-n nxn loosely coupled von Neumann 

15 n n n-n n-n nxn none tightly coupled von Neumann 
I6 n n n-n n-n nxn nxn 
17 n n n-n nxn n-n none 
18 n n n-n nxn n-n nxn 
19 n n n-n nxn nxn none Denelcor Heterogeneous Element Processor 
20 n n n-n nxn nxn nxn 
21 n n nxn n-n n-n none 
22 n n nxn n-n n-n nxn 
23 n n nxn n-n nxn none 
24 n n nxn n-n nxn nxn 
25 n n nxn nxn n-n none 
26 n n nxn nxn n-n nxn 
27 n n nxn nxn nxn none 
28 n n nxn nxn nxn nxn 
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cept is not completely ridiculous. 
Classes 13 through 28 are the mul- 

tiprocessors of various kinds. Classes 13 
through 20 are more or less conventional 
multiprocessors with different forms of 
connection structure. Classes 21 through 
28 are more exotic architectures in which 
the connections between instruction 
processors and data processors is n-by-n. 
These classes appear to be completely 
unexplored. 

Architectures that have an n-by-n con- 
nection between the instruction processors 
and instruction memories are those in 
which the decision about the processor to 
execute a particular instruction is made 
late (that is, just before execution). 
Dataflow and graph reduction architec- 
tures often have this property, but the only 
von Neumann machine of which I am 
aware that behaves this way is the Heter- 
ogeneous Element Processor.‘* 

Some existing von Neumann machines 
have more than a single data processor. 
For example, several high performance 
pipelined systems (Cray I, Cyber 205) have 
a data processor for vector instructions 
and another for scalar instructions. Some 
have a separate scalar instruction proces- 
sor as well. Architectures of this type do 
not fit into the simple scheme outlined 
above, but they can be easily represented 
by including the vector processing units 
with the data processors (number of data 
processors is 1 + m). 

An example classification for an 
unusual architecture. I conclude by illus- 
trating the complete description of an 
unusual processor using my classification. 
I have chosen the Flagship architecture, a 
loosely coupled graph reduction system. 

The Flagship machine consists of a set 
of processors, each with its own local 
memory. The graph to be reduced is par- 
titioned statically, and these partitions are 
allocated to the local memories of proces- 
sors. Each processor selects possible parts 
of its own subgraph for reduction. If the 
required objects are local, the reduction 
proceeds and the subgraph is replaced by 
the reduced value. If some required part of 
the subgraph is not local (for instance, 
because it is shared among several differ- 
ent subgraphs), then a request for its value 
is sent over an interconnection network to 
the processor in whose local memory the 
subgraph resides. The value is eventually 
supplied by the remote processor. A 
processor that has completely reduced its 
subgraph can demand more work from 
other processors. 

November 1988 

~ ~~ 

COMPUTER SECURITY 

SCIENTISTS 

at 

Some of the nation’s most excit- 
ing developments in software 
technology, supercomputer 
architecture, AI, and expert sys- 
tems are under scrutiny right 
now at the Institute for Defense 
Analyses. IDA is a Federally 
Funded Research and Develop- 
ment Center serving the Office of 
the Secretary of Defense, the 
Joint Chiefs of Staff, Defense 
Agencies, and other Federal 
sponsors. 

IDA’s Computer and Software 
Engineering Division (CSED) is 
seeking professional staff 
members with an in-depth 
theoretical and practical back- 
ground in the area of Computer 
Security. Tasks include efforts 
on both the design/development 
of techniques to assess and 
assure security and providing 
advice to DOD decision makers 

Specialists in other areas of 
Computer Science are also 
sought: Software Engineers, Dis- 
tributed Systems, Artificial Intel- 
ligence and Expert Systems, and 
Programming Language 
Experts. 

We offer career opportunities at 
many levels of experience. You 
may be a highly experienced 
individual able to lead IDA proj- 
ects and programs . . or a 
recent MS/ PhD graduate. YOU 

can expect a competitive salary, 
excellent benefits, and a superior 
professional environment. 
Equally important, you can 
expect a role on the leading edge 
of the state of the art in comput- 
ing. If this kind of future appeals 
to you, we urge you to investi- 
gate a career with IDA. Please 
forward your resume to: 

on appropriate and feasible Mr. Thomas J. Shirhall 
policy regarding security. Manager of Professional Staffing 

Specific desired skills and inter- Institute for Defense Analyses 
ests include: 1801 N. Beauregard Street 

l Formal verification, with 
Alexandria, VA 22311 

emphasis on the Ada language An equal opportunity employer. 

l Secure kernels and reference U.S. Citizenship is required. 

monitors 
l Security in multiprocessor 

systems 
l Fault-tolerance in secure 

systems 
l Operating system, data base 

and network security criteria 
l Testing and evaluation 



ENTER THE 1988 

Gordon 
Bell Awards 

The Gordon Bell Awards recognize achieve 
ments in large-scale scientific computing. 
Awards of $1,000 each will be given in two of 

three categories: 
l Performance. A winning program will run 

faster than comparable engineering or scien- 

tific applications. 
l Price/pefformance. A winning program 

must show that its performance divided by 

system cost is less than comparable applice 
tions. 

l Compiler paralielization. A winning com- 
piler/application must generate the greatest 
speedup. 

The 1987 winners achieved speedups of 

400 to 600 with 1,024 processors. Entries 
must be received byJan. 15,1989. IEEESo& 

wareadministers the awards. For rules, write 

Gordon Bell Awards, 10662 Los Vaqueros. 
Los Alamitos, CA90720: (714) 821-8380. 

GAO.....WHERE YOU CAN 
MAKE A DIFFERENCE 

Do you have what it takes to make tech- 
nical assessments of ADP, telecom- 
munications, or information resources 
projects? 

We are looking for specialists who can 
evaluate federal automated data pro- 
cessing, communications, and informa- 
tion management systems. You should 
have experience managing in one of the 
following areas: 

l ADPSystems Development 

l Telecommunications 

l Capacity Management 

l Database Administration 

The U.S. General Accounting Office 
(GAO) is an independent, nonpartisan or- 
ganization in the legislative branch of the 
federal government, charged with evalu- 
ating federal programs to ensure that they 
arecarriedoutefficiently,effectively. and 
economically. Salaries start at $39,501 
and are commensurate with your experi- 
ence. To see if your background meets our 
future oroeram needs. ulease submit are- 
sume or S’F- I7 I (application for federal 
employment) to the following address: 

U.S. General Accounting Office 
Office of Recruitment - IE. Room 4650 

441 G Street, NW 
Washington, DC 20548 

Equal Opportunity Employer US. Citizenship Required 

Rewrite 4 
unit 

l 

+, 

Figure 12. Conventional block diagram of the Flagship architecture. 

Graphs are represented as linked struc- 
tures of nodes called (somewhat inap- 
propriately) packets. A node can be in one 
of three states: not ready to be reduced 
(because some subgraph has not yet been 

The classification of this architecture at 

reduced), in the process of being reduced, 

the first level is type 3 in Table 1. It cor- 
responds to the architecture shown in Fig- 

or waiting for some remote object that it 

ure 10. 

needs to continue reduction. This status is 
recorded within each packet. 

Now, consider the second level classifi- 
cation. The processor architecture in 
a conventional block diagram is shown 
in Figure 12. From this conventional 
description of the processor and its 
behavior, we can construct a state diagram 
for the data processor, shown in Figure 13. 
The way in which the Flagship memory 
devices form a memory hierarchy is shown 
in Figure 14. This more detailed descrip- 
tion shows that the taxonomy can describe 
unusual architectures as well as conven- 
tional ones, and that such descriptions 
reveal the internal structure. 

I 
have presented a classification 

scheme for architectures that is con- 
siderably more discriminating than 

those presently in use. It extends Flynn’s 
popular classification by increasing the 
discrimination between different kinds of 
parallel architectures. I have shown that 
my taxonomy captures the distinctions 

between architectures where they really 
significantly differ, and reveals underlying 
relationships as well (for example, show- 
ing the close relation between graph reduc- 
tion and dataflow architectures). The 

The taxonomy is divided into two levels. 
At the highest level, architectures are dis- 

taxonomy also suggests a number of unex- 

tinguished by the number of instruction 
processors, the number of data processors, 

plored possible architectures that might be 

the number of memory hierarchies they 
contain, and by the way in which these 

fruitful places to look for new and innova- 

devices are connected. At this level, there 
are 28 simple architectures. At the lower 

tive machine designs. 

level, further discriminations can be made 
by describing whether or not each of the 
processors is pipelined and by giving its 
internal functional structure by a state dia- 
gram. A further level, giving implementa- 
tion details, is also possible. The emphasis 
throughout is on capturing the functional 
behavior of architectures rather than the 
exact way in which they carry out a set of 
tasks. 

A taxonomy must shed light on what is 
already known and help in assimilating 
new understanding, if it is to be useful. I 
believe that my taxonomy is a natural 
extension of Flynn’s work-more complex 
because the possibilities have grown, but 
still simple and straightforward enough to 
be used as an intellectual tool for under- 
standing and as an engineering tool for 
design. 0 
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2. T.Y. Feng, “Some Characteristics of 
Associative/Parallel Processing,” Proc. 
1972 Sagamore Computing Conf., Aug. 
1972, pp. 5-16. 

Active 
packet 

scheduler 

H Active 
packet 

pool 

I Local packet store 
I 

Figure 14. How Flagship memory 
devices form a memory hierarchy. 

Acknowledgments 

This work was supported by the Natural 
Sciences and Engineering-Research Council of 
Canada. David Barnard and the anonymous 
referees made several suggestions that improved 
the presentation. 

References 
1. M.J. Flynn, “Some Computer Organiza- 

tions and Their Effectiveness,” IEEE 
Trans. Computers, C-21, No.9, Sept. 1972, 
pp. 948-960. 

November 1988 

3. S.S. Reddi and E.A. Feurstel, “A Concep- 
tual Framework for Computer Architec- 
ture,” Computing Surveys, Vol. 8, No.2, 
June 1976, pp. 277-300. 

4. W. Handler, “The Impact of Classification 
Schemes on Computer Architecture,” 
Proc. Int’l Conf. on Parallel Processing, 
Aug. 1977, pp. 7-15. 

5. W.D. Hillis, The Connection Machine, 
MIT Press, Cambridge, Mass., 1985. 

Figure 13. State diagram for the Flagship data processor. 

6. D.J. Kuck and R.A. Stokes, “The Bur- 
roughs Scientific Processor,” IEEE Trans. 
Computers, Vol. C-31, No. 5, May 1982, 
pp. 363-376. 

7. J. Darlington and M. Reeve, “Alice-A 
Multiprocessor Reduction Machine for the 
Parallel Evaluation of Applicative Lan- 
guages,” Proc. 1981 ACM Conf. Func- 
tional Programming Languages and 
Computer Architecture, 1981, pp. 65-75. 

8. I. Watson et al., “Flagship: A Parallel 
Architecture for Declarative Program- 
ming,” Proc. 15th Ann. Int’l Symp. on 
Computer Architecture, May 1988, pp. 
124-130. 

9. J. Curd and I. Watson, “Data Driven Sys- 
tems for High Speed Parallel Computing: 
Part 1: Structuring Software for Parallel 
Execution; Part 2: Hardware Design,” 
Computer Design, June and July 1980, pp. 
91-100, 97-106, respectively. 

10. A. and R.S. Nikhil, “Executinga Program 
on the MIT Tagged Token Dataflow Archi- 
tecture,” Proc. Parallel Architectures and 
Languages Europe (PARLE) Conf., 
Springer-Verlag, Berlin, Lecture Notes in 
Computer Science, June 1987, pp. l-29. 

Il. M.A. Jenkins, J.I. Glasgow, and C. 
McCrosky, “Programming Styles in 

I - 

12 

NIAL,” IEEESoftware, Vol. 3, No. 1, Jan. 
1986, pp. 46-55. 

Denelcor Inc., Heterogeneous Element 
Processor: Principles of Operation, Apr. 
1981. 

David B. Skillicorn is an associate professor in 
the Department of Computing and Information 
Science at Queen’s University at Kingston, 
located in Kingston, Ontario, Canada. He is 
currently a visiting researcher in the Program- 
ming Research Group at the University of 
Oxford in England. His research interests 
include multiprocessor architectures and func- 
tional languages and how they interact to pro- 
duce high-performance parallel systems. He is 
a member of the IEEE Computer Society and 
the Association for Computing Machinery. 

Skillicorn received the BSc degree from the 
University of Sydney in 1978 and the PhD from 
the University of Manitoba in 1981. 

Readers may write to Skillicorn at the Dept. of 
Computing and Information Science, Queen’s 
University at Kingston, Kingston, Ontario, 
Canada K7L 3N6. 

51 


