
A Taxonomy for Computer
Architectures

David B. Skillicorn

Queen’s University at Kingston

F
lynn’s classification of architec-
tures does not discriminate clearly
between different multiprocessor

architectures. Since the number of multi-
processor architectures has increased sub-
stantially, it has become important to find

a useful way to describe them-a way that
distinguishes those that are significantly
different while revealing the underlying
similarities between apparently divergent
designs.

This taxonomy

extends Flynn’s

l single instruction, multiple data
(SIMD)

. multiple instruction, single data
(MISD)

* multiple instruction, multiple data
(MIMD)

classification of

architectures to be

more discriminating.

In particular, the

growing variety of

multiprocessors can

be categorized and

related.

In this article, I present a classification
scheme, or taxonomy, that extends
Flynn’s to make it more discriminating. It
is based on a functional view of architec-
ture and on information flow between
units. I will show that this scheme classi-
fies existing architectures well and also
suggests new possibilities.

This article presents a taxonomy for
computer architectures that extends
Flynn’s, especially in the multiprocessor
category. It is a two-level hierarchy in
which the upper level classifies architec-
tures based on the numbers of processors
for data and for instructions and the inter-
connections between them. A lower level
can be used to distinguish variants even
more precisely; it is based on a state
machine view of processors. I suggest why
taxonomies are useful in studying architec-
ture and show how mine applies to a num-
ber of modern architectures.

There has been a rapid growth in the
number of proposed and constructed
architectures over the past 10 years. Many
of these have been highly parallel in nature
because the applications envisaged
demand increased performance that
uniprocessor systems cannot continue to
provide. The relationships between the
large number of parallel architectures are

difficult to appreciate because of the lack
of a sufficiently rich taxonomy. Only one
formal taxonomy, due to Flynn,’ is in
general use and it does not begin to
differentiate the large number of possible
multiprocessor architectures. Flynn clas-
sifies architectures by the number of
instruction and data streams that they can
process simultaneously. The categories
are:

l single instruction, single data (SISD)

Taxonomies are important in classifying
the world. Good taxonomies should group
together those objects that are strongly
related in important rather than unimpor-
tant ways. For example, biologists group
whales with other mammals (warm-
blooded, live-bearing) rather than with
fish (swim in water) because their relation-
ship to mammals is more important-if
less obvious-than their relationship to
fish.

Biologists have also shown that realis-
tic taxonomies are hierarchically struc-
tured. My taxonomy is a two-level
structure that subsumes Flynn’s classifica-
tion. Gross discriminations can be made at
the higher level, with finer distinctions
made at the second level.

Other classification schemes have been
described in the literature. Feng’s classifi-

46 0018.9162/88/1100-0046$01.00 0 1988lEEE COMPUTER

cation is perhaps the best known.2 It is a
performance-oriented classification that
describes the parallelism of the set of
processors in a machine in terms of the
number of bits that can be processed
simultaneously. Machines are described by
a pair, the first element giving the width of
a word, and the second the depth-the
number of words that can be operated on
simultaneously. It does enable compari-
sons of performance between widely
differing architectures, but precisely
because it relates diverse architectures it
does not highlight their differences.

More descriptive classifications also
exist. An early classification of Reddi and
Feurste13 uses physical organization,
information flow, and representation and
transformation of information as the basis
for classification. Information flow can be
a powerful and general way of describing
architectures, but their other attributes are
very implementation oriented. Another
popular descriptive classification is due to
HBndler.4 His classification describes
architectures by giving the number of
processors and how they can be pipelined
together, and the width and depth of the
arithmetic/logic units. While this works
well for describing conventional vectorized
machines, it is not clear how to generalize
it to newer multiprocessor architectures.

Reasons for an architectural model.
There are three reasons for classifying
architectures.

The first is to understand what has
already been achieved. Until the past two
decades, almost all computer systems used
a von Neumann architecture. Even when
the underlying hardware began to contain
a limited amount of parallelism (for exam-
ple, systems such as the CDC6600), it was
generally concealed from the user. How-
ever, since that time, the growth in systems
with different kinds of parallelism has
been explosive, and it is not at all clear
which architectures have the best prospects
for the future.

The second reason for having a classi-
fication of architectures is that it reveals
possible configurations that might not
have otherwise occurred to a system
designer. Once existing systems have been
classified, the gaps in the classification can
suggest other possibilities. Of course, not
all such possibilities will be improvements.
They may already have been thought of
and discarded as worthless. However,
until the search space has been clearly
delimited, there can be no assurance that
all the possibilities have been examined.

November 1988

The third reason for a classification
scheme is that it allows useful models of
performance to be built and used. I have
already mentioned that a drive for greater
performance lies behind almost all new
architectural ventures. A good classifica-
tion scheme should reveal why a particu-
lar architecture is likely to provide a
performance improvement. It can also
serve as a model for performance analysis.

Approaching classification. If we con-
sider the whole question of computation
and machines that provide it, it seems help-
ful to think at several different abstraction
levels. At the highest, most abstract level,
we can consider the model of computation
being employed. Most computers still
employ a model of computation called the
von Neumann model. In this view of com-
putation, primitive operations consist of
the usual operations of mathematics: addi-
tion, multiplication, comparison, and so
on (in suitably restricted domains). Prim-
itive data, however, are kept in named
locations, and correct computational
behavior is enforced by the programmer
who describes the exact order in which
computations are to be performed. In fact,
the execution order is over-constrained in
the sense that there are other orderings of
all but trivial programs that compute the
same result; but there is no way to express
this in the computational model.

The von Neumann model of computa-
tion seems natural to those whose pro-
gramming experience was developed using
languages that support it. However, it sim-
ply does not contain any concept of com-
puting more than one thing at once
(parallelism), nor does it contain any way
in which the possibility of ordering com-
putations dynamically can be expressed.

It is not surprising that the first new
computation models developed were
extensions to the von Neumann model, to
which concepts such as communication
primitives were added. Later, other, more
unusual, computation models-such as
dataflow and graph reduction-were
developed.

As we move to a more detailed level, we

can consider abstract machines as the
implementation of models of computa-
tion. The mapping from model of compu-
tation to abstract machine is not
necessarily a l-to-l mapping; some models
of computation can be implemented by
more than one type of abstract machine,
although there is usually a better fit for
some than others. An abstract machine
captures the essence of a particular archi-

tecture form, without distinguishing
different technologies, implementation
sizes, or the like. For instance, the tradi-
tional von Neumann abstract machine can
be evoked for most programmers by a
summary such as program counter,
addressing modes, condition codes, con-
trol unit, and arithmetic/logic unit. This
abstract machine does not distinguish
between the different von Neumann
implementations that exist, nor does it dis-
tinguish between reduced-instruction-set
computers and complex-instruction-set
computers. It is nevertheless a useful level
at which to consider architectures, and it
is this level that forms my taxonomy’s
highest level.

At the next, more detailed, level we can
consider machine implementations. This
need not necessarily concern only the tech-
nology used to implement the machine.
Rather, this level represents one definition
of computer architecture, the picture of
the machine presented to an assembly lan-
guage programmer. (This definition is
itself embedded in the world of von Neu-
mann machines, since in many other
architectures it is not clear what an assem-
bly language programmer is, let alone
what his or her view of the machine would
be.) This level corresponds to the second
level of my taxonomy. One could also
envisage a level below this in which details
of the physical implementation are used to
distinguish between different processors.

I have not discussed the role of pro-
gramming languages in this classification
because, in some sense, the language used
on a particular machine corresponds to the
model of computation that it uses. If this
is not the case, then there is a very bad
“fit” between language and implementa-
tion and, since our goal is (implicitly at
least) performance, this sort of situation
can be ignored. Of course, when the von
Neumann machine was all that there was,
many different languages were used on the
same machine. However, there is a grow-
ing trend towards building the architecture
and the language together, and there are
good reasons for that trend. Even for the
von Neumann architecture, it is clear that
Algol-like languages are a better “fit”
than, say, Lisp.

Functions of a computer architecture.
In my classification of computer architec-
tures, I use four types of functional units
from which any abstract machine can be
constructed. These are

l An instruction processor, a func-
tional unit that acts as an interpreter

41

_ I
Instructions

Figure 1. Arrangement of the von Neumann abstract machine functional units.

for instructions, when such things
explicitly exist in the model of com-
putation.

l A data processor, a functional unit
that acts as a transformer of data,
usually in ways that correspond to
basic arithmetic operations.

l A memory hierarchy, an intelligent
storage device that passes data to and
from the processors.

l A switch, an abstract device that pro-
vides connectivity between other
functional units.

In the next section, I illustrate how these
functional units capture the behavior of an
abstract machine, using the von Neumann
architecture as an example.

The von Neumann
abstract machine

The von Neumann abstract machine
consists of a single instruction processor
(IP), a single data processor (DP), and two
memory hierarchies. The switch func-
tional unit plays no role in describing the
von Neumann abstract machine.

These functional units are arranged as
shown in Figure 1. The instruction proces-
sor connects to one of the memory hierar-
chies from which it can fetch instructions.
To do so, it must provide the memory hier-
archy with a label (address) that identifies
the instruction to be fetched. It also con-
nects to the data processor, to which it
sends information about operations to be
performed and the labels of the values on
which they are to be performed, and from

48

1

which it receives state information (condi-
tion codes).

The functions of the instruction proces-
sor are to

(1) Determine the label of the next
instruction to be executed, using
information from its own internal
storage and the state information
conveyed to it by the data
processor.

(2) Instruct the memory hierarchy to
provide the instruction with that
label.

(3) Receive the instruction and decode
it. This involves determining which
operation, if any, the data proces-
sor will be required to do to “exe-
cute” the instruction.

(4) Inform the data processor of the
operation required.

(5) Determine the labels of the oper-
ands and pass them to the data
processor.

(6) Receive the state information from
the data processor (after comple-
tion of the operation).

Any architecture with an instruction
processor will require it to carry out steps
such as these. There is no presumption, in
the description, that these steps need be
carried out in the order given or that cer-
tain steps may not be skipped. At the first
level of the taxonomy, only the existence
of certain functional units, connected in a
particular way, is specified.

For the von Neumann machine, the
order of operations is usually that given
above. It is called the instruction execution
sequence. If we wish to indicate the precise

order of the steps, then we move to the sec-
ond level of the taxonomy and represent
these various operations as states in a state
diagram. At this second level, the instruc-
tion processor can be represented as in Fig-
ure 2, in which each state represents an
operation and the arrows represent the
dependencies between states. The dotted
lines represent communication between
the instruction processor and the other
functional units in the system. If we visual-
ize a “token” that can be placed on a state,
then this state diagram-together with the
token’s location-gives a complete
description of what the instruction proces-
sor is doing at any given moment. The
token then follows the arrows between
states, circling the loop once for each
executed instruction.

We can continue to differentiate
machines that operate according to the
state diagrams given above by providing
implementation level details. These might
include exact mechanisms or timings for
each state, or the way in which logical enti-
ties are mapped to physical ones. One such
example is the following: Most von Neu-
mann machines implement the selection of
the next instruction using a program
counter updated by the length of the cur-
rent instruction (ignoring branch instruc-
tions). However, in some systems, the
address of the next instruction is included
in the instruction itself. Neither of these
strategies is more von Neumann than the
other. They are implementation choices
and should be indistinguishable at the
abstract machine level.

The data processor carries out the fol-
lowing steps:

(1) Receive an instruction type from the
instruction processor.

(2) Receive operand labels from the
instruction processor.

(3) Instruct the memory hierarchy (sep-
arate from that of the instruction
processor) to provide the values of
the operands.

(4) Receive operand values from the
memory hierarchy.

(5) Carry out the required operation
(the execute phase).

(6) Return state information to the
instruction processor.

(7) Provide a result value to the mem-
ory hierarchy.

Once again, this can be represented by a
state diagram consisting of a loop of
states. The greatest difference between the
instruction processors is that the execute
phase of the data processor consists of a

COMPUTER

I DP
w

Figure 2. The internal structure of a von Neumann instruction processor.

IIP ;IP
A
I DM

; DM

\I/
1 IP

w

Figure 3. The internal structure of a von Neumann data processor.

potentially large number of parallel states,
representing those operations that the data
processor regards as primitive. The state
diagram is shown in Figure 3.

Certain actions taken in both the
instruction processor and data processor
must be synchronized. Places where this
occurs, shown using dotted lines in the
state diagrams, represent communication
between the processors. Their behavior
follows: A token must be present on the
state at the beginning and end of commu-
nication path for communication to occur.
Neither token can leave that state until the
communication is complete (that is, com-
munication is synchronous).

A memory hierarchy is an intelligent
storage device that attempts to provide the
data requested by its attached processor as
quickly as possible. I begin by justifying

November 1988 49

my treatment of a storage as a hierarchy.
Consider the ultimate (at least with the
physics we now understand) storage
device. At its center is the processor. The
data are stored in a sphere around it and

can be accessed at light speed. As we
increase the amount of storage, we are
forced to place some storage locations on
the outer surface of the sphere at a greater
radius from the processor. Hence, the time
to access those locations must increase.
The surface area at the larger radius is
greater as well, so more data can be stored
there.

Therefore, we can see that storage must
inherently be organized in a hierarchy.
Data stored close to the processor will have
short access times but must always be of
limited capacity. Adding capacity forces
an increase in access time for some storage.

But storage with longer access times can be
more plentiful. Thus, a storage system
should be regarded as a pyramid or, more

accurately, as a ziggurat, since the data
stored are discrete and successive “layers”
get larger in steps.

A memory hierarchy attempts to keep
the next piece of data required by its
attached processor at the top of the hier-
archy where the access time is smallest. A
perfect memory hierarchy would always
achieve this goal. However, there is no
optimal way to determine which piece of
data will be required next. Hence, all mem-
ory hierarchies must approximate this goal
using heuristics.

Clearly, the average access time is
minimized when the data objects refer-
enced most often are kept at the top of the
hierarchy and those referenced least often

A
I DM

; DM

J/

DM
--

Figure 4. A faster von Neumann data processor.

are kept at the bottom. When the data
accesses have some locality, either tem-
poral or spatial, average access perfor-
mance can be improved by keeping data
that have been accessed recently or that are
close to accessed data at the top of the hier-
archy. Fortunately, almost all computa-
tion models do appear to exhibit
substantial locality.

We can now see why a von Neumann
abstract machine contains two memory
hierarchies. Data in the instruction mem-
ory hierarchy flows towards the processor;
instructions are absorbed by the instruc-
tion processor and do not themselves get
modified. On the other hand, the data
memory hierarchy has to manage data
movement in both directions. Hence, the
implementation of the two memory hier-
archies may have substantially different
properties. In principle, a von Neumann
architecture does not distinguish between
data and instructions; but, almost all real
machines make it difficult for a program-
mer to use this equivalence, and program-
ming environments enforce a separation.
It seems useful to make the distinction in
the abstract machine. Memory hierarchies
are usually implemented using a single
hierarchy of storage except at the top
level-the cache-in which instruction and
data storage are often differentiated. The
cache is at the top of the memory hierar-
chy, above the main memory, which in
turn is above disk storage (such as swap

space) and longer term storage such as
tapes. I/O takes place at the bottom of the
memory hierarchy. In a sense, I/O is an
access to a very large storage mechanism,
the outside world.

Ways to increase
performance

Most of the other computational models
are motivated by a desire for increased per-
formance, so it is instructive at this point
to consider how the von Neumann abstract
machine could achieve better perfor-
mance. There are three major ways: rear-
ranging the state diagrams so that it takes
less time for a token to circulate; allowing
more than one token and, hence, more
than one active step at a time; and,
replicating functional units to permit con-
current activity. All three ways do increase
performance, and the third is especially
fruitful, leading to a large and diverse class
of architectures. Notice how explicit these
possible mechanisms are made by the
abstract machine representation.

The first method of increasing speed-
rearranging the state diagram-does not
really generate a new architecture class,
although my classification scheme does
allow differences to be distinguished in the
descriptions of the processors’ state dia-
grams. As an example, in the data proces-

sor, the operations of informing the
instruction processor of the state informa-
tion derived from the result and of storing
the result in the memory hierarchy are
independent. They can, therefore, occur
simultaneously. This leads to the revised
state diagram shown in Figure 4, which
shows that, regardless of the time each step
takes, the new arrangement will be faster.

Pipelining. The second possible speed-
up, permitting more than one token in the
state diagram, is called pipelining. Sup-
pose that the number of stages in a state
diagrams is n. If each stage takes the same
amount of time, say t, then the time to exe-
cute one instruction is n t. If we allow n
tokens to be present in the state diagram
simultaneously, we represent n different
instructions in various stages of execution.
The time it takes to execute each instruc-
tion is still n t. However, the average rate
at which instructions are completed is l/t
instructions per unit of time. Thus, we
have achieved an n-fold speedup in our
machine, as long as there are always n
tokens in the state diagram. Of course,
there are practical difficulties in making
this work-instructions such as branches
and jumps, external interrupts, and simul-
taneous needs to access the same data
cause real pipeline performance to be
much worse than this simple analysis
would suggest. However, it does serve to
show why pipelines were interesting to sys-

50

1

COMPUTER

tern designers trying to improve the perfor-
mance of von Neumann machines.

Pipelines have another interesting prop-
erty. If we subdivide each of the states in
our state diagram into two substates, each
of which takes time t/2, and allow 2n
tokens in the state diagram, then an
instruction completes every t/2 time units
thus increasing the completion rate of
instructions to 2/t instructions per unit of
time. Thus, we have a total speedup of 2n.
Making each stage smaller allows us to
increase the completion rate, but at the
expense of complicating the handling of
unforeseen interactions.

Within our abstract machine model,
pipelined behavior can be described with-
out adding any new functional units.
Instead, we label each functional unit as
one of two types: simple or pipelined.

Array processors. Replicating func-
tional units is the third way to improve sys-
tem performance. There are many
different possibilities for replication, and
we begin with the simplest-array proces-
sors. A typical array processor consists of
an instruction unit that broadcasts instruc-
tions to a set of slave processors. Each of
the slave processors executes the broadcast
instruction, interpreting the operand
addresses as lying in its own memory.
Instructions are usually provided to allow
processors to exchange data, directly or
indirectly. It is also common for each
processor to have access to its own iden-
tity, allowing for different relative loca-
tions to be accessed in different processors.
An array processor is straightforwardly
classified as an abstract machine with a
single instruction processor, a single
instruction memory, multiple data proces-
sors, and multiple data memories.

nxn

Figure 6. A Type 2 array processor.

Because there are multiple functional
units, we must describe the ways in which
they can be connected. Connections
between functional units are made using
abstract switches that can be implemented
in different ways: by buses, dynamic
switches, or static interconnection net-
works. Four different forms of abstract
switch connect functional units together:

to the ith unit of another. This type of
switch is a l-to-l connection replicated n
times.

l l-to-l-A single functional unit of
one type connects to a single functional
unit of another. Of course, there may be
more than one physical connection and
information may flow in both directions,
as in the von Neumann abstract machine
described earlier. This is not really a
switch, but I include it for completeness.

l l-to-n-In this configuration, one
functional unit connects to all n devices of
another set of functional units.

l n-by-n-In this configuration, each
device of one set of functional units can
communicate with any device of a second
set and vice versa.

l n-to-n-In this configuration, the ith
unit of one set of functional units connects

All array processors have a l-to-n switch
connecting the single instruction processor
to the data processors. Two different sub-
families can be distinguished, based on the
types of switch used to connect the data
processors and data memory hierarchies.

Figure 5. A Type 1 array processor.

IP

R Instruction

hy:!:;y

The first kind is shown in Figure 5. Here,
the data processor-data memory connec-
tion is n-to-n and the data processor-data
processor connection is n-by-n. This con-
nection scheme is used in machines such as
the Connection Machine.’

The second type is shown in Figure 6. In
this case, the data processor-data memory
connection is n-by-n and there is no con-
nection between the data processors. This
form of switch is usually called an align-
ment network. One example of such an
architecture is the Burroughs Scientific
Processor.6

We can now introduce our taxonomy
informally. We classify architectures by
the number of instruction processors and

November 1988 51

nx n

Figure 7. The abstract machine of a typical tightly coupled multiprocessor.

Figure 8. The abstract machine of a typical loosely coupled multiprocessor.

nxn

nxn

Figure 9. The abstract machine for Figure 10. The abstract machine for
graph reduction. dataflow (Dennis type).

data processors they have, by the number
of memory hierarchies they have, and by
the way in which these functional units are
interconnected by abstract switches. Thus,
a von Neumann uniprocessor can be clas-
sified as

l number of instruction processors is I
l number of instruction memory hier-

archies is I
l switch between instruction processor

and instruction memory is l-to-l
l number of data processors is 1
l number of data memories is I
l switch between data processor and

data memory is l-to-l
l switch between instruction processor

and data processor is l-to-l

A Type 1 array processor can be classi-
fied as

number of instruction processors is 1
number of instruction memory hier-
archies is 1
switch between instruction processor
and instruction memory is l-to-l
number of data processors is n
number of data memories is n
switch between data processors and
data memories is n-to-n
switch between instruction processor
and data processor is l-to-n
switch between data processors is n-

by-n

We shall see more complex descriptions in
the next section. As the number of func-
tional units increases, so do the possibili-
ties for interconnecting them.

Parallel von Neumann
machines

Array processors rely on the existence of
many pieces of data that can be manipu-
lated in the same way at the same time.
Many problems do not fit this paradigm
well. Therefore, it is natural to consider
replicating the instruction processor as
well as the data processor and creating
multiple control “threads.” This is the
approach taken in parallel von Neumann
machines. Two very different architecture
types result from this approach: tightly
coupled systems and loosely coupled
systems.

Tightly coupled systems consist of a set

of processors connected to a set of mem-
ories through a dynamic switch. Any
processor can access any location in the
memories with about the same latency.
Communication and synchronization
between processes is achieved by the use of

52

1

COMPUTER

shared variables. Examples of such
machines include the BBN Butterfly, the
IBM 3081 and 3090, and C.mmp. Loosely
coupled systems consist of a set of proces-
sors, each with its own local memory.
Communication takes place by explicit
request from one processor to another
over an interconnection network, by mes-
sage passing, or by remote procedure calls.
Examples of such machines include the
Intel and NCube hypercube machines,
Transputer-based systems such as Super-
node (Esprit project 1085) and the Meiko
MK40, as well as older systems such as
CM*.

In tightly coupled systems, both data

and instruction processors are replicated,
but the data processors share a common
data memory. The corresponding abstract
machine is shown in Figure 7. I show it
with multiple data memories and an n-by-
n switch between data processors and data
memories because it is slightly more sug-
gestive of the usual implementation. Func-
tionally, it is indistinguishable from a
common shared memory.

Loosely coupled systems also have rep-
licated data and instruction processors,
but the switches in the data subsystem dif-
fer. A typical loosely coupled system is
shown in Figure 8. The connection
between data processors and data memo-
ries is n-to-n, and there is an n-by-n con-
nection between the data processors.

Machines using other
models of computation

Von Neumann machines are all based
on a model of computation with threads
of instructions executed sequentially,
except where the order is explicitly altered.
I have already commented that such order-
ing is over-constrained. This difficulty gets
worse when computation models with
multiple threads of control are used, since
programmers must consider not only the
ordering of instructions in a particular
thread but the possible orderings of
instructions in different interacting
threads. It is not surprising that those
involved in designing highly parallel
machines have examined other models of
computation that do not have this awk-
ward property. These new models of com-
putation are characterized by a complete
absence of programmer description of the
order of evaluation, other than an order
implied by data dependencies. This allows
any possible evaluation order to be consid-

ered for execution, and the one with the
greatest performance can be selected by
the compiler or the runtime environment.
Models of computation with this property
are usually expressed in functional lan-
guages.

Graph reduction machines. In graph
reduction, a computation is encoded as a
graph of functions and arguments that
(recursively) have the property that the
root node is an Apply, the left subtree is
the description of a function, and the right
subtree is the description of an argument.

The description of a function or an
argument can be either a value or a

description of how to compute the value.
If both the function and the argument
have already been evaluated, then the
subtree-called a redex-is available for
execution. When it has been executed, its
value overwrites the subtree. If either has
not yet been evaluated, then some subtree
must be a redex or the computation can-
not proceed. Thus, in general, redexes
available for execution are found at the
leaves of the tree. Typically, multiple
redexes are available for evaluation at any
moment, so multiple processors can be
involved in evaluation simultaneously.

The abstract machine for graph reduc-
tion is shown in Figure 9. It differs from
the abstract machines of the von Neumann
type primarily in the absence of an instruc-
tion unit and instruction memory. The
graph being reduced plays the role of both
instructions (in its structure) and data (in
its content). The data processors and their
associated data memories are like those of
a tightly coupled multiprocessor, which is
not surprising since the graph is a large
shared-data structure.

Since there is no instruction processor to
provide data labels to the data processor,
it must generate them itself. There are two
equivalent ways to model this. The first is
to provide the data processor with a selec-
tor that selects any available redex from
the data memory. The other is to regard
the data memory as actively pushing the
available redexes towards the data
processor.

Work on graph reduction has mainly
taken place in Europe and the United
Kingdom and has been very successful.
Several machines have been designed or
built. Some examples are Alice’ and
Flagship.8

Dataflow machines. Dataflow machines
are another class of machine that does not
have an instruction sequencing mecha-

nism, other than that implied by data
dependencies. Its model of computation is
a graph with directed edges, along which
data flows, and vertices representing oper-
ations that transform the data. Certain
edges have a vertex at only one end; these
represent the inputs or outputs of the com-
putation. A vertex, or operator, fires
according to some firing rule specified by
the particular form of dataflow. In
general, a firing absorbs a datum from
each input arc and produces a result that
then departs along the outgoing arc(s).

Most proposed dataflow machines are
based on a ring consisting of a matching
store (where data values wait until a com-
plete set of operands is present), a memory
containing the operators, and a set of pro-
cessing elements that execute the opera-
tors, producing result values that flow
around the ring to the matching store.

The abstract machine for a dataflow
processor can take two forms, correspond-
ing to the two possible forms of data
processor arrangement in an array proces-
sor. In the first form, all of the data mem-
ory is equally visible to all processors. This
approach has been taken in the Man-
chester Dataflow Machine’ and in
Arvind’s machine.” This form of proces-
sor is functionally identical to parallel
graph-reduction machines and, hence, it
has the same abstract machine diagram
(Figure 9). In the second form, shown in
Figure 10, each processor has its own local
memory, and data values needed by other
processors flow across the inter-data-
processor switch. The second form is per-
haps more intuitive; in the limit, each
processor executes only a single operator.
As before, a data processor can be

modelled as having a selector or as being
sent executable operators by a data
memory.

The formal model

Considering the major types of proces-
sors that exist today has shown some of the
properties that must be captured by a for-
mal classification scheme. My scheme con-
sists of two levels of increasing detail and
discrimination. The first level describes an
architecture by specifying

l the number of instruction processors,
l the number of instruction memories,
l the type of switch connecting IPs to

instruction memories,
l the number of data processors,
l the number of data memories,
l the type of switch connecting DPs

November 1988 53

Model of computation

L
Abstract machine model

No. of instruction processors
No. of data processors
connection structure

1
Performance model
simple or pipelined

state diagram

1
Implementation model

implementation technology
speed

Figure 11. The classification method.

Table 1. Possible architectures.

and data memories,
l the type of switch connecting IPs and

DPs, and
l the type of switch connecting DPs to

DPs.

The first level refines Flynn’s classification
by expanding the classes of SIMD and
MIMD into a set of subclasses that capture
important existing architectures.

The second level allows further refine-
ment by describing whether or not the
processors can be pipelined and to what
degree, and by giving the state diagram
behavior of the processors. A third level
describing implementation details is also
possible. The approach is illustrated in
Figure Il.

As we have seen, this classification
scheme captures the differences between
architectures that are significantly differ-
ent, while ignoring differences that are
primarily a matter of implementation.
Table 1 illustrates the set of simple
architectures possible under the assump-
tions that the number of memories
matches the number of processors for each

subsystem. Although there may be
interesting architectures for which these
assumptions do not hold, we will ignore
them in the interest of a clear exposition.

Classes 1 through 5 are the
dataflow/reduction machines that do not
have instructions in the usual sense. Class
6 is the von Neumann uniprocessor.
Classes 7 through 10 are the array proces-

sors. Note that classes 5 and IO represent
extensions to the common architectures of
their respective types in that they have a
double connectivity for their data
processors.

Classes 11 and 12 are the MISD
architectures. Although these classes have
been treated as an aberration, there are
languages for which this type of execution
is appropriate. For example, in NIAL
(Nested Interactive Array Language),” it
is possible to write

V-shlx

that is the parallel application of functions
A g, and h tox. I am not aware of any exist-
ing architecture of this type, but the con-

Class IPS DPs IP-DP IP-IM DP-DM DP-DP Name

1 0 I none none l-l none reduct/dataflow uniprocessor

2 0 n none none n-n none separate machines

3 0 n none none n-n nxn loosely coupled reduct/dataflow
4 0 n none none nxn none tightly coupled reduct/dataflow

5 0 n none none nxn nxn
6 1 1 l-l l-l l-l none von Neumann uniprocessor
7 1 n l-n l-l n-n none
8 1 n l-n l-l n-n nxn Type 1 array processor

9 1 n l-n l-l nxn none Type 2 array processor
10 1 n l-n l-l nxn nxn
11 n 1 l-n n-n l-l none
I2 n 1 l-n nxn l-l none
13 n n n-n n-n n-n none separate von Neumann uniprocessors
14 n n n-n n-n n-n nxn loosely coupled von Neumann

15 n n n-n n-n nxn none tightly coupled von Neumann
I6 n n n-n n-n nxn nxn
17 n n n-n nxn n-n none
18 n n n-n nxn n-n nxn
19 n n n-n nxn nxn none Denelcor Heterogeneous Element Processor
20 n n n-n nxn nxn nxn
21 n n nxn n-n n-n none
22 n n nxn n-n n-n nxn
23 n n nxn n-n nxn none
24 n n nxn n-n nxn nxn
25 n n nxn nxn n-n none
26 n n nxn nxn n-n nxn
27 n n nxn nxn nxn none
28 n n nxn nxn nxn nxn

54 COMPUTER

cept is not completely ridiculous.
Classes 13 through 28 are the mul-

tiprocessors of various kinds. Classes 13
through 20 are more or less conventional
multiprocessors with different forms of
connection structure. Classes 21 through
28 are more exotic architectures in which
the connections between instruction
processors and data processors is n-by-n.
These classes appear to be completely
unexplored.

Architectures that have an n-by-n con-
nection between the instruction processors
and instruction memories are those in
which the decision about the processor to
execute a particular instruction is made
late (that is, just before execution).
Dataflow and graph reduction architec-
tures often have this property, but the only
von Neumann machine of which I am
aware that behaves this way is the Heter-
ogeneous Element Processor.‘*

Some existing von Neumann machines
have more than a single data processor.
For example, several high performance
pipelined systems (Cray I, Cyber 205) have
a data processor for vector instructions
and another for scalar instructions. Some
have a separate scalar instruction proces-
sor as well. Architectures of this type do
not fit into the simple scheme outlined
above, but they can be easily represented
by including the vector processing units
with the data processors (number of data
processors is 1 + m).

An example classification for an
unusual architecture. I conclude by illus-
trating the complete description of an
unusual processor using my classification.
I have chosen the Flagship architecture, a
loosely coupled graph reduction system.

The Flagship machine consists of a set
of processors, each with its own local
memory. The graph to be reduced is par-
titioned statically, and these partitions are
allocated to the local memories of proces-
sors. Each processor selects possible parts
of its own subgraph for reduction. If the
required objects are local, the reduction
proceeds and the subgraph is replaced by
the reduced value. If some required part of
the subgraph is not local (for instance,
because it is shared among several differ-
ent subgraphs), then a request for its value
is sent over an interconnection network to
the processor in whose local memory the
subgraph resides. The value is eventually
supplied by the remote processor. A
processor that has completely reduced its
subgraph can demand more work from
other processors.

November 1988

~ ~~

COMPUTER SECURITY

SCIENTISTS

at

Some of the nation’s most excit-
ing developments in software
technology, supercomputer
architecture, AI, and expert sys-
tems are under scrutiny right
now at the Institute for Defense
Analyses. IDA is a Federally
Funded Research and Develop-
ment Center serving the Office of
the Secretary of Defense, the
Joint Chiefs of Staff, Defense
Agencies, and other Federal
sponsors.

IDA’s Computer and Software
Engineering Division (CSED) is
seeking professional staff
members with an in-depth
theoretical and practical back-
ground in the area of Computer
Security. Tasks include efforts
on both the design/development
of techniques to assess and
assure security and providing
advice to DOD decision makers

Specialists in other areas of
Computer Science are also
sought: Software Engineers, Dis-
tributed Systems, Artificial Intel-
ligence and Expert Systems, and
Programming Language
Experts.

We offer career opportunities at
many levels of experience. You
may be a highly experienced
individual able to lead IDA proj-
ects and programs . . or a
recent MS/ PhD graduate. YOU

can expect a competitive salary,
excellent benefits, and a superior
professional environment.
Equally important, you can
expect a role on the leading edge
of the state of the art in comput-
ing. If this kind of future appeals
to you, we urge you to investi-
gate a career with IDA. Please
forward your resume to:

on appropriate and feasible Mr. Thomas J. Shirhall
policy regarding security. Manager of Professional Staffing

Specific desired skills and inter- Institute for Defense Analyses
ests include: 1801 N. Beauregard Street

l Formal verification, with
Alexandria, VA 22311

emphasis on the Ada language An equal opportunity employer.

l Secure kernels and reference U.S. Citizenship is required.

monitors
l Security in multiprocessor

systems
l Fault-tolerance in secure

systems
l Operating system, data base

and network security criteria
l Testing and evaluation

ENTER THE 1988

Gordon
Bell Awards

The Gordon Bell Awards recognize achieve
ments in large-scale scientific computing.
Awards of $1,000 each will be given in two of

three categories:
l Performance. A winning program will run

faster than comparable engineering or scien-

tific applications.
l Price/pefformance. A winning program

must show that its performance divided by

system cost is less than comparable applice
tions.

l Compiler paralielization. A winning com-
piler/application must generate the greatest
speedup.

The 1987 winners achieved speedups of

400 to 600 with 1,024 processors. Entries
must be received byJan. 15,1989. IEEESo&

wareadministers the awards. For rules, write

Gordon Bell Awards, 10662 Los Vaqueros.
Los Alamitos, CA90720: (714) 821-8380.

GAO.....WHERE YOU CAN
MAKE A DIFFERENCE

Do you have what it takes to make tech-
nical assessments of ADP, telecom-
munications, or information resources
projects?

We are looking for specialists who can
evaluate federal automated data pro-
cessing, communications, and informa-
tion management systems. You should
have experience managing in one of the
following areas:

l ADPSystems Development

l Telecommunications

l Capacity Management

l Database Administration

The U.S. General Accounting Office
(GAO) is an independent, nonpartisan or-
ganization in the legislative branch of the
federal government, charged with evalu-
ating federal programs to ensure that they
arecarriedoutefficiently,effectively. and
economically. Salaries start at $39,501
and are commensurate with your experi-
ence. To see if your background meets our
future oroeram needs. ulease submit are-
sume or S’F- I7 I (application for federal
employment) to the following address:

U.S. General Accounting Office
Office of Recruitment - IE. Room 4650

441 G Street, NW
Washington, DC 20548

Equal Opportunity Employer US. Citizenship Required

Rewrite 4
unit

l

+,

Figure 12. Conventional block diagram of the Flagship architecture.

Graphs are represented as linked struc-
tures of nodes called (somewhat inap-
propriately) packets. A node can be in one
of three states: not ready to be reduced
(because some subgraph has not yet been

The classification of this architecture at

reduced), in the process of being reduced,

the first level is type 3 in Table 1. It cor-
responds to the architecture shown in Fig-

or waiting for some remote object that it

ure 10.

needs to continue reduction. This status is
recorded within each packet.

Now, consider the second level classifi-
cation. The processor architecture in
a conventional block diagram is shown
in Figure 12. From this conventional
description of the processor and its
behavior, we can construct a state diagram
for the data processor, shown in Figure 13.
The way in which the Flagship memory
devices form a memory hierarchy is shown
in Figure 14. This more detailed descrip-
tion shows that the taxonomy can describe
unusual architectures as well as conven-
tional ones, and that such descriptions
reveal the internal structure.

I
have presented a classification

scheme for architectures that is con-
siderably more discriminating than

those presently in use. It extends Flynn’s
popular classification by increasing the
discrimination between different kinds of
parallel architectures. I have shown that
my taxonomy captures the distinctions

between architectures where they really
significantly differ, and reveals underlying
relationships as well (for example, show-
ing the close relation between graph reduc-
tion and dataflow architectures). The

The taxonomy is divided into two levels.
At the highest level, architectures are dis-

taxonomy also suggests a number of unex-

tinguished by the number of instruction
processors, the number of data processors,

plored possible architectures that might be

the number of memory hierarchies they
contain, and by the way in which these

fruitful places to look for new and innova-

devices are connected. At this level, there
are 28 simple architectures. At the lower

tive machine designs.

level, further discriminations can be made
by describing whether or not each of the
processors is pipelined and by giving its
internal functional structure by a state dia-
gram. A further level, giving implementa-
tion details, is also possible. The emphasis
throughout is on capturing the functional
behavior of architectures rather than the
exact way in which they carry out a set of
tasks.

A taxonomy must shed light on what is
already known and help in assimilating
new understanding, if it is to be useful. I
believe that my taxonomy is a natural
extension of Flynn’s work-more complex
because the possibilities have grown, but
still simple and straightforward enough to
be used as an intellectual tool for under-
standing and as an engineering tool for
design. 0

COMPUTER

2. T.Y. Feng, “Some Characteristics of
Associative/Parallel Processing,” Proc.
1972 Sagamore Computing Conf., Aug.
1972, pp. 5-16.

Active
packet

scheduler

H Active
packet

pool

I Local packet store
I

Figure 14. How Flagship memory
devices form a memory hierarchy.

Acknowledgments

This work was supported by the Natural
Sciences and Engineering-Research Council of
Canada. David Barnard and the anonymous
referees made several suggestions that improved
the presentation.

References
1. M.J. Flynn, “Some Computer Organiza-

tions and Their Effectiveness,” IEEE
Trans. Computers, C-21, No.9, Sept. 1972,
pp. 948-960.

November 1988

3. S.S. Reddi and E.A. Feurstel, “A Concep-
tual Framework for Computer Architec-
ture,” Computing Surveys, Vol. 8, No.2,
June 1976, pp. 277-300.

4. W. Handler, “The Impact of Classification
Schemes on Computer Architecture,”
Proc. Int’l Conf. on Parallel Processing,
Aug. 1977, pp. 7-15.

5. W.D. Hillis, The Connection Machine,
MIT Press, Cambridge, Mass., 1985.

Figure 13. State diagram for the Flagship data processor.

6. D.J. Kuck and R.A. Stokes, “The Bur-
roughs Scientific Processor,” IEEE Trans.
Computers, Vol. C-31, No. 5, May 1982,
pp. 363-376.

7. J. Darlington and M. Reeve, “Alice-A
Multiprocessor Reduction Machine for the
Parallel Evaluation of Applicative Lan-
guages,” Proc. 1981 ACM Conf. Func-
tional Programming Languages and
Computer Architecture, 1981, pp. 65-75.

8. I. Watson et al., “Flagship: A Parallel
Architecture for Declarative Program-
ming,” Proc. 15th Ann. Int’l Symp. on
Computer Architecture, May 1988, pp.
124-130.

9. J. Curd and I. Watson, “Data Driven Sys-
tems for High Speed Parallel Computing:
Part 1: Structuring Software for Parallel
Execution; Part 2: Hardware Design,”
Computer Design, June and July 1980, pp.
91-100, 97-106, respectively.

10. A. and R.S. Nikhil, “Executinga Program
on the MIT Tagged Token Dataflow Archi-
tecture,” Proc. Parallel Architectures and
Languages Europe (PARLE) Conf.,
Springer-Verlag, Berlin, Lecture Notes in
Computer Science, June 1987, pp. l-29.

Il. M.A. Jenkins, J.I. Glasgow, and C.
McCrosky, “Programming Styles in

I -

12

NIAL,” IEEESoftware, Vol. 3, No. 1, Jan.
1986, pp. 46-55.

Denelcor Inc., Heterogeneous Element
Processor: Principles of Operation, Apr.
1981.

David B. Skillicorn is an associate professor in
the Department of Computing and Information
Science at Queen’s University at Kingston,
located in Kingston, Ontario, Canada. He is
currently a visiting researcher in the Program-
ming Research Group at the University of
Oxford in England. His research interests
include multiprocessor architectures and func-
tional languages and how they interact to pro-
duce high-performance parallel systems. He is
a member of the IEEE Computer Society and
the Association for Computing Machinery.

Skillicorn received the BSc degree from the
University of Sydney in 1978 and the PhD from
the University of Manitoba in 1981.

Readers may write to Skillicorn at the Dept. of
Computing and Information Science, Queen’s
University at Kingston, Kingston, Ontario,
Canada K7L 3N6.

51

