
 

  

 

Aalborg Universitet

A Taxonomy for Modeling Flexibility and a Computationally Efficient Algorithm for
Dispatch in Smart Grids

Petersen, Mette Højgaard; Edlund, Kristian; Hansen, Lars Henrik; Bendtsen, Jan Dimon;
Stoustrup, Jakob

Published in:
American Control Conference (ACC), 2013

DOI (link to publication from Publisher):
10.1109/ACC.2013.6579991

Publication date:
2013

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Petersen, M. H., Edlund, K., Hansen, L. H., Bendtsen, J. D., & Stoustrup, J. (2013). A Taxonomy for Modeling
Flexibility and a Computationally Efficient Algorithm for Dispatch in Smart Grids. In American Control Conference
(ACC), 2013 (pp. 1150 - 1156). American Automatic Control Council. American Control Conference
https://doi.org/10.1109/ACC.2013.6579991

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/ACC.2013.6579991
https://vbn.aau.dk/en/publications/8efe4510-ed54-4caa-99dd-a7300a703a6e
https://doi.org/10.1109/ACC.2013.6579991


A Taxonomy for Modeling Flexibility and a Computationally Efficient

Algorithm for Dispatch in Smart Grids

M. K. Petersen, K. Edlund, L. H. Hansen, J. Bendtsen and J. Stoustrup

Abstract— The word flexibility is central to Smart Grid
literature, but to this day a formal definition of flexibility is still
pending. This paper present a taxonomy for modeling flexibility
in Smart Grids, denoted Buckets, Batteries and Bakeries.

We consider a direct control Virtual Power Plant (VPP),
which is given the task of servicing a portfolio of flexible
consumers by use of a fluctuating power supply. Based on
the developed taxonomy we first prove that no causal optimal
dispatch strategies exist for the considered problem. We then
present two heuristic algorithms for solving the balancing task:
Predictive Balancing and Agile Balancing.

Predictive Balancing, is a traditional moving horizon algo-
rithm, where power is dispatched based on perfect predictions
of the power supply. Agile Balancing, on the other hand, is
strictly non-predictive. It is, however, explicitly designed to
exploit the heterogeneity of the flexible consumers.

Simulation results show that in spite of being non-predictive
Agile Balancing can actually out-perform Predictive Balancing
even when Predictive Balancing has perfect prediction over a
relatively long horizon. This is due to the flexibility-synergy-
effects, which Agile Balancing generates. As a further advantage
it is demonstrated, that Agile Balancing is extremely computa-
tionally efficient since it is based on sorting rather than linear
programming.

I. INTRODUCTION

The introduction of renewable energy production into

the existing power system is complicated by the inherent

variability of production technologies, which harvest energy

mainly from wind and sun. This means that it becomes

increasingly challenging to maintain the real-time balance

between production and consumption as the ratio of renew-

able energy production increases. In a Smart Grid system, on

the other hand, the inherent flexibility of consumers, such as

electric vehicles, heat pumps and HVAC-systems, may be

mobilized to play an active part in solving the balancing

task.

The flexibility of a given system is a unique, innate, state-

and time dependent quality. In conversation it is therefore

sometimes said that flexibility is the ability to deviate from

the plan. That characterization of flexibility is very insightful,

but it still leaves us with the problem of defining both the

ability to deviate and the plan.

In this paper we focus on the ability to deviate by

proposing a taxonomy for modeling flexibility. The numerous

constraints that characterize a given flexible system were first

Authors M. K. Petersen, J. Bendtsen and J. Stoustrup are with the
Department of Electronic Systems, Automation and Control, Aalborg Uni-
versity, Denmark; Mrs. M. K. Petersen is also affiliated with DONG Energy,
Denmark as is K. Edlund and L.H. Hansen. Email: {mehpe, kried,

larha}@dongenergy.com, {dimon, jakob}@es.aau.dk.
For more information on the PhD-project see Mettematics.com.

Fig. 1: Buckets, Batteries and Bakeries is a taxonomy for modeling
flexibility in Smart Grids.

investigated in [19]; in the present paper, however, we have

chosen to focus on the constraints of

I) Power Capacity,

II) Energy Capacity,

III) Energy level at a specific deadline, and

IV) Minimum runtime,

since these are widely found in practical systems.

Our taxonomy is denoted Buckets, Batteries and Bakeries

and precise definitions are given in Section IV. The Bucket,

The Battery and The Bakery are three simple flexibility

models, which are constructed based on the constraints I)

to IV). The first model, denoted the Bucket, is a power and

energy constrained integrator. The Bucket could be used as

a simplified model of a house with a heat pump, which is

used for energy storage. The Battery is also a power and

energy constrained integrator, but with the added restriction

that the unit must be fully charged at a specific deadline.

The Battery could be modeling an electric vehicle, which

must be ready for operation at a specific time. Finally the

Bakery extends the Battery with the additional constraint that

the process must run in one continuous stretch at constant

power consumption. The Bakery could be a commercial

green house, where plants must recieve a specific amount

of light each day. This light must, however, be delivered

continuously to stimulate the photosynthesis of the plants.

The suggested framework is a proper taxonomy in the

sense that we have imposed a hierarchical relationship be-

tween the three models. This means that a Bucket provides a

better quality of flexibility than a Battery, which is again

superior to a Bakery (see Figure 1). Here, better quality

means less restricted, not necessarily more flexible. The

reason for this distinction is that the flexibility of a system

is not just determined by constraints, but also by the specific

parameter values of the system. That is, a “large” Battery



could therefore be said to be more flexible than a “small”

Bucket, even though the Bucket is a better quality flexibility

than the Battery.

Based on the hierarchical relationship between models we

will develop an algorithm, Agile Balancing, which exploits

the heterogeneity of flexible systems. This makes Agile Bal-

ancing robust against prediction errors and computationally

efficient at the same time.

The paper is structured as follows: First, Section II gives

an extensive review of how flexibility is modeled in Smart

Grid literature today. Next, Section III and IV present the

considered optimization problem and the taxonomy. Follow-

ing this, it is proved formally in Section V how causality

[16] relates to the taxonomy. Finally, Section VI and VII

present Predictive Balancing and Agile Balancing and give

comparative simulation examples.

II. STATE-OF-THE-ART

A review of how flexibility is modeled in Smart Grid

literature reveals that the generic models of Buckets, Batteries

and Bakeries are certainly not novel concepts. Several works

have been identified (see Table I), which model flexibility in

ways very similar to a Bucket, a Battery or a Bakery. Most

existing literature, however, focuses on optimized operation

of one particular technology. This means that the advantages

of heterogeneity are not investigated.

In [9] a modeling framework for demand response tech-

nologies is formulated based on Markov Chain processes.

This framework has some similarity to the taxonomy sug-

gested in the present work. The authors of [9] subscribe to

the concept of price-signalling, however; possible synergies

between heterogenous subsystems are therefore not investi-

gated, since these can only really be exploited though direct

control.

The work closest related to the concepts investigated in

this paper, is [16]; in fact, the term laxity, as used in [16], is

almost synonymous with the term agility used in [5]. Only

the Battery-model is investigated [16], however.

In our literature review we have also charted the use of

the assumption of perfect prediction1, which is found to be

quite widespread.

III. PROBLEM FORMULATION

Consider a Virtual Power Plant, which must provide power

to a portfolio of flexible systems by dispatching a fluctuating

power supply. The fluctuating power supply is denoted

PDispatch(k), k = 1, 2, . . . ,K, and the flexible systems are

denoted local units. A portfolio of N local units is denoted

{LUi}i=1,2,...,N . At sample k we let Pi(k) denote the power,

which is dispatched to unit i, and any quantity, which cannot

be dispatched to the portfolio, is denoted S(k). The objective

is to minimize the residual power, that is |S|.

1Paper [13] does assume perfect prediction as indicated in Table I, but
the effects of uncertainty are also investigated.

The problem can be formulated as

min
Pi(·)

∞
∑

k=0

|S(k)| (1)

s.t.

PDispatch(k) ∈ R, k = 0, 1, ...,∞ (2)

N
∑

i=1

Pi(k) + S(k) = PDispatch(k) (3)

and also subject to the dynamics and constraints of

{LUi}i=1,2,...,N .

IV. TAXONOMY: BUCKETS, BATTERIES AND BAKERIES.

This section defines the Buckets, Batteries and Bakeries-

taxonomy for modeling flexibility in Smart Grids.

Formal definitions of a Bucket, a Battery and a Bakery are

given in Definition 1, 2 and 3 respectively, and the models

are further illustrated in Figure 2, 3 and 4. In the following Ts

denotes the size of the time step, P i and P i denote limits on

consumption rate, Ei and Ei denote limits on energy storage

levels and vi(k) is a boolean-valued variable stating whether

or not a Bakery is running at sample k.

Definition 1 (Bucket):

The dynamics and constraints of a Bucket are

Bucketi(k): Ei(k + 1) = Ei(k) + TsPi(k)

P i ≤ Pi(k) ≤ P i

Ei ≤ Ei(k) ≤ Ei

Ei(0) = Ei,0,

where k = 0, 1, . . . ,∞, i = 1, 2, . . . , NBuckets, P i ≤ 0 ≤ P i

and Ei ≤ Ei,0 ≤ Ei.

Definition 2 (Battery):

The dynamics and constraints of a Battery are

Batteryi(k): Ei(k + 1) = Ei(k) + TsPi(k)

0 ≤ Pi(k) ≤ P i

0 ≤ Ei(k) ≤ Ei

Ei(0) = Ei,0,

Ei(Tend,i) = Ei,

where k = 0, 1, . . . ,∞, i = 1, 2, . . . , NBatteries, Tend,i ∈ N,

0 ≤ P i and 0 ≤ Ei .

Definition 3 (Bakery):

The dynamics and constraints of a Bakery are

Bakeryi(k): Ei(k + 1) = Ei(k) + TsPi(k),

Pi(k) = P ivi(k)

0 ≤ Ei(k) ≤ Ei,

Ei(0) = Ei,0,

Ei(Tend,i) = Ei,

0 ≤

k+Trun,i−1
∑

l=k

vi(l)− Trun,i

(

vi(k)− vi(k − 1)

)

,



Reference [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]

Bucket x x x x x x x x (x)
Battery (x) x (x) x x x x x x x x
Bakery (x) (x) x x x

Perfect Prediction Yes Yes No Yes No No Yes No No Yes Yes Yes Yes1 No Yes No Yes Yes

TABLE I: Review of flexibility modeling in Smart Grid literature.

where k = 0, 1, . . . ,∞, 0 ≤ P i, Ei = P iTrun,i, vi(k) ∈
{0, 1}, i = 1, 2, . . . , NBakeries, Tend,i ∈ N and Trun,i ∈ N.

iE

iE

Time

Energy

Fig. 2: A Bucket is a power and energy constrained integrator.

iE

Tend,i

Time

Energy

Fig. 3: A Battery is a power and energy constrained integrator,
which must be ”charged” to level Ei by time Tend,i.

Tend,iTrun,i

iE

Time

Energy

Fig. 4: A Bakery is a batch process, which must be finished by
time Tend,i. The process has constant power consumption
and the run time is Trun,i.

V. CAUSALITY

In [16] a dispatch strategy was defined as causal if it

depends only on the information state at time k. The authors

of [16] also proved that an optimal causal dispatch strategy

does not exist for a portfolio of Batteries. It was shown in

[5] that adding the constraint P = E = 0 for a portfolio of

Buckets induces that an optimal causal dispatch strategy does

exist. For the sake of completion this section will prove that

an optimal causal dispatch strategy does not, in general exist

for a portfolio consisting of only Buckets or only Bakeries.

Proposition 1: There does not exist an optimal causal

dispatch strategy for a portfolio of Buckets.

Proof: Proof is done by counterexample. Consider a

portfolio consisting of the following two Buckets

Bucket1: E1(0) = 0,

P 1 = 1, E1 = 1,

P 1 = −1, E1 = −1,

Bucket2: E2(0) = 0,

P 2 = 1, E2 = 3,

P 2 = −1, E2 = −3,

Next define the following dispatch profiles

PA
Dispatch = (0, 2, 2),

PB
Dispatch = (0,−2,−2).

Observe that it is possible to dispatch sequence PA
Dispatch

in such a way that
∑2

k=0 |S| = 0. However, this is only

achievable if P1(0) = −1 and P2(0) = 1. Observe also that

equivalent arguments hold for PB
Dispatch if P1(0) = 1 and

P2(0) = −1. At k = 0 a causal dispatch strategy must offer

allocations based only on information available at time k =
0. Notice, however, that PA

Dispatch(0) = PB
Dispatch(0) and

since optimal dispatch of PA
Dispatch and PB

Dispatch requires

different allocations at time k = 0, a causal dispatch strategy

cannot exist.

Proposition 2: There does not exist an optimal causal

dispatch strategy for a portfolio of Bakeries.

Proof: Proof is done by counterexample. Consider a

portfolio consisting of the following two Bakeries

Bakery1: E1(0) = 0,

P 1 = 1, E1 = 1,

Trun,1 = 1, Tend,1 = 2,

Bakery2: E2(0) = 0,

P 2 = 3, E2 = 3,

Trun,2 = 1, Tend,2 = 2.

Next define the following dispatch profiles

PA
Dispatch = (2, 1),

PB
Dispatch = (2, 3).

Observe that the optimal dispatch of either sequence

PA
Dispatch or sequence PB

Dispatch to the portfolio has
∑1

k=0 |S| = 1. However, for PA
Dispatch, this is only achiev-

able if P1(0) = 0 and P2(0) = 3. For PB
Dispatch the



required configuration is P1(0) = 1 and P2(0) = 0. The

argumentation that a causal optimal dispatch strategy does

not exist now follows as in the proof of Proposition 1.

VI. ALGORITHMS

Since we have proven that causal optimal dispatch strate-

gies do not exist, this section will present two heuristic

algorithms for solving problem (1) - (3). The algorithms are

denoted Predictive Balancing and Agile Balancing.

A. Predictive Balancing

A strategy for solving problem (1) - (3) is to use a moving

horizon approach. To do this, we assume perfect prediction

of PDispatch over a certain prediction horizon K, and solve

min
Pi(·)

K
∑

k=1

wk|S(k)| (4)

s.t.

PDispatch(k) ∈ R, (5)

N
∑

i=1

Pi(k) + S(k) = PDispatch(k), (6)

where wk1
> wk2

if k1 < k2. Adding the impatience weights

wk to the cost function ensures that if the problem cannot

be solved without introducing slack, then the imbalances will

incur as late within the prediction horizon as possible.

B. Agile Balancing

The main objective of the present paper is to investigate

heterogenous systems and we do this by introducing agility

factors for each class of flexibility. The agility factor of

a given unit should express the quality (see [19]) of the

flexibility, which the unit represents.

The authors of the present paper first investigated the

agility attributes of the Bucket-model in [5]. Here agility

factors for the Bucket-model were defined as

Definition 4 (Agility Factor, Bucket):

Let Bucketi(k) denote a Bucket. The agility factor of Bucket

i at sample k is

KBucket
i (k) =

Ei − Ei(k)

TsP i

.

With this definition of the agility factor for the Bucket-

model we obtain that KBucket
i (k) denotes the number of

samples that the Bucket can operate at maximum power

without becoming inactive/full.

Introducing Batteries and Bakeries to the portfolio means

that in addition to balancing PDispatch the Virtual Power

Plant must solve a set of fixed tasks, namely charging the

Batteries and starting the Bakeries in due time. This means

that as a deadline, Tend, approaches, a Battery or a Bakery

can go from being a flexible resource, which can help to

minimize our objective, to being a constraint. We therefore

define agility factors for the Battery- and Bakery models,

which state how close we are (in terms of samples) to being

forced to charge a battery or start bakery:

Definition 5 (Agility Factor, Battery):

Let Batteryi(k) denote a Battery. The agility factor of

Battery i at sample k is

KBattery
i (k) = Tend,i − k −

Ei − Ei(k)

TsP i

.

Definition 6 (Agility Factor, Bakery):

Let Bakeryi(k) denote a Bakery. The agility factor of Bakery

i at sample k is

KBakery
i (k) = Tend,i − Trun,i − k.

Notice that the definition of agility factors for the Battery

is the same as the definition of a flexibility factors used in

[16].

As the deadline of a Battery or a Bakery approaches the

Virtual Power Plant can be forced to charge that Battery or

start that Bakery irrespective of whether this is beneficial to

its objective. Forced consumption on LUi at sample k can,

however, be computed based on the agility factors, as

P
Battery

Forced,i(k) =

{ 0 KBattery
i > 1

P i(1−KBattery
i ) 1 ≥ KBattery

i > 0

P i KBattery
i = 0

and

P
Bakery

Forced,i(k) =

{

0 KBakery
i > 1

P i KBakery
i = 0.

The algorithm Agile Balancing is based on the principle

of flexibility maximization [19], where the worst quality units

are dispatched first at each sample. The idea is simple: At

each sample the Virtual Power Plant will first focus on the

set assignments of charging Batteries and starting Bakeries .

The Virtual Power Plant will solve the most pressing task

first and the unit with the smallest agility factor is the

most critical asset in need of service. At sample k Agile

Balancing therefore dispatches as much power as possible to

the Batteries and Bakeries, but no more than PDispatch(k).
Secondly, Agile Balancing uses the buffer available in the

Buckets to minimize any remaining imbalance.

Since there are no energy requirements on a Bucket,

it can only constitute a resource and never a constraint.

There are both power and energy constraints on a Bucket,

however, meaning that only a limited amount of power can

be dispatched to the Bucket-portion of the portfolio at each

sample. The maximum amount of power, which can be

dispatched to Bucketi at sample k is denoted P Bucket
Reserve,i(k)

and is given as

P Bucket
Reserve,i(k) = min

(

P i,
Ei − Ei(k)

Ts

)

.

At sample k the upper reserve bound on a portfolio contain-

ing NBuckets Buckets is therefore

P Bucket
Reserve(k) =

NBuckets

∑

i=1

min

(

P i,
Ei − Ei(k)

Ts

)

.



Furthermore, Agile Balancing handles any dispatch to Buck-

ets by implementing the linear cost function given in [5].

Pseudo-code for Agile Balancing is given in Algorithm 1.

Algorithm 1 :

Agile Balancing
(

{LUi}i=1,2,...,N , PDispatch

)

1: for k = 1 to K do

2: Compute PForced(k) =

3:
∑NBatteries

i=1 P Batteries
Forced,i(k) +

∑NBakeries

j=1 P Bakeries
Forced,j(k).

4: if PForced(k) > PDispatch(k) then

5: P Batteries(k) = P Batteries
Forced (k),

6: P Bakeries(k) = P Bakeries
Forced(k).

7: else

8: Sort Batteries and Bakeries according to increasing

agility factor.

9: Distribute PDispatch(k) to Batteries and Bakeries

in increasing agility factor order and such that

P Batteries(k) + P Bakeries(k) is as large as possible,

but less than or equal to PDispatch(k).

10: end if

11: Define P Buckets(k) = min
(

P Buckets
Reserve(k),

12: PDispatch(k)− P Batteries(k)− P Bakeries(k)
)

.

13: Distribute P Buckets(k) to the Buckets as prescribed in

[5] that is in decreasing agility factor order.

14: Set S(k) = PDispatch(k)

15: −P Buckets(k)− P Batteries(k)− P Bakeries(k).
16: end for

VII. SIMULATION EXAMPLES

This section presents two simulation examples. The first

simulation example compares the performance of Predic-

tive Balancing and Agile Balancing. The second simulation

example investigates the computational efficiency of Agile

Balancing. In all simulations we have Ts = 1 and Ei,0 = 0
for all units. Solutions of problem (4) - (6) are computed by

use of CPlex, [20]. Agile Balancing has been implemented

in C#. Computations are performed on a standard laptop.

A. Predictive Balancing vs. Agile Balancing

This simulation example considers a randomly generated

portfolio of 105 units, where NBuckets = 5 and NBatteries =

NBakeries = 50. All units have E

TsP
≤ 10 and

∑

Portfolio E =
50.

The results of running Predictive Balancing for K = 10
are given in Figure 5. When there is a drop in PDispatch

Predictive Balancing attempts to use the Buckets as buffer to

maintain the balance between supply and demand. Towards

the end of each low-period, however, Predictive Balancing

is forced to use significant slack. This occurs because the

prediction horizon is not sufficiently long, and the problem

could be mended by increasing the prediction horizon. How-

ever, such a modification comes at the price of computation

time, which we will explore later in this section.

The results of running Agile Balancing are presented

in Figure 6. When there is a drop in the power supply

Agile Balancing is poorly prepared and therefore has too

many Bakeries started. Since the Bakeries cannot be shut

down Agile Balancing must utilize the buffer in the Buckets

to maintain the balance. With the given portfolio Agile

Balancing is able to balance supply and demand without

introducing slack until the very end of the simulation.

Computation times and the sum of the absolute value of

the slack variable are given in Table II for K = 10, K = 15
and K = 20. Notice that Predictive Balancing must have

perfect prediction of at least 20 samples to perform better

than Agile Balancing. As the prediction horizon increases, so

does the computation time of Predictive Balancing, however;

notice that even with a prediction horizon of only 10 samples,

Predictive Balancing is almost one hundred times slower

than Agile Balancing. This is because the most computa-

tionally demanding task Agile Balancing must solve is to

sort units according to agility factor. Predictive Balancing,

on the other hand, solves a series of mixed integer programs,

which is far more computationally demanding.

Fig. 5: Power dispatched at each sample for each type of unit by
Predictive Balancing when K = 10.

Comp. Time [s]
∑

|S(·)|
Agile Balancing 0.03 2.48

Predictive Balancing, K = 10 2.5 7.40
Predictive Balancing, K = 15 4.0 4.29
Predictive Balancing, K = 20 5.8 1.92

TABLE II: Computation time and the sum of numerical imbalances
for Predictive Balancing and Agile Balancing.

B. Large Scale Simulations

This simulation example further investigates the com-

putational efficiency of Agile Balancing by considering a



Fig. 6: Power dispatched at each sample for each type of unit by
Agile Balancing.

Dyn. Ag. Buckets Batteries Bakeries Comp. Time
∑

|S(·)|
Yes 33% 33% 33% 3 min. 26 sec. 0
Yes 10% 45% 45% 3 min. 25 sec. 19712

No 33% 33% 33% 1 min. 1 sec. 0
No 10% 45% 45% 1 min. 4 sec. 43264

TABLE III: Computation time and the sum of numerical imbal-
ances for large scale simulation.

randomly generated portfolio of 106 units. All units have
E

TsP
≤ 30.

Figure 7 depicts the simulation results, when one third

of each type of unit is included in the portfolio and in

Figure 8 only 10% Buckets are included in the portfolio.

Computation times and the sum of the absolute value of

imbalances are given in Table III. In Smart Grid discussions

it is often proposed that if only the number of units under

the jurisdiction of a Virtual Power Plant is large enough,

then the-law-of-big-numbers will ensure that the aggregated

behavior of the portfolio will be the same as that of a

traditional power plant (so essentially proposing that a large

portfolio will exhibit Bucket-behavior). However, the second

simulation (Figure 8) is an example of a case where a large

number of units is not in itself enough to warrant that the

load can be balanced. This illustrates that care must be taken

the ensure that the right combination of units is available in

the portfolio.

To further improve the computation time Agile Balancing

has also been implemented without using dynamic agility

factors. This means modifying Algorithm 1 by moving line

8 to the very start of the algorithm (before the for-loop),

such that only one sorting is performed. The results of

these simulations are given in Figure 9, Figure 10 and

Table III. As expected, sorting only once per simulation

gives a significant speed up of the computation time, as

the modified implementation is more than three times faster

than the original. With a portfolio of one third of each

type of units, there is no cost of this speed up in terms

of performance/optimality. With only 10% Buckets in the

portfolio, however, not having dynamic agility factors has a

significant cost in terms of performance.

Fig. 7: Power dispatched at each sample for each type of unit by
Agile Balancing for a portfolio of 1.000.000 units having
one third of each type.

Fig. 8: Power dispatched at each sample for each type of unit by
Agile Balancing for a portfolio of 1.000.000 units with 10%
Buckets, 45% Batteries and 45% Bakeries.

VIII. CONCLUSION

In this paper we have identified a number of common traits

shared by most, if not all, power consuming or -producing

units that can be expected to appear in a future Smart Grid

system. Most literature to date has focused on only one

type of units or one particular technology, although some

references have treated more than one type. We proposed a

taxonomy that allows the division of units into three distinct

categories based on key traits of the unit’s primary purpose

such as minimum runtime, the ability to consume/release

power back to the grid, minimum consumption by a certain

time, etc., in a quantifiable manner.



Fig. 9: Power dispatched at each sample for each type of unit by
Agile Balancing for a portfolio of 1.000.000 units having
one third of each type and not using dynamic agility factors.

Fig. 10: Power dispatched at each sample for each type of unit by
Agile Balancing for a portfolio of 1.000.000 units with
10% Buckets, 45% Batteries and 45% Bakeries and not
using dynamic agility factors.

We have also presented a suboptimal, but extremely com-

putationally efficient dispatch algorithm, denoted Agile Bal-

ancing. One of the main challenges in developing the Smart

Grid is the sheer size of optimization problems involved. This

means that the computation time associated with determining

optimal solutions might be unacceptable in practice. An

optimal solution available two minutes after market gate

closure is far less useful than a suboptimal one available two

minutes before market gate closure; thus, even though Agile

Balancing is not optimal, it might still be the best solution

in practice.

REFERENCES

[1] Kai Heussen, Stephan Koch, Andreas Ulbig, Göran Andersson, En-

ergy Storage in Power System Operation: The Power Nodes Modeling

Framework, IEEE PES Conference on Innovative Smart Grid Tech-
nologies Europe, 2010, pp. 1-8.

[2] Benjamin Biegel, Jakob Stoustrup, Jan Bendtsen and Palle Andersen,
Model Predictive Control for Power Flows in Networks with Limited

Capacity, 2012 American Control Conference, 2012, pp. 2959-2964.
[3] Ali Faghih, Mardavij Roozbehani and Munther A. Dahleh, Optimal

Utilization of Storage and the Induced Price Elasticity of Demand in

the Presence of Ramp Constraints, 50th IEEE Conference on Decision
and Control and European Control Conference, 2011, pp. 842-847.

[4] T.Y. Lee and N. Chen, Effect of the Battery Energy Storage System

on the Time Of Use Rates Industrial Customers, IEE Proc.-Gener.
Transm. Distrib., Vol 141, No. 5, September 1994.

[5] Mette Petersen, Jan Dimon Bendtsen and Jakob Stoustrup, Optimal

Dispatch Strategy for the Agile Virtual Power Plant, 2012 American
Control Conference, 2012, pp. 288-294.

[6] Matt Kraning, Yang Wang, Ekine Akuiyibo, Stephen Boyd, Operation

and Configuration of a Storage Portfolio via Convex Optimization,
18th IFAC World Congress, 2011, pp. 10487-10492.

[7] Nikolaos Gatsis and Georgios B. Giannakis, Residential Demand

Response with Interruptible Tasks: Duality and Algorithms, 50th
IEEE Conference on Decision and Control and European Control
Conference, 2011, pp. 1-6.

[8] Ioannis Ch. Paschalidis, Binbin Li, Michael C. Caramanis, A Market-

Based Mechanism for Providing Demand-Side Regulation Service Re-

serves, 50th IEEE Conference on Decision and Control and European
Control Conference, 2011, pp. 1-6., pp. 21-26.

[9] Konstantin Turitsyn, Scott Backhaus, Maxim Ananyev and Michael
Chertkov, Smart Finite State Devices: A Modeling Framework for

Demand Response Technologies, 50th IEEE Conference on Decision
and Control and European Control Conference, 2011, pp. 7-14.

[10] B. Daryanian, R.E. Bohn and R.D. Tabors, Optimal Demand-Side

Response to Electricity Spot Proices for Storage-Type Customers,
IEEE Transactions on Power Systems, Vol. 4, No. 3, 1989.

[11] Amir-Hamed Mohsenian-Rad, Vincent W. S. Wong, Juri Jatskevich,
Robert Schober and Alberto Leon-Garcia, Autonomous Demand-

Side Management Based on Game-Theoretic Energy Consumption

Scheduling for the Future Smart Grid, IEEE Transactions on Smart
Grid, Vol. 1, No. 3, 2010.

[12] Angel Rosso, Juan Ma, Daniel S. Kirschen and Luis F. Ochoa,
Assessing the Contribution of Demand Side Management to Power

System Flexibility, 50th IEEE Conference on Decision and Control
and European Control Conference, 2011, pp. 4361-4365.

[13] Changsun Ahn, Chiao-Ting Li and Huei Peng, Decentralized Charg-

ing Algorithm for Electrified Vehicles Connected to Smart Grid,
American Control Conference, 2011.

[14] Anthony Papavasiliou and Shmuel S. Oren, Supplying Renewable

Energy to Deferrable Loads: Algorithms and Economic Analysis,
IEEE Power and Energy Society General Meeting, 2010.

[15] Ralph Hermans, Mads Almassalkhi and Ian Hiskens, Incentive-based

Coordinated Charging Control of Plug-in Electric Vehicles at the

Distribution-Transformer Level, 2012 American Control Conference,
2012, pp. 264-269.

[16] A. Subramanianz, M. Garcia, A. Domnguez-Garca, D. Callaway, K.
Poollay and P. Varaiyay, Real-time Scheduling of Deferrable Electric

Loads, 2012 American Control Conference, 2012, pp. 3643-3650.
[17] Jing Huang, Vijay Gupta and Yih-Fang Huang, Scheduling Algorithms

for PHEV Charging in Shared Parking Lots, 2012 American Control
Conference, 2012, pp. 276-281.

[18] Kin Cheong Sou, James Weimer, Henrik Sandberg, and Karl Henrik
Johansson, Scheduling Smart Home Appliances Using Mixed Integer

Linear Programming, 50th IEEE Conference on Decision and Control
and European Control Conference, 2011.

[19] Mette Petersen, Lars Henrik Hansen and Tommy Mølbak, Exploring

the Value of Flexibility: A Smart Grid Discussion, 8th IFAC Confer-
ence on Power Plant and Power System Control, 2012.

[20] www-01.ibm.com/software/integration/

optimization/cplex-optimization-studio/


