

Electronic Research Archive of Blekinge Institute of Technology

http://www.bth.se/fou/

This is an author produced version of a journal paper. The paper has been peer-reviewed but

may not include the final publisher proof-corrections or journal pagination.

Citation for the published Journal paper:

Title:

Author:

Journal:

Year:

Vol.

Issue:

Pagination:

URL/DOI to the paper:

Access to the published version may require subscription.

Published with permission from:

In press: A Taxonomy for Requirements Engineering and Software Test Alignment

Michael Unterkalmsteiner, Robert Feldt, Tony Gorschek

ACM Transactions on Software Engineering and Methodology

2013

ACM

A

A Taxonomy for Requirements Engineering and Software Test
Alignment

M. UNTERKALMSTEINER, Blekinge Institute of Technology

R. FELDT, Chalmers University of Technology and Blekinge Institute of Technology

T. GORSCHEK, Blekinge Institute of Technology

Requirements Engineering and Software Testing are mature areas and have seen a lot of research. Never-
theless, their interactions have been sparsely explored beyond the concept of traceability. To fill this gap
we propose a definition of requirements engineering and software test (REST) alignment, a taxonomy that
characterizes the methods linking the respective areas, and a process to assess alignment. The taxonomy can
support researchers to identify new opportunities for investigation, as well as practitioners to compare align-

ment methods and evaluate alignment, or lack thereof. We constructed the REST taxonomy by analyzing
alignment methods published in literature, iteratively validating the emerging dimensions. The resulting

concept of an information dyad characterizes the exchange of information required for any alignment to
take place. We demonstrate use of the taxonomy by applying it on five in-depth cases and illustrate angles
of analysis on a set of thirteen alignment methods. In addition we developed an assessment framework
(REST-bench), applied it in an industrial assessment, and showed that it, with a low effort, can identify
opportunities to improve REST alignment. Although we expect that the taxonomy can be further refined,
we believe that the information dyad is a valid and useful construct to understand alignment.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications; D.2.4
[Software Engineering]: Software/Program Verification; D.2.9 [Software Engineering]: Management—
Software quality assurance

General Terms: Theory, Documentation, Management

Additional Key Words and Phrases: Alignment, software process assessment, software testing, taxonomy

ACM Reference Format:

Unterkalmsteiner, M., Feldt, R., and Gorschek, T. 2013. A Taxonomy for Requirements Engineering and
Software Test Alignment. ACM Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 39 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Industrial-scale software development is an undertaking that requires judicious plan-
ning and coordination of the involved resources. The inception, design, implementa-
tion, examination and maintenance of a software product [Scacchi 2001] are a team ef-
fort, organized and executed to satisfy the product customer. Following the separation
of concerns principle, software life-cycle models distinguish between different phases
or activities in the production of software, linking them by feed-forward and feed-back
loops [Madhavji 1991]. This separation reduces the complexity of each single phase or
activity, however at the same time poses needs for an efficient and effective coordina-
tion.

Author’s addresses: M. Unterkalmsteiner and T. Gorschek, Software Engineering Research Lab, School of
Computing, Blekinge Institute of Technology; R. Feldt, Department of Computer Science and Engineering,
Chalmers University of Technology.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 M. Unterkalmsteiner et al.

In this paper, we investigate two phases in the software development life-cycle, re-
quirements engineering (RE) and software testing (ST), that benefit particularly from
a coordinated functioning [Graham 2002]. Several prominent researchers have called
for more research towards this goal. At FoSE 2007, Cheng and Atlee [2007] called for a
stronger collaboration between RE and researchers and practitioners from other soft-
ware engineering fields to improve requirements knowledge and downstream devel-
opment. Bertolino [2007] summarized current challenges and goals in software test-
ing research, pointing out the rising importance of a more holistic approach to ST
which takes advantage of the overlaps between different research disciplines. Recent
research shows that the study of the synergies between RE and ST are important and
of particular interest for industry [Uusitalo et al. 2008; Post et al. 2009; Sabaliauskaite
et al. 2010].

Despite these advancements and its relevance for practitioners, there is still a lack
of research that aims at understanding, characterizing and communicating methods
that align requirements engineering and software test. By studying methods for RE
and ST alignment we intend to fill this gap. This paper does not aim at providing a sys-
tematic and exhaustive state-of-the-art survey of RE or ST research, but rather forms
the foundation, through a taxonomy, to classify and characterize alignment research
and solutions that focus on the boundary between RE and ST. The REST taxonomy
also functions as an engine for REST-bench, an alignment assessment framework.

With alignment we mean the adjustment of RE and ST efforts for coordinated func-
tioning and optimized product development. Depending on the context, alignment can
be understood as an activity or as a state. Alignment-as-activity pertains to the act
of adjusting or arranging efforts involved in RE and ST so that they work better to-
gether. To improve our understanding of such activities, we developed the REST tax-
onomy. Alignment-as-state, on the other hand, refers to the condition of RE and ST
efforts having established a coordinated functioning. In order to evaluate the state of
alignment we developed REST-bench which acts as an assessment framework and is
based on the REST taxonomy. Independently from the context, the above definitions
imply that a higher degree of alignment enables higher effectiveness and efficiency in
product development and/or maintenance.

In this paper we study RE and ST alignment with the purpose of

— Characterization of RE and ST alignment methods, providing researchers and
practitioners a common vocabulary

— Analysis of RE and ST alignment methods, providing researchers means to pre-
emptively identify weaknesses and suggest improvements

— Industrial assessment of RE and ST alignment, providing practitioners a
lightweight framework (REST-bench, powered by the REST taxonomy) to identify mis-
alignment

The remainder of the paper is structured as follows. In Section 2 we discuss the
relationship between requirements engineering and software testing in more detail
and illustrate related work. In Section 3 we present the REST taxonomy, accompa-
nied with an example of its application, and classify thirteen alignment methods. In
Section 4 we illustrate the process followed for constructing and validating the taxon-
omy. In Section 5 we analyze the classified methods by the means the REST taxonomy
provides. We introduce REST-bench, which we applied in an industrial case study at
Ericsson AB, in Section 6. The paper concludes with Section 7, pointing out directions
for future work.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:3

2. BACKGROUND AND RELATED WORK

2.1. The need for alignment

Software development consists of transitions from system concept, requirements
specification, analysis and design, implementation, and test and maintenance [La-
plante 2007]. This abstraction holds for both plan driven process models (e.g. spi-
ral [Boehm 1988] and evolutionary [Naumann and Jenkins 1982], and the unified pro-
cess model [Kruchten 2000]), as well as and Agile models, although to a lesser extent
in the latter category as activities may be blended, eliminating transitions altogether
(e.g. in eXtreme Programming [Beck 1999]).

Looking at the V-Model, which originates from system engineering [Forsberg
and Mooz 1991; Bröhl and Dröschel 1995] and was adopted in software engineer-
ing [Pfleeger and Atlee 2009], high-level testing is often depicted as the Verifica-
tion & Validation activity to requirements elicitation, analysis and specification. As
such, this connection between requirements engineering and testing is a key part of
our software engineering knowledge. Still, this connection is not considered in detail
as a collective concept in our research activities. On the other hand, an abundance of
software technologies, models and frameworks have been developed to ease the tran-
sition of software development phases, to bridge the gap between them, and to align
the intentions and activities therein, for example, between requirements and software
architecture/design ([Kop and Mayr 1998; Amyot and Mussbacher 2001; Hall et al.
2002]), software architecture/design and implementation ([Murphy et al. 2001; Elrad
et al. 2002; Aldrich et al. 2002]), and software architecture/design and testing ([Muc-
cini et al. 2004; Samuel et al. 2007]).

However, aligning requirements engineering and software testing is a less explored
territory, although it would be beneficial to recognize the inherent link between
them [Graham 2002]. The need for RE and ST alignment is emphasized by the dif-
ficulty to design, implement and maintain large software systems. The increase in
complexity of the problem space, i.e. requirements, increases also the complexity of
the software solution [Glass 2002], making therefore the testing more involved. Ben-
efits of a strengthened link between RE and ST are, for example, improved product
quality [Uusitalo et al. 2008], cost-effective testing [Miller and Strooper 2010; Flam-
mini et al. 2009], high quality test-cases [de Santiago Júnior and Vijaykumar 2012],
and early discovery of incomplete requirements [Siegl et al. 2010].

The means by which RE and ST alignment can be achieved, include (but are not lim-
ited to) methods or processes that establish and maintain requirements to test trace-
ability links [Gotel and Finkelstein 1994; Ramesh and Jarke 2001], use requirements
as a driver to develop tests (e.g. by formulating testable contracts [Melnik et al. 2006;
Martin and Melnik 2008], use model-based testing [Utting et al. 2011]), or organize de-
velopment teams in an effective manner (e.g. by forming cross-functional teams [Mar-
czak and Damian 2011]).

The means of achieving alignment are diverse in terms of the assumptions they
make, their prerequisites on the organizational environment, and the investments
they require. Effectively searching, selecting and applying instruments to improve RE
and ST alignment is therefore a challenge for practitioners but also for researchers
in advancing the state-of-the-art. Uusitalo et al. [2008] conducted interviews at five
Finnish software organizations and elicited practices, such as tester participation in
requirements reviews, and requirements to test traceability, that aim to bridge the
gap between RE and ST. Post et al. [2009] explored how the impact of requirements
changes, and the subsequent effort in adapting test cases, can be reduced by scenario-
based requirements formalizations. In an interview study with software practitioners
occupying roles as quality control leaders, requirements process managers and test

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 M. Unterkalmsteiner et al.

leaders, Sabaliauskaite et al. identified several obstacles in aligning requirements en-
gineering and testing. Barriers exist in the organizational structure, processes and
cooperation between people, and are aggravated by tool deficiencies and challenges in
change management [Sabaliauskaite et al. 2010].

The connections between RE and ST are both clear and numerous, and the potential
benefits in increasing the coordination between them are large. Therefore it is essential
that we increase our understanding through the study of these connections, and treat
them as a collective and not as individual, isolated areas and approaches. Our main
aim in this paper is to systematically create a basis for such an understanding. In
order to characterize the phenomenon of alignment between RE and ST we developed
therefore the REST taxonomy.

2.2. Alignment vs. Traceability

The concept of traceability, which exists since the dawn of the software engineering
discipline [Randell 1968], is not associated with a particular goal, but is a quality
attribute of the artifacts produced in software development. The IEEE Standard Glos-
sary of Software Engineering Terminology [IEEE 1990] defines traceability as “the
degree to which a relationship can be established between two or more products of the
development process, especially products having a predecessor-successor or master-
subordinate relationship to one another [...]”. Gotel and Finkelstein provide a similar
definition of requirements traceability as “the ability to describe and follow the life of
a requirement” [Gotel and Finkelstein 1994], which complies with the notion of trace-
ability being a work product quality attribute.

Research into traceability indicates that good traceability supports impact analy-
sis [Gotel and Finkelstein 1994; Ramesh and Jarke 2001; Damian et al. 2005; Uusitalo
et al. 2008] and lowers test and maintenance costs [Watkins and Neal 1994; Kukka-
nen et al. 2009]. On the other hand, high quality traces are expensive to establish
and maintain [Cleland-Huang et al. 2003], leading to the investigation of means to
automate the trace recovery process [de Lucia et al. 2007; Hayes et al. 2007].

We defined alignment as a goal-directed concept, i.e. the adjustment of RE and ST
efforts for coordinated functioning and optimized product development. As such, high
quality traces may contribute to an improved alignment, are however not the only so-
lution candidates achieving our goal of alignment. Thus, traceability can be a method
to achieve alignment, but the REST taxonomy focuses on the alignment phenomena
itself and how methods for alignment (which might build on traceability) can be clas-
sified.

2.3. The purpose of taxonomies

Creating taxonomies of objects or concepts has been a basic scientific tool since early
work by the Swedish botanist Carl von Linné [Linnaei 1735]. Taxonomies are means
to structure, advance the understanding, and to communicate knowledge [Glass and
Vessey 1995; Kwasnik 1999]. When the understanding in a certain area advances,
concepts and relationships between them emerge that allow for a structured repre-
sentation of these concepts. Being able to communicate that knowledge provides the
opportunity to further advance research [Kwasnik 1999]. Kwasnik also points out the
importance of taxonomies as theory developing tools. Classification schemes enable
the display of theory in an useful way and serve, similar to theories, as drivers for in-
quiry [Kwasnik 1992]. Thus, the development of taxonomies is essential to document
theories which accumulate knowledge on Software Engineering phenomena [Sjøberg
et al. 2007].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:5

2.4. Taxonomies in Software Engineering

The Guide to the Software Engineering Body of Knowledge (SWEBOK) is an attempt
to characterize the software engineering discipline and to provide a structured access
to its body of knowledge [Bourque and Dupuis 2004]. As such, SWEBOK can be seen
as a taxonomy that covers knowledge areas relevant to software engineering, promot-
ing the structured communication of this discipline. Similarly, Glass et al. [2002] pro-
vide a taxonomy on the research in software engineering, although its main purpose
is to structure and to position past research. Blum’s taxonomy of software develop-
ment methods [Blum 1994] is more narrow in scope and, similar to Glass et al., aims
at structuring rather than communicating the knowledge on software development
methods.

Further examples of specialized taxonomies, i.e. with a narrow scope, are Buckley
et al. [2005] on mechanisms of software change, Svahnberg et al. [2005] on variability
realization techniques, and Mehta et al. [2000] on software component connectors.

2.5. Developing Taxonomies

The development of a taxonomy can be approached in two different ways, top-down
and bottom-up [Glass et al. 2002]. In the top-down or enumerative [Broughton 2004]
approach, the classification scheme is defined a-priori, i.e. a specific structure and cat-
egories are established that aim to fulfill the purpose of the taxonomy. The created
classification scheme is thereby often a composition of previously established schemata
(e.g. [Glass et al. 2002; Avižienis et al. 2004; Bunse et al. 2006]), or the result of the
conceptual analysis of a certain area of interest (e.g. [Svahnberg et al. 2005; Utting
et al. 2011]). The strength of this approach is that the taxonomy is built upon existing
knowledge structures, allowing the reuse of established definitions and categorizations
and hence increasing the probability of achieving an objective classification procedure.

On the other hand, the bottom-up or analytico-synthetic [Broughton 2004] approach
is driven by the sampling of subjects from the population of interest and the extraction
of patterns that are refined into a classification scheme. For example, Vegas et al.
[2009] extended existing unit-testing classifications by systematically studying the
Software Engineering literature, supplemented by gathering the expert judgment of
researchers and practitioners in the testing area. The strength of this approach is that
new, not yet classified, characteristics may emerge and enrich existing taxonomies.

The goal of the taxonomy presented in this paper is to classify methods that bridge
the gap between requirements engineering and software testing activities. There exists
a rich knowledge base for both RE and ST, and taxonomies for classifying aspects in
each area already exist. Following a top-down approach and amalgamating concepts,
definitions and categorizations from these separate areas into a taxonomy of RE and
ST alignment seemed to us unlikely to succeed. Even though the respective areas are
mature and have seen a lot of research, their interplay and connections have been less
explored. Hence we chose to construct the taxonomy in a bottom-up fashion, validating
the emerging classification scheme throughout the process (see Section 4).

3. THE REST TAXONOMY

When developing a taxonomy one has to consider its purpose [Glass and Vessey 1995].
A specific taxonomy is designed to accommodate a single, well-defined purpose. On
the other hand, the structure of general taxonomy is not imposed by a specific pur-
pose [Glass and Vessey 1995] and is hence applicable in various circumstances. As we
defined earlier in Section 1, alignment can be understood as an activity or a state.
We therefore designed the structure of our taxonomy to accommodate both aspects of
the alignment definition. From the alignment-as-activity perspective, the REST taxon-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 M. Unterkalmsteiner et al.

(a) Information dayd (b) Dyad structure of a method (c) Method classification

Fig. 1: Anatomy of the REST taxonomy

omy can be used to analyze and categorize alignment methods described in literature.
From the alignment-as-state perspective, the REST taxonomy serves as an analysis
aid in project and process assessment. The method we developed for process assess-
ment (which connects to alignment-as-state), REST-bench, is described and illustrated
through a case study in Section 6.

Figure 1 provides an overview of the REST taxonomy. The taxonomy is centered
around our observation (see Section 4.1) that the alignment of RE and ST implies some
sort of information linkage or transfer between two entities involved in either process
area. In essence, if there is no exchange of information, at least at some point in time,
no alignment can take place or be achieved. Thus, characterizing such exchanges are
key in a general taxonomy. In order to describe this phenomenon we devised the con-
cept of an information dyad, representing the central unit of analysis in the taxonomy.
The information dyad contains the criteria for differentiation and description [Glass
and Vessey 1995] used for the classification, the second essential aspect in taxonomy
development. Figure 1a illustrates the components of an information dyad. A node
is characterized by the type of information it represents and an owner of that infor-
mation. Two nodes are connected by a link, characterized by the type of mechanism
establishing the link between nodes, and the medium through which the link is real-
ized.

The third important property of a taxonomy, besides its purpose and criteria for
differentiation, is the method of classification [Glass and Vessey 1995]. The method
should illustrate and explain how objects under study are classified in a repeatable
and unambiguous manner. To this end we developed a process, summarized in Table I,
in which each step answers a specific question.

The objects under study are methods that may improve the alignment between RE
and ST, published at conferences or in journals. Hence, Step 1 in the process serves as
a gatekeeper, asserting that the taxonomy is applied on studies that can answer the
questions asked in the following steps. Steps 2.1, 2.2 and 2.3 aim at identifying the
information dyads of the studied method, and characterizing the dyads by their com-
ponents (information, medium and mechanism). The context in which the alignment
method has been developed or applied is captured in Step 3.

Since an alignment method consists of one or more dyads, these dyads form a struc-
ture which characterizes the method (Figure 1b). In Step 4 we analyze the properties
of the dyad structure which allows us in Step 5 to classify the methods according to
their complexity and scope/focus (Figure 1c).

The remainder of this section describes the process shown in Table I. To complement
the description, we illustrate the application of the taxonomy by self-contained exam-
ples, based on Miller and Strooper [2010] case study on their framework and method
of model-based testing of specifications and implementations. Note that section and

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:7

Table I: REST classification process

Step Question answered Section

1 Does the study shed light on both RE and ST aspects? 3.1 Relevance
2 What are the components of the information dyad? 3.2 The information dyad
2.1 What type of information exists/is used in RE and ST? 3.2.1 Information
2.2 What type of medium connects the information? 3.2.2 Medium
2.3 What type of mechanism establishes the connection? 3.2.3 Mechanism

3 In which environment is the method situated? 3.3 Method context
4 What is the structure of the identified dyads? 3.4 Dyad structure properties
5 How can the method be classified? 3.5 Method classification

figure numbers in the examples refer to Miller and Strooper [2010]. Finally, we apply
the taxonomy on 13 alignment methods in Section 3.5.

3.1. Relevance

The analyst (the person who applies the taxonomy) needs to decide whether the study,
and the described alignment method therein, qualifies to be classified with the taxon-
omy. He bases his decision on three independent criteria:

— Scope: Since the taxonomy aims at characterizing links between requirements
engineering and software testing activities, the candidate study should consider both
areas in the discussion of the presented method. If, for example, the focus of the study
is on formal reviews of requirement specifications, considers however also the effects of
reviews on downstream development including testing or discusses the involvement of
quality assurance personnel in reviews, the study is likely to be adequate for taxonomy
application. On the other hand, a comparison of different review techniques, focused
on identifying respective strengths and weaknesses alone, is likely not to be adequate.

— Comprehensiveness: A detailed report of the conducted study reduces the ana-
lyst’s leeway for interpretation when answering the questions posed in Table I. It is
impossible to judge the comprehensiveness of a publication a-priori, i.e. before reading
it, but since space restrictions of journals are less rigid than for conference or workshop
publications, they tend to exhibit more details on the conducted study.

— Rigor: In case the publication includes a method evaluation, rigor of reporting
context, design and validity threats [Ivarsson and Gorschek 2010] should be consid-
ered. A strong description of these aspects supports the analyst in performing context
identification (Step 3, Section 3.3).

The example for Step 1 shortly introduces the publication on which all following
examples in this section are based upon, and illustrates the application of the above
discussed criteria to assess relevance.

3.2. The information dyad

The goal of this step is to identify the nodes and the link that characterize an informa-
tion dyad (see Figure 1a). Note however that an alignment method can be described by
more than one dyad, depending on the number of identified nodes. Hence we discuss
dyad structures and their properties in Section 3.4.

3.2.1. Information. An information dyad consists of two nodes and a connecting link. A
node describes an entity that has to be aligned, synchronized, brought into agreement,
with another entity. The nodes represent the different, primary objects of information,
while the link represents the fact that they are or should affect one or both of each
other. To differentiate between nodes, we assign each node a name, characterizing its
purpose. We deliberately do not limit the definition of a node to the notion of, for exam-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 M. Unterkalmsteiner et al.

Example: Step 1 - Does the study shed light on both RE and ST aspects?

Miller and Strooper [2010] present and evaluate a framework that aims at taking advantage of synergy ef-
fects between specification testing and implementation testing. They argue that the effort spent in verifying
the formal specification of a software system can also contribute to the verification of the implementation of
that system. To this end, they introduce testgraphs as a mean to model parts of the specification that require
testing, using them for the derivation of test sequences in both specification and implementation testing.
The table below illustrates our assessment with respect to the relevance criteria we defined.

Criterion Strength Weakness

Scope + includes both RE and ST activities
(Section 3)

- derivation of formal specifications
from requirements is not part of the
framework (Figure 2)

+ consistency and conformance check
between testgraph and formal specifi-
cations (Section 3.1)

Comprehensiveness + activities respectively roles are de-
scribed (Section 3, Section 5)

Rigor + context (Sections 4.2-4.4) and design
(Section 4.1, Section 7) described

- threats to the validity of the evalua-
tion not discussed

+ risks in the application of the frame-
work are considered (Section 3.3)

Based on this assessment, we conclude that we can apply the REST taxonomy on the described method.

ple, a phase in the software development life-cycle. A node could also be an activity, e.g.
formal inspections during requirements analysis. Although this allows for more flexi-
bility, it also reduces the repeatability in the classification of the alignment method.

A node is characterized by the information it contains and an owner who is the
source of that information. In this work, we informally define information as a coherent
collection of related data that is created during software development, often with a
specific purpose in mind. Later on in Section 3.2.3 we will further refine the notion of
the information concept, but for this step in the classification process this operational
definition is sufficient.

Information, according to the above definition, is created, recorded and used at any
point in time during software development, enabling product inception, specification,
implementation, verification and validation, and maintenance. Typically it refers to
development artifacts but it can also represent more intangible but essential and pur-
posely related knowledge of a developers or testers [Feldt 2002], e.g. informal require-
ments as in the Miller and and Strooper case (see the example for Step 2.1). With this
taxonomy we aim to capture in particular information that is shared and aligned in
RE and ST activities. This does however not restrict the information content to RE
or ST topics, e.g. technical requirements, feature descriptions, priorities, test plans,
strategies, scenarios, etc. Information valuable for alignment can emerge from any
phase in software development and connect RE and ST activities. Hence, the task of
the analyst is to carefully study the described method and collect evidence for the ex-
istence of a node and its characterizing information. Such evidence can be found in
statements on used or created artifacts or in descriptions of things that have been
discussed or communicated. The owner, the second attribute of a node, is responsible
for creating and/or maintaining the information. Depending on the organization of the
development process, the owner may be formally assigned to this responsibility (i.e.
by occupying a specific role or function) or, in case of agile processes, depend on the
employee’s current activities.

3.2.2. Medium. The Oxford English Dictionary defines the term medium as “an inter-
mediate agency, instrument, or channel; a means; especially a means or channel of

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:9

Example: Step 2.1 - What type of information exists/is used in RE and ST?

To answer this question, we focus first on identifying actors and the information on which is acted upon.
The framework description and the illustration of the performed tasks in the GSM case study are thereby
of interest (Section 3, 3.1, 3.2, 5.1, 6.1 and 6.2). Remember that our ultimate goal in this step is to identify
potential nodes that form one or more information dyads. Hence the other components, medium and mecha-
nism, play a secondary role at this moment. Defining the characteristics of links too early in the process may
inhibit the discovery of all relevant nodes. On the other hand, since Steps 2.1-2.3 are performed iteratively,
refinements are still possible at a later moment. The table below lists the identified nodes. In the following
we will motivate them and illustrate in which relation they stand to each other, i.e. define the information
dyads in this example.

ID Node name Information Owner

N1 Requirements specification Informal requirements Req. engineer
N2 Req. analysis (Implementation) Formal specification Req. engineer
N3 Req. analysis (Test) Testgraphs Tester
N4 Specification test Test sequence Tester
N5 Specification mapping Spec. to impl. mapping Tester
N6 Testgraph mapping Testgraph to impl. mapping Tester
N7 Implementation test Test sequence Tester

Dyads (6): N1-N2, N1-N3, N3-N4, N2-N5, N3-N6, N6-N7

The first node, N1, contains the fundamental information, i.e. informal requirements, from which further ar-
tifacts are derived. The formal specification is developed by the requirements engineer to aid design and im-
plementation. Hence we define requirements analysis (Implementation) as the second node (N2). Similarly,
the tester develops a testgraph, with associated test cases, to aid the verification of the formal specification
and the implementation. Requirements analysis (Test) is therefore the third node (N3). The dyads, N1-N2
and N1-N3, follow from the refinement performed by requirements engineers and testers. The specification
is tested by generating test sequences (N4) from the testgraph, leading to dyad N3-N4.
Identifying the next nodes is rather challenging. Figure 2 identifies the test oracle and the implementation
as further artifacts relevant for the framework. From the alignment perspective however, the interesting
part of the framework is the mapping between specification respectively testgraph to the implementation,
described in Sections 6.1 and 6.2. The reason why it is interesting is that the tester needs to process and
understand artifacts developed by requirements engineers (formal specification) and developers (implemen-
tation). Hence, specification mapping (N5) and testgraph mapping (N6) are nodes of interest, leading to
dyads N2-N5 and N3-N6 representing the relationships of the mapping. The implementation test (N7), also
based on the derivation of a test sequence, is driven by the testgraph mapping, leading to dyad N6-N7.

communication or expression” [Oxford English Dictionary 2011]. The medium in an
information dyad describes how the information between two nodes is linked together.
This can be through a carrier of information, e.g. an artifact, or a facilitator that en-
ables the information transfer, e.g. a process. During the development of the taxonomy
we have identified a set of different media types:

— Structured artifacts (e.g. documents, email, diagrams, database records); they are
usually persistent and searchable/indexed.

— Unstructured artifacts (audio, video); they are usually not searchable/indexed.
— Tools that act as means to share, transfer or transform information (e.g. modeling

tools, language analysis tools).
— Process (one or more activities, can be performed repeatedly).
— Organization of work environment (co-location, role/responsibility rotation).

The analyst can choose one of these media types if appropriate or introduce a new type
as the above set was derived only from a sample of alignment methods studied and
hence be incomplete.

3.2.3. Mechanism. The mechanism component of a dyad link characterizes the way in
which information is carried, eventually changing its purpose, from one node to the
next. We assume that a node in a dyad fulfills a certain purpose in the development

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 M. Unterkalmsteiner et al.

Example: Step 2.2 - What type of medium connects the information?

For each dyad identified in Step 2.1 we now define their linking medium.
In the dyad Requirements specification - Requirements analysis (Implementation), a requirements engineer
is responsible for deriving the formal specification from informal requirements. We have to assume that this
derivation is performed manually, following a certain process, since the framework description does not
explain this step in detail. Hence, for the dyad N1-N2 we declare the medium to be a process.
Similarly, testgraphs are derived by a tester from the informal requirements, represented by the dyad Re-
quirements specification - Requirements analysis (Test). Also here, the derivation is a series of activities
(define testgraph and associated test cases, measure specification coverage) that follows standard testing
heuristics. Hence we declare also in the dyad N1-N3 the medium to be a process. The generation of test
sequences (N4) is supported by a tool for the editing the graph and executing tests, leading to the conclusion
that the medium in dyad N3-N4 is a tool.
Both in dyad N2-N5 and N3-N6, in which mappings between a model (specification respectively testgraphs)
and the implementation are created, the link medium is a process. The tester implements wrapper classes
for the classes under test (dyad N2-N5), linking state, operations, input and output, and return values from
the implementation to the corresponding entities in the specification. In dyad N3-N6, the tester performs
a similar task by implementing a driver class that calls for each traversed node and arc in the testgraph
the appropriate operation in the wrapper class. Although both mappings can be potentially created auto-
matically, such a tool is currently not available in the framework. On the other hand, the generation of test
sequences for the implementation test (N7), is tool supported. Hence the medium in dyad N6-N7 is a tool.

of software and is hence embedded in a context that supports the realization of that
purpose. For example, requirements analysis is performed at a certain point in time by
people possessing the knowledge to select, prioritize and validate requirements. Test
scenarios may be developed at the same time, but require a different set of knowledge
in order to realize their purpose. When information is aligned between two nodes, the
context of the nodes differs and hence also the purpose of the information.

In Section 3.2.2 we have motivated how a link between two nodes can be character-
ized by a medium. The concept of a medium is however not able to explain how the
information between two nodes is synchronized, i.e. how the change in purpose is sup-
ported by the link. Therefore we use the concept of mechanism to further characterize
the link in information dyads.

To understand the mechanism concept we need to refine our earlier definition of
information as a coherent collection of related data that is created during software
development, often with a specific purpose in mind. Although this definition helps to
identify nodes, as discussed in Section 3.2.1, it does not provide the granularity to
differentiate between alignment mechanisms. We adopt therefore a definition in which
information has the components of well-formed data and meaning [Floridi 2010]:

(1) data is well-formed if it has an underlying structure, syntax and notation
(2) data is meaningful in a certain context, i.e. the meaning of data may change with

its purpose

Using these components of information, we can now differentiate between align-
ment mechanisms and characterize them according to the means through which the
synchronization and agreement of information, shared between nodes, is achieved.

Transformation: Information, packaged for one node in the alignment dyad, is re-
packaged in order to satisfy the needs of the other node. A transformation mechanism
that restructures and/or augments the information is applied, changing the notation
and supporting the change in meaning of the data. Example: A method allows the
transformation of a use case into a test model, changing the notation of the informa-
tion. The support in adapting the meaning is given, for example, if relationships to

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:11

Example: Step 2.3 - What type of mechanism establishes the connection?

We start by looking at the dyads that contain both N1, informal requirements, as an information charac-
teristic in the node. The information in both N2 and N3 is derived, although by different roles, from the
informal requirements. The mechanism for this derivation is in both cases not explicitly specified in the
framework. Hence the connection between the nodes is in both dyads an implicit one. The mechanism in
dyad N3-N4 is however a transformation as test sequences are extracted from the testgraph which are used
to animate and test the specification.
Dyads N2-N5 and N3-N6, on the other hand, are explicitly connected by the tester, creating a mapping
between the implementation and the specification respectively the testgraph. The mere mapping between
information in these dyads does not fulfill the requirements of a transformation mechanism. Consider for
example that the testgraph in N3 is modified due to changes in the informal requirements. The mapping
by itself cannot accommodate such impact but has to be recreated by the tester. The mapping identifies cor-
responding entities in the artifacts, i.e. there is no change in the notation, excluding therefore also bridge,
leading to the conclusion that we observe a connection mechanism. Dyad N6-N7 is linked again by a trans-
formation mechanism since the test sequences are generated and reflect the information in the testgraph
mapping (N6).

other use cases are pertained in the transformation and reflected in the model1. We
say that the alignment between nodes is internalized in the mechanism.

Bridge: Information pertaining to each node is connected and augmented in order
to achieve fitness of purpose in both nodes, changing the notation. The difference to
transformation is that a bridge does not provide support to adapt the meaning of data
within the context change. Example: A method allows the transformation of use cases
into a test model, changing the notation of information, however without establishing
relationships within the test model that reflect the relationships within the use cases.
Adding a new use case to the test model is supported syntactically, but the positioning
in the test model requires some knowledge which is not provided by the method. We
say that the alignment between nodes is semi-internalized in the mechanism.

Connection: Information pertaining in each node is connected, establishing a logi-
cal link between the two nodes. The mechanism does however not change the notation,
nor does it provide support in adapting the meaning of the data when changing the
context. The difference to the above is that the connection does not add anything to
the information’s fitness of purpose, except establishing a correspondence of the data
component of information. Example: A method allows to link use cases to the corre-
sponding parts of a test model, without however providing syntactical support. The
meaning of the information within the test model is given only by the connections
back to the use cases. We say that the alignment between nodes is not internalized in
the method.

Implicit connection: Information is connected by volatile and implicit links that
are not formalized. Such volatile links can be established by communication between
people or they exist within a shared, commonly agreed upon, model. As such, it is
not evident which of the components of information are effectively manipulated in a
context change.

Note that the alignment mechanisms stated above are characterized by their sup-
port in preserving the relationships between information across contexts and not by
their degree of automation. None of the alignment mechanisms implies that the mech-
anism is or can be automated.

3.3. Method context

In the previous step we focused on characterizing information dyads in a rather de-
tailed manner by describing their components. In this step we broaden our view and

1Support in adapting the meaning = preservation of relationships between information across contexts

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 M. Unterkalmsteiner et al.

Example: Step 3 - In which environment is the method situated?

The table below summarizes the context of the classified method [Miller and Strooper 2010].

Aspect Description

Method setting implementation of a subset of the GSM specification (<1 KLOC), focus on functional
requirements, model-based testing, bespoke requirements, natural language require-
ments and GSM standard specifications

Focus 2) Unintentional but noted effect on alignment1

Motivation None given due to unintentional focus
Assumptions The specification (language) is executable
Quality targets Not stated
Validation Testgraphs are reviewed for correctness and completeness, testgraph coverage of

specification is measured
Outcome Cost-effectiveness comparable to other model-based techniques, better than manual

testing

1 Focus is unintentional since their goal was to improve efficiency by reusing the testgraph in specifica-
tion and implementation testing. The testgraph concept is interesting from the alignment perspective,
since it is independently derived and hence an alternative representation to formal specifications of the
informal requirements.

study the context in which the described method is embedded. Petersen and Wohlin
[2009] argue that context influences the conclusions drawn when integrating evidence
from industrial studies. In a classification effort it is hence important to capture the
context of the classified objects. In the following paragraphs we illustrate the context
aspects that should be captured.

Method setting: Describe type of development process, scale / size (of the project in
which the method was applied), focus of requirements types (functional, quality, both),
type of testing (unit, integration, system, acceptance, formal verification, scenario-
based, etc.), and type of requirements engineering (market-driven or bespoke, use of
natural language primarily or other notation).

Focus: Describe the degree to which alignment of RE and ST is the primary focus
of the method. Is an alignment issue between RE and ST thematized and addressed
(choose 3, 4, or 5)? Are the studied methods/activities embedded in a software engi-
neering problem that includes, but does not exclusively discuss RE and ST alignment
(choose 1, 2, or 3)?

(1) Unintentional and undiscussed / unnoted effect on alignment
(2) Unintentional but noted effect on alignment
(3) Part of purpose was to improve / affect alignment
(4) Main purpose was to improve / affect alignment
(5) Intended, main as well as sole purpose

Motivating problem: Describe the driver / intention / motivation to propose / im-
plement an alignment method.

Assumptions: Describe any constraints or assumptions, e.g. on existing artifacts or
application domains, that the application of the alignment method makes.

Quality targets: What is aimed to be improved by a better RE and ST alignment?
Examples are reducing time-to-market, test effort, cost, number of faults, etc.

Validation: Is there any formal or informal mechanism that supports the consis-
tency of the shared information? In particular, does the alignment method provide any
support in assessing / verifying the consistency or correctness of the shared informa-
tion?

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:13

Outcome / Benefits: What are the experienced effects of the alignment method?
Note that this should only contain actual (not expected ones) effects that were estab-
lished by an evaluation.

3.4. Dyad structure properties

The central unit of analysis of the REST taxonomy is the information dyad (Figure 1a).
As we have illustrated in the examples in Section 3.2, a REST alignment method may
consist of several dyads, thus forming a structure that is governed by the components
of a dyad (Figure 1b). We have defined a set of six properties based upon the character-
istics of nodes and links, explained in Sections 3.4.1 - 3.4.6 and illustrated in the ex-
ample for Step 4. The most basic property is the number of nodes in a dyad structure.
Other properties are derived from the purpose of a node, i.e. in which development
phase it predominately exists, or the alignment mechanism of the link between two
nodes. The definition of these properties is guided by their usefulness in interpreting
and analyzing a dyad structure. In Section 3.5 we propose a classification of alignment
methods based upon dyad structure properties.

3.4.1. Number of nodes (P1). Links between nodes need to be established and main-
tained over time. Hence, the total number of nodes allows one to reason on the (visible,
explained) complexity, and on the effort to establish and maintain REST alignment. A
large number of nodes may indicate a high cost in institutionalizing alignment. Fur-
thermore, even tough a larger number of nodes can break down the alignment process
into manageable sub-tasks, the overall complexity of the method increases with the
number of nodes, as linking mechanisms between the nodes need to be defined and
instantiated.

3.4.2. Branches (P2). Looking at an individual dyad, one node acts as a source, the
other as a sink of information. A branch exists, if the dyad structure is configured such
that a node acts as a source or sink for more than one node. We provide in the example
for Step 4 a procedure to identify branches in a dyad structure.

Branches may reduce the complexity of analyzing information (concern separation)
in sink nodes. However, at the same time branching requires a step in which the in-
dividually analyzed information is merged, introducing more nodes, potentially more
effort and an increase of the overall methods’ complexity.

3.4.3. Intermediate nodes (P3). Nodes characterized by information that belongs to the
design/analysis or implementation phase of software development are intermediate
nodes. Their existence indicates that the method user is required to have knowledge
outside the RE and ST domain. Intermediate nodes may strengthen overall REST
alignment by integrating analysis/design and implementation, increasing the trace-
ability. However, intermediate nodes can also imply that the method may be more
invasive to the overall development process.

3.4.4. RE and ST node proportion (P4). Assuming that a node is associated with a certain
cost (e.g. establishing/maintaining the information therein and links in between), it
is of interest to know the node distribution among the RE and ST phases. Such an
evaluation may show which phase is impacted the most by a method. Having more
within-phase nodes (and links) in RE may be beneficial as the level of abstraction can
be adjusted to a level that facilitates the alignment with ST. On the other hand, nodes
(and links) in RE need to be efficient as requirements may change and may be refined
continuously, promoting less nodes in the RE phase.

3.4.5. Within-RE (P5a) / Between-Phase (P5b) / Within-ST links (P5c). Based upon the infor-
mation characterizing a node, we can approximate roughly its primary development

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 M. Unterkalmsteiner et al.

Example: Step 4 - What is the structure of the identified dyads?

The figure below illustrates the dyads that were identified in the method presented by Miller and Strooper
[2010], using the data gathered in the examples for Step 2.1, 2.2, and 2.3.

In this example we show how the dyad structure properties are derived from this data.
P1: This property is calculated by counting the number of nodes identified in the method, which is in this
case 7.
P2: The dyads are N1-N2, N1-N3, N3-N4, N2-N5, N3-N6, N6-N7, whereby the first node represents the
source, and the second node the sink of information. From this sequence, we can identify the number of
branches by counting the dyad instances where a source or sink node occurs more than once. In this example,
this is the case for 2 source nodes (N1, N3), leading to the conclusion that we observe 2 branches in this
method.
P3: Nodes N5 and N6 are intermediate nodes, hence the value for this property is 2.
P4: The RE and ST node proportion is 2 (N1,N2) : 3 (N3, N4, N7).
P5a/b/c: This property is extracted by listing the link mechanisms in the respective phases. The only
Within-RE link is an implicit connection, and the Between-Phase links are implicit connection, two con-
nections, and a transformation. The only Within-ST link is a transformation.
P6: For this property, we look at the nodes that act exclusively as source and sink of information in RE and
ST respectively. In RE, N1 is the only node that acts exclusively as source (N2 is both sink and source). The
information in N1 is informal requirements, which can be regarded as information pertaining to early RE.
In ST we have N4 and N7 that act both exclusively as sinks. Both contain test sequences (for specification
and implementation tests respectively), which can be seen as information pertaining to late ST. Hence the
scope for this method is Early RE - Late ST.

phase and whether it is located early or late in that phase. This allows us to rea-
son upon the linking mechanisms within the RE and ST phases, and between those
phases. The reason for such a distinction emerges from the assumption that each
phase has different properties that need to be taken into account by the applied link-
ing mechanism(s). For example, Within-RE links may need to accommodate frequent
requirement changes, informally specified requirements and different requirement ab-
straction levels [Gorschek and Wohlin 2006]. Within-ST links typically link test cases
on different abstraction levels, whereas Between-Phase links require a more complex
mapping since the context in the phases differs.

3.4.6. Scope (P6). By approximating the location of nodes in development phases, we
can distinguish between early and late nodes. The distinction between early and late
requirements is often made to differentiate between an “understanding” and “describ-
ing” phase in RE (e.g. in the Tropos development methodology [Mylopoulos and Cas-
tro 2000]). Similarly, one can also distinguish between early and late phases in ST.
For example in RE, early artifacts can be natural language requirements and use case
descriptions, whereas requirements models can be put closer to the Analysis/Design
phase. Similarly, test scenarios, abstract test cases and test plans can put on the left,
executable test cases on the right spectrum in ST. This allows us to reason upon the
scope of an alignment method with respect to the RE and ST phases, and its impli-
cations. For example, a method may not provide a link between natural language re-
quirements and more formalized models. In a scenario where such a link would be
beneficial, the method may need to be extended or combined with other approaches.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:15

3.5. Method classification

Up until now we have illustrated the REST taxonomy from the viewpoint of a single
alignment method, that is, describing the process of identifying information dyads,
extracting the context in which the method is applied/used, and characterizing the
method through dyad structure properties. In this section we expand this view by
proposing a classification schema for alignment methods, based upon dyad structure
properties.

3.5.1. Overview of the classified methods. We have applied the taxonomy, in total, on 13
alignment methods. In the remainder of this paper they are referenced as cases A-M:
A [Güldali et al. 2011], B [Flammini et al. 2009], C [de Santiago Júnior and Vijaykumar
2012], D [El-Attar and Miller 2010], E [Miller and Strooper 2010], F [Nebut et al. 2006],
G [Conrad et al. 2005], H [Abbors et al. 2009], I [Damian et al. 2005], J [Arnold et al.
2010], K [Zou and Pavlovski 2008], L [Siegl et al. 2010], and M [Metsa et al. 2007].

Cases F-M stem from the set of papers that were used for taxonomy construction,
whereas cases A-E stem from a search in literature, as explained in Section 4.1. Since
the identification and characterization of information dyads is a crucial step in the
application of the taxonomy, we provide additional examples of this process on cases
A-D in Appendix A.1 (case E has served as a running example throughout this section).

3.5.2. Classification schema. The schema we adopt aims at providing a meaningful and
useful classification of alignment methods. Looking at the definitions of the dyad struc-
ture properties in Section 3.4, we can observe that properties P1, P2, P3 and P5 char-
acterize the complexity, and P4 and P6 describe the focus and scope of the method. We
chose therefore a simple two-dimensional schema that encodes the overall complexity
of the classified method on the vertical and the focus/scope on the horizontal axis. Since
we use multiple properties to represent complexity, we define the following order for
sorting a method on the complexity dimension:

(1) P1 (Number of nodes): this is the main sorting criterion as each node, through its
associated information, contributes to the need of maintaining consistency (other-
wise, the very purpose of the method would be violated).

(2) P5b (Between-Phase links): each link that crosses a phase boundary (e.g. from RE
to design, RE to ST), contributes to the overall complexity as information from
different contexts is linked. We use the number of Between-Phase links as the
second sorting criterion.

(3) P5ac (Within-RE and Within-ST links): linking information on different abstrac-
tion levels is less involved than linking information from different contexts; as
these links lie within one phase, we use the number of Between-Phase links as
third sorting criterion.

(4) P2 (Branches): even though related to the number of links, branches are less in-
dicative for the overall method complexity as they act locally (i.e. within a dyad) as
an agent to reduce complexity. They are therefore the fourth sorting criterion.

(5) P3 (Intermediate nodes): everything else being equal, intermediate nodes are the
fifth sorting criterion.

Note that the ordering above considers only complexity defined by the properties
we have identified. For example, we do not classify the information in a node itself.
Hence, the complexity of an alignment method, as defined by the classification schema,
is an approximation that can be improved by a more fine-grained characterization of
a node’s information component. As a consequence, the presented classification does
not provide any statement on the performance of the classified alignment methods.
Nevertheless, the qualitative classification of the method context (see Section 3.3 and

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 M. Unterkalmsteiner et al.

Fig. 2: Cases classified in the REST taxonomy

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:17

Table IV), in particular the method setting, assumptions and quality target aspects,
provide means to interpret and judge the quantitative classification.

The second dimension of the schema (horizontal axis), characterizes the methods
according to their focus (P4) and scope (P6).

3.5.3. Classification results. Figure 2 shows the 13 classified cases. In the left-most col-
umn, we encode the dyad structure details in a signature, whereas in the right part
of the figure, the structure is represented graphically (only Between-Phase links are
drawn). Note that cases A, K, M and I have the same complexity according to the
sorting criteria defined in Section 3.5.2. We analyze the results of the classification in
Section 5.

4. TAXONOMY CONSTRUCTION AND VALIDATION METHOD

In this section we describe how we constructed and validated the taxonomy, and dis-
cuss threats to validity of this approach.

4.1. Iterative construction and validation

In Section 2.5 we motivated why the taxonomy was constructed in a bottom-up fash-
ion. We started by sampling alignment methods published in literature. The initial
sample consisted of 16 publications that were analyzed in a systematic mapping study
on aligning requirements specification and testing [Barmi et al. 2011]. Since the map-
ping study had limitations, as further discussed in Section 4.2.1, we added 10 more
publications that we regarded relevant by reading title and abstract. Hence, the tax-
onomy construction pool consisted of 26 publications, from which 15 were used in the
taxonomy construction process (iteration 1-4). Although we used all 15 publications in
the construction process, we classified 8 of them (cases F-M) and excluded 7 for the
following reasons:

— the publication covered only the RE aspect, leading to the decision that the method,
described in this particular study, is out of scope: 4 publications ([Hayes et al. 2006;
Grunske 2008; Mugridge 2008; Niu et al. 2009])

— the publication only sketched a solution proposal or reported lessons learned, and
was therefore not descriptive enough to warrant a classification: 2 publications
([Winbladh et al. 2006; Kukkanen et al. 2009])

— the publication is a predecessor to a publication that has been classified in this
paper: 1 publication ([Nebut et al. 2004])

In iteration 5 we classified 5 more publications (cases A-E) that were not included in
our initial pool, resulting in a total of 13 classified methods that are presented in this
paper.

Three researchers were involved at different stages in the construction and valida-
tion of the taxonomy. The milestones of this iterative process are illustrated in Fig-
ure 3. We discuss these iterations in the following subsections.

4.1.1. Iteration 1. In the first iteration we chose five publications to bootstrap a set of
dimensions for the classification of alignment methods. The first author applied open
coding [Robson 2002] on each method description and consolidated the emerged codes
into dimensions characterizing the alignment approaches (v0.1 of the taxonomy, see
Figure 3).

The strategy was to identify commonalities or distinguishing aspects in the de-
scribed methods. For example, one common aspect was that information from the re-
quirements engineering phase is reused in downstream development and eventually
in system or acceptance testing, leading to a dimension describing information source
and sink. Another early dimension, describing the packaging of information (e.g. in

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 M. Unterkalmsteiner et al.

Fig. 3: REST Taxonomy construction and validation process

natural language, diagrams, etc.), characterized whether information is used “as is” or
if it is adapted or enriched for downstream use.

4.1.2. Iteration 2. In the second iteration, the second author was invited to verify
whether the identified dimensions characterize the methods in an useful manner. We
re-used the publications from iteration 1. Although the definitions of the dimensions
were refined in this iteration, we realized that a characterization of the heterogeneous
set of methods would not be possible with static dimensions describing the method as
a whole. For example, methods could be characterized by several information sources
and sinks. Hence we introduced the concept of information dyads which allowed us a
more fine-grained and flexible characterization, leading to v0.3 of the taxonomy.

4.1.3. Iteration 3. The first and second author chose five new publications for the third
iteration. The dimensions, now consolidated in the information dyad construct and the
context aspects, were further refined and a guideline was developed (v0.5 in Figure 3).
We chose two additional publications and exemplified the application of the taxonomy
in the guidelines.

4.1.4. Iteration 4. We invited the third author to validate the updated taxonomy and
the operational guidelines developed in the previous iteration. We chose three new
methods from the sample set and all three authors independently applied the taxon-
omy. We analyzed the results in a post-mortem.

On method 1, we achieved in general a good agreement, having however some vari-
ance on the identified medium (link characteristic) and the level of focus on alignment
(context aspect). Looking at the guidelines, we identified the definitions of the different
media and alignment focus levels as a cause for the disagreement and clarified them.
On method 2 and 3 we observed a larger variance among the three analysts. The ma-
jor reason was a disagreement on whether the method is in the scope of the taxonomy,
i.e. if it can be classified as an alignment method. Hence we added Step 1, identifying
the relevance of the studied method, in the taxonomy application process (see Table I).
The intention of the scope criterion is to clarify that we are interested in classifying
methods that consider both requirements engineering and testing aspects. Methods
that bridge other gaps, e.g. between design and test, are by this definition excluded.

4.1.5. Iteration 5. The aim of this iteration was to apply the taxonomy on a set of meth-
ods that were not included in the initial set of publications. To this end, we chose four
premium venues for publications in Requirements Engineering (Requirements Engi-
neering Journal), Verification & Validation (Software Testing, Verification and Reliabil-
ity) and software engineering in general (IEEE Transactions on Software Engineering,
Software Quality Journal) as the population for drawing our sample. We chose 2007
as the starting point for our search since we did not aim to perform a systematic liter-
ature review [Kitchenham and Charters 2007] and hence do not claim complete time
coverage. Furthermore, 2007 seemed to be a good starting point since Cheng and Atlee

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:19

[2007] and Bertolino [2007] called for a closer collaboration between requirements en-
gineering and software testing research at FoSE that year.

The first author manually searched, by reading title and abstract, 635 publications
from the period 2007 - 2011, applying the criteria defined in Section 3.1. After applying
the scope criterion on the abstracts, 148 publications remained for full text screening.
In this step, the scope criterion was applied a second time, excluding methods that
were only partially bridging the gap between RE and ST, e.g. verification of UML mod-
els [Siveroni et al. 2010], derivation of specifications from requirements [Seater et al.
2007], or derivation of test cases from design artifacts [Pickin et al. 2007], leading to
24 publications2. On these, we applied the comprehensiveness criterion, including only
those methods for which we could answer the questions posed in steps 2 and 3 of the
taxonomy application process (see Table I). We concluded the search with 5 publica-
tions describing alignment methods and applied the taxonomy, leading to two further
refinements to the guidelines:

— Introduction of use-relationships between nodes. For example in Case B (see Ta-
ble IIIb), node N3 contains information that is necessary for the method, is however
not related with any other node through a link mechanism. The use-relationship legit-
imates N3 in the dyad structure, increasing the richness of the method characteriza-
tion.

— Introduction of a further aspect in context identification (Step 3) of the taxonomy
process (Section 3.3). Recording assumptions or constrains helps to understand under
which circumstances a method may be applicable.

The results of the taxonomy application on four cases (one method has served as the
running example in Section 3) are illustrated in Appendix A.1.

4.1.6. Iteration 6. The aim of this iteration was to evaluate whether the REST taxon-
omy provides support in identifying misalignment in a development organization. The
first author developed an assessment guideline and procedure, REST-bench, that is
powered by the concepts underlying the REST taxonomy. The approach and assess-
ment results are described in Section 6.

4.2. Validity threats

The bottom-up construction of the taxonomy is subject to several validity
threats [Wohlin et al. 2000].

4.2.1. Internal validity. The systematic mapping study by Barmi et al. [2011], from
which we sampled publications and bootstrapped the dimensions of the taxonomy, was
initially designed to identify alignment methods focusing on non-functional require-
ments and software test. Although the scope has been extended to include also func-
tional requirements, the mapping study may have missed relevant studies3. We added
therefore 10 studies that we considered relevant. Still there is a moderate threat that
our sample of methods was biased.

4.2.2. Construct validity. The identification of characteristics defining an alignment
method, as described in Section 4.1, is subject to mono-method bias [Wohlin et al.
2000]. The first author performed the initial analysis and may have subjectively bi-
ased the taxonomy construction. To counteract this threat, we designed the taxonomy

2In the title and abstract screening we were rather inclusive, resulting in many irrelevant studies in the set
for full text reading.
3Two studies ([Flammini et al. 2009; El-Attar and Miller 2010]) that were identified in the manual search
during the validation were not identified by the search (November 2010) in the mapping study.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 M. Unterkalmsteiner et al.

construction as an iterative process, involving multiple researchers with expertise in
both requirements engineering and software verification & validation.

4.2.3. External validity. During the validation we performed a manual search on four
premium journals, identifying further methods and applying the taxonomy. The se-
lection was based on reading the title and abstract of the study, searching for indica-
tions that both requirements engineering and software testing aspects were discussed.
This means that “partial” solutions that bridge for example the gap between user re-
quirements and requirements specifications (e.g. [Liu 2009]), requirements to design
(e.g. [Valderas and Pelechano 2009]), or design to test (e.g. [Samuel et al. 2007]) were
not considered to validate the taxonomy.

The goal was to validate whether the taxonomy can be applied on alignment meth-
ods that were not part of the construction sample and not to identify and classify all
existing methods. A thorough overview of alignment methods could be performed by
conducting a systematic literature review [Kitchenham and Charters 2007]. The re-
view could be designed to include the type of the above mentioned solutions, and, by
using the taxonomy presented in this paper as an analysis aid, provide practition-
ers support in selecting and combining methods, as well as provide researchers an
overview for further empirical or conceptual research.

5. METHOD EVALUATION USING THE REST TAXONOMY

In this section we elaborate on the application of the taxonomy, exemplifying analysis
on two levels. First, we show the potential of the taxonomy as a mean to describe
the state-of-the-art of REST alignment methods in Section 5.1. Then, in Section 5.2
we illustrate the application of the dyad structure property analysis introduced in
Section 3.4.

5.1. Summary analysis

In Figure 2 we have classified the alignment methods presented in the 13 studied cases
which allows us to perform basic quantitative analysis. We observe that the mode for
number of dyads is 2, the median is 3. This indicates that methods with more than 4
dyads are uncommon. A similar observation can be made on the number of nodes, with
a mode of 3 and a median of 4. Methods with more than 4 nodes are not common.

The right part of Figure 2 shows the distribution of nodes in the respective software
development phases. The links between nodes highlight dyads which span over distinct
development phases. Overall, we can observe a slight majority of nodes in the earlier
phases (RE:26, ST:24). This tendency is more pronounced (RE:17, ST:12) if we exclude
the cases C, E, F and G, which have an untypical (w.r.t. the mode) high number of
nodes.

Looking at the alignment mechanisms, connection and transformation are the most
common alignment mechanisms with a frequency of 15, followed by bridge (9) and
implicit connection (6). The proportion of within and between phase links is 1:1, i.e.
there are 22 links between and equal as many links within development phases. Fig-
ure 2 illustrates also the types of mechanisms linking nodes in distinct development
phases (within-phase links are not shown). Overall, we observe that for the connection
mechanism the between-phase links dominate (9 out of 15), whereas for the bridge
mechanism within-phase links dominate (7 out of 9). For the transformation and im-
plicit connection mechanism, within- and between-phase links are equally distributed
(7 within, 8 between and 3 within, 3 between). The occurrences of alignment medium
are as follows: Process (22), Tool (17), Structured artifact (4) and Organization of work
environment (1).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:21

The connection mechanism, which we defined as establishing a logical link between
information in two nodes (see Section 3.2.3), can be viewed as a mean to establish
traceability. Given that this alignment mechanism, together with transformation, was
observed most frequently, we can assert that establishing traceability is, in general,
a main concern of the studied alignment methods. As shown in the analysis, the
between-phase links with a connection type mechanism dominate, mapping for ex-
ample technical requirements to test scenarios (Case I [Damian et al. 2005]), require-
ments classification trees to logical test scenarios (Case G [Conrad et al. 2005]), or
test reports to requirements models (Case H [Abbors et al. 2009]). This observation
concurs with Gotel and Finkelsteins’ [1994] definition of requirements traceability re-
ferring to “the ability to describe and follow the life of a requirement, in both forwards
and backwards direction”. Note however that traceability (respectively nodes) to the
analysis/design and implementation phase is sparse due to our selection criteria for
RE and ST alignment methods (we excluded methods which addressed only a subset
of the development phases). One exception is Case E [Miller and Strooper 2010] in
which formal specifications and testgraphs are mapped to the implementation.

In the analysis we have identified eight between-phase links featuring a transforma-
tion mechanism. Looking at Figure 2, the corresponding nodes are almost exclusively
(except Case D [El-Attar and Miller 2010]) located in the late RE phase, preceded by
one or more nodes. This pattern is expected for model transformations, e.g. as in Case
F [Nebut et al. 2006] (use case transitions system → test objectives) or Case L [Siegl
et al. 2010] (time usage model → test cases). It also shows that transformation links
from early RE phases to ST are not common.

One aspect that is currently not considered in the taxonomy is the cost of creat-
ing and maintaining the links between nodes and hence maintaining the alignment.
Would the taxonomy have been available to the originators of the discussed align-
ment methods, they could have assigned a relative cost to each link. That would allow
us to compare the cost of the methods in the distinct software development phases.
Furthermore, an absolute cost measure would allow one to reason on return on in-
vestment [Unterkalmsteiner et al. 2012], provided that the benefits can be estimated
too.

5.2. Dyad structure analysis

The goal of this analysis is to provide means to reason on the benefits and liabilities of
REST alignment methods. In particular, the analysis allows to discuss the trade-offs
of methods on a level that is relevant for practitioners that seek to adopt a method and
to improve REST alignment in their context. The trade-off analysis is based upon the
dyad structure properties defined in Section 3.4.

For each of the properties, a value can be extracted from the the dyad structure that
has been established when applying the taxonomy on the REST alignment method.
Then, benefits and liabilities can be elaborated for each dyad structure property. Ta-
ble II illustrates this analysis on four methods, using the results from the taxonomy
application shown in Section 3.5.

The current set of dyad structure properties defines four properties that can, by
their nature, be found in every REST alignment method: each method consists of two
or more nodes (number of nodes (P1)), of which one or more nodes belong either to
the RE or ST development phases (RE and ST nodes proportion (P4), between-phase
links (P5b) and scope (P6)). As such, these four properties underline the scope criterion
of alignment methods described in Section 3.1 and hence define a minimum set of
properties for a REST alignment method.

The remaining properties (branches (P2), intermediate nodes (P3), within-RE and
within-ST links (P5a, P5c)) are not featured by every alignment method, as seen for

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 M. Unterkalmsteiner et al.

Table II: Example of trade-off analysis using dyad structure properties

Prop.a Valueb Benefit Liability

Case A

P1 3 Few artifact types involved Transf. in dyad N2-N3 complex and iterative
P4 2:1 Reduces ST effort Limited to abstract test cases
P5a Connection (N1-N2) Efficient for new/changed requirements None
P5b Transformation

(N2-N3)
Defined and repeatable process Relies on specific notation for requirements

P6 Early RE - Early ST Supports ST in defining test scope Concrete test cases are not created

Case B

P1 4 No new artifact types are introduced Tailored for a specific reference architecture
P3 1 Supports the semi-automated generation of

test cases
Incorrect system configuration may cause
faulty executable tests

P4 1:2 None Abstraction level not easily matched
P5b Implicit connection

(N1-N2)
Given natural language requirements (NLR’s)
are appropriately formulated, mapping to ab-
stract test cases is straightforward

Mapping is not explicit; domain knowledge re-
quired to create mapping

P5c Transformation
(N2-N4)

Instantiation of abstract test cases for a spe-
cific configuration

Correctness of configuration itself is not veri-
fied

P6 Early RE - Late ST Tests cover requirements considering specific
configurations

Early link (N1-N2) does not address different
abstraction levels of NLR’s and test cases

Case C

P1 7 Broken down complexity into simple steps Artifacts needed solely in testing
P2 1 Separation of concerns (Scenario development

/ Statechart model)
Information needs to be merged again for test-
ing purpose

P4 2:5 Analysis of reqs. tailored to support testing Limits reuse in other development phases
P5a Bridge (N1-N3) Enables transformation for between-phase

link (N3-N5)
Domain knowledge required to establish and
maintain

P5b Bridge (N1-N2) /
Transformation
(N3-N5)

Formalized and automated transformation Transformation depends on three previous
links

P5c Connection (N2-N4)
/ Transformation
(N5-N6, N6-N7)

Step-wise refinement and adaption of abstrac-
tion level...

...except for N2-N4, which may introduce a bot-
tleneck when scenarios or SRSs change

P6 Early RE - Late ST Enables traceability, allowing to verify re-
quirements coverage

Although partly automated overall, nodes in
early RE are linked manually

Case D

P1 4 Few newly introduced artifact types None
P2 1 Enables link between problem and solution do-

main
Needs to be maintained in parallel as require-
ments change to avoid inconsistencies

P4 2:2 Similar abstraction level in both RE and ST None
P5a Transformation

(N1-N3)
Defined and structured process Requires training to apply correctly

P5b Transformation
(N1-N2)

Usable even without executable test cases Uses information from different models, poten-
tially causing inconsistencies

P5c Connection (N2-N4) Enables traceability None
P6 Late RE - Late ST Focus on artifacts that have similar abstrac-

tion level
Does not cover early RE, e.g. natural language
requirements specifications

aThe abbreviations in this column refer to the dyad structure properties defined in Section 3.4:
P1 (Number of nodes), P2 (Branches), P3 (Intermediate nodes), P4 (RE and ST nodes pro-
portion), P5a (Within-RE links), P5b (Between-Phase links), P5c (Within-ST links), P6 (Scope).
bThe values in this column are based on the results of the taxonomy application illustrated in Appendix A.1.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:23

example in Case A in Table II. They do however provide relevant information on the
alignment methods as the benefits and liabilities show in Cases B, C and D. Conclud-
ing on the dyad structure analysis, the six properties provide means to characterize
and analyze individual REST alignment methods, are however not adequate to enable
a comparison between methods as not all properties can be observed in every method.
The assessment of benefits and liabilities in Table II should therefore be interpreted
in the context of the respective methods. For example, the methods presented in Cases
A and B, with a relatively low complexity according to our classification, rely on a cer-
tain requirements specification form and reference architecture (see assumptions in
Table IV). Furthermore, the motivations and targeted goals of these methods differ
(test process efficiency vs. test coverage), such that general conclusions on the ade-
quacy of a method, based alone on the quantitative classification of dyad structure
properties, are likely not to be accurate. In order to reduce the risk of a misleading
taxonomy application, we recommend therefore to interpret the quantitative classifi-
cation in conjunction with the qualitative classification (method context), which pro-
vides information that indeed allows adequacy judgments on a method with respect to
particular company settings and goals.

5.3. Lessons learned and limitations

In Iteration 5 of the taxonomy construction (see Section 4.1) we searched in 635 publi-
cations for REST alignment methods. We expected to identify a number of publications
that would allow us to illustrate the characteristics of the state-of-the-art REST align-
ment methods. We excluded however, applying the scope criterion (see Section 3.1) 630
publications, indicating that there is a lack of research and solution proposals on sup-
porting the alignment between RE and ST. On the other hand, we identified several
“partial” solutions (from the RE and ST alignment perspective), that address specific
gaps. From the RE perspective we observed efforts to improve the traceability from
requirements engineering activities and artifacts to design (e.g. [Houmb et al. 2010;
Navarro et al. 2010; Pires et al. 2011]), and similarly, from the ST perspective, test
generation from design artifacts (e.g. [Xu et al. 2010; Kundu et al. 2009; Pickin et al.
2007]). Together with the low number of identified RE and ST alignment methods,
this indicates that the envisioned closer collaboration between RE and ST researchers
[Cheng and Atlee 2007; Bertolino 2007] is still in its early development, that there is
potential in streamlining the efforts in the respective areas, and that the proposed tax-
onomy can indicate gaps in research. For example, it could be investigated whether the
partial solutions can be combined and which adaptions need to be made to construct
new REST alignment methods.

Regarding the components of the taxonomy, we experienced that the classification
of medium, characterizing the link in an information dyad, can be confounded. The
medium characterizes a link between nodes, not the information in the node. This
makes the analysis conceptually more difficult and may lead the analyst to (wrongly)
classify the medium of information in the node instead of the link. On the other hand,
applying the taxonomy according to the guidelines (Section 3) and limiting the charac-
terization of the medium on the link, leads to classifications were the medium is often
a process (i.e. the process/activity transferring the information from node A to node
B). A factor that contributes to the difficulty in classifying the link medium is that
the taxonomy defines a medium both as a carrier of information and also as a facilita-
tor that enables information transfer (see Section 3.2.2). Further use or application of
the taxonomy might show whether medium as a characteristic of an information link
needs to be refined, either by a more precise definition or by modeling it in a different
manner. In this study we have tried to strike a balance between analytical depth and
taxonomy usability and thus opted for not refining the concept of a medium.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 M. Unterkalmsteiner et al.

The construction and application of this particular taxonomy was subject to a cir-
cular problem. The publications and RE and ST alignment methods we studied were
likely not written with the concept of an information dyad in mind. Still the concept
can be used to characterize a wide variety of alignment methods. Extracting the char-
acteristics is for the same reason challenging and for some cases not objectively pos-
sible e.g. de Caso et al. [2010], Uzuncaova et al. [2010], and Grieskamp et al. [2011],
which we excluded from further analysis in Iteration 5 although seemingly relevant.
Would there have been a taxonomy on RE and ST alignment methods available when
these methods were conceived, they may have been reported differently. We propose
that our taxonomy can be used to structure and give detail in future papers that re-
port on alignment methods. Such an effect has been observed in the Global Software
Engineering community after the publication of a classification scheme for empirical

research in the area [Šmite et al. 2008].

6. INDUSTRIAL CASE STUDY USING REST-BENCH

To make the REST taxonomy relevant for industrial assessment of alignment we cre-
ated a lightweight framework. REST-bench is powered by the REST taxonomy, reusing
the information dyad and dyad structure concepts presented in Section 3, but also in-
cludes process elements (how to use REST-bench) and analysis and visualization ele-
ments. This section shows the industrial application and test of the taxonomy through
the use of REST-bench in an case study. We describe REST-bench in Section 6.1,
present the results in Section 6.2 and illustrate the dyad structure analysis in Sec-
tion 6.3.

6.1. REST-bench process overview

The goal of the assessment is to identify improvement opportunities in the coordina-
tion between the requirements engineering and the system testing organization. In
order to elicit information on the current state of affairs, REST-bench focuses on the
relationships between artifacts created and used by the different roles in the software
organization, particularly by RE and ST roles. The choice of centering the assessment
around artifacts is motivated by their importance in carrying information, which is the
basis for characterizing alignment (as we have illustrated with the information dyad
in the REST taxonomy). The objectives of the assessment are to:

— elicit, from the RE and the ST perspective, the artifacts that they create and for
which purpose these artifacts are created

— contra-pose those two perspectives to identify disagreement
— identify deficiencies in the creation/use of artifacts that impede alignment

The procedure to achieve these objectives is summarized in the following steps.

STEP 1 (SELECTION): Representatives from the RE and the ST role are inter-
viewed. One important constraint for the selection of interviewees is that they have
or are currently collaborating in the same project. This allows elicitation of informa-
tion on the actually created and used artifacts instead of referring to what is prescribed
or recommended by the official process in an organization. The interviews with the RE
and ST representative are conducted separately, following a guideline that supports
the analyst to collect information regarding the context of the agreed upon project and
the artifacts created and used in the project.

STEP 2 (MAP CREATION): The analyst creates an artifact map which shows use-
relationships between the artifacts in the studied project. Furthermore, each artifact
is annotated with the role(s) that created and used it during the project. This artifact

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:25

map merges the perspectives of the RE and ST representatives, providing a basis for
discussion and analysis during the following step.

STEP 3 (ANALYSIS WORKSHOP): The analyst, RE and ST representatives con-
duct a workshop in which the artifact map is reviewed. Artifacts, relationships, users
and creators are confirmed, modified or extended. The RE and ST views are merged
and the analyst uses the dyad structure properties to elaborate together with the work-
shop participants potential improvements.

We reuse the concept of dyad structure properties, introduced in Section 3.4, in the
analysis of the nodes represented in the artifact map, refining however the definition
of the properties to the particular context of assessing alignment (alignment-as-state).
For each property, we propose a set of questions the analyst may ask during the work-
shop to initiate the discussion and analysis.

6.1.1. Number of nodes (P1). In the assessment of an organization, the number of nodes
relevant for REST alignment is a first indicator for identifying bottlenecks or over-
head. Too few nodes can indicate challenges in coordinating RE and ST activities
since the necessary information is not shared effectively. On the other hand, too many
nodes can indicate that much effort is spent on keeping these nodes up-to-date and
synchronized, not to mention roles and responsibilities. Each node can represent an
individual, department or role in an organization. If this is the case, each link be-
tween nodes can imply the creation of overhead and possibilities for everything from
misunderstandings [Gorschek and Davis 2008] to miscommunications due to sub-
optimization [Fricker et al. 2010].

— Is there an information need that was not fulfilled by the used artifacts?
— (If applicable) Given that artifact X doesn’t have any user / is only used by A, could

the information in artifact X be merged into artifact Y?

6.1.2. Branches (P2). The contribution of branches to REST alignment needs to be
evaluated. In particular, whether the information in a branch node is actually used
in either a RE or ST activity, or whether the branch has a different purpose. Such a
distinction is needed for a more accurate estimation of the spent effort for REST align-
ment. In extreme cases a branch can be seen as “dead”, adding nothing to alignment,
which becomes visible when applying the taxonomy evaluation, but is not obvious in
every-day activities. For example, test plans that are derived from initial requirements
specifications have little value if not updated and maintained as the development pro-
ceeds and requirements change. In such a scenario a detailed test plan, e.g. specifying
which requirements are covered by which test cases, is waste as it won’t be used, due
to its inaccuracy, during testing.

— How is the information in artifact X kept consistent with the information in artifact
Y, in the case Z changes (Z has two links, a branch, to X and Y)?

— If inconsistencies between artifacts X and Y arise, how does that impact the users
of those artifacts and their work?

6.1.3. Intermediate nodes (P3). It is important to identify and to understand the pur-
pose of intermediate nodes for two reasons. First, changes to nodes in the design or
implementation phase may inadvertently affect REST alignment. For example, the re-
placement of a design artifact with more frequent meetings between analysts and pro-
grammers may reduce the documentation effort, however breaking at the same time
an important link that establishes a connection between high-level requirements and
system tests. This is especially relevant for organizations moving from a plan-driven to
a lean/agile development process where an improvement in saving of perceived over-
head in terms of documentation can be a sub-optimization from a product perspec-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 M. Unterkalmsteiner et al.

tive [Gorschek and Davis 2008]. Second, intermediate nodes may also represent an
overhead that may be eliminated without affecting REST alignment. Both scenarios
become visible through the application of a REST alignment analysis.

— Do the creators of artifact X (designers), deliver timely, i.e. can the information ac-
tually be accessed in ST when necessary?

6.1.4. RE and ST node proportion (P4). The proportion of nodes in the RE and ST phases
can be used as an indicator for the relative effort spent on REST alignment in the
respective phases. A REST alignment assessment can enable an overview and subse-
quent optimization by removing or changing items detrimental for alignment, as seen
next.

6.1.5. Within-RE (P5a) / Between-Phase links (P5b) / Within-ST (P5c). The amount and qual-
ity of Within-RE, Within-ST and Between-Phase links can drive improvements that
aim to optimize the links as such and their interplay throughout the development
phases. For example, an ad-hoc connection of business with user requirements could be
replaced by a more rigorous mechanism that explicates relationships between business
requirements that are also reflected in user requirements. Such a change in RE is how-
ever only reasonable if user requirements are actually linked to test cases, such that
ST can adapt its test strategy on the information provided in RE. If the Between-Phase
link does not exist or is inefficient, an improvement of the RE links would not achieve
the anticipated benefits. Thus, an SPI initiative or just introducing a tool might be
beneficial for requirements management, but without a REST alignment assessment
the benefit or even detrimental nature of a change can not be seen.

— How does staff turnover affect the quality of requirements and derivative artifacts?
— In case requirements change, by whom/how/when are these changes propagated to

linked artifacts?
— Does inconsistency of information among artifacts affect the work in: RE, ST, the

interface between both?

6.1.6. Scope (P6). Scope evaluation can lead to the identification of areas in RE or ST
where the alignment may be improved or even established as the taxonomy makes
deficiencies in linking information explicit. Most importantly, it allows to identify gaps
that would have not been perceived as such when looking at them from either the RE
or ST perspective alone. For example, system requirements may be linked to system
tests, allowing to determine test progress. However, if the system requirements are
not linked to business requirements, a statement on the verified portion that provides
business value can not be made.

— (Identify artifacts that are created by RE and ST and ask which input is used to
actually develop them)

— How is the consistency between these inputs and the developed artifacts maintained
over time? What are the advantages/drawbacks of maintaining this consistency?

6.2. Case study: REST-bench results

The case presented in this paper is based on a research collaboration with Ericsson AB,
Karlskrona. Ericsson is involved in the development of embedded applications for the
telecommunication domain. The studied project, completed in autumn 2011, had a du-
ration of appropriately one calendar year. The staff consisted of 150 engineers which
were split up in seven teams. The system requirements consisted of approximately 350
user stories. The system test cases amounted to 700, of which 550 were automated. The
interviewees were selected based on their work experience and their collaboration dur-
ing the project. The RE representative, a system manager, had 12 years of experience

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:27

Fig. 4: REST-bench artifact maps from the Ericsson case study

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 M. Unterkalmsteiner et al.

in his current role whereas the ST representative, a verification engineer, had 14 years
of experience.

Figure 4 illustrates the artifact maps that were created after the interviews (Map 1)
and during the workshop (Map 2). To improve readability, the maps in Figure 4 are
not annotated with the creator and users of the artifacts as they were elicited in the
interviews. During the workshop these annotations were however useful to discuss
the purpose of certain artifacts and to identify responsibilities regarding their main-
tenance during the project life-cycle. The relationships between artifacts, represented
by a directed arrow, indicate the transfer of information. For example in Map 1, ST
uses information from “customer written requirements”, “quick studies” and “require-
ments documentation” to create “Test cases”. Map 1, merged from the RE and the ST
perspective on the project documentation, gave rise to several observations that were
addressed during the workshop:

— ST uses more artifacts to create test cases than RE is aware of
— “Feature entity descriptions” and “Protocol specifications/Service documenta-

tion”, both created by RE with ST as user, are not used by ST
— How are RE artifacts (“Customer written requirements”, “Feature level require-

ments”, “Quick studies” and “Requirements documentation” kept consistent when re-
quirements change?

— “Requirements documentation”, consisting of user stories, is not traced explic-
itly to the corresponding test cases; a specific role, the Technical Manager for Test,
mediates between test engineers and RE.

During the workshop, Map 1 was handed out to the RE and ST representatives.
They reviewed each artifact and link, proposing the changes leading to Map 2. Notice
that most of the changes (removed and added links) refer to the interface between RE
and ST. This indicates that the coordination within RE and ST respectively is well
understood, however the interplay between RE and ST is rather opaque when viewed
from a single perspective, emphasizing the value of the process of creating artifact
maps. The discussion during this process lead also to a knowledge transfer among RE
and ST, clarifying several misconceptions on the use of artifacts by the different roles
in the project:

Use of artifacts: RE stated that service documents are rather seldom updated since
they are of little use for ST. ST clarified that they are quite often used for testing.
Potential impact: ST may rely on outdated information in service documents, leading
to failed tests and/or unnecessary trouble reports.

Lifetime of artifacts: RE assumed that automated test cases (test cases for legacy
functions) are linked to user stories or requirement statements. ST clarified that they
are mapped to commercial features, which are part of the product specification and not
of the products requirements documentation. Potential impact: The usefulness of the
requirements documentation for ST ends to a certain extent when a manual test case
is automated (the link to the requirements documentation is replaced by a mapping to
a commercial feature). Assuming that requirements are reused in follow-up projects,
ST requires additional effort to decide whether new test cases need to be created or
automated test cases can be reused.

Information dispersion: The Technical Manager for Test (TMT) serves as a link be-
tween RE and ST and RE assumed that the TMT initiates testing, forwarding the
necessary information from RE. However, according to ST, testers actually pull the
necessary information from the TMT. Potential impact: The resources of the TMT are
not efficiently used since he interacts individually with testers. Information may be

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:29

available to some testers while others may not have contacted the TMT, leading to
inconsistencies among the testers’ knowledge about the system.

6.3. Identifying improvements using REST-bench

After the artifact map was reviewed by the workshop participants, leading to Map 2 in
Figure 4, the analyst used the dyad structure properties (see Section 6.1) to guide the
elaboration of improvement opportunities on the basis of the artifact map.

P1 - Number of nodes. Looking at Map 2 in Figure 4, it should be observed that
ST uses “Feature level requirements”, “Quick Study Technical Report (QSM)”, “Main
requirements test analysis” and “Requirements documentation” as input to create test
cases. The latter one is the main source, whereas the others are used complementary.
The question arises whether inconsistencies in these documents, caused for instance
by requirements changes during the design or implementation, affect ST. According to
RE, changes in user stories (part of the requirements documentation) are propagated
to the QSM, and the affected development teams and ST are invited in presentations
where these changes are discussed. In the context of this particular project, according
to ST, there were inconsistencies due to a too early test analysis. RE states that there
was a need to redesign parts of the solution, leading to consequences which were not
dealt with.

P3 - Intermediate nodes. “Feature entity descriptions” describe the system function-
ality on a compound level. RE states that early creation of this document would help
ST since it shows a better use-case of the system than the documentation written by
the individual development teams (which may be inconsistent with respect to each
other). Feature entity descriptions are written late since they describe how the system
is actually implemented and to be used which is completely known only quite late in
the project. To make the feature entity descriptions useful to ST, they would need to
be maintained and updated during the project as the implementation stabilizes. RE
states that writing the feature entity descriptions late is a local sub-optimization since
other users would benefit of being able to use them. A factor that may contribute to the
difficulty of maintaining feature entity descriptions is that the responsibility to write
them is given to technical writers (external consultants).

P5b - Between-phase links. An important interface between RE and ST is the link be-
tween “Requirements documentation” and “Test cases”. There is however no mapping
between requirements and test cases at the Integration Test level. According to ST, this
is due do the difficulty to keep this mapping up-to-date (spreadsheets are inefficient)
or to import the required information into the test management tool. According to RE
this lack of mapping may lead to lower test coverage of the requirements. Looking at
Map 2 in Figure 4, the main requirements test analysis is based on the quick study
technical report. The Technical Manager for Test (TMT) serves as a link between RE
and ST, performing the main requirements test analysis, and defining the scope for
the testing effort. In this case, the between-phase link is implicitly established by a
role, leading to the consequences discussed in Section 6.2, i.e. an inconsistency in the
testers knowledge on the system and test scope.

6.4. Lessons learned using REST-bench in industry and limitations

Overall, the assessment can be considered as lightweight in terms of effort for both
the analyst and the organization. The interviewees invested 1.5 hours each for the
interview and 2 hours for the joint workshop. In this first-time application of REST-
bench, the analysis of the collected interview data, including the creation of artifact
maps and a report summarizing the findings, required 5 days of full-time work. We

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 M. Unterkalmsteiner et al.

expect however that, with increasing experience, the effort for the analysis can be
reduced to 2 working days.

The format of the assessment, with separate interviews and a joint workshop, al-
lowed us to pinpoint disagreements in the perspectives of RE and ST representatives
on project documentation. The test engineer stated that “we have a need of improv-
ing the coordination between RE and ST. ST is in the end of the development phase
and requirements have been changed/removed and are sometimes ambiguous. There
is always a need to understand what/how/why other parts of the organization work.”
The requirements engineer agreed that REST-bench could complement a project post-
mortem process, stated however also that “it should then include more roles and per-
haps also dig into not only which documents are used but also what [parts of informa-
tion] in certain documents are actually used.”

We observed a mutual learning effect among engineers that worked for a year on the
same project and for over a decade in the same organization. As such, the artifacts map
and its review during the workshop is a valuable tool to create a shared understanding
of the coordination mechanisms in a large development project.

The dyad structure properties served as heuristics to identify potential sources of
misalignment between RE and ST. They allow for a focused analysis of issues that
emerge when both RE and ST perspectives are considered. The dyad structure proper-
ties are thereby an useful abstraction of the detail in the REST taxonomy, enabling a
more effective interaction and communication with industry.

In the assessment we used artifacts (their creation and use) as a proxy to elicit and
understand the alignment between RE and ST. Artifacts are tangible and relatively
easy to describe in terms of their purpose and content. Hence they were a natural
choice to structure the elicitation and analysis. The assessment can be however ex-
tended to achieve a more fine-grained picture of the state of REST alignment. For
example, informal communication channels and information sources, such as e-mail,
internal wikis, instant messaging and telephone calls, or meetings could be included in
the analysis. Such a detailed assessment would however require to focus the analysis
on a limited set of activities where RE and ST interact.

7. CONCLUSION AND FUTURE WORK

Taxonomies are means to structure our knowledge and to discover new relationships
between concepts, advancing the understanding of observed phenomena. The taxon-
omy presented in this paper aims at characterizing methods for requirements engi-
neering (RE) and software test (ST) alignment. Although both RE and ST are mature
research areas, their interplay has been less explored. Investigating these relation-
ships, structuring and communicating them are the major contributions as summa-
rized below:

— We have investigated the RE and ST alignment phenomenon by applying a
bottom-up and iterative approach to construct a taxonomy. The principles of this ap-
proach might also be useful to construct taxonomies in other research areas.

— The structuring of concepts that belong to different areas is a challenging task.
The information dyad is an abstraction that supports the reasoning on RE and ST
alignment methods. Although we expect that the taxonomy can be refined and ex-
tended, we claim that the concept of an information dyad is a valid construct to char-
acterize RE and ST alignment in particular, but we also foresee it as being valid to
characterize alignment in other domains of SE as well. Essentially, information can
never be adapted or aligned to each other without some type of link between them.
The dyad makes this into a first class concept and thus allows to clarify and compare
links as well as the information being linked much more explicitly and formally.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:31

— Clear definitions support communication. We have defined RE and ST alignment
both as a state and as an activity, since the meaning may differ depending on the
context. In the context of alignment-as-activity, we developed the REST taxonomy,
identifying and describing dyad structure properties that allow one to reason upon the
phenomenon of alignment. In the context of alignment-as-state, we developed REST-
bench, an alignment assessment framework powered by the REST taxonomy.

The application of the taxonomy on 13 REST alignment methods allowed us to rea-
son on the overall topology of the methods. We have observed a median of three infor-
mation dyads and a tendency to have more nodes in earlier development phases, i.e.
in RE, than in the ST phase. Assuming that the complexity of a method, and there-
fore the effort of applying it, increases with the number of nodes, this indicates that
most of the classified alignment methods require a relatively higher effort in the start-
up phase (RE) than in follow-up phases (Analysis, Implementation, ST). Interestingly,
the two most complex alignment methods (Case E and C), according to their dyad
structure properties, are geared towards a focus in ST. This is rather surprising as one
would intuitively drive the alignment effort from requirements engineering activities
(this intuition is confirmed by the majority of the other methods we classified). This
could indicate that these two methods work better in a context where the RE activities
relevant for alignment are already well understood and established.

On the opposite end of the spectrum, we observed four alignment methods (Case A,
K, M and I) that were classified with a similar, low complexity, differing however in
their focus and scope. However, only Case K has a scope that reaches from early re-
quirements engineering to late testing. This indicates that the complexity of alignment
methods correlates with their scope (although we observed also an exception with Case
F), which is not surprising.

Based on the manual search in 635 publications we identified only five REST align-
ment methods. One explanation for this low number may be the strict inclusion crite-
ria, i.e. that the publication fulfills the relevance criteria (scope, comprehensiveness,
rigor) stated in Section 3.1. The scope criterion turned out to be the most selective as
it excluded a wide range of publications that did not target both the RE and ST ar-
eas (see Section 4.1.5). Even though the analysis of the studied methods revealed that
the connection mechanism, which enables traceability, was found most frequently, the
overall low number of identified REST alignment methods signals for more research
and solution proposals that aim to bridge the gap between RE and ST.

We developed an assessment framework with the REST taxonomy as engine, called
REST-bench, and applied it in an industrial assessment at Ericsson AB. The concepts
of the REST taxonomy, integrated in REST-bench, turned out to be useful in transfer-
ring knowledge between RE and ST roles and in clarifying misunderstandings between
them. By representing the coordination between RE and ST in an artifact map, we used
the same heuristics of the dyad structure analysis performed earlier on the alignment
methods, leading to the identification of bottlenecks (i.e. synchronization of too many
artifacts) and sub-optimizations (i.e. late creation of artifacts) in the interaction be-
tween RE and ST. Since REST-bench is very lightweight, it could be integrated into
post-mortem procedures that many organizations typically perform after the closure
of a development project.

The REST taxonomy provides a novel view on the aligning requirements engineer-
ing and software test, based on a rigorous classification scheme and method. It enables
the characterization of alignment methods and the assessment of alignment in a de-
velopment organization. We are continuing our work on utilizing REST-bench as an
alignment assessment aid, since the underlying taxonomy and the developed dyad
structure properties have a great potential of identifying, characterizing and probing

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 M. Unterkalmsteiner et al.

strengths and weaknesses in the alignment between RE and ST in industry, in partic-
ular as a sanity check for process improvement initiatives.

APPENDIX

A.1. Taxonomy application on alignment methods - Results

The application of the taxonomy on 4 cases is summarized in Tables III and IV. Ta-
ble III illustrates the characterization of the identified information dyads. The empty-
set symbol (∅) indicates that we could not identify the owner of information in the
respective node. The graphs on the left in Table III illustrate the dyad structures,
showing also the mechanism and medium characterizing the link. Table IV summa-
rizes the respective method context. In the following paragraphs we describe each case,
motivating the identified dyad structures.

Case A. Güldali et al. [2011] present a method and tool support for deriving opti-
mized acceptance test plans from requirements specifications.

We have identified three nodes as illustrated in Table IIIa. The information in N1
is multi-viewpoint requirements specifications, capturing different aspects of the soft-
ware system and its environment. Since these aspects contain overlaps, the require-
ments specifications may be redundant. Leveraging on linguistic analysis, similar re-
quirements are clustered (N2) such that a reduced set of test steps and asserts can
be derived (N3). The mechanism in dyad N1-N2 is a connection since notation and
meaning of the information are not changed (individual requirements are mapped into
clusters). In dyad N2-N3 we observe however a transformation mechanism since the
relationship between requirements is preserved in the derived test plan, expressed in
the order of the test steps.

Case B. Flammini et al. [2009] propose a method to automate the verification of
computer-based control systems on different configurations.

As shown in Table IIIb, we have identified four nodes. The mechanism in dyads N1-
N2 is an implicit connection since the description of the process does not reveal how
abstract test cases are derived from the functional requirements (the focus of the study
is on the instantiation of abstract test cases). For the derivation of executable test cases
(N4), the method depends on abstract test cases (N2), and uses the configuration data
specific for the system under test (N3). The “use” relationship is shown by the dashed
link between N2 and N3. The mechanism in dyad N2-N4 is a transformation since
the notation of the non-executable test model (abstract test cases) is translated into
concrete test cases, preserving the relationships between the abstract test cases by
leveraging the information provided in the system specific configuration (N3).

Case C. de Santiago Júnior and Vijaykumar [2012] describe a methodology to gen-
erate scenario-based test cases from natural language requirements.

We have identified seven nodes as illustrated in Table IIIc. The information in N2,
factors and levels upon which scenarios are generated, are derived from the software
requirements specification (N1). The link mechanism is a bridge since in the pro-
cess, the notation of the information in N2 changes, but the meaning (i.e. the decision
whether a certain combination of factors and levels is relevant) has to be maintained
by the test designer. The analogous argument applies for the dyad N1-N3, in which the
test designer needs to apply his domain knowledge to establish the dictionary (N3). In
dyad N2-N4, the test designer establishes a mapping between the generated test sce-
narios and the related requirements. This information is used (hence the dashed con-
nector) in N3 and N6 to generate statechart models and executable test cases. Since
the link in dyad N2-N4 establishes a logical link between requirements and scenar-
ios, we define the mechanism as a connection. The dyads N3-N5, N5-N6 and N6-N7

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:33

Table III: Results of the REST taxonomy application on four in-depth cases

(a) Case A

ID Node name Information Owner

N1 Requirement specification Nat. lang. specifications ∅
N2 Requirements analysis Requirements clusters ∅
N3 Test specification Testplan / Abstract test

cases
Test manager

Dyads (2): N1-N2, N2-N3

(b) Case B

ID Node name Information Owner

N1 Requirement specification System functional require-
ments

∅

N2 Test modeling Abstract test cases ∅
N3 Implementation System specific configuration ∅
N4 Test implementation Executable test cases ∅

Dyads (2): N1-N2, N2-N4

(c) Case C

ID Node name Information Owner

N1 Requirement specification Nat. lang. specifications ∅
N2 Scenario definition Factors and Levels Test designer
N3 Requirement analysis Dictionary Test designer
N4 Scenario mapping SRS to scenario mapping Test designer
N5 Test modeling Statechart model Test designer
N6 Test specification Abstract test cases Test designer
N7 Test implementation Executable test cases Test designer

Dyads (6): N1-N2, N1-N3, N2-N4, N3-N5, N5-N6, N6-N7

(d) Case D

ID Node name Information Owner

N1 Requirement specifica-
tion

Use cases, domain mod-
els

Bus. analyst

N2 Acceptance test design High level acceptance
tests

Bus. analyst

N3 Requirement analysis Robustness diagrams Bus. analyst
N4 Acc. test implementa-

tion
Executable acceptance
tests

Bus. analyst

Dyads (3): N1-N2, N1-N3, N2-N4

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 M. Unterkalmsteiner et al.

Table IV: Context of the four in-depth cases

Case A

Aspect Description

Method setting 319 requirements, functional and non-functional requirements, requirements-based
acceptance testing / test-planning, bespoke RE, natural language requirements

Focus 4) Main purpose was to improve / affect alignment
Motivation Inconsistencies, redundancies and dependencies in requirements documents, repre-

senting different viewpoints of a system, lead to erroneous tests, increased test effort
and complex test plans

Assumptions Natural language requirements specified in template-form
Quality targets Improve test plans and make the test process more efficient
Validation Clustered requirements and generated test-plans are reviewed and, if necessary, re-

fined

Case B

Aspect Description

Method setting 1500 abstract and 200,000 executable tests, implementation and verification under
safety norms, functional requirements, system testing (instantiation of abstract test
cases based on concrete system configurations)

Focus 4) Main purpose was to improve / affect alignment
Motivation Manual instantiation of configuration-specific test cases is a time-consuming activity
Assumptions Requires a certain reference software architecture; control system can be abstracted

as a FSM
Quality targets Improve configuration coverage in system tests
Outcome Generation of executable test cases is by orders of magnitude more efficient than

creating them manually

Case C

Aspect Description

Method setting 175 scenarios derived from requirements, SDLC includes independent V&V, func-
tional requirements, model-based system and acceptance testing, bespoke require-
ments, natural language requirements

Focus 5) Intended, main as well sole purpose
Motivation Natural language used the most in specifying software requirements and deriving

scenarios for system and acceptance tests is challenging and time-consuming
Outcome Quality of derived executable test cases is comparable to expert’s

Case D

Aspect Description

Method setting small-scale example application, functional requirements, acceptance testing, natural
language requirements and models

Focus 5) Intended, main as well sole purpose
Motivation Lack of process that allows analysts to develop acceptance tests from use case models

without requiring additional design artifacts
Quality targets Development of comprehensive and effective acceptance tests
Validation With robustness diagrams, consistency of use case and domain models can be checked

informally

Note: Aspects which could not be identified in the paper are not shown in the table.

feature a transformation mechanism since relationships between requirements (stem-
ming from the scenario mapping in N4) are preserved in the statechart model (N5), in
the abstract test cases (N6) and in the executable test cases (N7).

Case D. El-Attar and Miller [2010] propose a method to derive executable acceptance
tests from use case models, domain models and robustness diagrams.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:35

We have identified four nodes as shown in Table IIId. In dyad N1-N2, the busi-
ness analyst derives from use case and domain models high level acceptance tests
(HLAT) which can be used to evaluate the system manually. We observe a transfor-
mation mechanism since the procedure for maintaining the relationships between use
cases in the corresponding HLATs is well defined. Similarly, robustness diagrams (N3)
are constructed to ensure consistency between use cases and domain models. The link
in dyad N2-N4 is established by a connection mechanism, mapping HLATS with exe-
cutable test cases and using robustness diagrams (dashed connector N4-N3).

References

ABBORS, F., TRUSCAN, D., AND LILIUS, J. 2009. Tracing requirements in a model-based testing approach.
In Proceedings 1st Internation Conference on Advances in System Testing and Validation Lifecycle
(VALID). IEEE, Porto, Portugal, 123–128.

ALDRICH, J., CHAMBERS, C., AND NOTKIN, D. 2002. ArchJava: connecting software architecture to im-
plementation. In Proceedings 24th International Conference on Software Engineering (ICSE). IEEE,
Orlando, USA, 187–197.

AMYOT, D. AND MUSSBACHER, G. 2001. Bridging the requirements/design gap in dynamic systems with
use case maps (UCMs). In Proceedings 23rd International Conference on Software Engineering (ICSE).
IEEE, Washington, USA, 743–744.

ARNOLD, D., CORRIVEAU, J.-P., AND SHI, W. 2010. Scenario-based validation: Beyond the user require-
ments notation. In Proceedings 21st Australian Software Engineering Conference (ASWEC). IEEE,
Auckland, Australia, 75–84.

AVIŽIENIS, A., LAPRIE, J.-C., RANDELL, B., AND LANDWEHR, C. 2004. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions on Dependable and Secure Computing 1, 1, 11–
33.

BARMI, Z. A., EBRAHIMI, A. H., AND FELDT, R. 2011. Alignment of requirements specification and testing:
A systematic mapping study. In Proceedings 4th International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW). IEEE, Berlin, Germany, 476–485.

BECK, K. 1999. Embracing change with extreme programming. Computer 32, 10, 70–77.

BERTOLINO, A. 2007. Software testing research: Achievements, challenges, dreams. In Proceedings Future
of Software Engineering (FOSE). IEEE, Minneapolis, USA, 85–103.

BLUM, B. I. 1994. A taxonomy of software development methods. Communications of the ACM 37, 11, 82–94.

BOEHM, B. W. 1988. A spiral model of software development and enhancement. Computer 21, 5, 61–72.

BOURQUE, P. AND DUPUIS, R. 2004. Guide to the Software Engineering Body of Knowledge 2004 Version.
IEEE.

BROUGHTON, V. 2004. Essential Classification 1st Ed. Facet Publishing.

BRÖHL, A.-P. AND DRÖSCHEL, W. 1995. Das V- Modell. Der Standard in der Softwareentwicklung mit
Praxisleitfaden. Oldenbourg R. Verlag GmbH.

BUCKLEY, J., MENS, T., ZENGER, M., RASHID, A., AND KNIESEL, G. 2005. Towards a taxonomy of software
change. Journal of Software Maintenance and Evolution: Research and Practice 17, 5, 309–332.

BUNSE, C., FREILING, F., AND LEVY, N. 2006. A taxonomy on component-based software engineering meth-
ods. In Architecting Systems with Trustworthy Components. Lecture Notes in Computer Science Series,
vol. 3938. Springer Verlag, 103–119.

CHENG, B. H. AND ATLEE, J. M. 2007. Research directions in requirements engineering. In Proceedings
Future of Software Engineering (FOSE). IEEE, Minneapolis, USA, 285–303.

CLELAND-HUANG, J., CHANG, C. K., AND CHRISTENSEN, M. 2003. Event-based traceability for managing
evolutionary change. IEEE Transactions on Software Engineering 29, 9, 796–810.

CONRAD, M., FEY, I., AND SADEGHIPOUR, S. 2005. Systematic model-based testing of embedded automotive
software. In Electronic Notes in Theoretical Computer Science. Vol. 111. Elsevier, 13–26.

DAMIAN, D., CHISAN, J., VAIDYANATHASAMY, L., AND PAL, Y. 2005. Requirements engineering and down-
stream software development: Findings from a case study. Empirical Software Engineering 10, 3, 255–
283.

DE CASO, G., BRABERMAN, V., GARBERVETSKY, D., AND UCHITEL, S. 2010. Automated abstractions for
contract validation. IEEE Trans. Softw. Eng. PP, 99, 1.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 M. Unterkalmsteiner et al.

DE LUCIA, A. D., FASANO, F., OLIVETO, R., AND TORTORA, G. 2007. Recovering traceability links in
software artifact management systems using information retrieval methods. ACM Trans. Softw. Eng.
Methodol. 16, 4, 13.

DE SANTIAGO JÚNIOR, V. AND VIJAYKUMAR, N. 2012. Generating model-based test cases from natural
language requirements for space application software. Software Quality Journal 20, 1, 77–143.

EL-ATTAR, M. AND MILLER, J. 2010. Developing comprehensive acceptance tests from use cases and ro-
bustness diagrams. Requirements Engineering 15, 3, 285–306.

ELRAD, T., ALDAWUD, O., AND BADER, A. 2002. Aspect-oriented modeling: Bridging the gap between im-
plementation and design. In Generative Programming and Component Engineering. Lecture Notes in
Computer Science Series, vol. 2487. Springer Verlag, 189–201.

FELDT, R. 2002. Biomimetic software engineering techniques for dependability. Ph.D. thesis, Department of
Computer Engineering, Chalmers University of Technology, Gothenburg, Sweden.

FLAMMINI, F., MAZZOCCA, N., AND ORAZZO, A. 2009. Automatic instantiation of abstract tests on specific
configurations for large critical control systems. Software Testing, Verification and Reliability 19, 2,
91–110.

FLORIDI, L. 2010. Information: A Very Short Introduction. Oxford University Press, Usa.

FORSBERG, K. AND MOOZ, H. 1991. The relationship of system engineering to the project cycle. In Pro-
ceedings of the National Council for System Engineering (NCOSE) Conference. Chattanooga, TN, USA,
57–65.

FRICKER, S., GORSCHEK, T., BYMAN, C., AND SCHMIDLE, A. 2010. Handshaking with implementation
proposals: Negotiating requirements understanding. IEEE Softw. 27, 2, 72–80.

GLASS, R., VESSEY, I., AND RAMESH, V. 2002. Research in software engineering: an analysis of the litera-
ture. Information and Software Technology 44, 8, 491–506.

GLASS, R. L. 2002. Sorting out software complexity. Commun. ACM 45, 11, 19–21.

GLASS, R. L. AND VESSEY, I. 1995. Contemporary application-domain taxonomies. IEEE Software 12, 4,
63–76.

GORSCHEK, T. AND DAVIS, A. 2008. Requirements engineering: In search of the dependent variables. Infor-
mation and Software Technology 50, 1-2, 67–75.

GORSCHEK, T. AND WOHLIN, C. 2006. Requirements abstraction model. Requirements Engineering 11, 1,
79–101.

GOTEL, O. C. AND FINKELSTEIN, C. W. 1994. An analysis of the requirements traceability problem. In
Proceedings 1st International Conference on Requirements Engineering (RE). IEEE, Colorado Springs,
USA, 94–101.

GRAHAM, D. 2002. Requirements and testing: seven missing-link myths. IEEE Software 19, 5, 15–17.

GRIESKAMP, W., KICILLOF, N., STOBIE, K., AND BRABERMAN, V. 2011. Model-based quality assurance
of protocol documentation: tools and methodology. Software Testing, Verification and Reliability 21, 1,
55–71.

GRUNSKE, L. 2008. Specification patterns for probabilistic quality properties. Proceedings of the 30th inter-
national conference on Software engineering, 31–40. ACM ID: 1368094.

GÜLDALI, B., FUNKE, H., SAUER, S., AND ENGELS, G. 2011. TORC: test plan optimization by requirements
clustering. Software Quality Journal 19, 4, 771–799.

HALL, J. G., JACKSON, M., LANEY, R. C., NUSEIBEH, B., AND RAPANOTTI, L. 2002. Relating software
requirements and architectures using problem frames. In Proceedings 10th International Conference on
Requirements Engineering (RE). IEEE, Essen, Germany, 137– 144.

HAYES, J., DEKHTYAR, A., SUNDARAM, S., HOLBROOK, E., VADLAMUDI, S., AND APRIL, A. 2007. REquire-
ments TRacing on target (RETRO): improving software maintenance through traceability recovery. In-
novations in Systems and Software Engineering 3, 3, 193–202.

HAYES, J. H., DEKHTYAR, A., AND SUNDARAM, S. K. 2006. Advancing candidate link generation for re-
quirements tracing: The study of methods. IEEE Transactions on Software Engineering 32, 1, 4–19.

HOUMB, S. H., ISLAM, S., KNAUSS, E., JÜRJENS, J., AND SCHNEIDER, K. 2010. Eliciting security re-
quirements and tracing them to design: An integration of common criteria, heuristics, and UMLsec.
Requirements Engineering 15, 1, 63–93.

IEEE. 1990. IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990, 1–84.

IVARSSON, M. AND GORSCHEK, T. 2010. A method for evaluating rigor and industrial relevance of technol-
ogy evaluations. Empirical Software Engineering 16, 3, 365–395.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:37

KITCHENHAM, B. AND CHARTERS, S. 2007. Guidelines for performing systematic literature reviews in
software engineering. Technical Report EBSE-2007-01, Software Engineering Group, Keele University
and Department of Computer Science, University of Durham, United Kingdom.

KOP, C. AND MAYR, H. C. 1998. Conceptual predesign bridging the gap between requirements and con-
ceptual design. In Proceedings 3rd International Conference on Requirements Engineering (RE). IEEE,
Colorado Springs, USA, 90–98.

KRUCHTEN, P. 2000. The Rational Unified Process: An Introduction, Second Edition 2nd Ed. Addison-Wesley
Longman Publishing, Boston, MA, USA.

KUKKANEN, J., VÄKEVÄINEN, K., KAUPPINEN, M., AND UUSITALO, E. 2009. Applying a systematic ap-
proach to link requirements and testing: A case study. In Asia-Pacific Software Engineering Conference.
IEEE Computer Society, Los Alamitos, CA, USA, 482–488.

KUNDU, D., SARMA, M., SAMANTA, D., AND MALL, R. 2009. System testing for object-oriented systems
with test case prioritization. Software Testing, Verification and Reliability 19, 4, 297–333.

KWASNIK, B. H. 1992. The role of classification structures in reflecting and building theory. Advances in
Classification Research Online 3, 1, 63–82.

KWASNIK, B. H. 1999. The role of classification in knowledge representation and discovery. Library
trends 48, 1, 22–47.

LAPLANTE, P. A. 2007. What Every Engineer Should Know about Software Engineering 1st Ed. CRC Press.

LINNAEI, C. 1735. Systema Naturae: Sive Regna Tria Naturae Systematice Proposita Per Classes, Ordines,
Genera, & Species. Lugduni Batavorum.

LIU, S. 2009. Integrating top-down and scenario-based methods for constructing software specifications.
Information and Software Technology 51, 11, 1565–1572.

MADHAVJI, N. H. 1991. The process cycle [software engineering]. Software Engineering Journal 6, 5, 234–
242.

MARCZAK, S. AND DAMIAN, D. 2011. How interaction between roles shapes the communication structure
in requirements-driven collaboration. In Proceedings 19th International Conference on Requirements
Engineering (RE). IEEE, Trento, Italy, 47–56.

MARTIN, R. C. AND MELNIK, G. 2008. Tests and requirements, requirements and tests: A möbius strip.
IEEE Software 25, 1, 54–59.

MEHTA, N. R., MEDVIDOVIC, N., AND PHADKE, S. 2000. Towards a taxonomy of software connectors. In
Proceedings 22nd International Conference on Software Engineering (ICSE). ACM, Limerick, Ireland,
178–187.

MELNIK, G., MAURER, F., AND CHIASSON, M. 2006. Executable acceptance tests for communicating busi-
ness requirements: customer perspective. In Agile Conference. IEEE, Minneapolis, USA, 12–46.

METSA, J., KATARA, M., AND MIKKONEN, T. 2007. Testing non-functional requirements with aspects: An
industrial case study. In Proceedings 7th International Conference on Quality Software (QSIC). IEEE,
Portland, USA, 5–14.

MILLER, T. AND STROOPER, P. 2010. A case study in model-based testing of specifications and implemen-
tations. Software Testing, Verification and Reliability 22, 1, 33–63.

MUCCINI, H., INVERARDI, P., AND BERTOLINO, A. 2004. Using software architecture for code testing. IEEE
Trans. Softw. Eng. 30, 3, 160– 171.

MUGRIDGE, R. 2008. Managing agile project requirements with storytest-driven development. IEEE Soft-
ware 25, 1, 68–75.

MURPHY, G. C., NOTKIN, D., AND SULLIVAN, K. J. 2001. Software reflexion models: bridging the gap be-
tween design and implementation. IEEE Trans. Softw. Eng. 27, 4, 364–380.

MYLOPOULOS, J. AND CASTRO, J. 2000. Tropos: A framework for requirements-driven software develop-
ment. In Information systems engineering: state of the art and research themes. Lecture Notes in Com-
puter Science. Springer Verlag.

NAUMANN, J. D. AND JENKINS, A. M. 1982. Prototyping: The new paradigm for systems development. MIS
Quarterly 6, 3, 29–44.

NAVARRO, I., LEVESON, N., AND LUNQVIST, K. 2010. Semantic decoupling: Reducing the impact of require-
ment changes. Requirements Engineering 15, 4, 419–437.

NEBUT, C., FLEUREY, F., LE TRAON, Y., AND JÉZÉQUEL, J. M. 2004. A requirement-based approach to test
product families. In Software Product-Family Engineering. Lecture Notes in Computer Science Series,
vol. 3014. Springer Verlag, 198–210.

NEBUT, C., FLEUREY, F., TRAON, Y. L., AND JEZEQUEL, J.-M. 2006. Automatic test generation: A use case
driven approach. IEEE Trans. Softw. Eng. 32, 3, 140–155.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:38 M. Unterkalmsteiner et al.

NIU, N., YU, Y., GONZÁLEZ-BAIXAULI, B., ERNST, N., SAMPAIO DO PRADO LEITE, J. C., AND MYLOPOU-
LOS, J. 2009. Aspects across software life cycle: A goal-driven approach. In Transactions on Aspect-
Oriented Software Development IV, S. Katz, H. Ossher, R. France, and J.-M. Jézéquel, Eds. Lecture
Notes in Computer Science Series, vol. 5560. Springer Verlag, 83–110.

OXFORD ENGLISH DICTIONARY. 2011. medium, n.

PETERSEN, K. AND WOHLIN, C. 2009. Context in industrial software engineering research. In Proceedings
3rd International Symposium on Empirical Software Engineering and Measurement. Orlando, USA,
401–404.

PFLEEGER, S. L. AND ATLEE, J. M. 2009. Software Engineering: Theory and Practice 4 Ed. Prentice Hall.

PICKIN, S., JARD, C., JERON, T., JEZEQUEL, J.-M., AND LE TRAON, Y. 2007. Test synthesis from UML
models of distributed software. IEEE Trans. Softw. Eng. 33, 4, 252 –269.

PIRES, P. F., DELICATO, F. C., CÓBE, R., BATISTA, T., DAVIS, J. G., AND SONG, J. H. 2011. Integrating
ontologies, model driven, and CNL in a multi-viewed approach for requirements engineering. Require-
ments Engineering 16, 2, 133–160.

POST, H., SINZ, C., MERZ, F., GORGES, T., AND KROPF, T. 2009. Linking functional requirements and
software verification. In Proceedings 17th International Conference on Requirements Engineering Con-
ference (RE). IEEE, Atlanta, USA, 295–302.

RAMESH, B. AND JARKE, M. 2001. Toward reference models for requirements traceability. IEEE Trans.
Softw. Eng. 27, 1, 58–93.

RANDELL, B. 1968. Towards a methodology of computing system design. In NATO Software Engineering
Conference. Garmisch, Germany, 204–208.

ROBSON, C. 2002. Real World Research: A Resource for Social Scientists and Practitioner-researchers 2nd
Edition Ed. John Wiley & Sons.

SABALIAUSKAITE, G., LOCONSOLE, A., ENGSTRÖM, E., UNTERKALMSTEINER, M., REGNELL, B., RUNE-
SON, P., GORSCHEK, T., AND FELDT, R. 2010. Challenges in aligning requirements engineering and ver-
ification in a large-scale industrial context. In 16th International Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ). Springer Verlag, Essen, Germany, 128–142.

SAMUEL, P., MALL, R., AND KANTH, P. 2007. Automatic test case generation from UML communication
diagrams. Information and Software Technology 49, 2, 158–171.

SCACCHI, W. 2001. Process models in software engineering. In Encyclopedia of Software Engineering. John
Wiley & Sons, 993–1005.

SEATER, R., JACKSON, D., AND GHEYI, R. 2007. Requirement progression in problem frames: Deriving
specifications from requirements. Requirements Engineering 12, 2, 77–102.

SIEGL, S., HIELSCHER, K., AND GERMAN, R. 2010. Model based requirements analysis and testing of auto-
motive systems with timed usage models. In Proceedings 18th International Conference on Requirements
Engineering (RE). IEEE, Sydney, Australia, 345–350.

SIVERONI, I., ZISMAN, A., AND SPANOUDAKIS, G. 2010. A UML-based static verification framework for
security. Requirements Engineering 15, 1, 95–118.

SJØBERG, D. I. K., DYBÅ, T., AND JORGENSEN, M. 2007. The future of empirical methods in software
engineering research. In Proceedings Future of Software Engineering (FOSE). IEEE, Minneapolis, USA,
358–378.

SVAHNBERG, M., VAN GURP, J., AND BOSCH, J. 2005. A taxonomy of variability realization techniques.
Software - Practice and Experience 35, 8, 705–54.

UNTERKALMSTEINER, M., GORSCHEK, T., ISLAM, A. K. M. M., CHENG, C. K., PERMADI, R. B., AND

FELDT, R. 2012. Evaluation and measurement of software process improvement - a systematic litera-
ture review. IEEE Trans. Softw. Eng. 38, 2, 398–424.

UTTING, M., PRETSCHNER, A., AND LEGEARD, B. 2011. A taxonomy of model-based testing approaches.
Software Testing, Verification and Reliability. In print.

UUSITALO, E. J., KOMSSI, M., KAUPPINEN, M., AND DAVIS, A. M. 2008. Linking requirements and testing
in practice. In Proceedings 16th International Conference on Requirements Engineering (RE). IEEE,
Catalunya, Spain, 265–270.

UZUNCAOVA, E., KHURSHID, S., AND BATORY, D. 2010. Incremental test generation for software product
lines. IEEE Trans. Softw. Eng. 36, 3, 309–322.

VALDERAS, P. AND PELECHANO, V. 2009. Introducing requirements traceability support in model-driven
development of web applications. Information and Software Technology 51, 4, 749–768.

VEGAS, S., JURISTO, N., AND BASILI, V. 2009. Maturing software engineering knowledge through classifi-
cations: A case study on unit testing techniques. IEEE Trans. Softw. Eng. 35, 4, 551–565.

WATKINS, R. AND NEAL, M. 1994. Why and how of requirements tracing. IEEE Software 11, 4, 104–106.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Taxonomy for Requirements Engineering and Software Test Alignment A:39

WINBLADH, K., ALSPAUGH, T. A., ZIV, H., AND RICHARDSON, D. J. 2006. An automated approach for goal-
driven, specification-based testing. In Automated Software Engineering, International Conference on.
Vol. 0. IEEE Computer Society, Los Alamitos, CA, USA, 289–292.

WOHLIN, C., RUNESON, P., HÖST, M., OHLSSON, M. C., REGNELL, B., AND WESSLÉN, A. 2000. Experi-
mentation in software engineering: an introduction. Kluwer Academic Publishers, Norwell.

XU, D., EL-ARISS, O., XU, W., AND WANG, L. 2010. Testing aspect-oriented programs with finite state
machines. Software Testing, Verification and Reliability In press.

ZOU, J. AND PAVLOVSKI, C. J. 2008. Control cases during the software development life-cycle. In IEEE
Congress on Services - Part 1. IEEE Computer Society, Los Alamitos, USA, 337–344.

ŠMITE, D., WOHLIN, C., FELDT, R., AND GORSCHEK, T. 2008. Reporting empirical research in global soft-
ware engineering: A classification scheme. In IEEE International Conference on Global Software Engi-
neering (ICGSE). IEEE, Bangalore, India, 173 –181.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

