A Taxonomy of Blockchain-Based Systems for
Architecture Design

Xiwei Xu*T, Ingo Weber*t, Mark Staples**, Liming Zhu*", Jan Bosch!, Len Bass*, Cesare Pautasso®, Paul Rimba*
*Data61, CSIRO, Sydney, Australia
{firstname.lastname } @data61.csiro.au
School of Computer Science and Engineering, UNSW, Sydney, Australia
fCarnegie Mellon University, Pittsburgh, USA
lenbass @cmu.edu
SUSI Lugano, Switzerland
c.pautasso@ieee.org
IChalmers University of Technology, Gothenburg, Sweden

jan@janbosch.com

Abstract—Blockchain is an emerging technology for decent-
ralised and transactional data sharing across a large network
of untrusted participants. It enables new forms of distributed
software architectures, where agreement on shared states can
be established without trusting a central integration point. A
major difficulty for architects designing applications based on
blockchain is that the technology has many configurations and
variants. Since blockchains are at an early stage, there is
little product data or reliable technology evaluation available
to compare different blockchains. In this paper, we propose
how to classify and compare blockchains and blockchain-based
systems to assist with the design and assessment of their impact
on software architectures. Our taxonomy captures major archi-
tectural characteristics of blockchains and the impact of their
principal design decisions. This taxonomy is intended to help with
important architectural considerations about the performance
and quality attributes of blockchain-based systems.

Index Terms—Software architecture, Distributed databases

I. INTRODUCTION

Blockchain is the technology behind Bitcoin [16], which
is a digital currency based on a peer-to-peer network and
cryptographic tools. Bitcoin network provides a “trust-less”
environment, where users can transfer money to each other
without relying on central trusted authorities, like bank systems
or payment services. A blockchain provides a kind of append-
only data store of transactions replicated between peers.

Many banks are involved in trials of blockchain technology,
including through the global R3 consortium!, which is apply-
ing blockchain to trade finance and cross-border payments.
Financial transactions are the first, but not the only use case
being investigated for blockchain technology. A blockchain
implements a distributed ledger, which can in general verify and
store any kind of transactions [22]. Many startups, enterprises,
and governments [1] are exploring its applications in areas
as diverse as supply chain, electronic health records, voting,
energy supply, ownership management, and protecting critical
civil infrastructure. The wide array of interest in blockchain

thttp://www.r3cev.com/

technology is underlined by the fast evolution of its ecosystem,
including easier deployment through Blockchain-as-a-Service
from Microsoft Azure? and IBM3. Blockchain has become
a publicly-available infrastructure for building decentralised
applications and achieving interoperability.

From a software architecture perspective, blockchain en-
ables new forms of distributed software architectures, where
agreement on shared state for decentralised and transactional
data can be established across a large network of untrusted
participants. This circumvents the need to rely on a central,
trusted integration point which has the power to control
and manipulate the system, and is a single point of failure.
Applications built on blockchains can take advantage of
properties such as data immutability, integrity, fair access,
transparency, and non-repudiation of transactions.

However, blockchains have technical limitations. Privacy is
impacted because information on a blockchain is available to
all participants. For throughput scalability, mainstream public
blockchains can only handle on average 3-20 transactions per
second#, whereas mainstream payment services, like VISA,
can handle an average of 1,700 transactions per second>.
Blockchain, as a software connector, has a complex internal
structure and has many configurations and variants [28].
Since the advent of Bitcoin in 2008 [16], a diverse range
of blockchains has emerged.

Thus, blockchains cannot by themselves meet the require-
ments for all usage scenarios, e.g., those that require real-time
processing. When building applications based on blockchains,
we need to systematically consider the features and config-
urations of blockchains and assess their impact on quality
attributes for the overall systems. In practice, the lack of reliable
technology evaluation resources makes the comparison very

2https://azure.microsoft.com/en-us/solutions/blockchain/
3http://www.ibm.com/blockchain/
“https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
Shttps://usa.visa.com/run-your-business/small-business- tools/retail.html

http://www.r3cev.com/
https://azure.microsoft.com/en-us/solutions/blockchain/
http://www.ibm.com/blockchain/
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://usa.visa.com/run-your-business/small-business-tools/retail.html

difficult.

In this paper, we propose a taxonomy that captures major
architecturally-relevant characteristics of various blockchains,
and indicate their support for various quality attributes. This is
intended to be a basis for architecting blockchain-based systems.
During design, the taxonomy may highlight trade-offs arising
from design decisions related to blockchain platforms. The
taxonomy is informed by existing industrial products, technical
forums, academic literature and our own experience of using
blockchains and developing prototypes.

The paper first gives background on blockchains in Section II.
Section III describes the development and details of our
taxonomy. A conceptual model for the design of blockchain-
based systems is proposed in Section IV. Section V concludes.

II. BACKGROUND ON BLOCKCHAIN

The term “blockchain” is used to refer to a data structure
and occasionally to a network or system. As a data structure,
a blockchain is an ordered list of blocks, where each block
contains a small (possibly empty) list of transactions. Each
block in a blockchain is “chained” back to the previous block,
by containing a hash of the representation of the previous
block. Thus historical transactions in the blockchain may
not be deleted or altered without invalidating the chain of
hashes. Combined with computational constraints and incentive
schemes on the creation of blocks, this can in practice prevent
tampering and revision of information stored in the blockchain.

The first generation of blockchains, like Bitcoin, provided
a public ledger to store cryptographically-signed financial
transactions [20]. There was very limited capability to support
programmable transactions, and only very small pieces of
auxiliary data could be embedded in the transactions to
serve other purposes, such as representing digital assets (e.g.,
document notarisation) or physical assets (e.g., diamonds). The
second generation of blockchains provides a general-purpose
programmable infrastructure with a public ledger that records
the computational results. Programs can be deployed and
run on a blockchain, and are known as smart contracts [18].
Smart contracts can express triggers, conditions and business
logic [25] to enable more complex programmable transaction.
However, they are not necessarily smart, nor necessarily related
to legal contracts. A common simple example of a smart
contract-enabled service is escrow, which can hold funds until
the obligations defined in the smart contract have been fulfilled.
Ethereum® is the most widely-used blockchain that supports
general-purpose (Turing-complete) smart contracts.

Public key cryptography and digital signatures are normally
used to identify accounts and to ensure authorization of
transactions initiated on a blockchain. Transactions are data
packages that store parameters (such as monetary value in the
case of Bitcoin) and results of function calls (such as from
smart contracts). The integrity of a transaction is checked by
algorithmic rules and cryptographic techniques. A transaction
is signed by its initiator, to authorise the expenditure of their

Shttps://www.ethereum.org/

money, to authorise the data payload of a transaction, or the
creation and execution of a smart contract.

A signed transaction is sent to a node connected to the
blockchain network, which validates the transaction. If the
transaction is valid and previously unknown to the node, the
node propagates it to other nodes in the network, which also
validate the transaction and propagate it to their peers, until
the transaction reaches all nodes in the network. In a global
network, this can take seconds.

Mining is the process of appending new blocks to the
blockchain data structure. A blockchain network relies on
miners to aggregate valid transactions into blocks and append
them to the blockchain. New blocks broadcast across the whole
network, so that each node holds a replica of the whole data
structure. The whole network aims to reach a consensus about
the latest block to be included into the blockchain. There
are different consensus mechanisms, e.g., “proof-of-work™ or
“proof-of-stake” (see Section III). Depending on the consensus
mechanism and the required guarantees, there can be different
notions of when a transaction is taken to be committed or
confirmed and thus immutable.

A. Fundamental Properties

If data is contained in a committed transaction, it will
eventually become in practice immutable. The immutable chain
of cryptographically-signed historical transactions provides non-
repudiation of the stored data. Cryptographic tools also support
data integrity, the public access provides data transparency,
and equal rights allows every participant the same ability to
access and manipulate the blockchain. These rights can be
weighted by the compute power or stake owned by the miner.
A distributed consensus mechanism governs addition of new
items; it consists of the rules for validating and broadcasting
transactions and blocks, resolving conflicts, and the incentive
scheme. The consensus ensures all stored transactions are valid,
and that each valid transaction is added only once.

Trust in the blockchain is achieved from the interactions
between nodes within the network. The participants of block-
chain network rely on the blockchain network itself rather than
relying on trusted third-party organisations to facilitate trans-
actions. These five properties (immutability, non-repudiation,
integrity, transparency, and equal rights) are the main properties
supported in existing blockchains.

B. Other Non-Functional Properties

Data privacy and scalability are two points of criticism of
public blockchains. As discussed earlier, in this setting privacy
is limited: there are no privileged users, and every participant
can join the network to access all the information on blockchain
and validate new transactions. There are scalability limits on
(i) the size of the data on blockchain, (ii) the transaction
processing rate, and (iii) the latency of data transmission. The
number of transactions included in each block is also limited
by the bandwidth of nodes participating in leader election (for
Bitcoin the current bandwidth per block is IMB) [3]. Latency
between submission and confirmation that a transaction has

https://www.ethereum.org/

been included on a blockchain is affected by the consensus
protocol. This is around 1 hour (10-minute block interval
with 6-block confirmation) on Bitcoin, and around 3 minutes
(14-second block interval with 12-block confirmation) on
Ethereum.

III. DEesioN TAXONOMY

Taxonomies have been used in the software architecture
community to understand existing technologies [14], [11].
Creating a taxonomy requires classifying the existing work into
a compact framework, which allows an architect to explore the
conceptual design space and enables rigorous comparison and
evaluation of different design options.

The design taxonomy we present here defines dimensions
and categories for classifying blockchains and ways of using
them in systems. It is intended to help software architects
evaluate and compare blockchains, and to enable research into
architectural decision-making frameworks for blockchains and
blockchain-based systems.

Our taxonomy is informed by the academic literature (e.g.,
[3], [51, [19], [71, [13], [27]), books (e.g., [20]), government
and technical reports (e.g., [1], [2]), documents of industrial
blockchain products (e.g., [26]), developer forums and wikis,
our investigation for the Australian government of the use of
blockchains in various use cases, and our experience from
implementing proof-of-concept blockchain-based systems [28].
Our discussion of architectural design issues for blockchain-
based systems is structured in four sections below: the level of
(de)centralisation, support for client storage and computation,
blockchain infrastructural configuration, and other issues.

A. Architectural Design Regarding Decentralisation

Decentralisation devolves responsibility and capability from
a central location or authority. In a centralised system, all
users rely on a central authority to mediate transactions. For
example in a bank, customers rely on the bank’s systems to
correctly adjust their account balances after a bank transfer. A
central authority can manipulate the whole system, including
by directly updating backend databases, or by upgrading
the software that implements the system. Thus, a central
authority is a single point of failure for a centralised system.
In contrast, a fully decentralised currency system like Bitcoin
allows people to reach agreement on who owns what without
having to trust each other or a separate third party. Such a
system is highly available since every full node in Bitcoin
network downloads every block and transaction, checks them
against Bitcoin’s core consensus rules and provides the required
functionality to process transactions. There are currently 5000+
nodes in the Bitcoin network?, although not all are full
nodes that form the backbone of Bitcoin. Table I represents a
spectrum of (de)centralisation, from full centralisation to full
decentralisation. In a system it is possible that some components
or functions are decentralised while others are centralised.

There are two types of centralised systems. In the first there
is a monopoly service provider, including governments and

7https://bitnodes.21.co/nodes/

courts within a jurisdiction, and business monopolies. In the
other type there are alternative providers, such as banks, on-
line payments, or cloud computing providers. Any centralised
system is a single point of failure for its users. However, where
there are alternative providers, the failure of a single service
provider only affects its users, and users may switch providers
or use multiple providers.

At the other end of the spectrum, fully decentralised systems
include permission-less public blockchains, such as the Bitcoin
and Ethereum blockchains. Permission-less public blockchains
are completely open: new users can at any time join the
network, validate transactions, and mine blocks. Decentralised
systems using anonymous validators need to protect against
Sybil attacks, where attackers create many hostile anonymous
nodes. Bitcoin partly guards against this using its proof-of-
work mechanism, so that it is not the total number of nodes
that is important for integrity, but rather the total amount
of computational power. While it is easy for an attacker to
create anonymous nodes, it is not easy for them to amass
large amounts of computational power. A decentralised system
can be defeated unless there is a majority of authority (nodes,
computational power, or stakeholding). Game-theoretic attacks
can change this threshold, requiring a higher (e.g. 66%) majority
to maintain integrity [9].

There is a spectrum of possibilities between centralisation
and decentralisation. Here we discuss two options for partial
decentralisation: permission and verification.

1) Permission: Instead of anonymous public participation, a
blockchain may be permissioned in requiring that one or more
authorities act as a gate for participation. This may include
permission to join the network (and thus read information
from the blockchain), permission to initiate transactions, or
permission to mine. Some permissioned blockchains, e.g.,
Multichain®, allow more fine-grained permissions, such as
the permission to create assets. Permissioned blockchain
networks include Ripple® or Eris!®. However, the code for
public blockchains can also be deployed on private networks to
create a kind of permissioned blockchain using network access
controls. Permissioned blockchains may be more suitable in
regulated industries. For example banks are required to establish
the real-world identity of transacting parties to satisfy Know-
Your-Customer (KYC) regulation. Permission information can
be stored either on-chain or off-chain, and permissioned
blockchains may be able to better control access to off-chain
information about real-world assets [21]. However, a transaction
on a permission-less blockchain across jurisdictional boundaries
can circumvent this and undermine regulatory controls.

There are often trade-offs between permissioned and
permission-less blockchains including transaction processing
rate, cost, censorship-resistance, reversibility, finality [21] and
the flexibility in changing and optimising the network rules. The
suitability of a permissioned blockchain may also depend on the

Shttp://www.multichain.com/
https://ripple.com/
10https://monax.io

https://bitnodes.21.co/nodes/
http://www.multichain.com/
https://ripple.com/
https://monax.io

Table I: Blockchain-related design decisions regarding (de)centralisation, with an indication of their relative impact on quality
properties (@: Less favourable, ®®: Neutral, ®®®: More favourable)

. Impact
Design . s
Decisi Option Fundamental Cost #Failure
ecision . . Performance .
properties efficiency points
Full Services with a single provider (e.g., governments, courts)
u
Central}ilsed Services with alternative providers (e.g., banking, online payments, & o0 OO0 1
cloud services)
Partially Permissioned blockchain with permissions for fine-grained operations
Centralised & on the transaction level (e.g., permission to create assets)
. (5182 S2152] S0 *
Partially Permissioned blockchain with permissioned miners (write), but
Decentralised permission-less normal nodes (read)
Fully Majority
Decentralised Permission-less blockchain POD @ @ (nodes, power,
’ stake)
Fundamental Cost #Failure
. . Performance .
properties efficiency points
Single verifier trusted by the network (external verifier signs valid P, o0 o0 |
transactions; internal verifier uses previously-injected external state)
Verifier M-of-N verifier trusted by the network o000 @ @ M
Ad hoc verifier trusted by the participants involved @ o000 L) éhgizre)ad hoc

size of the network. Nonetheless, the permission management
mechanism may itself become a potential single point of failure,
not just from an operational perspective but also from a business
perspective.

2) Verification: The execution environment of a blockchain
is self-contained. It can only access information present in
a transaction or in the transaction history of the blockchain,
and the states of external systems are not directly accessible.
To address this limitation, a verifier role can be introduced to
evaluate conditions that cannot be expressed in a smart contract
running within the blockchain network. A verifier is a third
party that is trusted to provide some types of information about
the external world. When validation of a transaction depends
on external state, the verifier is requested to check the external
state and to provide the result to the validator (miner), which
then validates the condition. A verifier can be implemented as
a server outside the blockchain, and has the permission to sign
transactions using its own key pair on-demand. The concept
of an oracle in Bitcoin is an instance of a verifier!!. The
verifier can be also implemented inside a blockchain network
as a smart contract with external state being injected into the
verifier periodically.

A centralised verifier becomes a potential single point
of failure for the transactions relying on the verifier. To

decentralise the verifier, a distributed verifier can be introduced.

A distributed verifier is comprised of several verifiers that
provide the same functionality to check the external state. All
the verifiers are trusted by the whole network. In this case, a
transaction that relies on external state can use a multi-signature
(M-of-N) schema that requires keys from M out of N verifiers

Uhttps://en.bitcoin.it/wiki/Contract#Example_4:_Using_external_state

to authorise a transaction. For example, Orisi!? on Bitcoin runs
a set of independent verifiers. Orisi allows the participants
involved in a smart contract to select a set of verifiers and
define the value of M before initiating a conditional transaction.

In addition, participants who wish to transact with each other
on a blockchain could rely on an ad hoc trusted arbitrator to
resolve disputes or check external status. An arbitrator may
be a human with a blockchain account that is able to sign the
transaction after some validation. Alternatively an arbitrator
may be automated and validate the transaction based on status
taken from the blockchain and the external world. For example,
Gnosis!? is a decentralised prediction market that allows users
to choose any verifier they trust, such as another user or a web
service, e.g., for weather forecasts.

B. Architectural Design Regarding Storage and Computation

While blockchains provide some unique properties, the
amount of computational power and data storage space available
on a blockchain network remains limited. In addition, using
public blockchains costs real money, with a different kind of
cost model than conventional software systems. In regards
to cost efficiency, performance, and flexibility, major design
decisions in using a blockchain include choosing what data
and computation should be placed on-chain and what should
be kept off-chain [28]. Table II captures some of these options,
which are described in more detail below.

1) Item data: A common practice for data management in
blockchain-based systems is to store raw data off-chain, and to
store on-chain just meta-data, small critical data, and hashes of

2http://orisi.org/
Bhttps://groupgnosis.com/

https://en.bitcoin.it/wiki/Contract#Example_4:_Using_external_state
http://orisi.org/
https://groupgnosis.com/

Table II: Blockchain-related design decisions regarding storage and computation, with an indication of their relative impact on
quality properties (@: Least favourable, ®®: Less favourable, ®®®: More favourable, @®®®: Most favourable)

Impact
Design Decision Option
& P Fundame.n tal Cost efficiency Performance Flexibility
properties
Embedded in transaction (Bitcoin)) [} 2]
. Embedded in transaction (Public Ethereum) POOP @ COD

On-chain [Tt

Smart contract variable (Public Ethereum) (1) COD [S2]
Item data

Smart contract log event (Public Ethereum) SleL) [S1e) [S1e)
Private / Third party cloud ~KB Negligible OODD COOD

Off-chain party 3} gle
Peer-to-Peer system CODD OO [S2Le2102)
Smart contract S8 ® (public SODD [S2]

Item collection On-chain DODD ®)
Separate chain @ (public) @ PODD
. Transaction constraints
. On-chain erlr] & & &
Computation Smart contract
Off-chain Private / Third party cloud @ 000 o000 000

the raw data. However, the applications of storing item data on
blockchain are not just for integration with external data. There
are various uses for wholly on-chain auxiliary data, including
e.g. “coloured coins” which are a class of overlays on Bitcoin
to represent and manage real world assets.

In the Bitcoin blockchain, before OP_RETURN'4 was made
a valid opcode (i.e., function of Bitcoin Script language) to store
arbitrary bytes in an unspendable transaction, users were able to
include limited information into transactions on-chain using one
of four methods. These were: writing in a coinbase transaction
which is only editable by miners!>, using the nSequence field,
using a fake account address, or using unreachable script code
defined through if and else conditions. All four methods are
deprecated now that OP_RETURN has been introduced as an
official way to embed arbitrary data in a Bitcoin transaction.

Table II compares the OP_RETURN mechanism with other
options provided by public Ethereum to store arbitrary data.
There are trade-offs in cost efficiency, performance and flexibil-
ity. The OP_RETURN instruction returns immediately with
an error so that the included data is not interpreted as a
script. The default Bitcoin client only relayed OP_RETURN
transactions up to 80 bytes, which was reduced to 40 bytes
in February 2014'6. Storing 80 bytes of arbitrary data on the
Bitcoin blockchain costs roughly US$0.036'7. It is debatable
whether Bitcoin should be used to record arbitrary data.

Ethereum, on the other hand, theoretically allows storing
arbitrary structured data of any size. According to the cost
model given in the Ethereum yellow paper [26], every transac-
tion has a fixed cost of 21,000 gas (gas is the internal pricing
for executing a transaction or storing data), and every non-zero

4https://bitcoinfoundation.org/core-development-update- 5/

IShttps://en.bitcoin.it/wiki/Genesis_block

I6https://github.com/bitcoin/bitcoin/pull/3737

17Assuming a typical Bitcoin transaction with one input and one output,
which has about 220 bytes, the default transaction fee rate of 2 x 1074 BTC/KB
(see https://en.bitcoin.it/wiki/Transaction_fees), and with an exchange rate of
US$600/BTC (see https://poloniex.com/exchange#usdt_btc),

byte of data costs additional 68 gas. Thus, the total cost of
storing 80 bytes of data on Ethereum blockchain by submitting
a transaction is 26,440 gas (assuming all bytes are non-zero),
which is roughly US$0.007'8.

Ethereum provides two other ways to store arbitrary data in
smart contracts. For 32 bytes of data, the first option is to store
the data as a variable in a smart contract (all simple types in
Solidity, the script language on Ethereum, are 32 bytes). The
cost of storing data in the contract storage is based on the
number of SSTORE operation on the contract variable. In the
case of storing 32 bytes, there is one SSTORE operation that
changes the data from zero to non-zero, which costs 20,000
gas. As aforementioned, the transaction as the carrier costs
21,000 gas. The data payload of the transaction including the
function signature and the actual data costs extra gas. Other
than these two costs, there is a cost for creating the smart
contract depending on its complexity. In total, the cost is larger
than US$0.010 (20,000 + 21,000 + 32 x 68 gas).

The second option is to store arbitrary data as a log event.
This follows different rules for calculating cost. Logged data is
stored in log topics which cost 375 gas, and where every byte
of data in a log topic costs an extra 8 gas. Including the fixed
cost of the carrier transaction with data payload, the rough
cost of using a log event to store 32 bytes of data is US$0.005
(21,000 + 375 + 32 x 8 gas). Storing data as a variable in a
smart contract is more efficient to manipulate, but less flexible
due to the constraints of the Solidity language on the value
types and length. The flexibility and performance of using
smart contract log events is intermediate because log events
allow up to three parameters to be queried.

Finally, we note that data storage on blockchain has a
different cost model than conventional data storage. Although
it may seem more expensive, storing data on blockchain is

18 Assuming from here on a gas price of 2.5 x 1078 Ether (see https:/
etherscan.io/chart/gasprice) and given an exchange rate of US$10/Ether (see
https://poloniex.com/exchange#usdt_eth).

https://bitcoinfoundation.org/core-development-update-5/
https://en.bitcoin.it/wiki/Genesis_block
https://github.com/bitcoin/bitcoin/pull/3737
https://en.bitcoin.it/wiki/Transaction_fees
https://poloniex.com/exchange#usdt_btc
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://poloniex.com/exchange#usdt_eth

a one-time cost for permanent storage. (However, note that
Ethereum allows a partial refund on reclaimed smart contract
variable storage.)

Selection of off-chain data storage concerns the interaction
between the blockchain and the off-chain data storage. The
off-chain data storage can be a private cloud on the client’s
infrastructure or a public storage provided by a third party or
network. The flexibility of using cloud to store data depends
on the implementation. Some peer-to-peer data storage are
designed to be friendly to blockchain, such as IPFS!'® and
Storj20. IPFS is free, but ensuring availability requires providing
an IPFS server that hosts the data. The cost of Storj is
US$0.015GB/month. In a peer-to-peer data storage, the data is
replicated automatically by the peer-to-peer network, or based
on the behaviour of users, e.g., data is replicated once a user
accesses it. In a cloud environment, data replication needs to
be managed by the system or consumer.

2) Item collection: The concept of data item collection
is common on blockchains, e.g., when using blockchains as
a registry. The total cost to a client application of using
smart contracts on a public blockchain (even when running a
local node) is likely to be less than running a whole private
blockchain infrastructure as an index of data items. Using a
separate chain may be more flexible because the blockchain can
be configured to better support items of various sorts. However,
interoperation among blockchains can be difficult. For off-chain
options, the considerations and trade-offs for item data apply
to item collections as well.

3) Computation: Computation in a blockchain-based system
can be performed on-chain (e.g., through smart contracts)
or off-chain. Different blockchains offer different levels of
expressiveness for on-chain computation. For example, Bitcoin
only allows simple scripts and conditions that must be satisfied
to transfer Bitcoin payments. Ethereum allows more general
(Turing-complete) programs, and these programs can not only
perform conditional payments but also make modifications
to the working data in smart contract variables. There are
other smart contract languages which are more expressive than
Bitcoin’s simple scripts, but which are purposefully not Turing-
complete, in order to facilitate static analysis. An example is
the Digital Asset Modelling Language (DAML)?!, which is
designed to codify financial rights and obligations.

Smart contracts are not processed until their invoking
transactions are included in a new block. Blocks impose an
order on transactions, thus resolving non-determinism which
might otherwise affect their execution results [17]. One benefit
of using on-chain computation, rather than using blockchain
as a data layer only, is the inherent interoperability among the
systems built on the same blockchain network. Other benefits
are the neutrality of the execution environment and immutability
of the program code once deployed. This facilitates building
trust in the shared code among untrusting parties.

9https://ipfs.io/
20https://storj.io/
21https://digitalasset.com/press/introducing-daml.html

C. Architectural Design Regarding Blockchain Configuration

In the following, we discuss various configuration options
for blockchains. An overview is given in Table III.

When using a blockchain, one design decision is the scope,
i.e. whether to use a public blockchain, consortium/community
blockchain or private blockchain [6]. Most digital currencies
use public blockchains, which can be accessed by anyone on the
Internet. Using a public blockchain results in better information
transparency and auditability, but sacrifices performance and
has a different cost model. In a public blockchain, data privacy
relies on encryption or cryptographic hashes. A consortium
blockchain is used across multiple organisations. The consensus
process in a consortium blockchain is controlled by pre-
authorised nodes. The right to read the blockchain may be
public or may be restricted to specific participants. In a
private blockchain network, write permission is kept within one
organisation, although this may include multiple divisions of a
single organisation?2. Whether using a consortium blockchain,
private blockchain or permissioned public blockchain?3, a
permission management component will be required to au-
thorise participants within the network. Private blockchains
are the most flexible for configuration because the network is
governed and hosted by a single organisation. Many blockchain
platforms support deployment as consortium blockchains or
private blockchains, e.g., Multichain and Eris.

In Bitcoin, the blockchain data structure is a chain of
blocks, and when conflicts occur the longest chain is se-
lected by participants. This approach can been modified to
improve scalability [24]. In the Greedy Heaviest-Observed
Sub-Tree (GHOST) [19] protocol, miners reference competing
independently-mined blocks (uncle blocks), to add weight to
their chain for its selection as the main chain. This recognition
of concurrent work allows shorter inter-block times which can
improve throughput. Other proposed changes have included
changing the chain from a list to a directed acyclic graph
(DAG) [13] to allow non-conflicting transactions from uncle
blocks to be incorporated in the main chain. Selection rules
could be configured to select the longest chain or the heaviest
sub-tree, by block length or by aggregate difficulty. The
internal structure of blocks is also a design option. Segregated
witness [27] has been proposed in the Bitcoin community to
separate (segregate) signatures (witnesses) from the rest of the
data in a transaction. The size of the witnesses then does not
count towards the size limit within the block. In a blockchain
network, all the transactions are replicated on every node,
which increases overall storage requirements and can thus affect
scalability. Pair-wise ledgers, like R3’s Corda24, have been
proposed which would both improve privacy and scalability by
reducing the replication of data across the network. However,
this may negatively impact data integrity and availability.

22There is a grey area between consortium blockchains and private
blockchains, and the differences may be more administrative than technical.
Nonetheless we distinguish them here because at their extremes they have
architectural differences.

23Ripple may be argued to be a permissioned private blockchain.

24https://github.com/corda/corda

https://ipfs.io/
https://storj.io/
https://digitalasset.com/press/introducing-daml.html
https://github.com/corda/corda

Table III: Blockchain-related design decisions regarding blockchain configuration
(&: Less favourable, ®®: Neutral, ®®®: More favorable

Impact
Design Decision Option
Fundame'n tal Cost efficiency Performance Flexibility
properties
Public blockchain OO0 ® b ®
Blockchain scope Consortium/community blockchain 1) 15 1<) [T
Private blockchain 5] S22 DOD oD
Blockchain o000 @ b ®
GHOST (0182 [S2152) (82152 @
Data structure
BlockDAG 52} [S152152) [S215212) DOD
Segregated witness o060 o0 &3} ®
Proof-of-work o000 @ b &
Security- Proof-of-retrievability 00 [} @ ®
wise Proof-of-stake o0) 00 EYT)
Consensus -
Protocol BFT (Byzantine Fault Tolerance) (3] COD OO @
Bitcoin-NG [S1S212) (52} 53} 52
Scalability- - -
wise Off-chain transaction protocol b OOD [S2152) 00
Mini-blockchain (s15) o0 ® OO
Security- X-block confirmation)) &) COD
Protocol wise Checkpointing 000 000 YT ®
Configuration Scalability- Original block size and frequency YT n/a ® n/a
wise Increase block size / Decrease mining time ® n/a Yol n/a
Merged mining OO0 o0 & &
Security- - -
: Hook popular blockchain at transaction level (15} &3} o0 OO
New wise
blockchain Proof-of-burn 3} @ o000 &)
Scalability- Side-chains PDD @ <] <]
wise Multiple private blockchains ® fTe T Yol o008

(Because they do not have a replicated global ledger, such
systems are arguably not blockchains, but nonetheless still
implement a kind of distributed ledger.)

The choice of consensus protocol impacts security and
scalability. Once a new block is generated by a miner, the miner
propagates the block to its connected peers in the blockchain
network. However, miners may encounter different competing
new blocks, and resolve this using the blockchain’s consensus
mechanisms. Usually the approach is fixed for a particular
blockchain, but Hyperledger?’ is a framework with a modular
architecture that caters for pluggable implementations of various
consensus protocols.

The typical overall approach is called Nakamoto con-
sensus [16], and relies on participants to select the longest
chain of blocks they have observed at any point in time. In
Bitcoin, new blocks are generated through a proof-of-work
mechanism. This is a puzzle which is easy to verify, but which
to solve is both difficult and takes effectively random time.
Bitcoin miners compete to solve this puzzle for each block,
using large amounts of computer power (and hence electricity)
to increase their chances of winning the competition for each
block. The investment required by miners for this acts to align

2Shttps://www.hyperledger.org/

their incentives with the good operation of the overall system.
There are various proof-of-work mechanisms available from,
e.g., Ethash?¢® used by Ethereum or Hashcash?? used by Bitcoin.
The mechanism in Primecoin?® generates prime number chains
which are also of interest to mathematical research. More
recently, Permacoin proposes a modification to Bitcoin [15],
which uses “proof-of-retrievability” to re-purpose Bitcoin’s
mining resource to distributed storage of archival data.
Proof-of-stake is an alternative mechanism for Nakamoto
consensus, which selects the next mining node based on their
holding of the native digital currency of the blockchain network.
For example, the miners in Peercoin?® need to prove the
ownership of a certain amount of peercoin currency to mine
blocks. Thus, proof-of-stake naturally aligns the incentives
of digital currency holders in the blockchain with the good
operation of the blockchain. There are various proof-of-stake
protocols, e.g., Tendermint3® used in Eris, and Casper3! used
in Ethereum. These have different design goals, favouring one

26https://github.com/ethereum/wiki/wiki/Ethash
27https://en.bitcoin.it/wiki/Hashcash

28http://primecoin.io/

29https://peercoin.net/

30http://tendermint.com/
3thttps://github.com/ethereum/economic-modeling/tree/master/casper

https://www.hyperledger.org/
https://github.com/ethereum/wiki/wiki/Ethash
https://en.bitcoin.it/wiki/Hashcash
http://primecoin.io/
https://peercoin.net/
http://tendermint.com/
https://github.com/ethereum/economic-modeling/tree/master/casper

non-functional property over another. Proof-of-stake does not
necessarily select the next miner based on largest stakeholding,
e.g., Nxt32 also uses a random factor, and Peercoin combines
randomisation and coin age. BitShares33 uses delegated proof-
of-stake, where the accounts may delegate their stake to other
accounts, rather than participating in the process of validating
transactions directly. Compared with proof-of-work, proof-of-
stake is more cost-efficient because much less computational
power is used in mining, while latency is shorter [10]. However,
passive holding of assets may become harder. A detailed
comparison of different proof-of-work and proof-of-stake
algorithms is out of the scope of this paper.

The Byzantine fault tolerance (BFT) protocol has been
applied for consensus in permissioned blockchains, e.g., in
Stellar34. BFT ensures consensus despite arbitrary behaviour
from some fraction of participants. Compared to Nakamoto
consensus, it is a more conventional approach within distributed
systems. Roughly speaking, BFT-based blockchains offers a
much stronger consistency guarantee and lower latency, but for
a smaller number of participants [24]. The core of Tendermint
is also a BFT protocol, but uses a proof-of-stake mechanism
to prevent Sybil attacks. BFT requires that all participants
must agree on the list of participants in the network. Thus, the
protocol is normally only used in permissioned blockchains.

Some new protocols have been proposed to improve scalab-
ility. Bitcoin-NG [8] decouples Bitcoin’s blockchain operation
into two planes: leader election and transaction serialisation.
Once a leader is selected, it is entitled to serialise transactions
until the next leader is selected. Thus, the leader election
in Bitcoin-NG is forward-looking, and ensures that the sys-
tem is able to continually process transactions. The Bitcoin
lightning network [12] moves some of the transactions off-
chain by establishing a multi-signature transaction between
two participants as a micro-payment channel to transfer value
off-chain. Once both sides wish to close the micro-payment
channel and finalise the value transfer, a transaction is submitted
to the global Bitcoin blockchain. Such bidirectional channels
can be connected to establish a payment network leveraging
Bitcoin. The intermediate transactions occurring in the payment
channel are not included in the blockchain. Raiden3’ is a similar
project on Ethereum. Mini-blockchain is a scheme proposed
by Cryptonite3¢. The Cryptonite network maintains an account
tree that holds the balance of all addresses, and a proof chain
that stores all the historical block headers. The account tree is
updated according to the transactions, and after a period of time,
the transactions are forgotten by the network. Neither off-chain
transactions nor mini-blockchain stores all the transactions
on blockchain, thus, both of them sacrifice the fundamental
properties of blockchain. Mini-blockchain saves space through
forgetting historical transactions, but the performance is not
necessarily better as the consensus mechanism is still the same.

32https://nxt.org/

33https://bitshares.org/
34https://www.stellar.org/
3Shttps://github.com/raiden-network/raiden
36http://cryptonite.info/

Protocol configuration also affects security and scalability.
As for security, a system using Nakamoto consensus has to
deal with the possibility that the most recent few blocks get
replaced by a competing fork. Different strategies have been
used to confirm that a transaction is securely appended to
the blockchain to prevent double spending. The first option
is to wait for a certain number (X) of blocks to have been
generated after the transaction is included into the blockchain.
Commonly used values for X are 6 for Bitcoin, and 12 for
Ethereum. The value 6 of Bitcoin blockchain was chosen based
on the assumption that an attacker is unlikely to amass more
than 10% of the hashrate, and that a negligible risk of less than
0.1% is acceptable3”. The second option is to add a checkpoint
to the blockchain, so that all the participants will accept the
transactions up to the checkpoint as valid and irreversible. If a
fork starts from a block before the checkpoint occurs, it is not
accepted by any of the participants. Checkpointing relies on
an entity trusted by the community to define the checkpoint,
while X-block confirmation can be decided by the developers
of the applications using blockchain.

Consensus protocols can be configured to improve scalability
in terms of transaction processing rate. For example, there are
some proposals for Bitcoin to increase its block size from
1MB to 8MB, to include more transactions into a block and
thus increase maximum throughput. Another configuration
change would be to adjust mining difficulty to shorten the
time required to generate a block, thus reducing latency and
increasing throughput. However, a shorter inter-block time
would lead to an increased frequency of forks. Users would
respond by waiting for more confirmation blocks [7].

When building a new blockchain, different strategies can
be used to achieve security and scalability. For security, the
new blockchain can be aligned with public blockchains, utilise
exiting infrastructure, resources and trust. The first option is
merged mining, which reuses the mining power of an existing
public blockchain to mine and secure the new blockchain. In
this case, a proof-of-work found by the miner of the public
blockchain is used by two blockchains with possibly different
difficulty levels. First, the miner produces a transaction set
for both blockchains. The hash of the block produced for
the new blockchain is added to the public blockchain. Then,
once the miner finds a proof-of-work at the difficulty level
of either of both blockchains, the proof-of-work is combined
with the transaction set, and submitted to the corresponding
blockchain. Namecoin is the first blockchain that uses merged
mining with the Bitcoin blockchain. Merged mining reuses an
established blockchain network, but it might be difficult initially
to persuade the miners of the existing blockchain to join a new
blockchain network. A more loosely coupled way is to hook into
a public blockchain by adding hashes of the new blockchain to
transactions of the public blockchain. For instance, Factom38
anchors into Bitcoin blockchain every 10 minutes by submitting
a transaction to the Bitcoin blockchain with a current hash of

37https://en.bitcoin.it/wiki/Confirmation
38http://factom.org/

https://nxt.org/
https://bitshares.org/
https://www.stellar.org/
https://github.com/raiden-network/raiden
http://cryptonite.info/
https://en.bitcoin.it/wiki/Confirmation
http://factom.org/

the Factom blockchain. The third option is proof-of-burn. The
purpose of proof-of-burn is to verifiably destroy tokens rather
than generating tokens. To “transfer” tokens from a public
blockchain to the new blockchain, the miners need to provide
proof that their tokens were sent to a verifiably unspendable
address. The burnt tokens, originally mined by proof-of-work,
represent the corresponding computational power. Proof-of-
burn can be used for bootstrapping a new cryptocurrency, e.g.,
Counterparty3°, as it ensures serious commitment.

Rather than using a unique chain to record all types of
transactions, multiple blockchains can be used to isolate in-
formation of separate concerns and with different characteristics,
and to improve scalability. The first option is to use a side-
chain [4]. Side-chaining is a mechanism that allow tokens
of one blockchain to be securely transferred and used in
another blockchain and still can be securely moved back to
the original chain. The original chain is called main chain,
and the one that accepts the tokens from the original chain
is called side-chain. Multiple private chains could be used
to separate concerns, where each of the private chains could
link with a public blockchain. Side-chains can help to build
a blockchain ecosystem based on a popular main blockchain,
without significantly increasing the load on the main chain.
However, the clients of side-chains may become complex,
because they typically need to be able to process transactions
from the main chain and the side-chain.

D. Other Architectural Designs and Deployment

Other design choices concern anonymity and incentives.
Finally we discuss the impact of deployment.

1) Anonymity: Although the Bitcoin blockchain is perceived
to be anonymous, research has shown that Bitcoin transactions
can be linked to compromise the anonymity of Bitcoin users.
Different techniques have been proposed to preserve anonymity
on blockchain. Zcash#9, also called Zerocash or Zerocoin,
encrypts the payment information in the transactions and uses
a cryptographic method to verify the validity of the encrypted
transactions. A zero-knowledge proof construction is used to
allow the blockchain network to maintain a secure ledger
and enable private payment without disclosing the parties or
amounts involved. A mixing service groups several transactions
together so that a payment contains multiple input addresses
and multiple output addresses. Anonymity is preserved because
it is hard to track which output address is paid by which
input address. To further improve the way that mixing service
operates, a series of mixing services can be linked sequentially.
If mixing transactions are uniform in value, this minimises the
trace between input and output addresses. A centralised mixing
service requires a third party to operate, e.g., CoinJoin*! and
Blindcoin [23]. Distributed mixing services, on the other hand,
do not rely on a single third-party, e.g., CoinSwap+2.

3%http://counterparty.io/

4Ohttps://z.cash/
4Ihttps://bitcointalk.org/index.php?topic=279249.0
“2https://bitcointalk.org/index.php?topic=321228.0

2) Incentive: Blockchains and their applications (especially
on public blockchains) introduce financial incentives (or repu-
tation and rating mechanisms) for miners to join the network,
validate transactions and generate blocks correctly. For example,
in Bitcoin, miners have two incentives: the reward for generating
new blocks and the fees associated with transactions. Miners in
Ethereum also charge a fee to execute smart contracts. Enigma#*3
has a fixed price for storage, data retrieval, and computation
within the network. Enigma also requires a security deposit for
nodes to join the network. If a node is found to lie, its deposit
will be split among the honest nodes. Reputation and rating
mechanisms are generally used in peer-to-peer systems as a
sign of trustworthiness of the peer as judged by others.

3) Deployment: Deployment of blockchain also has impact
on the quality attributes of the system. For example, deploying
a blockchain on a cloud provided by third-party, or using
a blockchain-as-a-service model directly introduces the un-
certainty of cloud infrastructure into the system. Here the
cloud provider becomes a trusted third-party and a potential
single point of failure for the system. Deploying a public
blockchain system on a virtual private network can make it a
private blockchain, with permissioned access controls provided
at the network level. However the virtual private network will
introduce its own additional latency overhead.

IV. DEsiGN PROCESS FOR BLOCKCHAIN-BASED SYSTEMS

Taxonomy can be used during the process of architecting
software systems to guid the system design [11]. In this section,
we propose an indicative conceptual model of architecting a
system that potentially uses blockchain technology. The process,
shown in Fig. 1, is used to illustrate how our taxonomy can
be used to guide the system design at different stages of
the design process. The process starts from the decision to
decentralise trust (authority) — or not. A blockchain is used in
scenarios where no single trusted authority is required and the
trusted authority can be decentralised or partially decentralised.
Design decisions regarding trust decentralisation are discussed
in Table 1. Given the limitations of blockchains, the next major
decision is splitting computation and data storage between
on-chain and off-chain components. The respective design
decisions are discussed in Table II.

After that, a collection of design decisions around blockchain
configuration need to be made, like the type of blockchain,
consensus protocol, block size and frequency. The design
decisions on blockchain configuration are discussed in Table III.
Other design decisions are discussed in Section III-D. The
arrows only illustrate one of the possible sequences to make
design decisions. Some decisions mainly affect scalability (like
block size and frequency), security (like consensus protocol),
cost efficiency (like type of blockchain) and performance
(like data structure). There are also trade-offs between the
fundamental properties of blockchain. Finally, where to deploy
the modules of the blockchain-based system is also important.

Every step in Fig. 1 is itself a procedure to decide between al-

43http://enigma.media.mit.edu/

http://counterparty.io/
https://z.cash/
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=321228.0
http://enigma.media.mit.edu/

Has trusted Yes
authority?

Can it be
decentralised?

No

How to decentralise

the authority? Use traditional

(IV.A) database
Storage and computation:
on-chain vs. off-chain
(IV.B)
Need a new Need multiple
o 2
£8§ blockchain ? blockchains? > hattyped
5EG
S v
2% | Whatblock size and
=3 frequency? Wh:::t% r:;(ir;sus 4| What data structure?
:2 .. N d e
8595 i e leed anonymity
g § § ES What incentive? e
b

-

Where to deploy?
(IV.D)

Figure 1: Design process for blockchain-based systems

ternative options. Throughout this design process, our taxonomy
can assist the decision making through enabling a systematic
comparison among the capabilities of different design options.
The taxonomy also shows the impact of different design options
on the quality attributes. The trade-off analysis of quality
attributes provides a foundation for the comparison.

V. CONCLUSION

Blockchain is an emerging technology for decentralised
and transactional data sharing across a large network of
participant who do not need to trust each other. It enables new
forms of distributed software architectures, where components
can find agreement on their shared states without trusting
a central integration point or any particular participating
components. Blockchain, as a software connector with a
complex internal structure, has various configurations and
different variants. Using blockchain in different scenarios
requires the comparison of blockchain options and products
with different implementations and configurations.

In this paper, we propose a taxonomy of blockchains and
blockchain-based systems. The taxonomy can be used when
comparing blockchains and assist in the design and evaluation
of software architectures using blockchain technology. Our
taxonomy captures the major architectural characteristics of
blockchains, and the impact of different decision decisions.
This taxonomy is intended to help with important architectural
considerations about the performance and quality attributes
(e.g., availability, security and performance) of blockchain-
based systems. Other than taxonomy, patterns is also a
mechanism to classify and organise the existing solutions.

In our future work, we plan to propose a list of design
patterns for applications based on blockchain. We also plan to
investigate the existing patterns for distributed system, peer-to-
peer system and software in general and asses the applicability
of the exisiting patterns to the blockchain-based applications.

[1

—

[2]

[3]

[4]
[5]

[6]
[7]

[8]
[9]
[10]

(11]
[12]
[13]
[14]
[15]

[16]
(17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

(27]
(28]

REFERENCES

Distributed ledger technology: beyond blockchain. Technical report, 2016.
UK Government Chief Scientific Adviser.

The future of financial infrastructure - an ambitious look at how
blockchain can reshape financial services. Technical report, 2016. WEF
report.

M. Ali, J. Nelson, R. Shea, and M. J. Freedman. Blockstack: A global
naming and storage system secured by blockchains. In USENIX ATC,
Santa Clara, CA, 2016.

A. Back, G. Maxwell, M. Corallo, M. Friedenbach, and L. Dashjr.
Enabling blockchain innovations with pegged sidechains. 2014.

R. G. Brown. The “Unbundling of trust”: How to identify good
cryptocurrency opportunities?, 2014.

V. Buterin. On public and private blockchains, 2015/08.

C. Decker and R. Wattenhofer. Information propagation in the Bitcoin
network. In P2P, Trento, Italy, 2013.

I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-NG: A
scalable blockchain protocol. In USENIX NSDI, Santa Clara, CA, 2016.
I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In FC, Christ Church, Barbados, 2014.

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, and
S. Capkun. On the security and performance of proof of work blockchains.
In ACM CCS 2016), Vienna, Austria, 2016.

I. Gorton, J. Klein, and A. Nurgaliev. Architecture knowledge for
evaluating scalable databases. In WICSA, Montréal, Canada, 2015.

T. D. Joseph Poon. The Bitcoin lightning network: Scalable off-chain
instant payments. 2016.

Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block chain
protocols. In FC, San Juan, Puerto Rico, 2015.

N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of
software connectors. In ICSE, 2000.

A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin: Repurposing
Bitcoin work for data preservation. In /EEE S&P, San Jose, CA, 2014.
S. Nakamoto. Bitcoin: A Peer-to-Peer electronic cash system, 2008.

C. Natoli and V. Gramoli. The blockchain anomaly. In NCA’/6. IEEE,
Oct 2016.

S. Omohundro. Cryptocurrencies, smart contracts, and artificial intelli-
gence. Al Matters, 1(2):19-21, Dec. 2014.

Y. Sompolinsky and A. Zohar. Accelerating Bitcoin’s transaction
processing - fast money grows on trees, not chains. Cryptology ePrint
Archive, Report 2013/881, 2013.

M. Swan. Blockchain: Blueprint for a New Economy. O’Reilly, US,
2015.

T. Swanson. Consensus-as-a-service: a brief report on the emergence of
permissioned, distributed ledger systems. 2015.

F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical
survey on decentralized digital currencies. IEEE Communications Surveys
& Tutorials, 18(3):464, 2016.

L. Valenta and B. Rowan. Blindcoin: Blinded, accountable mixes for
Bitcoin. In FC, San Juan, Puerto Rico, 2015.

M. Vukoli¢. The quest for scalable blockchain Fabric: Proof-of-Work vs.
BFT replication. In iNetSec, Zurich, Switzerland, 2015.

I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and
J. Mendling. Untrusted business process monitoring and execution using
blockchain. In BPM, Rio de Janeiro, Brazil, Sept. 2016.

G. Wood. Ethereum: A secure decentralized generalised transaction
ledger — homestead draft. Technical report, 2016.

P. Wuille. Segregated witness and deploying it for Bitcoin, 12 2015.
X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev, A. B. Tran, and
S. Chen. The blockchain as a software connector. In WICSA, 2016.

