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Abstract

We propose a taxonomy of botnet structures, based on
their utility to the botmaster. We propose key metrics
to measure their utility for various activities (e.g., spam,
ddos). Using these performance metrics, we consider the
ability of different response techniques to degrade or dis-
rupt botnets.

In particular, our models show that targeted responses
are particularly effective against scale free botnets and ef-
forts to increase the robustness of scale free networks comes
at a cost of diminished transitivity. Botmasters do not ap-
pear to have any structural solutions to this problem in
scale free networks. We also show that random graph bot-
nets (e.g., those using P2P formations) are highly resistant
to both random and targeted responses.

We evaluate the impact of responses on different topolo-
gies using simulation and demonstrate the utility of our pro-
posed metrics by performing novel measurements of a P2P
network. Our analysis shows how botnets may be classified
according to structure and given rank or priority using our
proposed metrics. This may help direct responses and sug-
gests which general remediation strategies are more likely
to succeed.

1 Introduction

Malware authors routinely harness the resources of their
victims, creating networks of compromised machines called
botnets. The attackers’ ability to coordinate the victim com-
puters presents novel challenges for researchers. To fully
understand the threat posed by such networks, we must
identify classes of botnet topologies, their potential uses,
and the challenges each class presents for detection and re-
mediation.

We believe that it is inadequate to simply enumerate the
botnets we have seen to date in the wild. Botnets have
proven to be very dynamic. For example, researchers have
observed changes in botnet sizes, which have trended from
large networks (100K+ victims) to numerous smaller bot-

nets (1-5K+ victims) [53]. Likewise, we have seen a rapid
transition from centralized botnets (e.g., IRC) to distributed
organizational structures (e.g., P2P) [60]. We expect that
botnets will continue to be a dynamic, evolving threat.

We must therefore consider the structural and organiza-
tional potentialof botnets. Similar to how previous work
detailed key aspects of individual classes of worms [57],
this paper provides a taxonomy of botnet organization, and
their utility for various malicious activity. We believe that
future botnet research will share a common goal of reducing
the utility of botnets for botmasters. This raises important
questions: How are botnets utilized? What metrics should
be used to measure the effectiveness of remediation on such
networks?

Recent work by Rajab, et al. [47] noted the need for the
botnet research community to better define metrics. Their
study examined problems in estimating botnet populations.
This paper argues that other metrics (bandwidth, communi-
cations efficiency, robustness) require a similar thoughtful
examination.

This paper therefore proposes a taxonomy of botnet
topologies, based on the utility of the communication struc-
ture and their corresponding metrics. Section 2 details met-
rics for measuring botnet uses, and describes the structural
organization of botnets. In Section 3, we demonstrate how
to perform measurement of selected metrics, and analyze
experimental response techniques designed to address par-
ticular classes of botnets. We note how our work relates to
other areas of inquiry in Section 4. Since this area of re-
search is new and rapidly changing, we conclude with sug-
gestions for future work in Section 5.

Our contribution is the following: we identify a small
number of likely structural forms for botnets, based on a
utilitarian analysis. We propose metrics for measuring a
botnet’s effectiveness, efficiency, and robustness. Our anal-
ysis of models and real world observations suggests that
some botnet structures are more resilient than others to dif-
ferent types of remediation efforts. This analysis can guide
future inquiry into how to best address the botnet problem.



2 Botnet Taxonomy

The evolving and evasive nature of botnets requires re-
searchers to anticipate possible topologies. An interesting
early contribution in this area is [13], which listed three
topologies (centralized, peer-to-peer, and random) for bot-
nets, and roughly evaluated performance metrics in terms of
high, medium and low performance.

To more fully understand the threat, we expand on [13]
and propose a taxonomy of possible botnet topologies and
how to measure their utilization in various malicious activ-
ities.

2.1 Purpose and Goals

Taxonomies are most useful when they classify threats in
dimensions that correspond to potential defenses [30, 31].
As [29] noted: “[a]n important and sensible goal for an
attack taxonomy ... should be to help the defender.”

Our botnet taxonomy will help researchers identify what
types of responses are most effective against botnets. Our
design goals are similar to [57]: (a) assist the defender in
identifying possible types of botnets, (b) describe key prop-
erties of botnet classes, so researchers may focus their ef-
forts on beneficial response technologies.

Our taxonomy is driven by possible responses, and not
detection. There is some initial work in botnet detec-
tion [13–15, 17, 18, 20]. Further, the considerable body of
literature on worm detection has identified detection tech-
niques that can be adapted to botnet detection [9,21,26,44,
58, 61–63]. We therefore leave for future work a classifica-
tion of botnet detection techniques.

2.2 Key Metrics for Botnet Structures

Naively, one could suppose that bots will organize ac-
cording to various regular network topologies such as star,
mesh, or bus networks. These topologies are useful for for-
mal analysis of discrete network properties, but do not let
us describe the utility of large complex botnets.

Instead, we need to pay attention to keydiscriminators
that let one compare important attributes of botnets. We
identify three important measures of botnets: effectiveness,
efficiency, and robustness. We acknowledge there are other
characteristics the botmaster may desire, but these are not
easily designed into the topology of a victim network. For
example, botmasters may desire anonymity from their bot-
net (e.g., to carry out anonymous attacks); however, this
property is not inherently obtained from any single topol-
ogy, and depends more on the application-layer design of a
botnet’s messaging system.

Table 1 lists a few botnet uses, and key relevant metrics.
More than one metric can be relevant to a botnet use, and

botnets certainly have multiple uses. However, the table
lists key metrics critical to the botnet’s specified function.

2.3 Measuring Botnet Effectiveness

Theeffectivenessof a botnet is an estimate of overall util-
ity, to accomplish a given purpose. While botmasters may
innovate new uses of botnets, the ability of a botnet to meet
existing uses such as spam, ddos, warez distribution and
phishing is roughly approximated by size and bandwidth.
Both of these terms require elaboration.

We agree with [47], that “botnet size” must be a qualified
term. Here, we do not use size to mean the total popula-
tion count, such as that usually used in worm epidemiology
studies [37–39, 50]. Instead, we mean the “giant” compo-
nent of the botnet, or largest connected (or online) portion
of the graph [10, 42]. Botnets are of course more powerful
if they have large infected population, but the giant compo-
nent lets us directly measure the damage potentially caused
by certain botnet functions.

In the case of DDoS, the giant component,S, lets us
measure the largest number of bots that can receive instruc-
tions and participate in an attack. This contrasts with the
total population of all infected victims, which may not al-
ways be reachable by the botmaster, e.g., because of diurnal
variations [16].

A related measure is the average amount of bandwidth
that a bot can contribute, denoted asB. Estimating band-
width along a single link is a complex problem, and the
subject of numerous investigations in the networking com-
munity [6,25]. To estimate the cumulative bandwidth of an
entire botnet presents an even more challenging task. For
example, one could measure the bandwidth between bots,
between a bot and the botmaster, or between any bot and a
third party (e.g., a DDoS victim). By average bandwidth,
B, we mean the cumulative available bandwidth in a bot
that a botmaster could generate from the various bots (e.g.,
for DDoS) under ideal circumstances. Such a measurement
of course varies with the distribution of bandwidth available
to each member of the botnet, the probability that any victim
is “on-line” at any given time, and the amount of bandwidth
already being consumed by the victims themselves (e.g., for
normal use).

We roughly classify three types of bots according to their
transit categories: those using modems (type1), those using
DSL/cable (type2), and those using ‘high-speed’ networks
(type3). While bandwidth within each class is highly vari-
able in itself, we believe this grouping is a reasonable first
approximation because they are standard in industry–e.g.,
many commodity databases already map connection classes
according to these categories [34]. The probability of a bot
belonging to typei is denoted asPi. According to [24],
a reasonable distribution for US-based bots could be esti-



Major Botnet Utilities Key Metrics Suggested Variables Comment
Effectiveness Giant portion S Large numbers of victims increases the likelihood of

high-bandwidth bots. Diurnal behavior favorsS over to-
tal population.

Ave. Avail. Bandwidth B Average bandwidth available at any time, because of vari-
ations in total victim bandwidth, use by victims, and di-
urnal changes.

Efficiency Diameter l−1 Bots sending messages to each other and coordinating ac-
tivities require efficient communications.

Robustness Local transitivity γ Bots maintaining state (e.g., keycracking or mirroring
files) require redundancy to guard against random loss.
Highly transitive networks are more robust.

Table 1. Botnet Uses and Relevant Metrics

mated asP1 = 0.3, P2 = 0.6, P3 = 0.1. Similar distribu-
tions could be inferred for a global population.

Let us denote the average maximum network bandwidth
within each type asMi, the average normal usage of band-
width within each type isAi. Thus, the average avail-
able bandwidth could be used by a botmaster on a bot is
Mi − Ai. We simplify our measurement by assuming a
botmaster would not use even more bandwidth, since this
would interfere with the victims existing use, and the dis-
ruption might alert them to the infection.

We also need to consider the diurnal sensitivity of these
networks. More complete diurnal models of bot behavior
were presented in [16]. However, to avoid modeling diurnal
changes in numerous time zones, we can use a simplified
metric based on the estimated number of hours a victim is
online per day (and therefore capable of participating in the
botnet). We assign different weights (denoting the distribu-
tion of time hosts are online each day) to each class of bots.
For example, if we assume average online hours per day for
a bot using modem is 2, for a bot with DSL/cable is 6, and
for a bot with high-speed is 24, then we have the probability
vector ~W = [2/32, 6/32, 24/32] = [0.0625, 0.1875, 0.75].
We selected these numbers based on [43]; however, our
analysis considers other ranges of values.

Using the simplified bandwidth estimation for each bot,
and a simplified diurnal model, we can express the average
available bandwidth of a bot as:

B =
3

∑

i=1

(Mi − Ai)PiWi (1)

In Section 3, we suggest the utility of this metric by com-
paring different botnets. The weights and distribution of
hosts in each class are of course variable. To understand
their sensitivity, we evaluated the weighted bandwidth for
different ranges of estimates.

Figure 1 shows the weighted bandwidth, with different
variations in diurnal sensitivity. We can see in Figure 1(a),
that the final average weighted bandwidth is around 20Kbps

for a single bot, for the values fixed in that plot. With ap-
proximately 50,000 such bots in a botnet, the botmaster can
utilize about 1Gbps bandwidth on average at any time.1 The
parameters for the plots in Figure 1 are drawn from data
measurements described in Section 3.

The plots reveal the sensitivity of this metric to the di-
urnal variation in users. Compare for example Figure 1(a),
where low bandwidth users are presumed online for only
two hours, to Figure 1(c), where six hours is fixed instead.
For diurnal weighing above 6 hours/day, variation in the on-
line hours for the medium and high-bandwidth users does
not result in much variation in the overall bandwidth, as
shown in Figure 1(a). However, in Figure 1(c), the on-
line variation of the other classes has a significant impact
on bandwidth particularly when higher-speed users are “al-
ways on” and have a diurnal weight of 1. This suggests that
botnets with many low-speed connections experience less
variation when the lower-speed connections minimize their
time online. In Section 3, we further compare estimated
bandwidth of two botnets.

2.4 Measuring Botnet Efficiency

Botmasters and security researchers may also be con-
cerned about theefficiencyof a botnet. Whether used to
forward command-and-control messages, update bot exe-
cutable code, or gather host-based information (e.g., key-
logging and data exfiltration), a botnet may be evaluated by
its communicationefficiency.

We proposenetwork diameteras one means of express-
ing this efficiency. By network diameter, we mean the aver-
age geodesic length of a network,l. This measures the aver-
age length of the shortest edge connecting any two nodes in
the network. Ifl is large, the dynamics of the network (com-
munications, information, epidemics) is slow. The reader

1We repeat again the caution noted above: ouravailable bandwidth
metric does not measure the bandwidth between any two points. Rather
it measures the amount of traffic the botmaster may reasonably generate
using his network.
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(a) Fixed online hours for Type1 at 2,
varying other two types.
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(b) Fixed online hours for Type1 at 4,
varying other two types.
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(c) Fixed online hours for Type1 at 6,
varying other two types.

Figure 1. Weighted bandwidth and diurnal sensitivity. Low- bandwidth bots have a significant effect
on average bandwidth when they are online for more than ≈ 4 hours. Figures (a) through (c) fix the
diurnal weight of low-bandwidth bots at 2, 4 and 6 hours. Only at the extreme, plot (c), does average
bandwidth change significantly. This impact is seen when hig h- and medium bandwidths bots have
less than 24-hour/day connectivity.

may recall that in Milgram’s famous paper, social networks
were shown to have short average geodesic lengths, approx-
imately logN , or l ≈ 6 (“six degrees of separation”) for
general society [36], while the web has a larger estimated
length,l ≈ 17 [3].

As in [23], we use the inverse geodesic length,l−1, in-
stead ofl, defined as:

l−1 =

〈

1

d(v, w)

〉

=
1

N(N − 1)

∑

v∈V

∑

w 6=v∈W

1

d(v, w)′

(2)
This way, if botsv andw are disconnected, the distance

d is zero. Further, the inverse length is normalized, ranging
from 0 (no edges) to 1 (fully connected). In the context
of botnets,l−1 refers to the overlay network of bot-to-bot
connections created by the malware, instead of the physical
topology of the Internet. Thus, bot victims on the same
local network (one hop away) may be several edges apart or
even unconnected in the overlay bot network created by the
malware.

This metric is also relevant to robustness because with
each message passed through a botnet, there is a probabil-
ity of detection or failure. Some researchers have already
investigated zombie detection via stepping stone analysis,
or the detection of messages being relayed through victim
proxies [59]. It is difficult to express this chance of detec-
tion precisely, since botnet identification is a new, develop-
ing field. But at a high level, botnet detection techniques
will generally rely on the chance of intercepting (i.e., de-
tecting and corrupting or halting) a message between two
bots in a network. Assume that botsu andv are connected
throughn possible paths,P1, . . . Pn, and that each node in
the path can be recovered (cleaned) with probabilityα. If
ǫi is the chance that pathPi is corrupted, quarantined or

blocked, then all paths betweenu andv are blocked with
probability:

n
∏

i=1

ǫi ≤ (1 − α)n (3)

While botsu andv are connected throughsomepath with
probability 1 − (1 − α)n, the chance of failure increases
with α (i.e., as detection technologies improve). Section 3
characterizes the performance ofl−1 under increasing link
decay.

We expect that in the future, botnet researchers will pro-
pose many techniques to detect, disrupt, or interfere with
botnet messaging. Network diameter,l−1 is therefore a ba-
sic, relevant metric to determine how many opportunities
network administrators have to observe, disrupt or measure
messaging.

The incentive of the botmaster is to increasel−1, which
yields a more efficient/robust botnet, at least for selected
uses noted in Table 1. Under an ideall−1 = 1, every bot
can talk directly to every other bot. Since a botnet with more
interconnections has more short paths, it passes messages
quickly, and provides fewer detection opportunities.

2.5 Measuring Botnet Robustness

A final category of botnet use can be expressed in the
robustnessof such networks. Bots routinely lose and gain
new members over time. If victim machines are perform-
ing state-sensitive tasks (e.g., storing files for download, or
sending spam messages from a queue), a higher-degree of
connection between bots provides fault tolerance and recov-
ery.

To some degree this metric correlates with an improved
redundancy.l−1 already indicates robustness in some sense.



But we more precisely capture the robustness of networks
using local transitivity to measureredundancy. Local tran-
sitivity measures the likelihood that nodes appear in “triad”
groups. That is, given two node pairs,{u, v} and{u, w},
that share a common node,u, local transitivity measures
the chance that the other two,v andw, also share an edge.
A clustering coefficientγ, measures the average degree of
local transitivity [56], in a neighborhood of vertices around
nodev, Γv. If Ev represents the number of edges inΓv,
thenγv is the clustering coefficient of nodev. Wherekv

represents the number of vertices inΓv, then we have:

γv =
Ev
(

kv

2

) , γ = 〈γ〉 =
1

N

∑

v∈V

γv. (4)

The average clustering coefficient〈γ〉 measures the number
of triads divided by the maximal number of possible triads.
Just like l−1, γ ranges from[0, 1], with 1 representing a
complete mesh.

Local transitivity is an important measure for certain bot-
net uses. Warez (stolen programs) and key cracking require
reliable, redundant storage, particularly since botnets ex-
hibit strongly diurnal properties. To ensure uninterrupted
key cracking, or that file resources are always available, bot-
masters routinely designate multiple victims to store iden-
tical files. (For examples, consult [12].) Botmasters could
use quorum systems in addition to simple backups. How-
ever, the transitivity measureγ index generally captures the
robustness of a botnet.

2.6 Botnet Network Models

To measure the robustness of different botnet architec-
tures, we must further specify the types of response actions
available to network administrators. In a general sense,
botnets can suffer random and targeted responses. Ran-
dom failures correspond to patching by normal users, diur-
nal properties of computers being powered off at night, and
other random failures in a network. Targeted responses are
those that select “high value” machines to recover or patch.
These response types all correspond to actions directed at
botnet vertices. Edge-oriented responses (e.g., quarantine,
null routing) have been considered elsewhere, e.g., [64].

Expanding on the general categories of botnets noted
in [13], we consider different types of graphs studied in the
extensive literature on complex networks. Our taxonomy
uses the major models from that field. For a comprehensive
overview of complex network mechanics, see [4].

2.6.1 Erdös-Rényi Random Graph Models

To avoid creating predictable flows, botnets can be struc-
tured as random graphs. In a random graph, each node is
connected with equal probability to the otherN − 1 nodes.

Such networks have a logarithmically increasingl−1. The
chance a bot has a degree ofk is the binomial distribution:

Pr(k) =

(

N − 1

k

)

pk(1 − p)N−1−k (5)

Particularly for large networks like botnets, it makes
sense to limit the degreek to a maximum number of edges,
L. For our analysis below, we select an average〈k〉 appro-
priate to botnets, instead of〈k〉 ≈ 2L/N used by others
studying general network complexity problems [23]. With-
out such a limitation, a pure Erdös-Rényi random botnet
would potentially create individual bots with hundreds of
edges, even for small (5K victim) botnets. Large numbers
of connections on a client host are highly unusual, even
for P2P software [33, 49]. So, unless the victim is a rare
high-capacity server, botmasters would keep〈k〉 small, say
〈k〉 ≈ 10. In Section 3, we measure the degree of connec-
tion in an unstructured P2P botnet, to confirm that〈k〉 will
have fairly low values.

One difficulty in random graphs is easily overcome by
certain types of botnets. Since each node has a probabil-
ity Pr(k) of being connected to each vertex, the creation
of the graph requires some central collection (or record) of
vertices. That is, each bot must either know or learn the
address of all the other bots, in order to have a chance of
sharing an edge. Because such a list may be discovered by
honeypot operators, botmasters have an incentive to not cre-
ate such a centralized master list, and some bots, e.g., those
created by the Zindos worm [32], take explicit steps to limit
the number of victim addresses stored in one place.

This creates a technical problem for botnets that propa-
gate through traditional (e.g., scanning, mass-mailing) tech-
niques. The first victims will not know the address of subse-
quent victims, and have aPr(k) biased towards zero. One
solution is for the attacker to keep track of victims joining
their botnet, generate a desired topology overlay, and trans-
mit the edge sets to each bot.

Botmasters can easily select a desired〈k〉 to generate
such a network. For example, they may select〈k〉 ≤ 10, so
that bots appear to have flow behavior similar to many peer-
to-peer applications [33, 49]. A botmaster could of course
select a higher〈k〉, even one close toN to create a mesh,
but such structures quickly exhaust bot resources, and may
be easily detected by network administrators.

If existing botnets are not available to generate a ran-
dom graph, one solution was proposed by [13], where bots
could randomly scan the Internet to find fellow bots. Al-
though noisy, this approach provides a last-resort technique
for botnet creation. Assuming random scanning up toL
connections, the resulting botnet would have a poissonk
distribution, and both the clustering and diameter properties
of a random graph.



2.6.2 Watts-Strogatz Small World Models

Another topology botnets can use is a Watts-Strogatz net-
work. In such a network, a regional network of local con-
nections is created in a ring, within a ranger. Each bot is
further connected with probabilityP to nodes on the oppo-
site side of the ring through a “shortcut”. Typically,P is
quite low, and the resulting network has a lengthl ≈ log N .
See [4] for further discussion of small world networks.

Intuitively, we can imagine a botnet that spreads by pass-
ing along a list ofr prior victims, so that each new bot can
connect to the previousr victims. To create shortcuts in the
small world, bots could also append their address to a grow-
ing list of victims, and with probabilityP connect back to a
prior bot. As noted in Section 3, we have witnessed only a
few anecdotal botnets that create prior victim lists, e.g.,Zin-
dos [32]. To frustrate remediation and recovery, the lists are
typically smallr ≈ 5. In the case of propagation-created
botnets, botmasters may prudently useP = 0, to avoiding
transmitting a lengthy list of prior victims. Otherwise, a bot
would have to append its address to a growing list of IPs
forwarded to each new victim. As noted above, if a botmas-
ter desired to have shortcuts in a small world botnet, they
could instead just use an existing botnet.

2.6.3 Barab́asi-Albert Scale Free Models

The previous botnet structures are characterized by varia-
tions in clustering, and each node exhibits a similar degree,
k ≈ 〈k〉. In contrast, a Barabási-Albert network is dis-
tinguished by degree distribution, and the distribution ofk
decays as a power law. Many real-world networks have an
observed power-law distribution of degrees, creating a so-
called scale free structure.

Scale-free networks contain a small number of central,
highly connected “hubs” nodes, and many leaf nodes with
fewer connections. This has a significant impact on the op-
eration of the network. As discussed in Section 3, random
node failures tend to strike low-degree bots, making the net-
work resistant to random patching and loss. Targeted re-
sponses, however, can select the high degree nodes, leading
to dramatic decay in the operation of the network. This phe-
nomenon is explored in many articles, e.g., [5].

Researchers have noted that bots tend to organize in scale
free structures, or even star topologies [11, 15, 17]. For ex-
ample, botnets might use IRCd [27] for coordination, which
explicitly uses a hub architecture.

2.6.4 P2P Models

In a P2P model, there are structured and unstructured
topologies [45,48]. For example, a structured P2P network
might use CHORD [52], or CAN [48], while an unstruc-
tured P2P might use the hub-and-spoke networks created

under gnutella or kazaa [45].
The unstructured P2P networks tend to have power-law

link distributions [45]. We therefore treat this type of P2P
network as a Barabási-Albert (scale free) model in our anal-
ysis. Similarly, structured P2P networks are similar to ran-
dom networks, in the sense that every node has almost the
same degree.

In Section 3, we observe new P2P-based botnets, and
perform some measurements on their structures. Since
our selected metrics concern only basic botnet properties
(length, giant, and local transitivity), we can treat thesenet-
works as random or scale free in our analysis. We encourage
others to refine these models to identify distinct P2P botnet
features that distinguish them from random and scale free
networks. For the metrics proposed in this work, however,
we will address P2P botnets as special cases of the previous
categories.

3 Taxonomy-Driven Botnet Response Strate-
gies

The previous discussion of botnet organization suggests
the need for diverse response strategies. To guide future re-
search in this developing area, we model different responses
to each botnet category. Our analysis confirms the pre-
vailing wisdom [13] that command-and-control is often the
weak link of a botnet. We confirm our model with an empir-
ical analysis of a real-world botnet response. Significantly,
our analysis also shows that targeting the botnet C&C is
not always an effective response. Some botnets will require
new response strategies that research must provide.

3.1 Erdös-Rényi and P2P Models

For ranges appropriate to botnets, we evaluate the rela-
tionship between node degree,k, and the diameter of the
botnet, expressed asl−1. We assume that, to evade triv-
ial detection, botnets will attempt to limit〈k〉 to some value
similar to P2P. Empirical studies of P2P systems reveal very
low median link scores (e.g.,k ≈ 5.5) [33,49]. Figure 2(a)
plots 〈k〉 againstl−1 for realistic values,k ≤ 20. Others
have noted that for increasing average degrees,〈k〉, random
Erdos-Renyi models have logarithmically increasing diam-
eters [23]. However, in Figure 2(a), realistic values ofk
show alinear relationship tol−1.

We also note that giant,s, improves significantly with
increases ink, enabling connections with most of the bot-
net whenk ≈ 10 for a 5K botnet. This agrees with the
general principle noted in Eqn. (3), where logarithmically
connected networks enjoy nearly universal broadcasting.

Local transitivity,γ, also increases logarithmically with
k. But for a range of small values ofk, typical of botnets,
it shows a linear increase. This means that each additional
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Figure 2. (a) Changes in length l−1, giant ( s), and local transitivity ( γ) in response to changes in
critical values of k, for 5K victim botnet. (b) Effect of loss on random networks.

value ofk equally improves the general robustness of the
botnet. We also note a slight flare at the base of theγ plot
for Figure 2(a), for very low values ofk. Intuitively, this
means botnets with a very low average degree have diffi-
culty forming triads, but this is quickly overcome ask in-
creases. Botmasters therefore have incentives to increase
k.

Our current analysis, however, shows that for botnets us-
ing a random topology, random loss (e.g., infrequent user
patching or anecdotal cleanup) will not diminish the num-
ber of triads in the botnet. We also omit plotting the perfor-
mance of random networks under targeted responses. Tar-
geting nodes can at best remove a few nodes withk slightly
higher than〈k〉. The result is asymptotically the same as
random loss.

The work in [55] is a good example of a hybrid botnet
with a random graph structure formed using a technique
similar to Erdös-Rényi graph, through the use of a peer list.
They also confirm the robustness of such networks against
targeted and random attacks. The work in [54] is also a good
example of botnets created using a random graph structure.

In section 2 we noted that structured P2P networks are
very similar to random networks, at least in terms of the
metrics we care about: length, giant and transitivity. Struc-
tured P2P networks in fact have a constantk (often set equal
to the logN size of the network), so they are slightly more
stable than purely random networks. Thus, changes inγ
ands, andl−1 are constant with the loss of random nodes.

Clearly botnets with random topologies (including struc-
tured P2P networks) are therefore extremely resilient, and
deserve further study. We speculate that the most effec-
tive response strategies will include technologies to remove
large numbers of nodes at once. Detecting and cleaning up

large numbers of victims (perhaps at the host level) appears
to be the most viable strategy. Likewise, strategies that dis-
rupt the ability of the network to maintain indices may be
fruitful, as suggested by the P2P index poisoning research
in [51].

3.2 Watts-Strogatz Models

There are some experimental botnets [32] that use small
world structures, but overall they do not appear to have a
high utility value, using the metrics we have proposed. The
average degree in a small world is〈k〉 ≈ r, or the number of
local links in a graph. Thus, random and targeted responses
to a small world botnet produce the same result: the loss
of r links with each removed node. Thus, the key metrics
for botnets,s, γ, l−1 all decay at a constant rate in a small
world.

We presumed that shortcut links in a small world botnet
are not used (P = 0), but even if present, they would not
affectγ with r ≥ 4. That is, if the number of local links is
large enough to form triads, the absence of shortcuts does
not significantly increase the number of triads (which are
already formed byr local neighbors).

There may be other benefits (e.g., propagation stealth
or anonymity), for which we have not proposed a utility
metric. But overall, small world botnets do not have bene-
fits different from random networks. In other domains, re-
searchers have noted that small world graphs are essentially
random [23].

Our investigation of experimental of botnet structures
only reveals one representative of the Watts-Strogatz model:
the Zindos [32] worm. We speculate that the poor utility
scores in the face of targeted and random loss may explain



this phenomena. An equally likely explanation is hinted at
by Zou, et al., in [60], where the authors noted the desire of
botmasters to avoid revealing a lists of confederate botnet
members to honeypot operators.

3.3 Barabási-Albert and P2P Models

While random networks present a challenge, at least
scale free networks provide some good news for re-
searchers. Figure 3(a) plots the change in diameter and
transitivity against changes in the “core” size of the bot-
net,C. The “core” of a scale free botnet is the number of
high-degree central nodes–the routers and hubs used to co-
ordinate the soldier bots. As more core nodes are added, the
diameter of the scale free botnet stays nearly constant for
small regions ofC. Intuitively, splitting a hub into smaller
hubs does not significantly increase the length of the overall
network.

The local minima in Figure 3(a) has an intuitive explana-
tion. If we have a single hub in a scale free network,C = 1,
many of the added leaf nodes have a good chance of form-
ing triads. The scale-free generation algorithm we chose
prefers high degree nodes, and tends to form many triads
when there are few hubs.

As we increaseC, we create several high degree hubs
that attract distinct groups of leaf nodes. This creates many
“squares”, where hubs are connected to each other, and
leaves are connected to each other. But transitivity is only
measured locally (in triads, and not other polygon paths).
Thus, increasingC diminishesγ slightly. As we increase
C more, we observe a tendency for the hubs themselves to
form triads, soγ grows logarithmically.

Can botmasters avoid this drop in transitivity? We sus-
pect not, if they wish to maintain a “normal” degree count,
relative to other applications. In Figure 3(c), we compare
changes inγ against core size using different link counts
for leaf nodes. If nodes have more links,m ≈ 16, the loss
in γ shallows out. But increasing the link count of nodes
can help anomaly detection algorithms that examine link
degrees (e.g., flow log analysis). This reveals a curious mix
of incentives. On the one hand botmasters would like to
haveC >> 1, since a single core node is too easily re-
moved. But increasingC just a little drops local transitivity.
To recover the loss in transitivity, botmasters would have to
increase link counts to rates far in excess of average P2P
degree counts.

Responses to scale free botnets are more effective. As
expected, random losses in scale free botnets are easily ab-
sorbed. Figure 3(b) shows that random patching has al-
most no affect on a botnet diameter or the frequency of
triad clusters. Intuitively, because of the power law distri-
bution of node degrees, random losses tend to affect low-
degree nodes (e.g., the leaves), and not important nodes

(e.g., hubs).
Targeted responses, however, can select key nodes for re-

sponse. This results in a dramatic increase in diameter, and
loss of transitivity. This suggests that researchers should
focus on technologies that allow targeted responses to high-
degree nodes in botnets. Figure 3(b) validates the intuitive
idea that by removing a botnet C&C, the network quickly
disintegrates into a collection of discrete, uncoordinated in-
fections.

As noted in [47], measuring aspects of botnets presents a
challenge to researchers. To demonstrate the practicalityof
our proposed metrics, we measured the average link degree
in an unstructured P2P botnet. We selected the nugache
worm [41], and measured the degree of connections be-
tween neighbors in the network mesh. Nugache uses a link
encrypted, peer-to-peer filesharing protocol, WASTE [1],
and uses several hard-coded IP addresses to request a list of
peers to from [41]. After connecting to peers, the bot dis-
covers more peers and continue to form new connections.
The resulting botnet is an unstructured P2P network, which
tends to create a scale-free form. Thus, although nugache
spreads by P2P systems, the resulting mesh is a scale-free
network.

Since we believe our data collection technique is some-
what unusual, we describe it in some detail. We note that
obtaining precise measurements is, of course, nearly im-
possible given the distributed nature of nugache. We there-
fore ran multiple instances of the nugache worm in a modi-
fied version of WINE [2], which guaranteed that each copy
would obtain a unique IP when a network socket is al-
located underbind() system calls. Thus, using a sin-
gle multi-homed machine, we “controlled” hundreds of nu-
gache nodes and were able to observe their connections to
the rest of the victims in the wild. (This is similar to the
use of numerous heavy-weight honeypots to track botnets,
noted in [13].) We ran two such “batch WINE runs” for
several weeks, creating hundreds of nodes, and measured
the connections degree among our subsample of the overall
population.

Figure 4(a) shows the distribution of link degrees found
in the Nugache sample. The vast majority of victims main-
tained less than 6 links to other victims. There are a few
nodes with a very high degree,≈ 30. This suggests a scale-
free network typical of unstructured P2P networks. Our
sampling technique unfortunately could not inject nodes
into the inner ring of the nugache network (created from
the hard-coded peers), where we would expect to observe a
very high link degree.

If we had contacted the owners of the low-degree nu-
gache nodes we observed, or otherwise caused their remedi-
ation and cleanup, our impact on the network’s utility would
have been negligible, according to our analysis. Our model
above shows that random losses in scale free networks (and
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Figure 4. Measurements of (a) link degree in Nugache and (b) j oins observed over time.

unstructured P2P networks) do not significantly degrade the
network. Figure 3(b) shows that random losses fail to sig-
nificantly reduce either the diameter or transitivity values.

Of course, we were unable to measure the entire popu-
lation, s, of the nugache network using our data collection
technique. Figure 4(b) illustrates the problem. This figure
plots the rate of newSYN+ACK connections observed by
our batch WINE nodes. This is therefore a rough measure
of the rate of new link creation, which may or may not cor-
respond to the rate of new victims being recruited. (That
is, a newSYN+ACK may represent an old nugache victim
we’ve just discovered, or a new victim joining for the first
time.) Since we did not catch nugache in its early forma-
tion, or successfully inject our honeypots into the inner ring
of high-degree nodes, we saw only a small number of po-
tentially new victims over the study period.

As the authors in [47] noted, measuring population val-

ues is a complex undertaking. We believe our analysis
shows that our proposed metrics are both practical and use-
ful. However, we leave for future work the design of effec-
tive data collection techniques for P2P networks (whether
structured or unstructured). Given the often stealthy cre-
ation of such networks, we expect this may remain a chal-
lenging problem for researchers.

3.4 Empirical Analysis

Our taxonomy also suggested that available bandwidth
B is a useful metric for botnet utility. We again note that
bandwidth estimation for end-to-end hosts is a complex
task. Nonetheless, to show the utility of our proposed met-
ric, we estimated the available average bandwidth in two
botnets.

Using techniques described in [16], we measured one



botnet of approximately 50,000 unique members in Febru-
ary 2005, and estimated the bandwidth of 7,326 bots cho-
sen in a uniformly random manner. Likewise, we measured
the bandwidth of a 3,391 member subsample from a 48,000
member botnet in January of 2006.

We used thetmetric [7] tool to perform the band-
width estimation.tmetric essentially uses successively
larger probes to estimate the bandwidth to a host. We used
a high-capacity link (OC-48) close to our network’s core
routers, so that we were more likely to measure the end
host’s available bandwidth, rather than any limitations in
our internal network. Dozens of probes sent over minutes
were used to obtain an average. Again, we note that the net-
working community has developed far more sophisticated
techniques to estimate bandwidthend-to-end. We believe
our simple measurements were useful to quickly obtain a
first order approximation of the average bandwidth in an
entire distributednetwork.

Figure 5(a) and (b) show the distribution of bandwidth,
with min/max and average bandwidth values observed dur-
ing the probes. Table 2 shows the average available band-
width (that the botmaster can utilize) from a single bot. Us-
ing Eq(1) and without considering the diurnal sensitivity,
we can calculate the average available bandwidth for bot-
master to use on one bot is around 53.3004 Kbps. For data
set 2, the average is 34.8164 Kbps, a few less than the first
case.

But when accounting for diurnal sensitivity, and assum-
ing the average online times for each class of bots is [2, 4,
24] hours, then the final average bandwidth for botmaster on
one bot is 22.7164 Kbps. If a botnet has a size of 50K, then
on average the botmaster consistently has more than 1Gbps
bandwidth on average at anytime. This suggests the botnet
could easily launch a successful denial of service attack on
almost any web site. (Indeed, during our period of obser-
vation, the 50K member botnet did DDoS several websites
that only had 100Mbs transit.) For data set 2, the weighted
bandwidth is 14.6378 Kbps– comparatively lower.

The metric therefore reveals something counter-intuitive
about botnets. Just looking at the sampled bandwidth in
Figure 5(a) and (b), it seems that the botnets have roughly
the same maximum bandwidth, and the same number of
bots, and therefore have the same general utility from a
DDoS perspective. When accounting for diurnal changes
in populations, however, the second botnet (plotted in Fig-
ure 5(b)) has approximately half the average available band-
width, despite having only 2,000 less members than the
other network. If network administrators had to select be-
tween these two botnets and prioritize a single response ef-
fort, the simple bandwidth estimateB shows a higher utility
in the botnet in Figure 5(a).

Our bandwidth estimate metric may have other uses be-
sides priority ranking botnets. This exercise suggests that

diurnal changes in botnet membership can significantly af-
fect a botnet’s utility as a DDoS vehicle. We leave for future
work an analysis of how this metric can be leveraged in a
targeted attack on a botnet. That is, we speculate that re-
sponders might significantly reduce a botnet’s DDoS poten-
tial by targeting the “high-speed” members of a botnet. The
bandwidthB metric should let researchers measure their
progress in such a response, and tell them how many more
high-speed members must be removed, relative to the mix
of low-speed members, for a given estimated diurnal usage
pattern.

4 Related Work

Our work fits into the larger body of literature address-
ing the statistical mechanics of complex networks [4]. Oth-
ers have studied the brittle nature of scale-free networks and
resilience of random networks in other contexts [5, 23, 40].
Our work adapts these findings to the particular domain of
botnets. The topology of networks under active decay was
analyzed in [40]. Many of the results in [40] anticipate our
own. The authors took a fascinating look at all domains of
network structures (e.g., including terror cells, and global
history), and not just computer networks. By restricting our
analysis to botnets, we identified several unique and inter-
esting phenomena not considered in [40]. For example, the
authors in [40] suggest a strategy of splitting high-degree
nodes to avoid targeted responses. This is analogous to in-
creasingC in scale free networks, discussed in 3. Since
we focused on the botnet domain, we were able to further
observe that this results in a degraded transitivity.

Botnet research is still maturing. The work in [13] antic-
ipated many of the general categories of botnets analyzed
in Section 2, including the difficulty in responding to dif-
ferent type of botnet taxonomies. The models and empiri-
cal data we presented in Section 2 flesh out and formalize
the intuitive discussion in [13]. Recently, advanced botnets
with complex network structures have been studied. Vogt,
et al. [54] presented a super-botnet, the network of many
independent, small botnet, which is a special case of a ran-
dom graph botnet. Wang, et al. [55] introduced an advanced
hybrid peer-to-peer botnet. Grizzard, et al. [19] providedan
overview of P2P botnet and a case study of a specific bot.

There have been several works on botnet measurement.
In [17, 46], the authors used honeynets to track existing
IRC-based botnets and report a few simple statistics about
botnets. Rajab, et al., [47], argue that the estimation of bot-
net size is actually hard in practice, and call for further re-
search on the measurement of botnets. We believe our anal-
ysis in Sections 2 and 3 help with this problem. Wang,
et al. [55], propose two metrics, connection ratio and de-
gree ratio, to measure the resilience of removing mostly-
connected bots from a botnet. In this paper, we propose
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Figure 5. An estimate of bandwidth usage in two sampled botne ts. Just examining the maximum
bandwidth, the botnets appear to have roughly the same distr ibution of high, medium and low-speed
bots, and therefore appear to pose the same DDoS threat poten tial. The analysis below, however,
shows how diurnal changes significantly reduce the average a vailable bandwidth of (b), compared
to (a).

Bot Bandwidth Type Low (std) Medium (std) High (std)
Dataset 1: Average Max BW 28.2356 (11.9612) 119.1708 (54.2837) 601.7158 (989.2654)

Average usage BW 19.2395 (8.5739) 74.3089 (34.4838) 364.8714 (636.2601)
Average available BW 8.9961 44.8619 236.8444

Dataset 2: Average Max BW 33.9266 (9.3649) 116.0036 (51.0478) 432.4184 (354.3628)
Average usage BW 27.9144 (8.8397) 86.2721 (33.3334) 280.6805 (229.9276)

Average available BW 6.0122 29.7315 151.7379

Table 2. Average and standard deviation of bandwidth observ ed in two botnets, plotted in Figure 5

more metrics, and not only measure the robustness, but also
the effectiveness and efficiency of a botnet for the botmas-
ter.

Researchers have attempted to study the botnet problem
in a systematic way. Barford and Yegneswaran [8] codify
the capabilities of malware by dissecting four widely-used
Internet Relay Chat (IRC) botnet codebases. Each code-
base is classified along seven dimensions including bot-
net control mechanisms, host control mechanisms, propa-
gation mechanisms, exploits, delivery mechanisms, obfus-
cation and deception mechanisms. Trend Micro [35] also
proposed a taxonomy of botnet threats, along dimensions
such as attacking behavior, command and control model,
rally mechanism, communication protocol, evasion tech-
nique, and other observable activities. Our taxonomy is dif-
ferent from this existing work. It is a use-driven taxonomy
focused on the botnet structure. We study the problem from
specific aspects such as the structure and the utility metrics
of the botnets.

Our taxonomy and discussion of general response op-
tions presumes a sensitive detection system. We have not
considered detection of botnets, and urge further research.
We note preliminary detection work in misuse systems [22],
and IRC traces [11]. Significantly, this early work focuses
on trackingindividualbots (e.g., to obtain a binary) and not
thenetworkcloud of coordinated attackers addressed in our
study. In [13,17], researchers focused on countering botnets
(as opposed to individual bots), which used honeypots and
broad sensors to track and infiltrate botnets. Recently, there
are several works on the botnet detection problem. BotH-
unter [20] is a bot detection system using IDS-Driven Di-
alog Correlation according to defined bot infection dialog
model. Rishi [18] uses the similarity of nick name to detect
botnet channel. Karasaridis, et al. [28], proposed to detect
botnet command and control through passive network flow
record analysis.



5 Conclusion

Botnets present significant new challenges for re-
searchers. The fluid nature of this problem requires re-
searchers anticipate future botnet strategies and design ef-
fective response techniques. To assist in this effort, we pro-
posed key metrics to measure botnet utility for various ac-
tivities, and presented a taxonomy of botnets based on topo-
logical structure.

Our analysis shows that random network models (either
direct Erdös-Rényi models or structured P2P systems) give
botnets considerable resilience. Such formations resist both
random and targeted responses. Our analysis also showed
that targeted removals on scale free botnets offer the best
response.

We have demonstrated the utility of this taxonomy and
proposed metrics by using both simulation and real-world
botnet experiments. We also performed some novel mea-
surements of a P2P botnet to demonstrate the utility of our
proposed metrics.

In our future work, we will refine our metrics of botnet
utilities, explore effective techniques for more accurateesti-
mations of these metrics in real-world botnets. We will also
identify metrics that measure difficulties in detection, and
the evasive potential of botnets.
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