
A Taxonomy of Computer Program Security Flaws

CARL E. LANDWEHR, ALAN R. BULL, JOHN P. MCDERMOTT, AND WILLIAM S. CHOI

Informatmn Technology Division, Naval Research Laboratory, Washington, D. C. 20375-5337

An organized record of actual flaws can be useful to computer system designers,

programmers, analysts, administrators, and users. This survey provides a taxonomy

for computer program security flaws, with an Appendix that documents 50 actual

security flaws. These flaws have all been described previously in the open literature,

but in widely separated places. For those new to the field of computer security, they

provide a good introduction to the characteristics of security flaws and how they can

arise. Because these flaws were not randomly selected from a valid statistical sample

of such flaws, we make no strong claims concerning the likely distribution of actual

security flaws within the taxonomy. However, this method of organizing security flaw

data can help those who have custody of more representative samples to organize them

and to focus their efforts to remove and, eventually, to prevent the introduction of

security flaws,

Categories and Subject Descriptors: D.2.OISoftware Engineering]:

General—profectzon mechanisms; D.2.9[Software Engineering]: Management—lIf&

cycle; software configuration management; D.4.6[Operating Systems]: Security and

Protection—access controls; authentzcatzon; information fZow controls; inuasive

software; K.6.3[Management of Computing and Information Systems]: Software

Management—software development; software maintenance, K.6.5{Management of

Computing and Information Systems]: Security and Protection—authentication;

inuasiue software

General Terms: Security

Additional Key Words and Phrases: Error/defect classification, security flaw, taxonomy

INTRODUCTION

Knowing how systems have failed can

help us build systems that resist failure.

Petroski [1992] makes this point elo-

quently in the context of engineering de-

sign, and although software failures may

be less visible than those of the bridges

he describes, they can be equally damag-

ing. But the history of software failures,

apart from a few highly visible ones

[Leveson and Turner 1992; Spafford

1989] is relatively undocumented. This

survey collects and organizes a number

of actual security flaws that have caused

failures, so that designers, programmers,

and analysts may do their work with a

more precise knowledge of what has gone

before.

Computer security flaws are any condi-

tions or circumstances that can result in

denial of service, unauthorized disclo-

sure, unauthorized destruction of data,

or unauthorized modification of data

[Landwehr 1981]. Our taxonomy at-

tempts to organize information about

flaws so that, as new flaws are added,

readers will gain a fuller understanding

of which parts of systems and which parts

of the system life cycle are generating

more security flaws than others. This in-

formation should be useful not only to

ACM Computing Surveys, Vol. 26, No. 3. September 1994

212 “ Carl E. Landwehr et al,

CONTENTS

INTRODUCTION

What m a Security Flaw m a Program?

Why Look for Security Flaws?

in Computer Programs

1 PREVIOUS WORK

2 TAXONOMY

2 1 By Genesis

22 By Time of Introduction

23 By Location

3 DISCUSSION

3.1 Llmltatlons

32 Inferences

APPENDIX SELECTED SECURITY FLAWS

ACKNOWLEDGMENTS

REFERENCES

designers, but also to those faced with

the difficult task of assessing the secu-

rity of a system already built. To assess

accurately the security of a computer

system, an analyst must find its vulnera-

bilities. To do this, the analyst must

understand the system thoroughly and

recognize that computer security flaws

that threaten system security may exist

anywhere in the system.

There is a legitimate concern that this

kind of information could assist those

who would attack computer systems.

Partly for this reason, we have limited

the cases described here to those that

already have been publicly documented

elsewhere and are relatively old. We do

not suggest that we have assembled a

representative random sample of all

known computer security flaws, but we

have tried to include a wide variety. We

offer the taxonomy for the use of those

who are presently responsible for re-

pelling attacks and correcting flaws.

Their data, organized this way and ab-

stracted, could be used to focus efforts to

remove security flaws and prevent their

introduction.

Other taxonomies [Brehmer and Carl

1993; Chillarege et al. 1992; Florae 1992]

have recently been developed for organiz-

ing data about software defects and

anomalies of all kinds. These are primar-

ily oriented toward collecting data during

the software development process for the

purpose of improving it. We are primar-

ily concerned with security flaws that are

detected only after the software has been

released for operational use; our taxon-

omy, while not incompatible with these

efforts, reflects this perspective.

What is a Security Flaw in a Program?

This question is akin to “what is a bug?”.

In fact, an inadvertently introduced secu-

rity flaw in a program is a bug. Gener-

ally, a security flaw is a part of a pro-

gram that can cause the system to

violate its security requirements. Finding

security flaws, then, demands some

knowledge of system security require-

ments. These requirements vary accord-

ing to the system and the application, so

we cannot address them in detail here.

Usually, they concern identification and

authentication of users, authorization of

particular actions, and accountability for

actions taken.

We have tried to keep our use of the

term “flaw” intuitive without conflicting

with standard terminology. The IEEE

Standard Glossary of Software Engineer-

ing Terminology [IEEE Computer Soci-

ety 1990] includes the following

definitions:

●

●

☛

error: human action that produces an

incorrect result (such as software con-

taining a fault).

fault: an incorrect step, process, or data

definition in a computer program, and,

failure: the inability of a system or

component to perform its required

functions within specified performance

requirements.

A failure may be produced when a fault

is encountered. This glossary lists bug as

a synonym for both error and fault. We

use fZaw as a synonym for bug, hence (in

IEEE terms) as a synonym for fault, ex-

cept that we include flaws that have been

inserted into a system intentionally, as

well as accidental ones.

IFIP WG1O.4 has also published a tax-

onomy and definitions of terms [Laprie

ACM Computmg Surveys, Vol 26, No 3, September 1994

et al. 1992] in this area. These define

faults as the cause of errors that may

lead to failures. A system fails when the

delivered service no longer complies with

the specification. This definition of “error”

seems more consistent with its use in

“error detection and correction” as ap-

plied to noisy communication channels or

unreliable memory components than the

IEEE one. Again, our notion of flaw cor-

responds to that of a fault, with the pos-

sibility that the fault may be introduced

either accidentally or maliciously.

Why Look for Security Flaws in Computer

Programs?

Early work in computer security was

based on the paradigm of “penetrate and

patch”: analysts searched for security

flaws and attempted to remove them.

Unfortunately, this task was, in most

cases, unending: more flaws always

seemed to appear [Neumann 1978; Schell

1979]. Sometimes the fix for a flaw intro-

duced new flaws, and sometimes flaws

were found that could not be repaired

because system operation depended on

them (e.g., cases 13 and B1 in the

Appendix).

This experience led researchers to seek

better ways of building systems to meet

security requirements in the first place

instead of attempting to mend the flawed

systems already installed. Although some

success has been attained in identifying

better strategies for building systems

[Department of Defense 1985; Landwehr

1983], these techniques are not univer-

sally applied. More importantly, they do

not eliminate the need to test a newly

built or modified system (for example, to

be sure that flaws avoided in initial spec-

ification have not been introduced in

implementation).

1. PREVIOUS WORK

Most of the serious efforts to locate secu-

rity flaws in computer programs through

penetration exercises have used the Flaw

Hypothesis Methodology developed in the

early 1970s [Linde 1975]. This method

Program Security Flaws ● 213

requires system developers first (1) to

become familiar with the details of the

way the system works (its control struc-

ture), then (2) to generate hypotheses as

to where flaws might exist in a system,

(3) to use system documentation and tests

to confirm the presence of a flaw, and (4)

to generalize the confirmed flaws and use

this information to guide further efforts.

Although Linde [1975] provides lists of

generic system functional flaws and

generic operating system attacks, he does

not provide a systematic organization for

security flaws.

In the mid-70s both the Research in

Secured Operating Systems (RISOS) pro-

ject, conducted at Lawrence Livermore

Laboratories, and the Protection Analy-

sis project, conducted at the Information

Sciences Institute of the University

of Southern California (USC /1S1), at-

tempted to characterize operating system

security flaws. The RISOS final report

[Abbott et al. 1976] describes seven cate-

gories of operating system security flaws:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

incomplete parameter validation,

inconsistent parameter validation,

implicit sharing of privileged/con-

fidential data,

asynchronous validation/inadequate

serialization,

inadequate identification/authenti-

cation/authorization,

violable prohibition/limit, and

exploitable logic error.

The report describes generic examples for

each flaw category and provides reason-

ably detailed accounts for 17 actual flaws

found in three operating systems:

IBM OS/MVT, Univac 1100 Series, and

TENEX. Each flaw is assigned to one of

the seven categories.

The goal of the Protection Analysis (PA)

project was to collect error examples and

abstract patterns from them that, it was

hoped, would be useful in automating the

search for flaws. According to the final

report [Bisbey and Hollingworth 1978],

more than 100 errors that could permit

system penetrations were recorded from

ACM Computing Surveys, Vol. 26, No. 3, September 1994

214 ● Carl E. Landwehr et al.

six different operating systems (GCOS,

MULTICS, and Unix, in addition to those

investigated under RISOS). Unfortu-

nately, this error database was never

published and no longer exists [Bisbey

1990]. However, the researchers did pub-

lish some examples, and they did develop

a classification scheme for errors. Ini-

tially, they hypothesized 10 error cate-

gories; these were eventually reorganized

into four “global” categories:

. domain errors, including errors of ex-

posed representation, incomplete de-

struction of data within a deallocated

object, or incomplete destruction of its

context,

. validation errors, including failure to

validate operands or to handle bound-

ary conditions properly in queue man-

agement,

Q naming errors, including aliasing and

incomplete revocation of access to a

deallocated object, and

* serialization errors, including multiple

reference errors and interrupted atomic

operations.

Although the researchers felt that they

had developed a very successful method

for finding errors in operating systems,

the technique resisted automation. Re-

search attention shifted from finding

flaws in systems to developing methods

for building systems that would be free of

such errors.

Our goals are more limited than those

of these earlier efforts in that we seek

primarily to provide an understandable

record of security flaws that have oc-

curred. They are also more ambitious, in

that we seek to categorize not only the

details of the flaw, but also the genesis of

the flaw and the time and place it

entered the system.

2. TAXONOMY

A taxonomy is not simply a neutral

structure for categorizing specimens. It

implicitly embodies a theory of the uni-

verse from which those specimens are

drawn. It defines what data are to be

recorded and how like and unlike speci-

mens are to be distinguished. In creating

a taxonomy of computer program secu-

rity flaws, we are in this way creating a

theory of such flaws, and if we seek an-

swers to particular questions from a

collection of flaw instances, we must or-

ganize the taxonomy accordingly.

Because we are fundamentally con-

cerned with the problems of building and

operating systems that can enforce secu-

rity policies, we ask three basic questions

about each observed flaw:

● How did it enter the system?

● When did it enter the system?

● Where in the system is it manifest?

Each of these questions motivates a sub-

section of the taxonomy, and each flaw is

recorded in each subsection. By reading

case histories and reviewing the distribu-

tion of flaws according to the answers to

these questions, designers, programmers,

analysts, administrators, and users will,

we hope, be better able to focus their

respective efforts to avoid introducing se-

curity flaws during system design and

implementation, to find residual flaws

during system evaluation or certification,

and to administer and operate systems

securely.

Figures 1-3 display the details of the

taxonomy by genesis (how), time of intro-

duction (when), and location (where).

Note that the same flaw will appear at

least once in each of these categories.

Divisions and subdivisions are provided

within the categories; these, and their

motivation, are described in detail later.

Where feasible, these subdivisions define

sets of mutually exclusive and collec-

tively exhaustive categories. Often, how-

ever, especially at the finer levels, such a

partitioning is infeasible, and complete-

ness of the set of categories cannot be

assured. In general, we have tried to in-

clude categories only where they might

help an analyst searching for flaws or a

developer seeking to prevent them.

The description of each flaw category

refers to applicable cases (listed in the

ACM Computmg Surveys, Vol 26, No. 3, September 1994

Genesis

Intentional

Inadvertent

Program Security Flaws ● 215

Case

Count ID’s
——

t---

Non-

Replicating

Trojan Horse

Malicious
Replicating

(virus)
I

I Trapdoor

Validation Error (Incomplete / Inconsistent)

Domain Error (Including Object Re-use, Residuals,

and Exposed Representation Errors)

Serirdizarion/aliasing (Including TOCT”l’OU Errors)

Identification/Authentication Inadequate

Boundary Condition Violation (Including Resource

Exhaustion and Violable Constraint Errors)

Other Exploitable Logic Error

(J1,PC2,PC4,
, MAI ,MA2,CA1,

AT1

2} Wl)(ulo)

1 18

1 DTI

2 19,D2

14,15,MT1,MU2,
10 MU4,MU8,U7,

U11,U12,U13

13,16,MT2,
7 MT3,MU3,

UN1,D1

2 11,12

4 MT4,MU5,
MU6,U9

4
MU7,MU9,
U8,1NI

Figure 1. Security flaw taxonomy: Flaws by Genesis. Parenthesized entries indicate secondary assign-

ments.

Appendix). Open-literature reports of se-

curity flaws are often abstract and fail to

provide a realistic view of system vulner-

abilities. Where studies do provide exam-

ples of actual vulnerabilities in existing

systems, they are sometimes sketchy and

incomplete lest hackers abuse the infor-

mation. Our criteria for selecting cases

are:

(1) the case must present a particular

type of vulnerability clear~y enough

that a scenario or program that

threatens system security can be un-

derstood by the classifier and

(2) the potential damage resulting from

the vulnerability described must be

more than superficial.

Each case includes the name of the au-

thor or investigator, the type of system

involved, and a description of the flaw.

A given case may reveal several kinds

of security flaws. For example, if a sys-

tem programmer inserts a Trojan horse

that exploits a covert channell to disclose

sensitive information, both the Trojan

horse and the covert channel are flaws in

the operational system; the former will

probably have been introduced mali-

ciously, the latter inadvertently. Of

course, any system that permits a user to

invoke an uncertified program is vulner-

able to Trojan horses. Whether the fact

that a system permits users to install

programs also represents a security flaw

is an interesting question. The answer

seems to depend on the context in which

the question is asked. Permitting users

1Covert channel: a communication path in a com-

puter system not intended as such by the system’s

designers.

ACM Computing Surveys, Vol. 26, No. 3, September 1994

216 Q Carl E. Landwehr et al.

Case

Count ID’s
.—

11,12,13,14,15,
16,17,19,MT2,

22 ~6gyuN1
,,

U6,Li7,U9,U10,

U13,U14,D2,

IN1

MT1,MT4,MU1,

MU2,MU5,MU7,

15 MU8,DTI, U2,

U3,U4,U5,U8
U11,U12

1 U1

Requirement/

Specification/

Design

During

Development

Time of

Introduction
Source Code

Object Code

During

Maintenance I
D1 ,MU3,

3 MU9

18,PCl ,PC2,

PC3,PC4,MA1
9 M*Z,CA,,

AT1

During

Operation

Figure2. Security flaw taxonomy :Flawsby tlmeofmtroduction.

Case

xmt ID’s —

U5,U13,PC2,

9
PC4,MA1,

MA2,ATI,CA1I System Initlalizatlon

Operating

System

m

2 MT3,MU5

16,19,MTI,MT2,

O MU2,MU3,MU4,
MU6,MU7,UN1

3 12,13,14
Device Management

(including I/0, networking)

File Management
6

11,15,MU8,
U2,U3,U9

Software
I

Identificahon/AuthenticationLocation

I Other / Unknown 1 MT4

17,Bi,U4,U7,
O U8,U1O,U12,

U14,PCI, PC3

1 UI

I Privileged Utdities
support

Unprivileged Utdities

Application 1 18

Hardware 3 MU9,D2,1N1

Figure 3. Security flaw taxonomy: Flaws by location.

ACM Computing Surveys, Vol 26. No 3, September 1994

of, say, an air traffic control system or,

less threateningly, an airline reservation

system, to install their own programs

seems intuitively unsafe; it is a flaw. On

the other hand, preventing owners of PCs

from installing their own programs would

seem ridiculously restrictive.

The cases selected for the Appendix

are a small sample, and we caution

against unsupported generalizations

based on the flaws they exhibit. In par-

ticular, readers should not interpret the

flaws recorded in the Appendix as indica-

tions that the systems in which they

occurred are necessarily more or less se-

cure than others. In most cases, the ab-

sence of a system from the Appendix sim-

ply reflects the fact that it has not been

tested as thoroughly or had its flaws doc-

umented as openly as those we have cited.

Readers are encouraged to communicate

additional cases to the authors so that

we can better understand where security

flaws really occur.

The balance of this section describes

the taxonomy in detail. The case histo-

ries can be read prior to the details of the

taxonomy, and readers may wish to read

some or all of the Appendix at this point.

Particularly if you are new to computer

security issues, the case descriptions are

intended to illustrate the subtlety and

variety of security flaws that have actu-

ally occurred, and an appreciation of

them may help you grasp the taxonomic

categories.

2.1 By Genesis

How does a security flaw find its way

into a program? It may be introduced

intentionally or inadvertently. Different

strategies can be used to avoid, detect, or

compensate for accidental flaws as op-

posed to those inserted intentionally, For

example, if most security flaws turn out

to be accidentally introduced, increasing

the resources devoted to code reviews and

testing may be reasonably effective in

reducing the number of flaws. But if most

significant security flaws are introduced

maliciously, these techniques are much

less likely to help, and it may be more

Program Security Flaws “ 217

productive to take measures to hire

more trustworthy programmers, devote

more effort to penetration testing, and

invest in virus detection packages. Our

goal in recording this distinction is, ulti-

mately, to collect data that will provide a

basis for deciding which strategies to use

in a particular context.

Characterizing intention is tricky:

some features intentionally placed in

programs can at the same time introduce

security flaws inadvertently (e.g., a fea-

ture that facilitates remote debugging or

system maintenance may at the same

time provide a trapdoor to a system).

Where such cases can be distinguished,

they are categorized as intentional but

nonmalicious. Not wishing to endow pro-

grams with intentions, we use the terms

“malicious flaw,”” malicious code,” and so

on, as shorthand for flaws, code, etc.,

that have been introduced into a system

by an individual with malicious intent.

Although some malicious flaws could be

disguised as inadvertent flaws, this dis-

tinction should be possible to make in

practice—inadvertently created Trojan

horse programs are hardly likely! Inad-

vertent flaws in requirements or specifi-

cations manifest themselves ultimately

in the implementation; flaws may also be

introduced inadvertently during

maintenance.

Both malicious flaws and nonmalicious

flaws can be difficult to detect, the for-

mer because they have been intention-

ally hidden and the latter because resid-

ual flaws may be more Iikely to occur in

rarely invoked parts of the software. One

may expect malicious code to attempt to

cause significant damage to a system,

but an inadvertent flaw that is exdoited

by a malicious intruder can be ~quall~

dangerous.

2.1.1 Malicious Flaws

Malicious flaws have acquired colorfu

names, including Trojan horse, trap

door, time-bomb, and logic-bomb. The

term “Trojan horse” was introduced by

Dan Edwards and recorded by Anderson

[1972] to characterize a particular com-

ACM Computing Surveys, Vol. 26, No. 3, September 1994

218 “ Carl E. Landwehr et al.

puter security threat; it has been rede-

fined many times [Anderson 1972;

Denning 1982; Gasser 1988; Landwehr

1981]. It refers generally to a program

that masquerades as a useful service but

exploits rights of the program’s

user—rights not possessed by the author

of the Trojan horse—in a way the user

does not intend.

Since the author of malicious code

needs to disgaise it somehow so that it

will be invoked by a nonmalicious user

(unless the author means also to invoke

the code, in which case he or she presum-

ably already possesses the authorization

to perform the intended sabotage), al-

most any malicious code can be called a

Trojan horse. A Trojan horse that repli-

cates itself by copying its code into other

program files (see case MA1) is com-

monly referred to as a uirus [Cohen 1984;

Pfleeger 1989]. One that replicates itself

by creating new processes or files to con-

tain its code, instead of modifying exist-

ing storage entities, is often called a

worm [Schoch and Hupp 1982]. Denning

[1988] provides a general discussion of

these terms; differences of opinion about

the term applicable to a particular flaw

or its exploitations sometimes occur

[Cohen 1984; Spafford 1989].

A trapdoor is a hidden piece of code

that responds to a special input, allowing

its user access to resources without pass-

ing through the normal security enforce-

ment mechanism (see case Ul). For

example, a programmer of automated

teller machines (ATMs) might be re-

quired to check a personal identification

number (PIN) read from a card against

the number keyed in by the user. If the

numbers match, the user is to be permit-

ted to enter transactions. By adding a

disjunct to the condition that implements

this test, the programmer can provide a

trapdoor, shown in italics below:

if PINcard ==PINkeyed OR PIiVkeyed =

9999 then {permit transactions}

In this example, 9999 would be a univer-

sal PIN that would work with any bank

card submitted to the ATM. Of course the

code in this example would be easy for a

code reviewer, although not an ATM user,

to spot, so a malicious programmer would

need to take additional steps to hide the

code that implements the trapdoor. If

passwords are stored in a system file

rather than on a user-supplied card, a

special password known to an intruder

mixed in a file of legitimate ones might

be difficult for reviewers to find.

It might be argued that a login pro-

gram with a trapdoor is really a Trojan

horse in the sense defined above, but the

two terms are usually distinguished

[Denning 1982]. Thompson [1984] de-

scribes a method for building a Trojan

horse compiler that can install both itself

and a trapdoor in a Unix password-

checking routine in future versions of the

Unix system.

A time-bomb or logic-bomb is a piece

of code that remains dormant in the host

system until a certain “detonation” time

or event occurs (see case 18). When trig-

gered, a time-bomb may deny service by

crashing the system, deleting files, or de-

grading system response time. A time-

bomb might be placed within either a

replicating or nonreplicating Trojan

horse.

2.1.2 Intentional, Nonmalicious Flaws

A Trojan horse program may convey sen-

sitive information to a penetrator over

couert channels. A covert channel is sim-

ply a path used to transfer information

in a way not intended by the system’s

designers [Lampson 1973]. Since covert

channels, by definition, are channels not

placed there intentionally, they should

perhaps appear in the category of inad-

vertent flaws. We categorize them as in-

tentional but nonmalicious flaws because

they frequently arise in resource-sharing

services that are intentionally part of the

system. Indeed, the most difficult ones to

eliminate are those that arise in the ful-

fillment of essential system require-

ments. Unlike their creation, their ex-

ploitation is likely to be malicious.

Exploitation of a covert channel usually

involves a service program, most likely a

Trojan horse. Generally, this program has

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

access to confidential data and can en-

code that data for transmission over the

covert channel. It also will contain a

receiver program that “listens” to the

chosen covert channel and decodes the

message for a penetrator. If the service

program could communicate confidential

data directly to a penetrator without be-

ing monitored, of course, there would be

no need for it to use a covert channel.

Covert channels are frequently classi-

fied as either storage or timing channels.

A storage channel transfers information

through the setting of bits by one pro-

gram and the reading of those bits by

another. What distinguishes this case

from that of ordinary operation is that

the bits are used to convey encoded infor-

mation. Examples would include using a

file intended to hold only audit informa-

tion to convey user passwords—using the

name of a file or perhaps status bits

associated with it that can be read by all

users to signal the contents of the file.

Timing channels convey information by

modulating some aspect of system behav-

ior over time, so that the program receiv-

ing the information can observe system

behavior (e.g., the system’s paging rate,

the time a certain transaction requires to

execute, the time it takes to gain access

to a shared bus) and infer protected

information.

The distinction between storage and

timing channels is not sharp. Exploita-

tion of either kind of channel requires

some degree of synchronization between

the sender and receiver. It requires also

the ability to modulate the behavior of

some shared resource. In practice, covert

channels are often distinguished on the

basis of how they can be detected: those

detectable by information flow analysis

of specifications or code are considered

storage channels.

Other kinds of intentional but nonma-

licious security flaws are possible. Func-

tional requirements that are written

without regard to security requirements

can lead to such flaws; one of the flaws

exploited by the “Internet worm”

[Spafford 1989] (case U1O) could be

placed in this category.

Program Security Flaws “ 219

2.1.3 Inadvertent Fla ws

Inadvertent flaws may occur in require-

ments; they may also find their way into

software during specification and coding.

Although many of these are detected and

removed through testing, some flaws can

remain undetected and later cause prob-

lems during operation and maintenance

of the software system. For a software

system composed of many modules and

involving many programmers, flaws are

often difficult to find and correct because

module interfaces are inadequately docu-

mented and because global variables are

used. The lack of documentation is espe-

cially troublesome during maintenance

when attempts to fix existing flaws often

generate new flaws because maintainers

lack understanding of the system as a

whole. Although inadvertent flaws may

not pose an immediate threat to the se-

curity of the system, the weakness re-

sulting from a flaw may be exploited by

an intruder (see case D 1).

There are many possible ways to orga-

nize flaws within this category. Recently,

Chillarege et al. [1992] and Sullivan and

Chillarege [1992] published classifica-

tions of defects (not necessarily security

flaws) found in commercial operating

systems and databases. Florae’s [1992]

framework supports counting problems

and defects but does not attempt to char-

acterize defect types. The efforts of

Bisbey and Hollingworth [1978] and Ab-

bott [1976], reviewed in Section 1, pro-

vide classifications specifically for secu-

rity flaws.

Our goals for this part of the taxonomy

are primarily descriptive: we seek a clas-

sification that provides a reasonable

map of the terrain of computer program

security flaws, permitting us to group

intuitively similar kinds of flaws and

separate different ones. Providing secure

operation of a computer often corre-

sponds to building fences between differ-

ent pieces of software (or different in-

stantiation of the same piece of soft-

ware), to building gates in those fences,

and to building mechanisms to control

and monitor traffic through the gates.

ACM Computing Surveys, Vol. 26, No. 3, September 1994

220 “ Carl E. Landwehr et al.

Our taxonomy, which draws primarily on

the work of Bisbey and Abbott, reflects

this view. Knowing the type and distribu-

tion of actual, inadvertent flaws among

these kinds of mechanisms should pro-

vide information that will help designers,

programmers, and analysts focus their

activities.

Inadvertent flaws can be classified as

flaws related to the following:

e

0

0

0

●

0

validation errors,

domain errors,

serialization/ aliasing errors,

errors of inadequate

identification/ authentication,

boundary condition errors, and

other exploitable logic errors.

Validation flaws may be likened to a

lazy gatekeeper: one who fails to check

all the credentials of a traveler seeking

to pass through a gate. They occur when

a program fails to check that the param-

eters supplied or returned to it conform

to its assumptions about them, or when

these checks are misplaced, so they are

ineffectual. These assumptions may in-

clude the number of parameters pro-

vided, the type of each, the location or

maximum length of a buffer, or the ac-

cess permissions on a file. We lump to-

gether cases of incomplete validation

(where some but not all parameters are

checked) and inconsistent validation

(where different interface routines to a

common data structure fail to apply the

same set of checks).

Domain flaws, which correspond to

“holes in the fences,” occur when the in-

tended boundaries between protection

environments are porous. For example, a

user who creates a new file and discovers

that it contains information from a file

deleted by a different user has discovered

a domain flaw. (This kind of error is

sometimes referred to as a problem with

object reuse or with residuals.) We also

include in this category flaws of exposed

representation [Bisbey and Hollingworth

1978] in which the lower-level represen-

tation of an abstract object, intended to

be hidden in the current domain, is in

fact exposed (see cases B1 and DT1). Er-

rors classed by Abbot as “implicit shar-

ing of privileged\ confidential data” will

generally fall in this category.

A serialization flaw permits the asyn-

chronous behavior of different system

components to be exploited to cause a

security violation. In terms of the “fences”

and “gates” metaphor, these reflect a for-

getful gatekeeper—one who perhaps

checks all credentials, but then gets dis-

tracted and forgets the result. These

flaws can be particularly difficult to dis-

cover. A security-critical program may

appear to validate all of its parameters

correctly, but the flaw permits the asyn-

chronous behavior of another program to

change one of those parameters after it

has been checked but before it is used.

Many time -of-check-to-time-of-use

(TOCTTOU) flaws will fall in this cate-

gory, although some may be classed as

validation errors if asynchrony is not in-

volved. We also include in this category

aliasing flaws, in which the fact that two

names exist for the same object can cause

its contents to change unexpectedly and,

consequently, invalidate checks already

applied to it.

An identification\ authentication flaw

is one that permits a protected operation

to be invoked without sufficiently check-

ing the identity and authority of the in-

voking agent. These flaws could perhaps

be counted as validation flaws, since pre-

sumably some routine is failing to vali-

date authorizations properly. However, a

sufficiently large number of cases have

occurred in which checking the identity

and authority of the user initiating an

operation has in fact been neglected to

keep this as a separate category.

Typically, boundary condition flaws re-

flect omission of checks to assure that

constraints (e.g., on table size, file alloca-

tion, or other resource consumption) are

not exceeded. These flaws may lead to

system crashes or degraded service, or

they may cause unpredictable behavior.

A gatekeeper who, when his queue be-

comes full, decides to lock the gate and

go home, might represent this situation.

ACM Computmg Surveys, Vol 26, No 3, September 1994

Program Security Flaws ● 221

Finally, we include as a catchall a cate-

gory for other exploitable logic errors.

Bugs that can be invoked by users to

cause system crashes, but that do not

involve boundary conditions, would be

placed in this category, for example.

2.2 By Time of Introduction

The software engineering literature in-

cludes a variety of studies (e.g., Weiss

and Basili [1985] and Chillarege et al.

[1992]) that have investigated the gen-

eral question of how and when errors are

introduced into software, Part of the mo-

tivation for these studies has been to

improve the process by which software is

developed: if the parts of the software

development cycle that produce the most

errors can be identified, efforts to im-

prove the software development process

can be focused to prevent or remove these

errors. But is the distribution of when in

the life cycle security flaws are intro-

duced the same as the distribution for

errors generally? Classifying identified

security flaws, both intentional and inad-

vertent, according to the phase of the

system life cycle in which they were in-

troduced can help us find out.

Models of the system life cycle and the

software development process have pro-

liferated in recent years. To permit us to

categorize security flaws from a wide va-

riety of systems, we need a relatively

simple and abstract structure that will

accommodate a variety of such models.

Consequently, at the highest level we

distinguish only three different phases in

the system life cycle when security flaws

may be introduced: the development

phase, which covers all activities up to

the release of the initial operational ver-

sion of the software, the maintenance

phase, which covers activities leading to

changes in the software performed under

configuration control after the initial re-

lease, and the operational phase, which

covers activities to patch software while

it is in operation, including unauthorized

modifications (e.g., by a virus). Although

the periods of the operational and main-

tenance phases are likely to overlap, if

not coincide, they reflect distinct activi-

ties, and the distinction seems to fit best

in this part of the overall taxonomy.

2.2.1 During Development

Although iteration among the phases of

software development is a recognized fact

of life, the different phases still comprise

distinguishable activities. Requirements

are defined; specification are developed

based on new (or changed) requirements;

source code is developed from specifica-

tions; and object code is generated from

the source code. Even when iteration

among phases is made explicit in soft-

ware process models, these activities are

recognized, separate categories of effort,

so it seems appropriate to categorize

flaws introduced during software devel-

opment as originating in requirements

and specifications, source code, or object

code.

Requirements and Specifications

Ideally, software requirements describe

what a particular program or system of

programs must do. How the program or

system is organized to meet those re-

quirements (i.e., the software design)

is typically recorded in a variety of docu-

ments, referred to collectively as

specifications. Although we would like to

distinguish flaws arising from faulty re-

quirements from those introduced in

specifications, this information is lacking

for many of the cases we can report, so

we ignore that distinction in this work.

A major flaw in a requirement is not

unusual in a large software system. If

such a flaw affects security, and its cor-

rection is not deemed to be cost effective,

the system and the flaw may remain. For

example, an early multiprogramming op-

erating system performed some I/O-re-

lated functions by having the supervisor

program execute code located in user

memory while in supervisor state (i.e.,

with full system privileges). By the time

this was recognized as a security flaw, its

removal would have caused major incom-

patibilities with other software, and it

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

222 “ Carl E. Landwehr et al.

was not fixed. Case 13 reports a related

flaw.

Requirements and specifications are

relatively unlikely to contain maliciously

introduced flaws. Normally they are re-

viewed extensively, so a specification for

a trapdoor or a Trojan horse would have

to be well disguised to avoid detection.

More likely are flaws that arise because

of competition between security require-

ments and other functional requirements

(see case 17). For example, security con-

cerns might dictate that programs never

be modified at an operational site. But if

the delay in repairing errors detected in

system operation is perceived to be too

great, there will be pressure to provide

mechanisms in the specification to per-

mit on-site reprogramming or testing (see

case U1O). Such mechanisms can provide

built-in security loopholes. Also possible

are inadvertent flaws that arise because

of missing requirements or undetected

conflicts among requirements.

Source Code

The source code implements the design

of the software system given by the spec-

ifications. Most flaws in source code,

whether inadvertent or intentional, can

be detected through a careful examin-

ation of it. The classes of inadvertent flaws

described previously apply to source code.

Inadvertent flaws in source code are

frequently a by-product of inadequately

defined module or process interfaces.

Programmers attempting to build a sys-

tem from inadequate specifications are

likely to misunderstand the meaning (if

not the type) of parameters to be passed

across an interface or the requirements

for synchronizing concurrent processes.

These misunderstandings manifest

themselves as source code flaws. Where

the source code is clearly implemented as

specified, we assign the flaw to the speci-

fication (cases 13 and MU6, for example).

Where the flaw is manifest in the code

and we also cannot confirm that it corre-

sponds to the specification, we assign the

flaw to the source code (see cases MU1,

U4, and U8). Readers should be aware of

the difficulty of making some of these

assignments.

Intentional but nonmalicious flaws can

be introduced in source code for several

reasons. A programmer may introduce

mechanisms that are not included in the

specification but that are intended to help

in debugging and testing the normal op-

eration of the code. However, if the test

scaffolding circumvents security controls

and is left in place in the operational

system, it provides a security flaw. Ef-

forts to be “efficient” can also lead to

intentional but nonmalicious source code

flaws, as in case DT1. Programmers may

also decide to provide undocumented fa-

cilities that simplify maintenance but

provide security loopholes—the inclusion

of a “patch area” that facilitates repro-

gramming outside the scope of the config-

uration management system would fall

in this category.

Technically sophisticated malicious

flaws can be introduced at the source

code level. A programmer working at the

source code level, whether an authorized

member of a development team or an

intruder, can invoke specific operations

that will comprise system security. Al-

though malicious source code can be

detected through manual review of soft-

ware, much software is developed with-

out any such review; source code is fre-

quently not provided to purchasers of

software packages (even if it is supplied,

the purchaser is unlikely to have the

resources necessary to review it for mali-

cious code). If the programmer is aware

of the review process, he may well be

able to disguise the flaws he introduces.

A malicious source code flaw may be

introduced directly by any individual who

gains write access to source code files,

but source code flaws can also be intro-

duced indirectly. For example, if a pro-

grammer who is authorized to write

source code files unwittingly invokes a

Trojan horse editor (or compiler, linker,

loader, etc.), the Trojan horse could use

the programmer’s privileges to modify

source code files. Instances of subtle indi-

rect tampering with source code are

difficult to document, but Trojan horse

ACM Computing Surveys, Vol 26, No 3, September 1994

Program Security Flaws ● 223

programs that grossly modify all a user’s

files, and hence the source code files,

have been created (see cases PC1 and

PC2).

Object Code

Object code programs are generated by

compilers or assemblers and represent

the machine-readable form of the source

code. Because most compilers and assem-

blers are subjected to extensive testing

and formal validation procedures before

release, inadvertent flaws in object pro-

grams that are not simply a translation

of source code flaws are rare, particularly

if the compiler or assembler is mature

and has been widely used. When such

errors do occur as a result of errors in a

compiler or assembler, they show them-

selves typically through incorrect behav-

ior of programs in unusual cases, so they

can be quite difficult to track down and

remove.

Because this kind of flaw is rare, the

primary security concern at the object

code level is with malicious flaws. Be-

cause object code is difficult for a human

to make sense of (if it were easy, soft-

ware companies would not have different

policies for selling source code and object

code for their products), it is a good hid-

ing place for malicious security flaws

(again, see case U1 [Thompson 1984]).

Lacking system and source code docu-

mentation, an intruder will have a hard

time patching source code to introduce a

security flaw without simultaneously al-

tering the visible behavior of the pro-

gram. The insertion of a malicious object

code module or replacement of an exist-

ing object module by a version of it that

incorporates a Trojan horse is a more

common threat. Writers of self-replicat-

ing Trojan horses (viruses) [Pfleeger

1989] have typically taken this approach:

a bogus object module is prepared and

inserted in an initial target system. When

it is invoked, perhaps during system boot

or running as a substitute version of an

existing utility, it can search the disks

mounted on the system for a copy of itself

and, if it finds none, insert one. If it finds

a related, uninfected version of a pro-

gram, it can replace it with an infected

copy. When a user unwittingly moves an

infected program to a different system

and executes it, the virus gets another

chance to propagate itself. Instead of re-

placing an entire program, a virus may

append itself to an existing object pro-

gram, perhaps, perhaps as a segment to

be executed first (see cases PC4 and CA1).

Creating a vir’ls generally requires some

knowledge of the operating system and

programming conventions of the target

system; viruses, especially those intro-

duced as object code, typically cannot

propagate to different host hardware or

operating systems.

2.2.2 During Maintenance

Inadvertent flaws introduced during

maintenance are often attributable to the

maintenance programmer’s failure to un-

derstand the system as a whole. Since

software production facilities often have

a high personnel turnover rate, and be-

cause system documentation is often in-

adequate, maintenance actions can have

unpredictable side effects. If a flaw is

fixed on an ad hoc basis without perform-

ing a backtracking analysis to determine

the origin of the flaw, it will tend to

induce other flaws, and this cycle

will continue. Software modified during

maintenance should be subjected to the

same review as newly developed soft-

ware; it is subject to the same kinds of

flaws. Case D1 shows graphically that

system upgrades, even when performed

in a controlled environment and with the

best of intentions, can introduce new

flaws. In this case, a flaw was inadver-

tently introduced into a subsequent re-

lease of a DEC operating system follow-

ing its successful evaluation at the C2

level of the Trusted Computer System

Evaluation Criteria (TCSEC) [Depart-

ment of Defense 19851.

System analysts should also be aware

of the possibility of malicious intrusion

during the maintenance stage. In fact,

viruses are more likely to be present dur-

ing the maintenance stage, since viruses

ACM Computing Surveys, Vol. 26, No. 3, September 1994

224 ● Carl E. Landwehr et al.

by definition spread the infection through

executable codes.

2.2.3 During Operation

The well-publicized instances of virus

programs [Denning 1988; Elmer-Dewitt

1988; Ferbrache 1992] dramatize the

need for the security analyst to consider

the possibilities for unauthorized modifi-

cation of operational software during its

operational use. Viruses are not the only

means by which modifications can occur:

depending on the controls in place in a

system, ordinary users may be able to

modify system software or install re-

placements; with a stolen password, an

intruder may be able to do the same

thing. Furthermore, software brought

into a host from a contaminated source

(e.g., software from a public bulletin

board that has, perhaps unknown to its

author, been altered) may be able to

modify other host software without au-

thorization (see case MA1).

2.3 By Location

A security flaw can be classified accord-

ing to where in the system it is intro-

duced or found. Most computer security

flaws occur in software, but flaws affect-

ing security may occur in hardware as

well. Although this taxonomy addresses

software flaws principally, programs can

with increasing facility be cast in hard-

ware. This fact and the possibility that

malicious software may exploit hardware

flaws motivate a brief section addressing

them. A flaw in a program that has been

frozen in silicon is still a program flaw to

us; it would be placed in the appropriate

category under “Operating System”

rather than under “Hardware.” We re-

serve the use of the latter category for

cases in which hardware exhibits secu-

rity flaws that did not originate as errors

in programs.

2.3.1 Software Flaws

In classifying the place a software flaw is

introduced, we adopt the view of a secu-

rity analyst who is searching for such

flaws. Thus we ask: “Where should one

look first?”

Because the operating system typically

defines and enforces the basic security

architecture of a system—the fences,

gates, and gatekeepers—flaws in those

security-critical portions of the operating

system are likely to have the most far-

-reaching effects, so perhaps this is the

best place to begin. But the search needs

to be focused. The taxonomy for this area

suggests particular system functions that

should be scrutinized closely. In some

cases, implementation of these functions

may extend outside the operating system

perimeter into support and application

software; in this case, that software must

also be reviewed.

Software flaws can occur in operating

system programs, support soflware, or

application (user) software. This is a

rather coarse division, but even so the

boundaries are not always clear.

Operating System Programs

Operating system functions normally in-

clude memory and processor allocation,

process management, device handling,

file management, and accounting, al-

though there is no standard definition.

The operating system determines how

the underlying hardware is used to de-

fine and separate protection domains,

authenticate users, control access, and

coordinate the sharing of all system re-

sources. In addition to functions that may

be invoked by user calls, traps, or inter-

rupts, operating systems often include

programs and processes that operate on

behalf of all users. These programs pro-

vide network access and mail service,

schedule invocation of user tasks, and

perform other miscellaneous services.

Systems must often grant privileges to

these utilities that they deny to individ-

ual users. Finally, the operating system

has a large role to play in system initial-

ization. Although in a strict sense ini-

tialization may involve programs and

processes outside the operating system

boundary, this software is usually in-

tended to be run only under highly con-

trolled circumstances and may have

ACM Computmg Surveys, Vol 26, No 3, September 1994

Program Security Flaws ● 225

many special privileges, so its seems ap-

propriate to include it in this category.

We categorize operating system secu-

rity flaws according to whether they oc-

cur in the functions for

● system initialization,

● memory management,

~ process management,

● device management

working),

~ file management, or

(including net-

. identification/authentication.

We include an other/unknown category

for flaws that do not fall into any of the

preceding classes. It would be possible to

orient this portion of the taxonomy more

strongly toward specific, security-related

functions of the operating system: access

checking, domain definition and separa-

tion, object reuse, and so on. We have

chosen the categorization above partly

because it comes closer to reflecting the

actual layout of typical operating sys-

tems, so that it will correspond more

closely to the physical structure of the

code a reviewer examines. The code for

even a single security-related function is

sometimes distributed in several sepa-

rate parts of the operating system (re-

gardless of whether this ought to be so).

In practice, it is more likely that a re-

viewer will be able to draw a single circle

around all of the process management

code than around all of the discretionary

access control code. A second reason for

our choice is that the first taxonomy (by

genesis) provides, in the subarea of inad-

vertent flaws, a structure that reflects

some security functions, and repeating

this structure would be redundant.

System initialization, although it may

be handled routinely, is often complex.

Flaws in this area can occur either be-

cause the operating system fails to estab-

lish the initial protection domains as

specified (for example, it may set up

ownership or access control information

improperly) or because the system ad-

ministrator has not specified a secure

initial configuration for the system. In

case U5, improperly set permissions on

the mail directory led to a security

breach. Viruses commonly try to attach

themselves to system initialization code,

since this provides the earliest and most

predictable opportunity to gain control of

the system (see cases PC 1–4, for exam-

ple).

Memory management and process

management are functions the operating

system provides to control storage space

and CPU time. Errors in these functions

may permit one process to gain access to

another improperly, as in case 16, or to

deny service to others, as in case MU5.

Device management often includes

complex programs that operate in paral-

lel with the CPU. These factors make the

writing of device-handling programs both

challenging and prone to subtle errors

that can lead to security flaws (see case

12). Often, these errors occur when the

1/0 routines fail to respect parameters

provided them (case U12) or when they

validate parameters provided in storage

locations that can be altered, directly or

indirectly, by user programs after checks

are made (case 13).

File systems typically use the process,

memory, and device management func-

tions to create long-term storage struc-

tures. With few exceptions, the operating

system boundary includes the file sys-

tem, which often implements access con-

trols to permit users to share and protect

their files. Errors in these controls, or in

the management of the underlying files,

can easily result in security flaws (see

cases 11, MU8, and U2).

Usually, the identification and authen-

tication functions of the operating system

maintain special files for user IDs and

passwords and provide functions to check

and update those files as appropriate. It

is important to scrutinize not only these

functions, but also all of the possible ports

of entry into a system to ensure that

these functions are invoked before a user

is permitted to consume or control other

system resources.

Suppo17 Software

Support software comprises compilers,

editors, debuggers, subroutine or macro

ACM Computing Surveys, Vol. 26, No. 3, September 1994

226 “ Carl E. Landwehr et al.

libraries, database management systems,

and any other programs not properly

within the operating system boundary

that many users share. The operating

system may grant special privileges to

some such programs; these we call privi-

leged utilities. In Unix, for example, any

“setuid program owned by “root,” in ef-

fect, runs with access-checking controls

disabled. This means that any such pro-

gram will need to be scrutinized for secu-

rity flaws, since during its execution one

of the fundamental security-checking

mechanisms is disabled.

Privileged utilities are often complex

and sometimes provide functions that

were not anticipated when the operating

system was built. These characteristics

make them difficult to develop and likely

to have flaws that, because they are also

granted privileges, can compromise secu-

rity. For example, daemons, which may

act on behalf of a sequence of users and

on behalf of the system as well, may have

privileges for reading and writing special

system files or devices (e.g., communica-

tion lines, device queues, mail queues) as

well as for files belonging to individual

users (e.g., mailboxes). They frequently

make heavy use of operating system fa-

cilities, and their privileges may turn a

simple programming error into a pene-

tration path. Flaws in daemons providing

remote access to restricted system capa-

bilities have been exploited to permit

unauthenticated users to execute arbi-

trary system commands (case U12) and

to gain system privileges by writing the

system authorization file (case U13).

Even unprivileged software can repre-

sent a significant vulnerability because

these programs are widely shared, and

users tend to rely on them implicitly. The

damage inflicted by flawed, unprivileged

support software (e.g., by an embedded

Trojan horse) is normally limited to the

user who invokes that software. In some

cases, however, since it may be used to

compile a new release of a system, sup-

port software can even sabotage operat-

ing system integrity (case Ul). Inadver-

tent flaws in support can also cause

security flaws (case 17); intentional but

nonmalicious flaws in support software

have also been recorded (case Bl).

Application Software

We categorize programs that have no

special system privileges and are not

widely shared as application software.

Damage caused by inadvertent software

flaws at the application level is usually

restricted to the executing process, since

most operating systems can prevent one

process from damaging another. This

does not mean that application software

cannot do significant damage to a user’s

own stored files, however, as many vic-

tims of Trojan horse and virus programs

have painfully discovered. An application

program generally executes with all the

privileges of the user who invokes it, in-

cluding the ability to modify permissions,

read, write, or delete any files that user

owns. In the context of most personal

computers now in use, this means that

an errant or malicious application pro-

gram can, in fact, destroy all the infor-

mation on an attached hard disk or

writeable floppy disk.

Inadvertent flaws in application soft-

ware that cause program termination or

incorrect output, or can generate unde-

sirable conditions such is infinite looping,

have been discussed previously. Mali-

cious intrusion at the application soft-

ware level usually requires access to the

source code (although a virus could con-

ceivably attach itself to application object

code) and can be accomplished in various

ways, as discussed in Section 2.2.

2.3.2 Hardware

Issues of concern at the hardware level

include the design and implementation of

processor hardware, microprograms, and

supporting chips, and any other hard-

ware or firmware functions used to

realize the machine’s instruction set ar-

chitecture. It is not uncommon for even

widely distributed processor chips to be

incompletely specified, to deviate from

their specifications in special cases, or to

include undocumented features. Inadver-

ACM Computing Surveys, Vol. 26, No 3, September 1994

Program Security Flaws 9 227

tent flaws at the hardware level can cause

problems such as improper synchroniza-

tion and execution, bit loss during data

transfer, or incorrect results after execu-

tion of arithmetic or logical instructions

(see case MU9). Intentional but nonmali-

cious flaws can occur in hardware, par-

ticularly if the manufacturer includes

undocumented features (for example, to

assist in testing or quality control). Hard-

ware mechanisms for resolving resource

contention efficiently can introduce covert

channels (see case D2). Generally, mali-

cious modification of installed hardware

(e.g., installing a bogus replacement chip

or board) requires physical access to

hardware components, but microcode

flaws can be exploited without physical

access. An intrusion at the hardware level

may result in improper execution of pro-

grams, system shutdown, or, conceivably,

the introduction of subtle flaws ex-

ploitable by software.

3. DISCUSSION

We have suggested that a taxonomy de-

fines a theory of a field, but an unpopu-

lated taxonomy teaches us little. For this

reason, the security flaw examples in the

Appendix are as important to this survey

as the taxonomy. Reviewing the exam-

ples should help readers understand the

distinctions that we have made among

the various categories and how to apply

those distinctions to new examples. In

this section, we comment briefly on the

limitations of the taxonomy and the set

of examples, and we suggest techniques

for summarizing flaw data that could help

answer the questions we used in Section

2 to motivate the taxonomy.

3.1 Limitations

The development of this taxonomy fo-

cused largely, though not exclusively, on

flaws in operating systems. We have not

tried to distinguish or categorize the

many kinds of security flaws that might

occur in application programs for

database management, word processing,

electronic mail, and so on. We do not

suggest that there are no useful struc-

tures to be defined in those areas; rather,

we encourage others to identify and doc-

ument them. Although operating systems

tend to be responsible for enforcing fun-

damental system security boundaries, the

detailed, application-dependent access

control policies required in a particular

environment are in practice often left to

the application to enforce. In this case,

application system security policies can

be compromised even when operating

system policies are not.

While we hope that this taxonomy will

stimulate others to collect, abstract, and

report flaw data, readers should recog-

nize that this is an approach for evaluat-

ing problems in systems as they have

been built. Used intelligently, informa-

tion collected and organized this way can

help us build stronger systems in the

future, but some factors that affect the

security of a system are not captured by

this approach. For example, any system

in which there is a great deal of software

that must be trusted is more likely

to contain security flaws than one in

which only a relatively small amount of

code could conceivably cause security

breaches.

Security failures, like accidents, often

are triggered by an unexpected combina-

tion of events. In such cases, the assign-

ment of a flaw to a category may rest on

relatively fine distinctions. So, we should

avoid drawing strong conclusions from

the distribution of a relatively small

number of flaw reports.

Finally, the flaws reported in the Ap-

pendix are selected, not random or com-

prehensive, and they are not recent.

Flaws in networks and applications are

becoming increasingly important, and the

distribution of flaws among the cate-

gories we have defined may not be sta-

tionary. So, any conclusions based strictly

on the flaws captured in the Appendix

must remain tentative.

3.2 Inferences

Despite these limitations, it is important

to consider what kinds of inferences we

ACM Computing Surveys, Vol. 26, No. 3, September 1994

228 “ Carl E. Landwehr et al.

Other Intentional

Covert Timing Chan.

Covert Storage Chan.

Time I Lagic Bomb

(e Trapdoor

%’
c

Virus

G Trojan horse

: Other Inadvertent
—
IL

Sd. Condltlon VIOI

ldentiflcatlon/Auth.

Serialization/Allas,

Domam

Validation

L
❑ Rqmnts/Spec/Design

o Source Code

x Object Code

O Maintenance

A Operation

.,,

,. +3

-0-- -- --

n

El

❑

❑

o

0

u

o

I I I I 1 I I I I 1 I

El

D

I I 1 1 I I I I I I I

o

x

A

System Me- PrO - De- Flle Ident /Other/ Priv, Unprw Appl I- Hard

Imr. mory cess vice Mgmt Auth. Unknown Util. Utll - ca- ware

Mgmt Mgmt Mgmt Itles ttles tlons

Flaw Location

Figure 4. Example flaws, Genesis vs. location, over life-cycle

could draw from a set of flaw data orga-

nized according to the taxonomy. Proba-

bly the most straightforward way to

display such data is illustrated in Fig-

ures 1–3. By listing the case identifiers

and counts within each category, the fre-

quency of flaws across categories is

roughly apparent, and this display can

be used to give approximate answers to

the three questions that motivated the

taxonomy: how, when, and where do se-

curity flaws occur? But this straightfor-

ward approach makes it difficult to per-

ceive relationships among the three tax-

onomies: determining whether there is

any relationship between the time a flaw

is introduced and its location in the sys-

tem, for example, is relatively difficult.

To provide more informative views of

collected data, we propose the set of scat-

ter plots shown in Figures 4–7. Figure 4

captures the position of each case in all

three of the taxonomies (by genesis, time,

and location). Flaw location and genesis

are plotted on the x and y axes, respec-

tively, while the symbol plotted reflects

the time the flaw was introduced. By

choosing an appropriate set of symbols,

we have made it possible to distinguish

cases that differ in any single parameter.

If two cases are categorized identically,

however, their points will coincide ex-

actly, and only a single symbol will ap-

pear in the plot. Thus from Figure 4 we

can distinguish those combinations of all

categories that never occur from those

that do, but information about the rela-

tive frequency of cases is obscured.

Figures 5–7 remedy this problem. In

each of these figures, two of the three

categories are plotted on the x and y

axes, and the number of observations

corresponding to a pair of categories con-

trols the diameter of the circle used to

plot that point. Thus a large circle indi-

cates several different flaws in a given

category, and a small circle indicates only

a single occurrence. If a set of flaw data

ACM Computmg Surveys, Vol. 26, No, 3, September 1994

Program Security Flaws ● 229

Flew Genes~
I I I 1 I I I 1 I I I

,,, 0 N=l

Other Intentional
:;

:, 60
:, ~Q:::

Coverl Timmg Chan - ----- ------- - 0------- ; ----. -.--!--- j
O N=2

---- }..::,
:,

Covert Storage Charl. -::!: 0;::0 O N=3
Time I Logic Bomb - -- .~...... ..:;;. .:. . ..7. -$-i --y

Trapdoor -:: :: :, :, () N=4

0“””””:”’”””-:-----;-----:---:-----
:, :,., :,

Virus - --- :.
. ..Q .. ;. O N=~

Trojan horse :. ,,:, 0::; r
Other Inadvertent - -- +----6----+ ---------- ------ /... + ‘--; -- ------ -

:,,

EM, Condition VIOL -:OOQ ;O:, :,

ldentlficatlon/Auth. - -.Q :....&.... .T Q..+ :..

Sertallzatlon/Ailaa. b~,;~!::

Domam - - ----+ ------ -+------- : --------~--------! -------: --
.

Val!dat}on o :000 +; 0!:;

I
I I 1 I I i 1 I I I

System Me- Pro- De. Fde ldent./Other/ Prw. Unprlv. App!i-Hard-

Imt. mory cess vice Mgmt Auth, (Jnknownlftlt - Utll - ca. ware

Mgmt Mgmt Mgmt
Flaw Location

ities itiea tlons

Figure5. Example flaws: Genesis vs.location; Nequals number ofexamples in Appendix.

Flaw Genesis -

Other Intentional 0“
Covert Timing Chan,- -- --

..Q.O; .:

Covert Storage Chan o

Time I Logic Bomb - - .- ;.
-- -Q --

Trapdoor

Virus - - -0- -- ------- 0 ““”
Trojan horse o

0 N=l

O N=2

0 N=4

() N=5

o N=6

I
Other Inadvertent - --- - -0 -------- --- --; -- ----(- -- -- ---

Sal. Condltmn VIOI. o 0’”

ldentlflcatlon/Auth. - --’ - p-------o -------;- --- -- -J

Serial! zatlon/Allas. 0!:
Domain - -

8

.Q. -

Valldatlon
0111

Rqmt/ Source Ob)ect Malnte-

Spec/

Opera-
Gxka Cc&l nance tion

Design Time In Life.C@e when FIaW we.s Introduced

Figure 6. Example flaws: Genesis vs. time introduced; N equals number of examples in Appendix.

reveals a few large-diameter circles, ef- security flaws generally. What actions

forts at flaw removal or prevention might might be indicated? The three large cir-

be targeted on the problems these circles cles in the lower left corner of Figure 6

reflect. Suppose for a moment that data might, for example, be taken as a signal

plotted in Figures 4–7 were in fact a that more emphasis should be placed on

valid basis for inferring the origins of domain definition and on parameter vali-

ACM Computing Surveys, Vol. 26, No. 3, September 1994

230 ● Carl E. Landwehr et al.

I I I I I

Flaw Location O N=l

Hardware o 0 0 N=2
Appllcatlons o

Unpnv. Ufllltles
0 N=3

PrIv Uilllfies - -
09::

-0 O N=5

Other/Unknown

.0 ‘=’
Ident lAuth

G “ “~ “

File Mgml
;0

Dewca Mgmt
0’::

P recess Mgmt
o

0: Q

Memory Mgmt o Q .,

System Iruf o 0
Q

I I I 1

Rqmt/ Source Object Mainte- Opera-

Specl Cc& C&s nance tlon

Design Time in Life-Cycle When Flaw Was Introduced

Figure 7. Example flaws: Location vs. time of introduction; N equals number of examples in Appendix.

dation during the early stages of

software development.

Because we do not claim that this se-

lection of security flaws is statistically

representative, we cannot use these plots

to draw strong conclusions about how,

when, or where security flaws are most

likely to be introduced. However, we be-

lieve that the kinds of plots shown would

be an effective way to abstract and pre-

sent information from more extensive,

and perhaps more sensitive, data sets.

We also have some observations based

on our experiences in creating the taxon-

omy and applying it to these examples. It

seems clear that security breaches, like

accidents, typically have several causes.

Often, unwarranted assumptions about

some aspect of system behavior lead to

security flaws. Problems arising from

asynchronous modification of a previ-

ously checked parameter illustrate this

point: the person who coded the check

assumed that nothing could cause that

parameter to change before its use

—when an asynchronously operating

process could in fact do so. Perhaps the

most dangerous assumption is that secu-

rity need not be addressed—that the en-

vironment is fundamentally benign, or

that security can be added later. Both

Unix and PC operating systems illus-

trate clearly the cost of this assumption.

One cannot be surprised when systems

designed without particular regard to se-

curity requirements exhibit security

flaws. Those who use such systems live

in a world of potentially painful sur-

prises.

APPENDIX: SELECTED SECURITY FLAWS

The following case studies exemplify se-

curity flaws. Without making claims as

to the completeness or representative-

ness of this set of examples, we believe

they will help designers know what pit-

falls to avoid and security analysts know

where to look when examining code,

specifications, and operational guidance

for security flaws.

All of the cases documented here (ex-

cept possibly one) reflect actual flaws in

released software or hardware. For each

case, a source (usually with a reference

to a publication) is cited, the software/

hardware system in which the flaw oc-

curred is identified, the flaw and its ef-

fects are briefly described, and the flaw

is categorized according to the taxonomy.

ACM Computmg Surveys, Vol 26, No. 3, September 1994

Program Security Flaws ● 231

Table 1. The Codes Used to Refer to Systems

Flaw Page Flaw Page Flaw Page

code System no. code System no. code System no.

11

12

13

14

15

16

17

18

19

MT1

MT2

MT3

MT4

MU1

MU2

MU3

MU4

IBM 0S/360

IBM VM/370

IBM VM\370

IBM VM/370

IBM MVS

IBM MVS

IBM MVS

IBM

IBM KVM/370

MTS

MTS

MTS

MTS

Multics

Multics

Multics

Multics

232

232

233

233

234

234

234

235

235

235

236

236

236
237

237

238

238

MU5

MU6

MU7

MU8

MU9

B1

UN1

DT1

U1

U2

U3

U4

U5

U6

U7

U8

U9

Multics

Multics

Multics

Multics

Multics

Burroughs

Univac

DEC Tenex

Unix

Unix

Unix

Unix

Unix

Unix

Unix

Unix

Unix

238

239

239

239

239

240

240

241

242

242

243

243

244

244

245

245

246

Ulo

Ull

U12

U13

U14

D1

D2

IN1

Pc 1

PC2

PC3

PC4

MA1

MA2

CA1

AT1

Unix

Unix

Unix

Unix

Unix

DEC VMS

DEC Security Kernel

Intel 80386/7

IBM PC

IBM PC

IBM PC

IBM PC

Apple Macintosh

Apple Macintosh

Commodore Amiga

Atari

246

246

247

247

248

248

249

249

250

251

251

251

252

252

252

253

Where it has been difficult to deter-

mine with certainty the time or place a

flaw was introduced, the most probable

category (in the judgment of the authors)

has been chosen, and the uncertainty is

annotated by a question mark (?). In some

cases, a flaw is not fully categorized. For

example, if the flaw was introduced

during the requirements/specification

phase, then the place in the code where

the flaw is located may be omitted.

The cases are grouped according to the

system on which they occurred. (Unix,

which accounts for about a third of the

flaws reported here, is considered a sin-

gle system.) The systems are ordered

roughly chronologically. Since readers

may not be familiar with the details of

all of the architectures included here,

brief introductory discussions of relevant

details are provided as appropriate.

Table 1 lists the code used to refer to

each flaw and the number of the page on

which the flaw is described.

IBM /360 and /370 Systems

In the IBM System/360 and /370 archi-

tecture, the Program Status Word (PSW)

defines the key components of the system

state. These include the current machine

state (problem state or supervisor state)

and the current storage key. Two instruc-

tion subsets are defined: the problem

state instruction set, which excludes

privileged instructions (loading the PSW,

initiating 1/0 operations, etc.) and the

supervisor state instruction set, which

includes all instructions, Attempting to

execute a privileged operation while in

problem state causes an interrupt. A

problem state program that wishes to

invoke a privileged operation does so nor-

mally by issuing the Supervisor Call

(SVC) instruction, which also causes an

interrupt.

Main storage is divided into 4KB pages;

each page has an associated 4-bit storage

key. Typically, user memory pages are

assigned storage key 8, while a system

storage page will be assigned a storage

key from O to 7. A task executing with a

nonzero key is permitted unlimited ac-

cess to pages with storage keys that

match its own. It can also read pages

with other storage keys that are not

marked as fetch-protected. An attempt to

write into a page with a nonmatching

key causes an interrupt. A task executing

with a storage key of zero is allowed

unrestricted access to all pages, regard-

less of their key or fetch-protect status.

Most operating system functions execute

with a storage key of zero.

The 1/0 subsystem includes a variety

of channels that are, in effect, separate,

special-purpose computers that can be

programmed to perform data transfers

ACM Computing Surveys, Vol. 26, No. 3, September 1994

232 ● Carl E. Landwehr et al.

between main storage and auxiliary de-

vices (tapes, disks, etc.). These channel

programs are created dynamically by de-

vice driver programs executed by the

CPU. The channel is started by issuing a

special CPU instruction that provides the

channel with an address in main storage

from which to begin fetching its instruc-

tions. The channel than operates in par-

allel with the CPU and has independent

and unrestricted access to main storage.

Thus, any controls on the portions of

main storage that a channel could read

or write must be embedded in the chan-

nel programs themselves. This paral-

lelism, together with the fact that

channel programs are sometimes (inten-

tionally) self-modifying, provides com-

plexity that must be carefully controlled

if security flaws are to be avoided.

0S/360 and MVS (Multiple Virtual

Storages) are multiprogramming operat-

ing systems developed by IBM for this

hardware architecture. The Time Shar-

ing Option (TSO) under MVS permits

users to submit commands to MVS from

interactive terminals. VM/370 is a vir-

tual machine monitor operating system

for the same hardware, also developed by

IBM. The KVM/370 system was devel-

oped by the U.S. Department of Defense

as a high-security version of VM\370.

MTS (Michigan Terminal System), devel-

oped by the University of Michigan, is an

operating system designed especially to

support both batch and interactive use of

the same hardware.

MVS supports a category of privileged,

non-MVS programs through its Autho-

rized Program Facility (APF). APF pro-

grams operate with a storage key of 7 or

less and are permitted to invoke opera-

tions (such as changing to supervisor

mode) that are prohibited to ordinary

user programs. In effect, APF programs

are assumed to be trustworthy, and they

act as extensions to the operating sys-

tem. An installation can control which

programs are included under APF. RACF

(Resource Access Control Facility) and

Top Secret are security packages de-

signed to operate as APF programs

under MVS.

Case: 11

Source: Tanenbaum A. S., Operating

Systems Design and Implementation.

Prentice-Hall, 1987.

System: IBM 0S/360

Description: In 0S/360 systems, the

file-access-checking mechanism could be

subverted. When a password was re-

quired for access to a file, the filename

was read, and the user-supplied pass-

word was checked. If it was correct, the

file name was reread, and the file was

opened. It was possible, however, for the

user to arrange that the filename be

altered between the first and second

readings. First, the user would initiate a

separate background process to read data

from a tape into the storage location that

was also used to store the filename. The

user would then request access to a file

with a known password. The system

would verify the correctness of the pass-

word. While the password was being

checked, the tape process replaced the

original filename with a file for which

the user did not have the password, and

this file would be opened. The flaw is

that the user can cause parameters to be

altered after they have been checked (this

kind of flaw is sometimes called a time-

of-check-to-time-of-use (TO CTTOU)

flaw). It could probably have been cor-

rected by copying the parameters into

operating system storage that the user

could not cause to be altered.

Genesis: Inadvertent: Serialization

Time: During Development: Require-

ment/Specification/Design

Place: Operating System: File Manage-

ment

Case: 12

Source: Attanasio, C. R., Markstein, P.

W., and Phillips, R. J. Penetrating an

operating system: A study of VM/370

integrity. IBM Syst. J. (1976), 102–116.

System: IBM VM/370

Description: By carefully exploiting an

“oversight in condition-code checking,” a

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

Program Security Flaws ● 233

retrofit in the basic VM/370 design, and

the fact that CPU and 1/0 channel pro-

grams could execute simultaneously, a

penetrator could gain control of the sys-

tem. Further details of this flaw are not

provided in the cited source, but it ap-

pears that a logic error (“oversight in

condition-code checking”) was at least

partly to blame.

Genesis: Inadvertent: Serialization

Time: During Development: Require-

ment/Specification/Design

Place: Operating System: Device Man-

agement

Case: 13

Source: Attanasio, C. R., Markstein,

P. W., and Phillips, R. J. Penetrating an

operating system: A study of VM/370

integrity. Bill Syst. J. (1976), 102–116.

System: IBM VM/370

Description: As a virtual machine mon-

itor, VM/370 was required to provide

1/0 services to operating systems exe-

cuting in individual domains under its

management, so that their 1/0 routines

would operate almost as if they were

running on the bare IBM/370 hardware.

Because the 0S/360 operating system

(specifically, the Indexed Sequential Ac-

cess Method (ISAM) routines) exploited

the ability of 1/0 channel programs to

modify themselves during execution,

VM/370 included an arrangement

whereby portions of channel programs

were executed from the user’s virtual

machine storage rather than from

VM/370 storage. This permitted a pene-

trator, mimicking an 0S/360 channel

program, to modify the commands in user

storage before they were executed by the

channel and thereby to overwrite arbi-

trary portions of VM/370.

Genesis: Inadvertent: Domain(?) This

flaw might also be classed as (Inten-

tional, Nonmalicious, Other), if it is con-

sidered to reflect a conscious compromise

between security and both efficiency in

channel program execution and compati-

bility with an existing operating system.

Time: During Development: Require-

ment/Specification/Design

Place: Operating System: Device Man-

agement

Case: 14

Source: Attanasio, C. R., Markstein,

P. W., and Phillips, R. J. Penetrating an

operating system: A study of VM/370

integrity. IBM Syst. J. (1976), 102–1 16.

System: IBM VM/370

Description: In performing static anal-

ysis of a channel program issued by a

client operating system for the purpose of

translating it and issuing it to the chan-

nel, VM/370 assumed that the meaning

of a multiword channel command re-

mained constant throughout the execu-

tion of the channel program. In fact,

channel commands vary in length, and

the same word might, during execution

of a channel program, act both as a sepa-

rate command and as the extension of

another (earlier) command, since a chan-

nel program could contain a backward

branch into the middle of a previous mul-

tiword channel command. By careful con-

struction of channel programs to exploit

this blind spot in the analysis, a user

could deny service to other users (e.g., by

constructing a nonterminating channel

program), read restricted files, or even

gain complete control of the system.

Genesis: Inadvertent: Validation (?) The

flaw seems to reflect an omission in the

channel program analysis logic. Perhaps

additional analysis techniques could

be devised to limit the specific set of

channel commands permitted, but deter-

mining whether an arbitrary channel

program halts or not appears equivalent

to solving the Turing machine halting

problem. On this basis, this could also be

argued to be a design flaw.

Time: During Development: Require-

merit/Specification/ Design

Place: Operating System: Device Man-

agement

ACM Computing Surveys, Vol. 26, No. 3, September 1994

234 ● Carl E. Landwehr et al.

Case: 15

Source: Opaska, W. A security loophole

in the MVS operating system. Comput.

Fraud Sec. Bull. (May 1990), 4-5.

System: IBM\370 MVS(TSO)

Description: Time Sharing Option

(TSO) is an interactive development sys-

tem that runs on top of MVS. Input/

Output operations are only allowed on

allocated files. When files are allocated

(via the TSO ALLOCATE function), for

reasons of data integrity the requesting

user or program gains exclusive use of

the file. The flaw is that a user is allowed

to allocate files whether or not he or she

has access to the files. A user can use the

ALLOCATE function on files such as

SMF (System Monitoring Facility)

records, the TSO log-on procedure lists,

the ISPF user profiles, and the produc-

tion and test program libraries to deny

service to other users.

Genesis: Inadvertent: Validation (?) The

flaw apparently reflects omission of an

access permission check in program logic.

Time: During Development: Require-

ment/Specification/Design (?) Without

access to design information, we cannot

be certain whether the postulated omis-

sion occurred in the coding phase or prior

to it.

Place: Operating System: File Manage-

ment

Case: 16

Source: Paans, R. and Bonnes, G. Sur-

reptitious security violation in the MVS

operating system. In Security, IIWP/Sec

’83, V. Fak, Ed. North Holland, 1983,

95-105.

System: IBM MVS (TSO)

Description: Although TSO attempted

to prevent users from issuing commands

that would operate concurrently with

each other, it was possible for a program

invoked from TSO to invoke multitask-

ing. Once this was achieved, another TSO

command could be issued invoking a

program that executed under the Autho-

rized Program Facility (APF). The con-

current user task could detect when the

APF program began authorized execu-

tion (i.e., with storage key value less than

8). At this point the entire user’s address

space (including both tasks) was effec-

tively privileged, and the user-controlled

task could issue privileged operations and

subvert the system. The flaw here seems

to be that when one task gained APF

privilege, the other task was able to do so

as well—that is, the domains of the two

tasks were insufficiently separated.

Genesis: Inadvertent: Domain

Time: Development: Requirement/

Specification/Design (?)

Place: Operating System: Process Man-

agement

Case: 17

Source: Paans, R. and Bonnes, G. Sur-

reptitious security violation in the MVS

operating system. In Security, IFIP/Sec

’83, V. Fak, Ed. North Holland, 1983,

95-105.

System: IBM MVS

Description: Commercial software

packages, such as database management

systems, must often be installed so that

they execute under the Authorized Pro-

gram Facility. In effect, such programs

operate as extensions of the operating

system, and the operating system per-

mits them to invoke operations that are

forbidden to ordinary programs. The soft-

ware package is trusted not to use these

privileges to violate protection require-

ments. In some cases, however, (the ref-

erenced source cites as examples the

Cullinane IDMS database system and

some routines supplied by Cambridge

Systems Group for servicing Supervisor

Call (SVC) interrupts) the package may

make operations available to its users

that do permit protection to be violated.

This problem is similar to the problem of

faulty Unix programs that run as SUID

programs owned by root (see case U5):

there is a class of privileged programs

ACM Computing Surveys, Vol 26, No 3, September 1994

developed and maintained separately

from the operating system proper that

can subvert operating system protection

mechanisms. It is also similar to the

general problem of permitting “trusted

applications.” It is difficult to point to

specific flaws here without examining

some particular APF program in detail.

Among others, the source cites an SVC

provided by a trusted application that

permits an address space to be switched

from non-APF to APF status; subse-

quently all code executed from that ad-

dress space can subvert system protec-

tion. We use this example to characterize

this kind of flaw.

Genesis: Intentional: Nonmalicious:

Other(?) Evidently, the SVC performed

this function intentionally, but not for

the purpose of subverting system protec-

tion, even though it had that effect. Might

also be classed as Inadvertent: Domain.

Time: Development: Requirement/

Specification/Design (?) (During devel-

opment of the trusted application)

Place: Support: Privileged Utilities

Case: 18

Source: Burgess, J. Searching for a bet-

ter computer shield. The Washington

Post, Nov. 13, 1988, HI.

System: IBM

Description: A disgruntled employee

created a number of programs that each

month were intended to destroy large

portions of data and then copy them-

selves to other places on the disk. He

triggered one such program after being

fired from his job, and was later con-

victed of this act. Although this certainly

seems to be an example of a malicious

code introduced into a system, it is not

clear what, if any, technical flaw led to

this violation. It is included here simply

in order to provide one example of a

“time-bomb.”

Genesis: Intentional: Malicious: Logic/

Time-Bomb

Time: During Operation

Program Security Flaws ● 235

Place: Application (?)

Case: 19

Source: Schaefer, M., Gold, B., Linde,

R., and Scheid, J. Program confinement

in KVM/370. In Proc. ACM National

Conf. Oct. 1977.

System: KVM/370

Description: Because virtual machines

shared a common CPU under a round-

robin scheduling discipline and had

access to a time-of-day clock, it was pos-

sible for each virtual machine to detect

at what rate it received service from the

CPU. One virtual machine could signal

another by either relinquishing the CPU

immediately or using its full quantum; if

the two virtual machines operated at dif-

ferent security levels, information could

be passed illicitly in this way. A straight-

forward, but costly, way to close this

channel is to have the scheduler wait

until the quantum is expired to dispatch

the next process.

Genesis: Intentional: Nonmalicious:

Covert timing channel.

Time: During Development: Require-

ments/Specification/Design. This chan-

nel occurs because of a design choice in

the scheduler algorithm.

Place: Operating System: Process Man-

agement (Scheduling)

Case: MT1

Source: Hebbard, B., et al. A penetra-

tion analysis of the Michigan Terminal

System. ACM SIGOPS Oper. Syst. Rev.

14, 1 (Jan. 1980), 7-20.

System: Michigan Terminal System

Description: A user could trick system

subroutines into changing bits in the

system segment that would turn off all

protection checking and gain complete

control over the system. The flaw was in

the parameter-checking method used by

(several) system subroutines. These sub-

routines retrieved their parameters via

indirect addressing. The subroutine

would check that the (indirect) parame-

ACM Computing Surveys, Vol. 26, No. 3, September 1994

236 ● Carl E. Landwehr et al.

ter addresses lay within the user’s stor-

age area. If not, the call was rejected, but

otherwise the subroutine proceeded.

However, a user could defeat this check

by constructing a parameter that pointed

into the parameter list storage area it-

self. When such a parameter was used by

the system subroutine to store returned

values, the (previously checked) parame-

ters would be altered, and subsequent

use of those parameters (during the same

invocation) could cause the system to

modify areas (such as system storage) to

which the user lacked write permission.

The flaw was exploited by finding sub-

routines that could be made to return at

least two controllable values: the first

one to modify the address where the sec-

ond one would be stored, and the second

one to alter a sensitive system variable.

This is another instance of a time-of-

check-to-time-of-use problem.

Genesis: Inadvertent: Validation

Time: During Development: Source Code

(?) (Without access to design information,

we can not be sure that the parameter-

checking mechanisms were adequate as

designed.)

Place: Operating System: Process Man-

agement

Case: MT2

Source: Hebbard, B., et al. A penetra-

tion analysis of the Michigan Terminal

System. ACM SIGOPS Oper. Syst. Reu.

14, 1 (Jan. 1980), 7-20.

System: Michigan Terminal System

Description: A user could direct the op-

erating system to place its data (specifi-

cally, addresses for its own subsequent

use) in an unprotected location. By alter-

ing those addresses, the user could cause

the system to modify its sensitive vari-

ables later so that the user would gain

control of the operating system.

Genesis: Inadvertent: Domain

Time: During Development: Require-

ment/Specification/Design

Place: Operating System: Process Man-

agement

Case: MT3

Source: Hebbard, B., et al. A penetra-

tion analysis of the Michigan Terminal

System. ACM SIGOPS Oper. Syst. Rev.

14, 1 (Jan. 1980), 7-20.

System: Michigan Terminal System

Description: Certain sections of mem-

ory readable by anyone contained sensi-

tive information including passwords and

tape identification. Details of this flaw

are not provided in the source cited; pos-

sibly this represents a failure to clear

shared input/output areas before they

were reused.

Genesis: Inadvertent. Domain (?)

Time: During Development: Require-

ment/Specification/Design (?)

Place: Operating System: Memory Man-

agement (possibly also Device Manage-

ment)

Case: MT4

Source: Hebbard, B., et al. A penetra-

tion analysis of the Michigan Terminal

System. ACM SIGOPS Oper. Syst. Rev.

14, 1 (Jan. 1980), 7-20.

System: Michigan Terminal System

Description: A bug in the MTS supervi-

sor could cause it to loop indefinitely in

response to a “rare” instruction sequence

that a user could issue. Details of the bug

are not provided in the source cited.

Genesis: Inadvertent: Boundary Condi-

tion Violation

Time: During Development. Source Code
(?)

Place: Operating System: Other/Un-

known

Multics (GE-645 and Successors)

The Multics operating system was devel-

oped as a general-purpose “information

utility” and successor to MIT’s Compati-

ble Time Sharing System (CTSS) as a

ACM Computmg Surveys, Vol. 26, No, 3, September 1994

supplier of interactive computing ser-

vices. The initial hardware for the sys-

tem was the specially designed General

Electric GE-645 computer. Subsequently,

Honeywell acquired GE’s computing divi-

sion and developed the HIS 6180 and its

successors to support Multics. The hard-

ware supported “master” mode, in which

all instructions were legal, and a “slave”

mode, in which certain instructions (such

as those that modify machine registers

that control memory mappings) are pro-

hibited. Additionally, the hardware of the

HIS 6180 supported eight “rings” of pro-

tection (implemented by software in the

GE-645), to permit greater flexibility in

organizing programs according to the

privileges they required. Ring O was the

most privileged ring, and it was expected

that only operating system code would

execute in ring O. Multics also included a

hierarchical scheme for files and directo-

ries similar to that which has become

familiar to users of the Unix system, but

Multics file structures were integrated

with the storage hierarchy, so that files

were essentially the same as segments.

Segments currently in use were recorded

in the Active Segment Table (AST). De-

nial of service flaws like the ones listed

for Multics below could probably be found

in a great many current systems.

Case: MU1

Source: Tanenbaum, A. S. Operating

Systems Design and Implementation.

Prentice-Hall, 1987.

System: Multics

Description: Perhaps because it was

designed with interactive use as the pri-

mary consideration, initially Multics per-

mitted batch jobs to read card decks into

the file system without requiring any

user authentication. This made it possi-

ble for anyone to insert a file in any

user’s directory through the batch

stream. Since the search path for locat-

ing system commands and utility pro-

grams normally began with the user’s

local directories, a Trojan horse version

of (for example) a text editor could be

inserted and would very likely be exe-

Program Security Flaws ● 237

cuted by the victim, who would be un-

aware of the change. Such a Trojan horse

could simply copy the file to be edited (or

change its permissions) before invoking

the standard system text editor.

Genesis: Inadvertent: Inadequate Iden-

tification/Authentication. According to

one of the designers, the initial design

actually called for the virtual card deck

to be placed in a protected directory, and

mail would be sent to the recipient an-

nouncing that the file was available for

copying into his or her space. Perhaps

the implementer found this mechanism

too complex and decided to omit the pro-

tection. This seems simply to be an error

of omission of authentication checks for

one mode of system access.

Time: During Development: Source Code

Place: Operating System: Identifica-

tion/Authentication

Case: MU2

Source: Karger, P. A., and Schell, R. R.

Multics Security Evaluation; Vulnerabil-

ity Analysis. ESD-TR-74-193, Vol II, U.S.

Air Force Electronic Systems Div. (ESD),

Hanscom AFB, Mass. June 1974.

System: Multics

Description: When a program exe-

cuting in a less privileged ring passes

parameters to one executing in a more

privileged ring, the more privileged pro-

gram must be sure that its caller has the

required read or write access to the pa-

rameters before it begins to manipulate

those parameters on the caller’s behalf.

Since ring-crossing was implemented in

software in the GE-645, a routine to per-

form this kind of argument validation

was required. Unfortunately, this pro-

gram failed to anticipate one of the sub-

tleties of indirect addressing modes

available on the Multics hardware, so the

argument validation routine could be

spoofed.

Genesis: Inadvertent: Validation. Failed

to check arguments completely.

Time: During Development: Source Code

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

238 ● Carl E. Landwehr et al.

Place: Operating System: Process Man-

agement

Case: MU3

Source: Karger, P. A., and Schell, R. R.

Multics Security Evaluation: Vulnerabil-

ity Analysis, ESD-TR-74-193, Vol II, June

1974.

System: Multics

Description: In early designs of Mul-

tics, the stack base (sb) register could

only be modified in master mode. After

Multics was released to users, this re-

striction was found unacceptable, and

changes were made to allow the sb reg-

ister to be modified in other modes.

However, code remained in place, which

assumed that the sb register could only

be changed in master mode. It was possi-

ble to exploit this flaw and insert a trap-

door. In effect, the interface between

master mode and other modes was

changed, but some code that depended on

that interface was not updated.

Genesis: Inadvertent: Domain. The

characterization of a domain was

changed, but code that relied on the for-

mer definition was not modified as

needed.

Time: During Maintenance: Source Code

Place: Operating System: Process Man-

agement

Case: MU4

Source: Karger, P. A. and Schell, R. R.

Multics Security Evaluation: Vulnerabil-

ity Analysis. EST-TR-74-193, Vol II, June

1974.

System: Multics

Description: Originally, Multics de-

signers had planned that only processes

executing in ring O would be permitted to

operate in master mode. However, on the

GE-645, code for the signaler module,

which was responsible for processing

faults to be signaled to the user and re-

quired master mode privileges, was per-

mitted to run in the user ring for reasons

of efficiency. When entered, the signaler

checked a parameter, and if the check

failed, it transferred, via a linkage regis-

ter, to a routine intended to bring down

the system. However, this transfer was

made while executing in master mode

and assumed that the linkage register

had been set properly. Because the sig-

naler was executing in the user ring, it

was possible for a penetrator to set this

register to a chosen value and then make

an (invalid) call to the signaler. After

detecting the invalid call, the signaler

would transfer to the location chosen by

the penetrator while still in master mode,

permitting the penetrator to gain control

of the system.

Genesis: Inadvertent: Validation

Time: During Development: Require-

ment/Specification/Design

Place: Operating System: Process Man-

agement

Case: MU5

Source: Gligor, V. D. Some thoughts on

denial-of-service problems. Electrical En-

gineering Dept., Univ. of Maryland, Col-

lege Park, Md., Sept. 1982.

System: Multics

Description: A problem with the Active

Segment Table (AST) in Multics version

18.0 caused the system to crash in cer-

tain circumstances. It was required that

whenever a segment was active, all di-

rectories superior to the segment also be

active. If a user created a directory tree

deeper than the AST size, the AST would

overflow with unremovable entries. This

would cause the system to crash.

Genesis: Inadvertent: Boundary Condi-

tion Violation: Resource Exhaustion. Ap-

parently, programmers omitted a check

to determine when the AST size limit

was reached.

Time: During Development: Source Code

Place: Operating System: Memory Man-

agement

Case: MU6

ACM Computing Surveys, Vol. 26, No 3, September 1994

Source: Gligor, V. D. Some thoughts on

denial-of-service problems. Electrical En-

gineering Dept., Univ. of Maryland, Col-

lege Park, Md., Sept. 1982.

System: Multics

Description: Because Multics originally

imposed a global limit on the total num-

ber of login processes, but no other re-

striction on an individual’s use of login

processes, it was possible for a single

user to Iogin repeatedly and thereby block

logins by other authorized users. A sim-

ple (though restrictive) solution to this

problem would have been to limit indi-

vidual logins as well.

Genesis: Inadvertent: Boundary Condi-

tion Violation: Resource Exhaustion

Time: During Development: Require-

ment/Specification/Design

Place: Operating System: Process Man-

agement

Case: MU7

Source: Gligor, V. D. Some thoughts on

denial-of-service problems. Electrical En-

gineering Dept., Univ. of Maryland, Col-

lege Park, Md., Sept. 1982.

System: Multics

Description: In early versions of Mul-

tics, if a user generated too much storage

in his or her process directory, an excep-

tion was signaled. The flaw was that the

signaler used the wrong stack, thereby

crashing the system.

Genesis: Inadvertent: Other Exploitable

Logic Error

Time: During Development: Source Code

Place: Operating System: Process Man-

agement

Case : MU8

Source: Gligor, V. D. Some thoughts on

denial-of-service problems. Electrical En-

gineering Dept., Univ. of Maryland, Col-

lege Park, Md., Sept. 1982.

System: Multics

Description: In early versions of Mul-

tics, if a directory contained an entry for

a segment with an all-blank name, the

Program Security Flaws “ 239

deletion of that directory would cause a

system crash. The specific flaw that

caused a crash is not known, but, in ef-

fect, the system depended on the user to

avoid the use of all-blank segment names.

Genesis: Inadvertent: Validation

Time: During Development: Source Code

Place: Operating System: File Manage-

ment. (In Multics, segments were equiva-

lent to files.)

Case: MU9

Source: Karger, P. A., and Schell, R. R.

Multics Security Evaluation: Vulnerabil-

ity Analysis. ESD-TR-74-193, Vol II, June

1974.

System: Multics

Description: A piece of software writ-

ten to test Multics hardware protection

mechanisms (called the Subverter by its

authors) found a hardware flaw in the

GE-645: if an execute instruction in one

segment had as its target an instruction

in location zero of a different segment,

and the target instruction used index

register, but not base register modifica-

tions, then the target instruction exe-

cuted with protection checking disabled.

By choosing the target instruction judi-

ciously, a user could exploit this flaw to

gain control of the machine. When in-

formed of the problem, the hardware

vendor found that a field service change

to fix another problem in the machine

had inadvertently added this flaw. The

change that introduced the flaw was in

fact installed on all other machines of

this type.

Genesis: Inadvertent: Other

Time: During Maintenance: Hardware

Place: Hardware

Burroughs B6700

Burroughs advocated a philosophy in

which users of its systems were expected

never to write assembly language pro-

grams, and the architecture of many

Burroughs computers was strongly influ-

ACM Computing Surveys, Vol 26, No. 3, September 1994

240 * Carl E. Landwehr et al.

enced by the idea that they would pri-

marily execute programs that had been

compiled (especially ALGOL programs).

Case: B1

Source Wilkinson, A. L., et al. A pene-

tration analysis of a Burroughs large sys-

tem. ACM SIGOPS Oper. Syst. Rev. 15,

1 (Jan, 1981), 14-25.

System: Burroughs B6700

Description: The hardware of the Bur-

roughs B6700 controlled memory access

according to bounds registers that a pro-

gram could set for itself. A user who

could write programs to set those regis-

ters arbitrarily could effectively gain con-

trol of the machine, To prevent this, the

system implemented a scheme designed

to assure that only object programs gen-

erated by authorized compilers (which

would be sure to include code to set the

bounds registers properly) would ever be

executed. This scheme required that ev-

ery file in the system have an associated

type. The loader would check the type of

each file submitted to it in order to be

sure that it was of type “code-file,” and

this type was only assigned to files pro-

duced by authorized compilers. Thus it

would be possible for a user to create an

arbitrary file (e.g., one that contained

malicious object code that reset the

bounds registers and assumed control of

the machine), but unless its type code

were also assigned to be “code- file,” it

still could not be loaded and executed.

Although the normal file-handling rou-

tines prevented this, there were utility

routines that supported writing files to

tape and reading them back into the file

system. The flaw occurred in the routines

for manipulating tapes: it was possible to

modify the type label of a file on tape so

that it became “code-f ile.” Once this was

accomplished, the file could be retrieved

from the tape and executed as a valid

program.

Genesis: Intentional: Nonmalicious:

Other. System support for tape drives

generally requires functions that permit

users to write arbitrary bit patterns on

tapes. In this system, providing these

functions sabotaged security.

Time: During Development: Require-

ment/Specification/Design

Place: Support: Privileged Utilities

Univac 1108

This large-scale mainframe provided

timesharing computing resources to

many laboratories and universities in the

1970s. Its main storage was divided into

“banks” of some integral multiple of 512

words in length. Programs normally had

two banks: an instruction (I-) bank and a

data (D-) bank. An I-bank containing a

reentrant program would not be expected

to modify itselfi a D-bank would be

writable. However, hardware storage

protection was organized so that a pro-

gram would either have write permission

for both its I-bank and D-bank or nei-

ther.

Case: UN1

Source: Stryker, D. Subversion of a

“secure” operating system, NRL Memo.

Rep. 2821, June, 1974.

System: Univac 1108/Exec 8

Description: The Exec 8 operating sys-

tem provided a mechanism for users to

share reentrant versions of system utili-

ties, such as editors, compilers, and

database systems, that were outside the

operating system proper. Such routines

were organized as “Reentrant Processors”

or REPs. The user would supply data for

the REP in his or her own D-bank; all

current users of a REP would share a

common I-bank for it, Exec 8 also in-

cluded an error recovery scheme that

permitted any program to trap errors (i.e.,

to regain control when a specified error,

such as divide by zero or an out-of-bounds

memory reference, occurs). When the

designated error-handling program

gained control, it would have access to

the context in which the error occurred.

On gaining control, an operating system

call (or a defensively coded REP) would

immediately establish its own context for

ACM Computing Surveys, Vol. 26, No 3, September 1994

Program Security Flaws ● 241

trapping errors. However, many REPs did

not do this. Soj it was possible for a

malicious user to establish an error-

handling context, prepare an out-of-

bounds D-bank for the victim REP, and

invoke the REP, which immediately

caused an error. The malicious code re-

gained control at this point with both

read and write access to both the REPs

I-and D-banks. It could then alter the

REP’s code (e.g., by adding Trojan horse

code to copy a subsequent user’s files into

a place accessible to the malicious user).

This Trojan horse remained effective as

long as the modified copy of the REP

(which is shared by all users) remained

in main storage. Since the REP was sup-

posed to be reentrant, the modified ver-

sion would never be written back out to a

file, and when the storage occupied by

the modified REP was reclaimed, all evi-

dence of it would vanish. The flaws in

this case are in the failure of the REP to

establish its error handling and in the

hardware restriction that I- and D-banks

have the same write protection. These

flaws were exploitable because the same

copy of the REP was shared by all users.

A fix was available that relaxed the

hardware restriction.

Genesis: Inadvertent: Domain: It was

possible for the user’s error handler to

gain access to the REPs domain.

Time: During Development: Require-

ments/Specification/Design

Place: Operating System: Process Man-

agement. (Alternatively, this could be

viewed as a hardware design flaw.)

DEC PDP-10

The DEC PDP-10 was a medium-scale

computer that became the standard sup-

plier of interactive computing facilities

for many research laboratories in the

1970’s. DEC offered the TOPS-10 operat-

ing system for it; the TENEX operating

system was developed by Bolt, Beranek,

and Newman, Inc. (BBN), to operate in

conjunction with a paging box and minor

modifications to the PDP-10 processor

also developed by BBN.

Case: DT1

Source: Tanenbaum, A. S. Operating

Systems Design and Implementation.

Prentice-Hall, 1987, and Abbott, R. P., et

al. Security analysis and enhancements

of computer operating systems. Final Rep.

the RISOS Project, NBSIR-76-1041, Na-

tional Bureau of Standards, April 1976,

(NTIS PB-257 087), 49-50.

System: TENEX

Description: In TENEX systems, pass-

words were used to control access to files.

By exploiting details of the storage allo-

cation mechanisms and the password-

checking algorithm, it was possible to

guess the password for a given file. The

operating system checked passwords

character by character, stopping as soon

as an incorrect character was encoun-

tered. Further, it retrieved the char-

acters to be checked sequentially from

storage locations chosen by the user. To

guess a password, the user placed a trial

password in memory so that the first

unknown character of the password occu-

pied the final byte of a page of virtual

storage resident in main memory, and

the following page of virtual storage was

not currently in main memory. In re-

sponse to an attempt to gain access to

the file in question, the operating system

would check the password supplied. If

the character before the page boundary

was incorrect, password checking was

terminated before the following page was

referenced, and no page fault occurred.

But if the character just before the page

boundary was correct, the system would

attempt to retrieve the next character

and a page fault would occur. By check-

ing a system-provided count of the num-

ber of page faults this process had

incurred just before and again just after

the ~assword check. the user could de-

duce’ whether or not a page fault had

occurred during the check, and, hence,

whether or not the guess for the next

character of the password was correct. In

effect, this technique reduces the search

space for an N-character password over

an alphabet of size m from N“ to Nm.

ACM Computing Surveys, Vol. 26, No 3, September 1994

242 ● Carl E. Landwehr et al.

The flaw was that the password was

checked character by character from the

user’s storage. Its exploitation required

that the user also be able to position a

string in a known location with respect

to a physical page boundary and that a

program be able to determine (or dis-

cover) which pages are currently in

memory.

Genesis: Intentional: Nonmalicious:

Covert Storage Channel (could also be

classed as Inadvertent: Domain: Exposed

Representation)

Time: During Development: Source Code

Place: Operating System: Identifica-

tion\Authentication

Unix

The Unix operating system was origi-

nally developed at Bell Laboratories as a

“single-user Multics” to run on DEC

minicomputers (PDP-8 and successors).

Because of its original goals—to provide

useful, small-scale, interactive comput-

ing to a single user in a cooperative labo-

ratory environment—security was not a

strong concern in its initial design. Unix

includes a hierarchical file system with

access controls, including a designated

owner for each file, but for a user with

userID “root” (also known as the “super-

user”), access controls are turned off.

Unix also supports a feature known as

“setUID” or “SUID.” If the file from which

a Program IS loaded for execution is
marked “setUID,” then it will execute

with the privileges of the owner of that

file, rather than the privileges of the user

who invoked the program. Thus a pro-

gram stored in a file that is owned by

“root” and marked “setUID” is highly

privileged (such programs are often re-

ferred to as being “setUID to root”). Sev-

eral of the flaws reported here occurred

because programs that were “setUID to

root” failed to include sufficient internal

controls to prevent themselves from be-

ing exploited by a penetrator. This is not

to say that the setUID feature is only of

concern when “root” owns the file in

question: any user can cause the setUID

bit to be set on files he or she creates. A

user who permits others to execute the

programs in such a file without exercis-

ing due caution may have an unpleasant

surprise.

Case: U1

Source: Thompson, K. Reflections on

trusting trust. Commun. ACM 27,8 (Aug.

1984), 761-763.

System: Unix

Description: Ken Thompson’s ACM

Turing Award Lecture describes a proce-

dure that uses a virus to install a trap-

door in the Unix login program. The virus

is placed in the C compiler and performs

two tasks. If it detects that it is compil-

ing a new version of the C compiler, the

virus incorporates itself into the object

version of the new C compiler. This en-

sures that the virus propagates to new

versions of the C compiler. If the virus

determines it is compiling the Iogin pro-

gram, it adds a trapdoor to the object

version of the login program. The object

version of the login program then con-

tains a trapdoor that allows a specified

password to work for a specific account.

Whether this virus was ever actually in-

stalled as described has not been re-

vealed. We classify this according to the

virus in the compiler; the trapdoor could

be counted separately.

Genesis: Intentional: Replicating Tro-

jan horse (virus)

Time: During Development: Object Code

Place: Support: Unprivileged Utilities

(compiler)

Case: U2

Source: Tanenbaum, A. S. Operating

Systems Design and Implementation.

Prentice-Hall, 1987.

System: Unix

Description: The “lpr” program is a

Unix utility that enters a file to be printed

into the appropriate print queue. The -r

option to lpr causes the file to be re-

moved once it has been entered into the

print queue. In early versions of Unix,

ACM Computing Surveys, Vol 26, No. 3, September 1994

the -r option did not adequately check

that the user invoking lpr -r had the

required permissions to remove the spec-

ified file, so it was possible for a user to

remove, for instance, the password file

and prevent anyone from logging into the

system.

Genesis: Inadvertent: Identification and

Authentication. Apparently, lpr was a

SetUID (SUID) program owned by root

(i.e., it executed without access controls)

and so was permitted to delete any file

on the system. A missing or improper

access check probably led to this flaw.

Time: During Development: Source Code

Place: Operating System: File Manage-

ment

Case: U3

Source: Tanenbaum, A. S. Operating

Systems Design and Implementation.

Prentice-Hall, 1987.

System: Unix

Description: In some versions of Unix,

“mkdir” was an SUID program owned by

root. The creation of a directory required

two steps. First, the storage for the direc-

tory was allocated with the “mknod” sys-

tem call. The directory created would be

owned by root. The second step of “mkdir”

was to change the owner of the newly

created directory from “root” to the ID of

the user who invoked “mkdir.” Because

these two steps were not atomic, it was

possible for a user to gain ownership of

any file in the system, including the

password file. This could be done as fol-

lows: the “mkdir” command would be ini-

tiated, perhaps as a background process,

and would complete the first step, creat-

ing the directory, before being sus-

pended. Through another process, the

user would then remove the newly cre-

ated directory before the suspended pro-

cess could issue the “chown” command

and would create a link to the system

password file with the same name as the

directory just deleted. At this time the

original “mkdir” process would resume

execution and complete the “mkdir” invo-

Program Security Flaws ● 243

cation by issuing the “chown” command.

However, this command would now have

the effect of changing the owner of the

password file to be the user who had

invoked “mkdir.” As the owner of the

password file, that user could now re-

move the password for root and gain su-

peruser status.

Genesis: Intentional: Nonmalicious:

Other. (Might also be classified as Inad-

vertent: Serialization.) The developer

probably realized the need for (and lack

of) atomicity in mkdir, but could not find

a way to provide this in the version of

Unix with which he or she was working.

Later versions of Unix (Berkeley Unix)

introduced a system call to achieve this.

Time: During Development: Source Code

Place: Operating System: File Manage-

ment. The flaw is really the lack of a

needed facility at the system call inter-

face.

Case: U4

Source: Discolo, A. V. 4.2 BSD Unix se-

curity. Computer Science Dept., Univ. of

California, Santa Barbara, April 26, 1985.

System: Unix

Description: Using the Unix command

“sendmail,” it was possible to display any

file in the system. Sendmail has a -C

option that allows the user to specify the

configuration file to be used. If lines in

the file did not match the required syn-

tax for a configuration file, sendmail dis-

played the offending lines. Apparently,

sendmail did not check to see if the user

had permission to read the file in ques-

tion, so to view a file for which he or she

did not have permission (unless it had

the proper syntax for a configuration file),

a user could simply give the command

“sendmail -Cfile _ name.”

Genesis: Inadvertent: Identification and

Authentication. The probable cause of

this flaw is a missing access check, in

combination with the fact that the send-

mail program was an SUID program

ACM Computing Surveys, Vol. 26, No. 3, September 1994

244, ● Carl E. Landwehr et al.

owned by root, and so was allowed to

bypass all access checks.

Time: During Development: Source Code

Place: Support: Privileged Utilities

Case: U5

Source: Bishop, M. Security problems

with the UNIX operating system. Com-

puter Science Dept., Purdue Univ., West

Lafayette, Ind., March 31, 1982.

sy~>tem: Unix

Description: Improper use of an SUID

program and improper setting of permis-

sions on the mail directory led to this

flaw, which permitted a user to gain full

system privileges. In some versions of

Unix, the mail program changed the

owner of a mail file to be the recipient of

the mail. The flaw was that the mail

program did not remove any preexisting

SUID permissions that file had when it

changed the owner. Many systems were

set up so that the mail directory was

writable by all users. Consequently, it

was possible for user X to remove any

other user’s mail file. The user X wish-

ing superuser privileges would remove

the mail file belonging to root and re-

place it with a file containing a copy of

/bib/csh (the command interpreter or

shell). This file would be owned by X,

who would then change permissions on

the file to make it SUID and executable

by all users. X would then send a mail

message to root. When the mail message

was received, the mail program would

place it at the end of root’s current mail

file (now containing a copy of /bin/csh

and owned by X) and then change the

owner of root’s mail file to be root (via

Unix command “chown”). The change

owner command did not, however, alter

the permissions of the file, so there now

existed an SUID program owned by root

that could be executed by any user. User

X would then invoke the SUID program

in root’s mail file and have all the privi-

leges of superuser.

Genesis: Inadvertent: Identification and

Authentication. This flaw is placed here

because the programmer failed to check

the permissions on the file in relation to

the requester’s identity. Other flaws con-

tribute to this one: having the mail direc-

tory writeable by all users is in itself a

questionable approach. Blame could also

be placed on the developer of the “chown”

function. It would seem that it is never a

good idea to allow an SUID program to

have its owner changed, and when

“chown” is applied to an SUID program,

many Unix systems now automatically

remove all the SUID permissions from

the file.

Time: During Development: Source Code

Place: Operating System: System Ini-

tialization

Case: U6

Source: Bishop, M. Security problems

with the UNIX operating system. Com-

puter Science Dept., Purdue Univ., West

Lafayette, Ind., March 31, 1982.

System: Unix (Version 6)

Description: The “SU” command in Unix

permits a logged-in user to change his or

her userID, provided the user can au-

thenticate himself by entering the pass-

word for the new userID. In Version 6

Unix, however, if the “SU” program could

not open the password file it would cre-

ate a shell with real and effective UID

and GID set to those of root, providing

the caller with full system privileges.

Since Unix also limits the number of files

an individual user can have open at one

time, “SU” could be prevented from open-

ing the password file by running a pro-

gram that opened files until the user’s

limit was reached. By invoking “SU” at

this point, the user gained root privi-

leges.

Genesis: Intentional: Nonmalicious:

Other. The designers of “SU” may have

considered that if the system were in a

state where the password file could not

be opened, the best option would be to

initiate a highly privileged shell to allow

the problem to be fixed. A check of de-

fault actions might have uncovered this

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

Program Security Flaws “ 245

flaw. When a system fails, it should de-

fault to a secure state.

Time: During Development: Design

Place: Operating System: Identifica-

tion/Authentication

Case: U7

Source: Bishop, M. Security problems

with the Unix operating system. Com-

puter Science Dept., Purdue Univ., West

Lafayette, Ind., March 31, 1982.

System: Unix

Description: Uux is a Unix support

software program that permits the re-

mote execution of a limited set of Unix

programs. The command line to be exe-

cuted is received by the uux program at

the remote system, parsed, checked to

see if the commands in the line are in the

set uux is permitted to execute, and if so,

a new process is spawned (with userID

uuicp) to execute the commands. Flaws in

the parsing of the command line, how-

ever, permitted unchecked commands to

be executed. Uux effectively read the first

word of a command line, checked it, and

skippe~ characters in the input line until

a ““” “ “, or a “1” was encountered, signi-

fyi;~ the end of this command. The first

word following the delimiter would then

be read and checked, and the process

would continue in this way until the end

of the command line was reached. Unfor-

tunately, the set of delimiters was incom-

plete (“&” and ‘“” were omitted), so a

command following one of the ignored

delimiters would never be checked for

legality. This flaw permitted a user to

invoke arbitrary commands on a remote

system (as user uucp). For example, the

command

uux’’remote_ computer !rmail

rest_ of_ command

& command2°

would execute two commands on the re-

mote system, but only the first (rmail)

would be checked for legality.

Genesis: Inadvertent: Validation. This

flaw seems simply to be an error in the

implementation of “UUX,” though it might

be argued that the lack of a standard

command line parser in Unix or the lack

of a standard, shared set of command

termination delimiters (to which “UUX”

could have referred) contributed to the

flaw.

Time: During Development: Require-

merit/Specification\ Design (?) Deter-

mining whether this was a specification

flaw or a flaw in programming is difficult

without examination of the specification

(if a specification ever existed) or an in-

terview with the programmer.

Place: Support: Privileged Utilities

Case: U8

Source: Bishop, M. Security problems

with the UNIX operating system. Com-

puter Science Dept., Purdue Univ., West

Lafayette, Ind., March 31, 1982.

System: Unix

Description: On many Unix systems it

is possible to forge mail. Issuing the fol-

lowing command

mail userl < message—file > device—of—user2

creates a message addressed to userl

with contents taken from message _ file

but with a FROM field containing

the login name of the owner of

device _of_user2, so userl will receive a

message that is apparently from user2.

This flaw is in the code implementing the

“mail” program. It uses the Unix “get-

login” system call to determine the sender

of the mail message, but in this situa-

tion, “getlogin” returns the Iogin name

associated with the current standard out-

put device (redefined by this command to

be device_ of user2) rather than the lo-

gin name–of~he user who invoked the

“mail.” While this flaw does not permit a

user to violate access controls or gain

system privileges, it is a significant secu-

rity problem if one wishes to rely on the

ACM Computmg Surveys, Vol. 26, No. 3, September 1994

246 ● Carl E. Landwehr et al.

authenticity of Unix mail messages.

(Even with this flaw repaired, however,

it would be foolhardily to place great trust

in the “from” field of an email message,

since the Simple Mail Transfer Protocol

(SMTP) used to transmit email on the

Internet was never intended to be secure

against spoofing.)

Genesis: Inadvertent: Other Exploitable

Logic Error. Apparently, this flaw re-

sulted from an incomplete understanding

of the interface provided by the “getlogin”

function. While “getlogin” functions cor-

rectly, the values it provides do not rep-

resent the information desired by the

caller.

Time: During Development: Source Code

Place: Support: Privileged Utilities

Case: U9

Source: Unix Programmer’s Manual,

7th ed., vol. 2B. Bell Telephone Laborato-

ries, 1979.

System: Unix

Description: There are resource ex-

haustion flaws in many parts of Unix

that make it possible for one user to deny

service to all others. For example, creat-

ing a file in Unix requires the creation of

an “i-node” in the system i-node table. It

is straightforward to compose a script

that puts the system into a loop creating

new files, eventually filling the i-node

table, and thereby making it impossible

for any other user to create files.

Genesis: Inadvertent: Boundary Condi-

tion Violation: Resource Exhaustion (or

Intentional: Nonmalicious: Other). This

flaw can be attributed to the design phi-

losophy used to develop the Unix system,

namely, that its users are benign— they

will respect each other and not abuse the

system. The lack of resource quotas was

a deliberate choice, and so Unix is rela-

tively free of constraints on how users

consume resources: a user may create as

many directories, files, or other objects as

needed. This design decision is the cor-

rect one for many environments but

leaves the system open to abuse where

the original assumption does not hold. It

is possible to place some restrictions on a

user, e.g., by limiting the amount of stor-

age he or she may use, but this is rarely

done in practice.

Time: During Development: Require-

ment/Specification/Design

Place: Operating System: File Manage-

ment

Case: U1O

Source: Spafford, E. H. Crisis and after-

math. Commun. ACM 32, 6 (June 1989),

678-687.

System: Unix

Description: In many Unix systems the

sendmail program was distributed with

the debug option enabled, allowing unau-

thorized users to gain access to the sys-

tem. A user who opened a connection to

the system’s sendmail port and invoked

the debug option could send messages

addressed to a set of commands instead

of a user’s mailbox. A judiciously con-

structed message addressed in this way

could cause commands to be executed on

the remote system on behalf of an unau-

thenticated user; ultimately, a Unix shell

could be created, circumventing normal

login procedures.

Genesis: Intentional: Nonmalicious:

Other(?--Malicious, Trapdoor if inten-

tionally left in distribution). This feature

was deliberately inserted in the code,

presumably as a debugging aid. When it

appeared in distributions of the system

intended for operational use, it provided

a trapdoor. There is some evidence that

it reappeared in operational versions af-

ter having been noticed and removed at

least once.

Time: During Development: Require-

ment/Specification/Design

Place: Support: Privileged Utilities

Case: Ull

Source: Gwyn, D. Unix-Wizards Digest.

6, 15 (Nov. 10, 1988).

ACM Computmg Surveys. Vol. 26, No 3, September 1994

System: Unix

Description: The Unix chfn function

permits a user to change the full name

associated with his or her userID. This

information is kept in the password file,

so a change in a user’s full name entails

writing that file. Apparently, chfn failed

to check the length of the input buffer it

received, and merely attempted to rewrite

it to the appropriate place in the pass-

word file. If the buffer was too long, the

write to the password file would fail in

such a way that a blank line would be

inserted in the password file. This line

would subsequently be replaced by a line

containing only “: :0:():: :“ which corre-

sponds to a null-named account with no

password and root privileges. A penetra-

tor could then log in with a null userID

and password and gain root privileges.

Genesis: Inadvertent: Validation

Time: During Development: Source Code

Place: Operating System: Identifica-

tion/Authentication. From one view, this

was a flaw in the chfn routine that ulti-

mately permitted an unauthorized user

to log in. However, the flaw might also be

considered to be in the routine that al-

tered the blank line in the password file

to one that appeared valid to the login

routine. At the highest level, perhaps the

flaw is in the lack of a specification that

prohibits blank userIDs and null pass-

words, or in the lack of a proper abstract

interface for modifying /etc/passwd.

Case: U12

Source: Rochlis, J, A. and Eichin, M. W.

With microscope and tweezers: The worm

from MITs perspective. Comrnun. ACM

32, 6 (June 1980), 689-699.

System: Unix (4.3BSD on VAX)

Description: The “fingerd” daemon in

Unix accepts requests for user informa-

tion from remote systems. A flaw in this

program permitted users to execute code

on remote machines, bypassing normal

access checking. When fingerd read an

input line, it failed to check whether the

Program Security Flaws ● 247

record returned had overrun the end of

the input buffer. Since the input buffer

was predictably allocated just prior to

the stack frame that held the return ad-

dress for the calling routine, an input

line for fingerd could be constructed so

that it overwrote the system stack, per-

mitting the attacker to create a new Unix

shell and have it execute commands on

his or her behalf. This case represents a

(mis)use of the Unix “gets” function.

Genesis: Inadvertent: Validation

Time: During Development (Source

Code)

Place: Support: Privileged Utilities

Case: U13

Source: Robertson, S. Sec. Distrib. List

1, 14 (June 22, 1989).

System: Unix

Description: Rwall is a Unix network

utility that allows a user to send a mes-

sage to all users on a remote system.

/etc/utmp is a file that contains a list of

all currently logged-in users. Rwall uses

the information in /etc/utmp on the re-

mote system to determine the users to

which the message will be sent, and the

proper functioning of some Unix systems

requires that all users be permitted to

write the file /etc/utmp. In this case, a

malicious user can edit the /etc\utmp

file on the target system to contain the

entry:

../etc/passwd.

The user then creates a password file

that is to replace the current password

file (e.g., so that his or her account will

have system privileges). The last step is

to issue the command:

rwall hostname < newpasswordfile.

The rwall daemon (having root privi-

leges) next reads /etc/utmp to deter-

mine which users should receive the

message. Since /etc/utmp contains an

entry ../etc/passwd, rwalld writes the

message (the new password file) to that

file as well, overwriting the previous ver-

sion.

ACM Computing Surveys, Vol. 26, No, 3, September 1994

248 ● Carl E. Landwehr et al.

Genesis: Inadvertent: Validation

Time: During Development: Require-

ment/Specification/Design. The flaw oc-

curs because users are allowed to alter a

file on which a privileged program relied.

Place: Operating System: System Ini-

tialization. This flaw is considered to be

in system initialization because proper

setting of permissions on \etc/utmp at

system initialization can eliminate the

problem.

Case: U14

Source: Purtilo, J. Risks-Forum Dig, 7,

2 (June 2, 1988).

System: Unix (SunOS)

Description: The program rpc.rexd is a

daemon that accepts requests from re-

mote workstations to execute programs.

The flaw occurs in the authentication

section of this program, which appears to

base its decision on userID (UID) alone.

When a request is received, the daemon

determines if the request originated from

a superuser UID. If so, the request is

rejected. Otherwise, the UID is checked

to see whether it is valid on this worksta-

tion. If it is, the request is processed with

the permissions of that UID. However, if

a user has root access to any machine in

the network, it is possible for him to

create requests that have any arbitrary

UID. For example, if a user on computer

1 has a UID of 20, the impersonator on

computer 2 becomes root and generates a

request with a UID of 20 and sends it to

computer 1. When computer 1 receives

the request it determines that it is a

valid UID and executes the request. The

designers seem to have assumed that if a

(locally) valid UID accompanies a re-

quest, the request came from an autho-

rized user. A stronger authentication

scheme would require the user to supply

some additional information, such as a

password. Alternatively, the scheme

could exploit the Unix concept of “trusted

host.” If the host issuing a request is in a

list of trusted hosts (maintained by the

receiver) then the request would be hon-

ored; otherwise it would be rejected.

Genesis: Inadvertent: Identification and

Authentication

Time: During Development: Require-

merit/Specification\ Design

Place: Support: Privileged Utilities

DEC VAX Computers

DEC’S VAX series of computers can be

operated with the VMS operating system

or with a UNIX-like system called UL-

TRIX; both are DEC products. In VMS

there is a system authorization file that

records the privileges associated with a

userID. A user who can alter this file

arbitrarily effectively controls the sys-

tem. DEC also developed the VAX Secu-

rity Kernel, a high-security operating

system for the VAX based on the virtual

machine monitor approach. Although the

results of this effort were never mar-

keted, two hardware-based covert timing

channels discovered in the course of its

development have been documented

clearly in the literature and are included

below.

Case: D1

Source: VMS code patch eliminates se-

curity breach. Dig. Rev. (June 1, 1987),

3.

System: DEC VMS

Description: This flaw is of particular

interest because the system in which it

occurred was a new release of a system

that had previously been closely scruti-

nized for security flaws. The new release

added system calls that were intended to

permit authorized users to modify the

system authorization file. To determine

whether the caller has permission to

modify the system authorization file, that

file must itself be consulted. Conse-

quently, when one of these system calls

was invoked, it would open the system

authorization file and determine whether

the user was authorized to perform the

requested operation. If the user was not

authorized to perform the requested op-

eration, the call would return with an

error message. The flaw was that when

ACM Computmg Surveys, Vol 26, No 3, September 1994

Program Security Flaws ● 249

certain second parameters were provided

with the system call, the error message

was returned, but the system authoriza-

tion file was inadvertently left open. It

was then possible for a knowledgeable

(but unauthorized) user to alter the sys-

tem authorization file and eventually

gain control of the entire machine.

Genesis: Inadvertent: Domain: Residu-

als. In the case described, the access to

the authorization file represents a resid-

ual.

Time: During Maintenance: Source Code

Place: Operating System: Identifica-

tion/Authentication

Case: D2

Source: Hu, W.-M. Reducing timing

channels with fuzzy time. In Proc. of the

1991 IEEE Computer Society Symposium

on Research in Security and Privacy.

1991, pp. 8-20.

System: VAX Security Kernel

Description: When several CPUS share

a common bus, bus demands from one

CPU can block those of others. If each

CPU also has access to a clock of any

kind, it can also detect whether its re-

quests have been delayed or immediately

satisfied. In the case of the VAX Security

Kernel, this interference permitted a pro-

cess executing on a virtual machine at

one security level to send information to

a process executing on a different virtual

machine, potentially executing at a lower

security level. The cited source describes

a technique developed and applied to

limit this kind of channel.

Genesis: Intentional: Nonmalicious:

Covert timing channel

Time: During Development: Require-

ment/Specification/Design. This flaw

arises because of a hardware design deci-

sion.

Place: Hardware

Intel 80386 / 80387 Processor/

CoProcessor Set

Case: IN1

Source: EE’s tools & toys. IEEE Spec-

trum 25, 8 (Aug. 1988), 42.

System: All systems using Intel 80386

processor and 80387 coprocessor.

Description: It was reported that sys-

tems using the 80386 processor and

80387 coprocessor may halt if the 80387

coprocessor sends a certain signal to the

80386 processor when the 80386 proces-

sor is in paging mode, This seems to be a

hardware or firmware flaw that can cause

denial of service. The cited reference does

not provide details as to how the flaw

could be evoked from software. It is in-

cluded here simply as an example of a

hardware flaw in a widely marketed

commercial system.

Genesis: Inadvertent: Other Exploitable

Logic Error(?)

Time: During Development: Require-

ment/Specification/Design(?)

Place: Hardware

Personal Computers: IBM PC’s and

Compatibles, Apple Macintosh, Amiga,

and Atari

This class of computers poses an inter-

esting classification problem: can a com-

puter be said to have a security flaw if it

has no security policy? Most personal

computers, as delivered, do not restrict

(or even identify) the individuals who use

them. Therefore, there is no way to dis-

tinguish an authorized user from an

unauthorized one or to discriminate an

authorized access request by a program

from an unauthorized one. In some re-

spects, a personal computer that is al-

ways used by the same individual is like

a single user’s domain within a conven-

tional time-shared interactive system:

within that domain, the user may invoke

programs as he or she wishes. Each pro-

gram a user invokes can employ the full

ACM Computing Surveys, Vol. 26, No. 3, September 1994

250 ● Carl E. Landwehr et al.

privileges of that user to read, modify, or

delete data within that domain. Never-

theless, it seems to us that even if per-

sonal computers do not have explicit se-

curity policies, they do have implicit ones.

Users normally expect certain properties

of their machines—for example, that

running a new piece of commercially pro-

duced software should not cause all of

one’s files to be deleted.

For this reason, we include a few ex-

amples of viruses and Trojan horses that

exploit the weaknesses of IBM PC’s, their

non-IBM equivalents, Apple Macin-

toshes, Atari computers, and Commodore

Amiga. The fundamental flaw in all of

these systems is the fact that the operat-

ing system, application packages, and

user-provided software programs inhabit

the same protection domain and there-

fore have the same privileges and infor-

mation available to them. Thus, if a

user-written program goes astray, either

accidentally or maliciously, it may not be

possible for the operating system to pro-

tect itself or other programs and data in

the system from the consequences. Effec-

tive attempts to remedy this situation

require hardware modifications gener-

ally, and some such modifications have

been marketed. Additionally, software

packages capable of detecting the pres-

ence of certain kinds of malicious soft-

ware are marketed as “virus detection

prevention” mechanisms. Such software

can never provide complete protection in

such an environment, but it can be effec-

tive against some specific threats.

The fact that PC’s normally provide

only a single protection domain (so that

all instructions are available to all pro-

grams) is probably attributable to the

lack of hardware support for multiple

domains in early PC’s, to the culture that

led to the production of PC’s, and to the

environments in which they were in-

tended to be used. Today, the processors

of many, if not most, PC’s could support

multiple domains, but frequently the

software (perhaps for reasons of compati-

bility with older versions) does not ex-

ploit the hardware mechanisms that are

available.

When powered up, a typical PC (e.g.,

running MS-DOS) loads (“boots”) its op-

erating system from predefine sectors

on a disk (either floppy or hard). In many

of the cases listed next, the malicious

code strives to alter these boot sectors so

that it is automatically activated each

time the system is rebooted; this gives it

the opportunity to survey the status of

the system and decide whether or not to

execute a particular malicious act. A typ-

ical malicious act that such code could

execute would be to destroy a file alloca-

tion table, which will delete the file-

names and pointers to the data they con-

tained (though the data in the files may

actually remain intact). Alternatively, the

code might initiate an operation to refor-

mat a disk; in this case, not only the file

structures, but also the data, are likely to

be lost.

MS-DOS files have two-part names: a

filename (usually limited to eight charac-

ters) and an extension (limited to three

characters) which is normally used to in-

dicate the type of the file. For example,

files containing executable code typically

have names like MYPROG.EXE. The

basic MS-DOS command interpreter

is normally kept in a file named COM-

MAND.COM. A Trojan horse may try to

install itself in this file or in files that

contain executable for common MS-DOS

commands, since it may then be invoked

by an unwary user. (See case MU1 for a

related attack on Multics.)

Readers should understand that it is

very difficult to be certain of the com-

plete behavior of malicious code. In most

of the cases listed below, the author of

the malicious code has not been identi-

fied, and the nature of that code has been

determined by others who have (for ex-

ample) read the object code or attempted

to “disassemble” it. Thus the accuracy

and completeness of these descriptions

cannot be guaranteed.

IBM PC’s and Compatibles

Case: PC1

Source: Richardson, D. Risks Forum

Dig. 4, 48 (Feb. 18, 1987).

ACM Computmg Surveys, Vol. 26, No, 3, September 1994

Program Security Flaws ● 251

System: IBM PC or compatible

Description: A modified version of a

word processing program, (PC-WRITE,

version 2.71) was found to contain a Tro-

jan horse after having been circulated to

a number of users. The modified version

contained a Trojan horse that both de-

stroyed the file allocation table of a user’s

hard disk and initiated a low-level for-

mat, destroying the data on the hard

disk.

Genesis: Malicious: Nonreplicating Tro-

jan horse

Time: During Operation

Place: Support: Privileged Utilities

Case: PC2

Source: Joyce, E. J. Software viruses:

PC-health enemy number one. Datama-

tion (Oct. 15, 1988), 27–30.

System: IBM PC or compatible

Description: This virus places itself

in the stack space of the file

COMMAND.COM. If an infected disk is

booted, and then a command such as

TYPE, COPY, DIR, etc., is issued, the

virus will gain control. It checks to

see if the other disk contains a COM-

MAND.COM file, and if so, it copies itself

to it, and a counter on the infected disk is

fact, it destroyed data on the user’s disks

and then printed the message “Arfl Arf!

Got You!”

Genesis: Malicious: Nonreplicating Tro-

jan horse

Time: During Operation

Place: Support: Privileged Utilities (?)

Case: PC4

Source: Y. Radai, Info-IBM PC Dig. 7,8

(Feb. 8, 1988). Also ACM SIGSOFT

Softw. Eng. Notes 13, 2 (Apr. 1988),

13-14

System: IBM-PC or compatible

Description: The so-called “Israeli”

virus, infects both COM and EXE files.

When an infected file is executed for the

first time, the virus inserts its code into

memory so that when interrupt 2 lh oc-

curs the virus will be activated. Upon

activation, the virus checks the currently

running COM or EXE file. If the file has

not been infected, the virus copies itself

into the currently running program. Once

the virus is in memory it does one of two

things: it may slow down execution of the

programs on the system or, if the date it

obtains from the system is Friday the

13th, it is supposed to delete any COM or

EXE file that is executed on that date.

incremented. When the counter equals 4 Genesis: Malicious: Replicating Trojan

every disk in the PC is erased. The boot horse (virus)

tracks and the File Access Tables are

nulled.
Time: During Operation

Place: Operating System: System Ini-
Genesis: Malicious: Replicating Trojan tialization

horse (virus)

Time: During Operation

Place: Operating System: System Ini-

tialization

Case: PC3

Source: Malpass, D. Risks Forum Dig.

1, 2 (Aug. 28, 1985).

System: IBM-PC or compatible

Description: This Trojan horse pro-

gram was described as a program to en-

hance the graphics of IBM programs. In

Apple Macintosh

An Apple Macintosh application presents

quite a different user interface from that

of a typical MS-DOS application on a PC,

but the Macintosh and its operating sys-

tem share the primary vulnerabilities of

a PC running MS-DOS. Every Macintosh

file has two “forks”: a data fork and a

resource fork, although this fact is invisi-

ble to most users. Each resource fork has

a type (in effect a name) and an identifi-

cation number. An application that

ACM Computing Surveys, Vol. 26, No 3, September 1994

252 ● Carl E. Landwehr et al.

occupies a given file can store auxiliary

information, such as the icon associated

with the file, menus it uses, error mes-

sages it generates, etc., in resources of

appropriate types within the resource

fork of the application file. The object

code for the application itself will reside

in resources within the file’s resource

fork. The Macintosh operating system

provides utility routines that permit pro-

grams to create, remove, or modify re-

sources, Thus any program that runs on

the Macintosh is capable of creating new

resources and applications or altering ex-

isting ones, just as a program running

under MS-DOS can create, remove, or

alter existing files. When a Macintosh is

powered up or rebooted, its initializa-

tion may differ from MS-DOS initializa-

tion in detail, but not in kind, and the

Macintosh is vulnerable to malicious

modification of the routines called during

initialization.

Case: MA1

Source: Tizes, B. R. Beware the Trojan

bearing gifts. MacGuide Msg. 1, (1988),

110-114.

System: Macintosh

Description: NEWAPP.STK, a Macin-

tosh program posted on a commercial

bulletin board, was found to include a

virus. The program modifies the System

program located on the disk to include an

INIT called “DR.” If another system is

booted with the infected disk, the new

system will also be infected. The virus is

activated when the date of the system

is March 2, 1988. On that date the

virus will print out the following mes-

sage: “RICHARD BRANDOW, publisher

of MacMag, and its entire staff would

like to take this opportunity to convey

their UNIVERSAL MESSAGE OF

PEACE to all Macintosh users around

the world.”

Genesis: Malicious: Replicating Trojan

horse (virus)

Time: During Operation

Place: Operating System: System Ini-

tialization

Case: MA2

Source: Stefanac, S. Mad Mats. Mac-

world 5, 11 (Nov. 1988), 93–101.

System: Macintosh

Description: The Macintosh virus, com-

monly called “scores,” seems to attack

application programs with WLT or ERIC

resources. Once infected, the scores virus

stays dormant for a number of days and

then begins to affect programs with

WLT or ERIC resources, causing at-

tempts to write to the disk to fail. Signs

of infection by this virus include an extra

CODE resource of size 7026, the exis-

tence of two invisible files titled Desktop

and Scores in the system folder, and

added resources in the Note Pad file and

Scrapbook file.

Genesis: Malicious: Replicating Trojan

horse (virus)

Time: During Operation

Place: Operating System: System Ini-

tialization (?)

Commodore Amiga

Case: CA1

Source: Koester, B. Risks Forum Dig. 5,

71 (Dec. ‘7, 1987); also ACM SIGSOFT

Softw. Eng. Notes 13, 1 (Jan. 1988),

11-12.

System: Amiga personal computer

Description: This Amiga virus uses the

boot block to propagate itself. When the

Amiga is booted from an infected disk,

the virus is copied into memory. The virus

initiates the warm-start routine. Instead

of performing the normal warm start, the

virus code is activated. When a warm

start occurs, the virus code checks to de-

termine if the disk in drive O is infected.

If not, the virus copies itself into the boot

block of that disk. If a certain number of

disks have been infected, a message is

printed revealing the infection; otherwise

~he normal warm start occurs.’

Genesis: Malicious: Replicating

horse (virus)

Trojan

ACM Computmg Surveys, Vol. 26, No 3, September 1994

Program Security Flaws - 253

Time: During Operation

Place: Operating System:

tialization

Atari

Case: AT1

System Ini-

Source: Jainschigg, J. Unlocking the se-

crets of computer viruses. Atari Expl. 8,

5 (Oct. 1988), 28-35.

System: Atari

Description: This Atari virus infects

the boot block of floppy disks. When the

system is booted from an infected floppy

disk, the virus is copied from the boot

block into memory. It attaches itself to

the function getbpd so that every time

getbpd is called the virus is executed.

When executed, first the virus checks to

see if the disk in drive A is infected. If

not, the virus copies itself from memory

onto the boot sector of the uninfected

disk and initializes a counter. If the disk

is already infected the counter is incre-

mented. When the counter reaches a cer-

tain value the root directory and file

access tables for the disk are overwrit-

ten, making the disk unusable.

Genesis: Malicious: Replicating Trojan

horse (virus)

Time: During Operation

Place: Operating System: System Ini-

tialization

ACKNOWLEDGMENTS

The idea for this survey was conceived several years

ago when we were considering how to provide auto-

mated assistance for detecting security flaws. We

found that we lacked a good characterization of the

things we were looking for. It has had a long gesta-

tion, and many have assisted in its delivery. We are
grateful for the participation of Mark Weiser (then

of the University of Maryland) and LCDR Philip

Myers of the Space and Naval Warfare Combat
Systems Command (SPAWAR) in this early phase

of the work. We also thank the National Computer

Security Center and SPAWAR for their continuing

financial support. The authors gratefully acknowl-

edge the assistance provided by the many reviewers

of earlier drafts of this survey. Their comments

helped us refine the taxonomy, clarify the presenta-

tion, distinguish the true computer security flaws

from the mythical ones, and place them accurately

in the taxonomy. Comments from Gene Spafford,

Matt Bishop, Paul Karger, Steve Lipner, Robert

Morris, Peter Neumann, Philip Porras, James P.

Anderson, and Preston Mullen were particularly

extensive and helpful. Jurate Maciunas Landwehr

suggested the form of Figure 4. Thomas Bethj

Richard Bisbey II, Vronnie Hoover, Dennis Ritchie,

Mike Stolarchuck, Andrew Tanenbaum, and Clark

Weissman also provided useful comments and en-

couragement; we apologize to any reviewers we

have inadvertently omitted. Finally, we thank the

SURVEYS referees who asked several questions that

helped us focus the presentation. Any remaining

errors are, of course, our responsibility.

REFERENCES

ABBOTT, R. P., CHIN, J. S., DONNELLEY, J. E.,

KONIGSFORD, W. L., TOKUBO, S., AND WEBB,

D. A. 1976. Security analysis and enhance-

ments of computer operating systems. NBSIR

76-1041, National Bureau of Standards, ICST,

Washington, D.C.

ANDERSON, J. P. 1972. Computer security technol-

ogy planning study. ESD-TR-73-51, vols. I and

II. NTIS AD758206, Hanscom Field, Bedford,

Mass.

BISBEY R., II AND HOLLINC+WORTH, D. 1978. Protec-

tion analysis project final report. ISI\RR-78-13,

DTIC AD A056816, USC\ Information Sciences

Inst., 1978.

BREHMER, C. L. AND CARL, J. R. 1993. Incorporat-

ing IEEE Standard 1044 into your anomaly

tracking process. Cross Talk. J. Def. Softcu.

Eng. 6, 1 (Jan.), 9-16.

CHILLAREGE, R., BHANDAM, I. S., CIMAR, J. K.,

HALLIDAY, M. J., MOEBUS, D. S., RAY, B. K., AND

WONG, M.-Y. 1992. Orthogonal defect classifi-

cation—a concept for in-process measure-

ments. IEEE Trans. Softw. Eng. 18, 11 (Nov.),

943-956.

COHEN, F. 1984. Computer viruses: Theory and

experiments. In the 7th DoD/NBS Computer

Security Conference. 240-263.

DEPARTMENT OF DEFENSE. 1985. Trusted com-

puter system evaluation criteria. DoD 5200.28 -

STD, U.S. Dept. of Defense, Washington, D.C.

DENNING, D. E. 1982. Cryptography and Data Se-

curity. Addison-Wesley, Reading, Mass.

DENNING, P. J. 1988. Computer viruses. Am. Sci.

76 (May-June), 236-238.

ELMER-DEWIm, P. 1988. Invasion of the data

snatchers. TIME Msg. (Sept. 26), 62–67.

FERBRACHE, D. 1992. A Pathology of Computer

Viruses. Springer-Verlag, New York.

ACM Computing Surveys, Vol. 26, No. 3, September 1994

254 * Carl E. Landwehr et al.

FLORAC, W. A. 1992. Software quality measure-

ment: A framework for counting problems and

defects. CMU/SEI-92-TR-22, Software En@

neering Inst. Pittsburgh, Pa.

GASSER, M. 1988. Building u Secure c077LpLL&T

System. Van Nostrand Reinhold, New York.

IEEE COMPUTER SOCIETY 1990. Standard glos-

sary of software engineering terminology.

ANSI/IEEE Standard 610.12-1990 IEEE

Press, New York.

LAMPSON, B. W. 1973, A note on the confinement

problem. Conznum. ACM 16, 10 (Oct.), 613-615.

LANDWEHR, C, E. 1983. The best avadable tech-

nologies for computer security, IEEE Comput,

16, 7 (July), 86-100.

LANDWEHR, C. E. 1981. Formal models for com-

puter security. ACM Comput. Surv. 13, 3

(Sept.), 247-278.

LAPRIE, J. C.j ED, 1992, Dependabil~t.y; Baszc

Concepts and Terminology. Springer-Verlag Se-

ries in Dependable Computing and Fault-

Tolerant Systems, vol. 6, Springer-Verlag, New

York.

LEVESON, N. AND TURNER, C. S 1992, An investi-

gation of the Therac-25 accidents. UCI TR-92-

108, Information and Computer Science Dept.,

Univ. of California, Irvine, Ca.

LINDE, R. R. 1975, Operating system penetration.

In the AFIPS National Computer Conference,

AFIPS, Arlington, Vs., 361-368.

MCDERMOTT, J. P. 1988. A technique for removing

an important class of Trojan horses from high

order languages. In Proceedings of the 1 lth

National Computer Security Conference.

NBS\ NCSC, Gaithersburg, Md., 114-117.

Recewed June 1993; final rewsion accepted March 1994

NEUMANN, P. G. 1978. Computer security evalua-

tion. In the 1978 Nattonal Computer Confer-

en ce, AFIPS Conference Proceedings 47. AFIPS,

Arlington, Va,, 1087-1095.

PETROSIiI, H. 1992, To Engineer zs Human: The

Role of Failure m Successful Design. Vintage

Books, New York.

PFLEEGER, C. P. 1989, Security m Computzng.

Prentice-Hall, Englewood Cliffs, N.J.

ROCHLIS, J. A. AND EICHEN, M W. 1989. With mi-

croscope and tweezers: The worm from MIT’s

perspective. Commun. ACM 32, 6 (June),

689-699.

SCHELL, R. R. 1979, Computer security: The

Achdles heel of the electronic Air Force’? Am

Univ. Rev, 30, 2 (Jan, -Feb.), 16-33.

SCHOCH, J. F. AND HUPP, J. A. 1982. The “worm”

programs-early experience with a distributed

computation. Commun. ACM 25, 3 (Mar.),

172-180.

SPAFFORD, E, H. 1989. Crisis and aftermath. Com -

mun. ACM 32, 6 (June), 678–687.

SULLIVAN, M. R. AND CHILLAREGE, R. 1992. A com-

parison of software defects in database man-

agement systems and operating systems. In

Proceedings of the 22nd International Sympo-

sium on Fault-Tolerant Computer Systems

IEEE Computer Society, Boston, Mass.,

(FTCS-22) (July).

THOMPSON, K. 1984. Reflections on trusting trust.

Commun. ACM 27, 8 (Aug.), 761-763,

WEISS, D. M. AND BASILI, V. R. 1985. Evaluating

software development by analysis of changes:

Some data from the Software Engineering Lab-

oratory. IEEE Trans. Softw Eng. SE-11, 2

(Feb.), 157-168.

ACM Computing Surveys. Vol 26, No. 3, September 1994

