
A Taxonomy of Data Grids for Distributed Data Sharing, Management,
and Processing

SRIKUMAR VENUGOPAL, RAJKUMAR BUYYA, AND
KOTAGIRI RAMAMOHANARAO

University of Melbourne, Australia

Data Grids have been adopted as the next generation platform by many scientific communities that need
to share, access, transport, process, and manage large data collections distributed worldwide. They combine
high-end computing technologies with high-performance networking and wide-area storage management
techniques. In this article, we discuss the key concepts behind Data Grids and compare them with other
data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks, and
distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture,
data transportation, data replication and resource allocation, and scheduling. Finally, we map the proposed
taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future
exploration.

Categories and Subject Descriptors: H.3.4 [Information Storage and Retrieval]: Systems and Software—
Distributed systems; C.2.4 [Computer-Communication Networks]: Distributed Systems—Client/server;
distributed applications; J.2 [Physical Sciences and Engineering]; J.3 [Life and Medical Sciences]

General Terms: Design, Management

Additional Key Words and Phrases: Grid computing, data-intensive applications, virtual organizations,
replica management

1. INTRODUCTION

The next generation of scientific applications in domains as diverse as high energy
physics, molecular modeling, and earth sciences involve the production of large datasets
from simulations or from large-scale experiments. Analysis of these datasets and their
dissemination among researchers located over a wide geographic area requires high ca-
pacity resources such as supercomputers, high bandwidth networks, and mass storage
systems. Collectively, these large scale applications have come to be known as part of

This work is partially supported through the Australian Research Council (ARC) Discovery Project grant
and Storage Technology Corporation sponsorship of Grid Fellowship.

Authors’ address: R. Buyya, Grid Computing and Distributed Sytems Laboratory, Department of Computer
Science and Software Engineering, University of Melbourne, VIC 3010, Australia; email: rbuyya@unimelb.
edu.au.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212)
869-0481, or permissions@acm.org.
c©2006 ACM 0360-0300/06/0300-ART3 $5.00 http://doi.acm.org/10.1145/1132952.1132955

ACM Computing Surveys, Vol. 38, March 2006, Article 3.

2 S. Venugopal et al.

e-Science1 [Hey and Trefethen 2002], a discipline that envisages using high-end com-
puting, storage, networking, and Web technologies together to facilitate collaborative,
data-intensive scientific research. However, this requires new paradigms in Internet
computing that address issues such as multidomain applications, cooperation and coor-
dination of resource owners, and blurring of system boundaries. Grid computing [Foster
and Kesselman 1999] is one such paradigm that proposes aggregating geographically-
distributed, heterogeneous computing, storage, and network resources to provide uni-
fied, secure, and pervasive access to their combined capabilities. Such aggregations are
also called Grids.

Data Grids [Chervenak et al. 2000; Hoschek et al. 2000] primarily deal with provid-
ing services and infrastructure for distributed data-intensive applications that need to
access, transfer, and modify massive datasets stored in distributed storage resources.
For users to derive maximum benefits out of the infrastructure, the following capa-
bilities are needed: (a) ability to search through numerous available datasets for the
required dataset and to discover suitable data resources for accessing the data, (b)
ability to transfer large-sized datasets between resources in as short a time as possi-
ble, (c) ability for users to manage multiple copies of their data, (d) ability to select
suitable computational resources and process data on them and (e) ability to manage
access permissions for the data. Content delivery networks, peer-to-peer file-sharing
networks, and distributed databases are some of the other paradigms with similar
requirements for supporting a distributed data-intensive infrastructure. In the next
section, we provide a general overview and systematic characterization of Data Grids
and a thorough examination of their differences from the distributed data-intensive
mechanisms mentioned.

The rapid emergence of Data Grids in scientific and commercial settings has led
to a variety of systems offering solutions for dealing with distributed data-intensive
applications. Unfortunately, this has also led to difficulty in evaluating these solutions
because of the confusion in pinpointing their exact target areas. The taxonomy provided
in Section 3 breaks down the overall research in Data Grids into specialized areas and
categorizes each of them in turn. Section 4 then surveys some representative projects
and publications and classifies them according to the taxonomy.

A few studies have investigated and surveyed Grid research in the recent past.
Krauter et al. [2002] present a taxonomy of various Grid resource management systems
that focuses on the general resource management architectures and scheduling poli-
cies. Specifically for Data Grids, Bunn and Newman [2003] provide an extensive survey
of projects in High Energy Physics, while Qin and Jiang [2003] produce a compilation
that concentrates more on the constituent technologies. Moore and Merzky [2002] iden-
tify functional requirements (features and capabilities) and components of a persistent
archival system. In contrast to these articles, Finkelstein et al. [2004] spell out require-
ments for Data Grids from a software engineering perspective and elaborate on the
impact that these have on architectural choices. A similar characterisation has been
performed by Mattmann et al. [2005]. The work in this article, however, concentrates on
issues pertaining to all data-intensive application environments including Data Grids.
It provides a more detailed and complete understanding of Data Grids and its under-
lying technologies through multiple perspectives including resource allocation, data
management, and user requirements.

The main objective of this article, therefore, is to delineate very clearly the uniqueness
of Data Grids from other similar paradigms and provide a basis for categorizing present
and future developments in this area. This article also aims to provide readers with

1Also known as e-Research with the inclusion of digital libraries and the humanities community.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 3

an understanding of the essential concepts of this rapidly changing research area and
help them identify important and outstanding issues for further investigation.

2. OVERVIEW

2.1. Terms and Definitions

A data-intensive computing environment consists of applications that produce, manip-
ulate, or analyse data in the range of hundreds of MegaBytes (MB) to PetaBytes (PB)
and beyond [Moore et al. 1998]. The data is organised as collections or datasets and are
typically stored on mass storage systems (also called repositories) such as tape libraries
or disk arrays. The datasets are accessed by users in different locations who may create
local copies or replicas of the datasets to reduce latencies involved in wide-area data
transfers and, therefore, improve application performance. A replica may be a complete
or a partial copy of the original dataset. A replica management system or data repli-
cation mechanism allows users to create, register, and manage replicas and may also
allow them to update the replicas if the original datasets are modified. The system may
also create replicas on its own guided by replication strategies that take into account
current and future demand for the datasets, locality of requests, and storage capac-
ity of the repositories. Metadata, or data about data, is information that describes the
datasets and could consist of attributes such as name, time of creation, size on disk, and
time of last modification. Metadata may also contain specific information such as de-
tails of the process that produced the data. A replica catalog contains information about
locations of datasets and associated replicas and the metadata associated with these
datasets. Users query the catalog using metadata attributes to conduct operations such
as locating the nearest replica of a particular dataset.

In the context of Grid computing, any hardware or software entity such as super-
computers, storage systems, or applications that are shared between users of a Grid is
called a resource. However, for the rest of this article and unless otherwise stated, the
term resource means hardware such as computers or storage systems. Resources are
also nodes in the network and hence, we use these terms interchangeably. The network-
enabled capabilities of the resources that can be invoked by users, applications, or other
resources are called services.

2.2. Data Grids

A Data Grid provides services that help users discover, transfer, and manipulate large
datasets stored in distributed repositories and also, create and manage copies of these
datasets. At the minimum, a Data Grid provides two basic functionalities: a high-
performance, reliable data transfer mechanism, and a scalable replica discovery and
management mechanism [Chervenak et al. 2000]. Depending on application require-
ments, various other services need to be provided. Examples of such services include
consistency management for replicas, metadata management and data filtering, and re-
duction mechanism. All operations in a Data Grid are mediated by a security layer that
handles authentication of entities and ensures conduct of only authorized operations.

Another aspect of a Data Grid is the maintenance of shared collections of data dis-
tributed across administrative domains. These collections are maintained independent
of the underlying storage systems and are able to include new sites without major ef-
fort. More importantly, it is required that the data and information associated with
data such as metadata, access controls, and version changes be preserved even in the
face of platform changes. These requirements lead to the establishment of persistent
archival storage [Moore et al. 2005].

ACM Computing Surveys, Vol. 38, March 2006.

4 S. Venugopal et al.

Fig. 1. A high-level view of a Data Grid.

Figure 1 shows a high-level view of a worldwide Data Grid consisting of computa-
tional and storage resources in different countries that are connected by high speed
networks. The thick lines show high bandwidth networks linking the major centers,
and the thinner lines are lower capacity networks that connect the latter to their sub-
sidiary centers. The data generated from an instrument, experiment, or a network of
sensors is stored in its principal storage site and is transferred to the other storage sites
around the world on request through the data replication mechanism. Users query their
local replica catalog to locate datasets that they require. If they have been granted the
requisite rights and permissions, the data is fetched from the repository local to their
area if it is present there; otherwise it is fetched from a remote repository. The data may
be transmitted to a computational site such as a cluster or a supercomputer facility for
processing. After processing, the results may be sent to a visualization facility, a shared
repository, or to the desktops of the individual users.

A Data Grid, therefore, provides a platform through which users can access aggre-
gated computational, storage and networking resources to execute their data-intensive
applications on remote data. It promotes a rich environment for users to analyze data,
share the results with their collaborators, and maintain state information about the
data seamlessly across institutional and geographical boundaries. Often cited exam-
ples for Data Grids are the ones being set up for analyzing the huge amounts of data
that will be generated by the CMS (Compact Muon Solenoid), ATLAS (A Toroidal LHC
AppratuS), ALICE (A Large Ion Collider Experiment), and LHCb (LHC beauty) exper-
iments at the Large Hadron Collider (LHC) [Lebrun 1999] at CERN when they will
begin production in 2007. These Data Grids will involve thousands of physicists spread
over hundreds of institutions worldwide and will be replicating and analyzing terabytes
of data daily.

Resources in a Grid are heterogeneous in terms of operating environments, capability,
and availability, and are under the control of their own local administrative domains.
These domains are autonomous and retain the rights to grant users access to the re-
sources under their control. Therefore, Grids are concerned with issues such as sharing
of resources, authentication and authorization of entities, and resource management

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 5

and scheduling for efficient and effective use of available resources. Naturally, Data
Grids share these general concerns, but have their own unique set of characteristics
and challenges listed here.

—Massive Datasets. Data-intensive applications are characterized by the presence of
large datasets of the size of Gigabytes (GB) and beyond. For example, the CMS exper-
iment at the LHC is expected to produce 1 PB (1015 bytes) of RAW data and 2 PB of
event summary data (ESD) annually when it begins production [Holtman et al. 2001].
Resource management within Data Grids, therefore, extends to minimizing latencies
of bulk data transfers, creating replicas through appropriate replication strategies,
and managing storage resources.

—Shared Data Collections. Resource sharing within Data Grids also includes, among
others, sharing distributed data collections. For example, participants within a sci-
entific collaboration would want to use the same repositories as sources for data and
for storing the outputs of their analyses.

—Unified Namespace. The data in a Data Grid share the same logical namespace in
which every data element has a unique logical filename. The logical filename is
mapped to one or more physical filenames on various storage resources across a
Data Grid.

—Access Restrictions. Users might wish to ensure confidentiality of their data or restrict
distribution to close collaborators. Authentication and authorization in Data Grids
involves coarse- to fine-grained access controls over shared data collections.

However, certain characteriztics of Data Grids are specific to the applications for
which they are created. For example, for astrophysics or high-energy physics experi-
ments, the principal instrument such as a telescope or a particle accelerator is the single
site of data generation. This means that all data is written at a single site and then repli-
cated to other sites for read access. Updates to the source are propagated to the replicas
either by the replication mechanism or by a separate consistency management service.

A lot of challenges in Grid computing revolve around providing access to different
types of resources. Foster et al. [2001] have proposed a Grid architecture for resource
sharing among different entities based around the concept of Virtual Organizations
(VOs). A VO is formed when different organizations pool resources and collaborate
in order to achieve a common goal. A VO defines the resources available for the
participants and the rules for accessing and using the resources and the conditions
under which the resources can be used. Resources here are not just compute, storage,
or network resources, they may also be software, scientific instruments, or business
data. A VO also provides protocols and mechanisms for applications to determine
the suitability and accessibility of available resources. In practical terms, a VO may
be created using mechanisms such as Certificate Authorities (CAs) and trust chains
for security, replica management systems for data organization and retrieval, and
centralized scheduling mechanisms for resource management.

The existence of VOs impacts the design of Data Grid architectures in many ways. For
example, a VO might be standalone or composed of a hierarchy of regional, national,
and international VOs. In the latter case, the underlying Data Grid might have a
corresponding hierarchy of repositories, and the replica discovery and management
system will be structured accordingly. More importantly, sharing of data collections is
guided by the relationships that exist between the VOs that own each of the collections.
In subsequent sections, we will look at how Data Grids are differentiated by such design
choices and how these affect underlying technologies.

ACM Computing Surveys, Vol. 38, March 2006.

6 S. Venugopal et al.

Fig. 2. A layered architecture.

2.3. Layered Architecture

The components of a Data Grid can be organized in a layered architecture as shown
in Figure 2. This architecture follows from similar definitions given by Foster et al.
[2001] and Baker et al. [2002]. Each layer builds on the services offered by the lower
layer in addition to interacting and cooperating with components on the same level
(e.g., Resource broker invoking VO tools). We can describe the layers from bottom to
top as follows.

(1) Grid Fabric consists of the distributed computational resources (clusters, super-
computers), storage resources (RAID arrays, tape archives), and instruments (tele-
scope, accelerators) connected by high-bandwidth networks. Each of the resources
runs system software such as operating systems, job submission and management
systems, and relational database management systems (RDBMS).

(2) Communication consists of protocols used to query resources in the Grid Fabric
layer and to conduct data transfers between them. These protocols are built on
core communication protocols such as TCP/IP and authentication protocols such as
PKI (Public Key Infrastructure), passwords, or SSL (Secure Sockets Layer). The

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 7

cryptographic protocols allow verification of users’ identities and ensure security
and integrity of transferred data. These security mechanisms form part of the Grid
Security Infrastructure (GSI) [Foster et al. 1998]. File transfer protocols such as
GridFTP (Grid File Transfer Protocol), among others, provide services for efficient
transfer of data between two resources on the Data Grid. Application-specific over-
lay structures provide efficient search and retrieval capabilities for distributed data
by maintaining distributed indexes.

(3) Data grid services provide services for managing and processing data in a
Data Grid. The core-level services such as replication, data discovery, and job
submission provide transparent access to distributed data and computation. User-
level services such as resource brokering (selection of resources for a user based
on his requirements) and replica management provide mechanisms that allow for
efficient resource management hidden behind inituitive commands and APIs (Ap-
plication Programming Interfaces). VO tools provide an easy way to perform func-
tions such as adding new resources, to a VO, querying the existing resources, and
managing users’ access rights.

(4) Applications are specific services that cater to users by invoking services provided
by the layers below and customizing them to suit the target domains such as high-
energy physics, biology and climate modeling. Each domain provides a familiar
interface and access to services such as visualization. Portals are Web interfaces that
provide single-point access to available VO services and domain-specific applications
and tools. Collaboratories [Kouzes et al. 1996] have similar intent and also provide
applications that allow users to conduct joint operations with their colleagues.

The security layer and Data Grid services provide applications with uniform access
to resources in the Fabric layer while abstracting out much of the inherent complexity
and heterogeneity. Formation of VOs requires interoperability between the resources
and components that are provided by different participants. This motivates the use of
standard protocols and service interfaces for information exchange among VO entities.
Service interfaces themselves have to be separated from implementation details and
have to be described in a language- and platform-independent format. Realization of
these requirements have led the Grid computing research community, through forums
such as Global Grid Forum (GGF), to adopt a new Open Grid Services Architecture
(OGSA) [Foster et al. 2002] that is based on the emerging Web services paradigm. Web
services are self-contained, stateless components that use standard mechanisms for
the representation and exchange of data. OGSA builds on Web service properties such
as vendor and platform neutral service definitions using XML (eXtensible Markup
Language) [Bray et al. 2004] and standard communication protocols such as SOAP
(Simple Object Access Protocol) to create Grid services. Grid services are standardized
Web service interfaces that provide Grid capabilities in a secure, reliable, and stateful
manner. Grid services may also be potentially transient and service instances sup-
port service lifetime management and state notification. OGSA utilizes standard Web
service mechanisms for discovering and invoking Grid services.

The OGSA Data Services [Foster et al. 2003] deal with accessing and managing
data resources in a Grid environment. A data service implements one or more of a
set of basic interfaces that describe the data and provide operations to manipulate
it. The same data can be represented in many ways by different data services that
implement different sets of operations and data attributes. This abstract view of data
created by a data service is termed data virtualization. Subsequent efforts, through
the Data Access and Integration Services Working Group (DAIS-WG) at GGF, have
produced a set of more concrete standards [Antonioletti et al. 2005] for representing
data through services. While the standards provide the consumers of the services the

ACM Computing Surveys, Vol. 38, March 2006.

8 S. Venugopal et al.

advantage of being isolated from the inner workings of Data Grids, the actual work of
transferring and managing data is done by the underlying or core mechanisms such
as data transport, data replication, and resource management. The taxonomy section
focuses on these core mechanisms as they define the capabilities of a Data Grid.

2.4. Related Data-Intensive Research Paradigms

Three related distributed data-intensive research areas that share similar require-
ments, functions, and characteriztics are described in the following. These have been
chosen because of the similar properties and requirements that they share with Data
Grids.

2.4.1. Content Delivery Network. A Content Delivery Network (CDN) [Davison 2001;
Dilley et al. 2002] consists of a “collection of (nonorigin) servers that attempt to offload
work from origin servers by delivering content on their behalf” [Krishnamurthy et al.
2001]. That is, within a CDN, client requests are satisfied from other servers dis-
tributed around the Internet (also called edge servers) that cache the content originally
stored at the source (origin) server. A client request is rerouted from the main server
to an available server closest to the client likely to host the content required [Dilley
et al. 2002]. This is done by providing a DNS (Domain Name System) server that
resolves the client DNS request to the appropriate edge server. If the latter does not
have the requested object, then it retrieves the data from the origin server or another
edge server. The primary aims of a CDN are, therefore, load balancing to reduce effects
of sudden surges in requests, bandwidth conservation for objects such as media clips,
and reducing the round-trip time to serve the content to the client. CDNs are generally
employed by Web content providers and commercial providers such as Akamai Inc.,
Speedera Inc., and IntelliDNS Inc. who have built dedicated infrastructures to serve
multiple clients. However, CDNs haven’t gained wide acceptance for data distribution
because of the restricted model that they follow. Also, current CDN infrastructures are
proprietary in nature and owned completely by the providers.

2.4.2. Peer-to-Peer Network. Peer-to-peer (P2P) networks [Oram 2001] are formed by
ad hoc aggregation of resources to form a decentralized system within which each peer
is autonomous and depends on other peers for resources, information, and forwarding
requests. The primary aims of a P2P network are to ensure scalability and reliability
by removing the centralized authority, to ensure redundancy, to share resources, and
to ensure anonymity. An entity in a P2P network can join or leave anytime and,
therefore, algorithms and strategies have to be designed keeping in mind the volatility
and requirements for scalability and reliability. P2P networks have been designed
and implemented for many target areas such as compute resource sharing (e.g.,
SETI@Home [Anderson et al. 2002], Compute Power Market [Buyya and Vazhkudai
2001]), content and file sharing (Napster, Gnutella, Kazaa [Choon-Hoong et al. 2005]),
and collaborative applications such as instant messengers (Jabber [Jabber Project
2005]). Milojicic et al. [2002] present a detailed taxonomy and survey of peer-to-peer
systems. Here we are concerned mostly with content and file-sharing P2P networks
as these involve data distribution. Such networks have mainly focused on creating
efficient strategies to locate particular files within a group of peers, to provide reliable
transfers of such files in the face of high volatility, and to manage high load caused
by demand for highly popular files. Currently, major P2P content sharing networks do
not provide an integrated computation and data distribution environment.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 9

2.4.3. Distributed Databases. A distributed database (DDB) [Ceri and Pelagatti 1984;
Ozsu and Valduriez 1999] is a logically organized collection of data stored at different
sites of a computer network. Each site has a degree of autonomy, is capable of executing
a local application, and also participates in the execution of a global application. A dis-
tributed database can be formed either by taking an existing single site database and
splitting it over different sites (top-down approach) or by federating existing database
management systems so that they can be accessed through a uniform interface (bottom-
up approach) [Sheth and Larson 1990]. The latter are also called multidatabase sys-
tems. Varying degrees of autonomy are possible within DDBs ranging from tightly-
coupled sites to complete site independence. Distributed databases have evolved to
serve the needs of large organizations which need to remove the need for a centralized
computer center, to interconnect existing databases, to replicate databases to increase
reliability, and to add new databases as new organizational units are added. This tech-
nology is very robust. It provides distributed transaction processing, distributed query
optimisation, and efficient management of resources. However, these systems cannot
be employed in their current form at the scale envisioned for Data Grids as they have
strong requirements for ACID (Atomicity, Consistency, Isolation, and Durability) prop-
erties [Gray and Reuter 1993] to ensure that the state of the database remains consis-
tent and deterministic.

2.5. Analysis of Data-Intensive Networks

This section compares the data-intensive paradigms described in the previous sections
with Data Grids in order to bring out the uniqueness of the latter by highlighting the
respective similarities and differences. Also, each of these areas have their own mature
solutions which may be applicable to the same problems in Data Grids either wholly or
with some modification based on the differing properties of the latter. These properties
are summarised in Table I and are explained here.

Purpose. Considering the purpose of the network, it is generally agreed that P2P
content sharing networks are vertically integrated solutions for a single goal (for ex-
ample, file-sharing). CDNs are dedicated to caching Web content so that clients are
able to access it faster. DDBs are used for integrating existing diverse databases to
provide a uniform, consistent interface for querying and/or for replicating existing
databases for increasing reliability or throughput. In contrast to these single purpose
networks, Data Grids are primarily created for enabling collaboration through sharing
of distributed resources including data collections and supporting various activities
including data transfer and computation over the same infrastructure. The overall
goal is to bring together existing disparate resources in order to obtain the benefits of
aggregation.

Aggregation. All the networks are formed by aggregating individual nodes to form a
distributed system. The aggregation can be created through an ad hoc process wherein
nodes subscribe to the network without prior arrangements or a specific process where
they are brought together for a particular purpose. The aggregation can be stable or
dynamic. P2P networks, by definition, are ad hoc in nature with nodes entering and
leaving at will. A CDN provider creates the infrastructure by setting up dedicated
servers for caching content. DDBs are created by either federating existing databases
or by establishing a tightly-coupled network of databases by a single organization. In
the case of a CDN or a DDB system, the entire network is managed by a single entity
that has the authority to add or remove nodes and, therefore, these have stable config-
urations. Data Grids are created by institutions forming VOs by pooling their resources
for achieving a common goal. However, within a Data Grid, dynamic configurations are
possible due to the introduction or removal of resources and services.

ACM Computing Surveys, Vol. 38, March 2006.

10 S. Venugopal et al.

Table I. Comparison Between Various Data Distribution Networks
P2P (Content

Property sharing) CDN DDB Data Grids
Purpose File sharing Reducing web

latency
Integrating existing

databases,
Replicating
database for
reliability &
throughput

Analysis, collaboration

Aggregation Ad hoc, Dynamic Specific, Stable Specific, Stable Specific, Dynamic
Organization Centralized,

two-level
hierarchy, flat

Hierarchical Centralized,
federation

Hierarchical,
federation, bottom up
or hybrid

Data Access Type Mostly read with
frequent writes

Read-only Equally read and
write

Mostly read with rare
writes

Data Discovery Central directory,
Flooded
requests or
document
routing

HTTP Request Relational Schemas Catalogues

Latency
Management
& Performance

Replication,
Caching,
Streaming

Caching,
Streaming

Replication, Caching Replication, Caching,
Streaming,
Pre-staging,
High-speed data
movement, Optimal
selection of data
source and sink

Consistency
Requirements

Weak Strong
(read-only)

Strong Weak

Transaction
Support

None None currently Yes None currently

Computational
Requirements

None currently None
(Client-side)

Transaction
Processing

Data Production and
Analysis

Autonomy Operational,
Participation

None
(Dedicated)

Operational
(federated)

Access, Operational,
Participation

Heterogeneity System,
Structural

System System System, Syntactic,
Structural, Semantic

Management
Entity

Individual Single
Organization

Single Organization VO

Security
Requirements

Anonymity Data Integrity Authentication,
Authorisation,
Data Integrity

Authentication,
Authorisation, Data
Integrity

Organization. The organization of a CDN is hierarchical with the data flowing from
the origin to the edges. Data is cached at the various edge servers to exploit local-
ity of data requests. There are many models for organization of P2P content sharing
networks, and these are linked to the searching methods for files within the network.
Within Napster, a peer has to connect to a centralized server and search for an avail-
able peer that has the required file. The two peers then communicate directly with
each other. Gnutella avoids the centralized directory by having a peer broadcast its re-
quest to its neighbors and so on until the peer with the required file is obtained. Kazaa
and FastTrack limit the fan-out in Gnutella by restricting broadcasts to SuperPeers
who index a group of peers. Freenet [Clarke et al. 2001] uses content-based hashing
in which a file is assigned a hash based on its contents, and nearest neighbor search
is used to identify the required document. Thus, three different models of organiza-
tion, centralized, two-level hierarchy, and flat (structured and unstructured) can be
seen in the examples presented. Distributed databases provide a relational database
management interface and are, therefore, organized accordingly. Global relations
are split into fragments that are allocated to either one or many physical sites. In the

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 11

latter case, replication of fragments is carried out to ensure reliability of the database.
While distribution transparency may be achieved within top-down databases, it may
not be the case with federated databases that have varying degrees of heterogeneity
and autonomy. As will be shown in the taxonomy section, there are 4 different kinds
of organization present in a Data Grid, namely, monadic, hierarchical, federated, and
hybrid combinations of these.

Data Access Type. Access type distinguishes the type of data access operations con-
ducted within the network. P2P content sharing networks are mostly read-only en-
vironments and write operations occur when an entity introduces new data into the
network or creates copies of existing data. CDNs are almost exclusively read-only
environments for end-users and updating of data happens at the origin servers only. In
DDBs, data is both read and written frequently. Data Grids are similar to P2P networks
as they are mostly read-only environments into which either data is introduced or ex-
isting data is replicated. However, a key difference is that, depending on application
requirements, Data Grids may also support updating of data replicas if the source is
modified.

Data Discovery. Another distinguishing property is how the data is discovered within
the network. The three approaches for searching within P2P networks have been men-
tioned previously. Current research focuses on the document routing model and the
four algorithms proposed for this model: Chord [Stoica et al. 2003], CAN [Ratnasamy
et al. 2001], Pastry [Rowstron and Druschel 2001], and Tapestry [Zhao et al. 2001].
CDNs fetch data which has been requested by a browser through HTTP (Hyper Text
Transfer Protocol). DDBs are organized using the same relational schema paradigm
as single-site databases and thus, data can be searched for and retrieved using SQL
(Structured Query Language). Data in Data Grids are organized into catalog which
map the logical description of data to the actual physical representation. One form of
these catalog is the replica catalog which contains a (possibly) one-to-many mapping
from the logical (or device-independent) filename to the actual physical filenames of
the datasets. Data can be located by querying these catalog and resolving the physical
locations of the logical datasets.

In addition to these mechanisms, the use of metadata for searching data is supported
by certain individual products in each of the four data-intensive networks. Data can
be queried for, based on attributes such as description or content type. In Data Grids,
metadata catalog offer another means for querying for data. In such cases, metadata
has to be curated properly, otherwise it would affect the efficiency and accuracy of data
discovery. We will look at the role of metadata and catalog in detail in later sections.

Latency Management and Performance. A key element of performance in distributed
data-intensive networks is the manner in which they reduce the latency of data trans-
fers. Some of the techniques commonly used in this regard are replicating data close
to the point of consumption, caching of data, streaming data, and prestaging the data
before the application starts executing. Replication is different from caching in that the
former involves creation and maintenance of copies of data at different places in the
network depending on access rates or other criteria, while the latter involves creating
just one copy of the data close to the point of consumption. Replication is, therefore,
done mostly from the source of the data (provider side) and caching, is done at the
data consumer side. While both replication and caching seek to increase performance
by reducing latency, the former also aims to increase reliability by creating multiple
backup copies of data.

CDNs employ caching and streaming to enhance performance especially for deliv-
ering media content [Saroiu et al. 2002]. While several replication strategies have
been suggested for a CDN, Karlsson and Mahalingam [2002] experimentally show that
caching provides equivalent or even better performance than replication. In the absence

ACM Computing Surveys, Vol. 38, March 2006.

12 S. Venugopal et al.

of requirements for consistency or availability guarantees in CDNs, computationally
expensive replication strategies do not offer much improvement over simple caching
methods. P2P networks also employ replication, caching, and streaming of data in var-
ious degrees. Replication and caching are used in distributed database systems for
optimizing distributed query processing [Kossmann 2000].

In Data Grids, all of the techniques mentioned are implemented in one form or an-
other. However, additionally, Data Grids are differentiated by their requirement for the
transfer of massive datasets. This is either absent in the other data-intensive networks
or is not considered while designing these networks. This motivates use of high-speed
data transfer mechanisms that have separation of data communication, that is, the
sending of control messages happens separately from the actual data transfer. In addi-
tion, features such as parallel and striped data transfers, among others, are required to
further reduce the time of data movement. Optimization methods to reduce the amount
of data transfers, such as accessing data close to the point of its consumption, are also
employed within Data Grids.

Consistency. Consistency is an important property which determines how fresh the
data is. Grids and P2P networks generally do not provide strong consistency guarantees
because of the overhead of maintaining locks on huge volumes of data and the ad hoc
nature of the network, respectively. Among the exceptions for Data Grids is the work
of Dullmann et al. [2001] which discusses a consistency service for replication in Data
Grids. In P2P networks, Oceanstore [Kubiatowicz et al. 2000] is a distributed file system
that provides strong consistency guarantees through expensive locking protocols. In
CDNs, while the data in a cache may go stale, the system always presents the latest
version of the data when the user requests it. Therefore, the consistency provided by a
CDN is strong.

Distributed databases, as mentioned before, have strong requirements for satisfy-
ing ACID properties. While these requirements can be relaxed in the case of unsta-
ble conditions such as those found in mobile networks [Pitoura and Bhargava 1999],
even then the semantics for updating are much stricter within distributed databases
than in other distribution networks. Also, updates are more frequent and can hap-
pen from within any site in the network. These updates have to be migrated to other
sites in the network so that all the copies of the data are synchronized. There are
two methods for updating that are followed [Gray et al. 1996]: lazy, in which the up-
dates are asynchronously propagated, and eager, in which the copies are synchronously
updated.

Transaction Support. A transaction is a set of operations (actions) such that all of
them succeed or none of them succeed. Transaction support implies the existence of
check-pointing and rollback mechanisms so that a database or data repository can be
returned to its previous consistent state in case of failure. It follows from the discussion
of the previous property that transaction support is essential for distributed databases.
CDNs have no requirements for transaction support as they only support read-only
access to data to the end users. P2P Networks and Data Grids currently do not have
support for recovery and rollback. However, efforts are on to provide transaction support
within Data Grids to provide fault tolerance for distributed transactions [Transaction
Management Research Group (GGF) 2005].

Computational Requirements. Computational requirements in data-intensive
environments originate from operations such as query processing, applying transfor-
mations to data, and processing data for analysis. CDNs are exclusively data-oriented
environments with a client accessing data from remote nodes and processing it at its
own site. While current P2P content sharing networks have no processing of the data,
it is possible to integrate such requirements in the future. Computation within DDBs
involves transaction processing which can be conducted in two ways: the requested

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 13

data is transmitted to the originating site of the transaction and the transaction is
processed at that site, or the transaction is distributed among the different nodes
which have the data. High volumes of transactions can cause heavy computational
load within DDBs, and there are a variety of optimization techniques to deal with load
balancing in parallel and distributed databases.

Data Grids have heavy computational requirements that are caused by workloads
involving analysis of datasets. Many operations in Data Grids, especially those
involving analysis, can take long intervals of time (measured in hours or even days).
This is in contrast to the situation within DDBs where the turnaround time of
requests is short and for applications such as OLTP (On Line Transaction Processing),
where turnaround measured in milliseconds. High performance computing sites that
generally constitute existing Data Grids are shared facilities and are oversubscribed
most of the time. Therefore, application execution within Data Grids has to take into
account the time spent in queues at these sites as well.

Autonomy. Autonomy deals with the degree of independence allowed to different
nodes within a network. However, there could be different types and different levels of
autonomy provided [Sheth and Larson 1990; Alonso and Barbara 1989]. Access auton-
omy allows a site or a node to decide whether to grant access to a user or another node
within the network. Operational autonomy refers to the ability of a node to conduct
its own operations without being overridden by external operations of the network.
Participation autonomy implies that a node has the ability to decide the proportion of
resources it donates to the network and the time it wants to associate or disassociate
from the network. Data Grid nodes have all the three kinds of autonomy to the fullest
extent. While nodes in a P2P network do not have fine-grained access controls against
users, they have maximum independence in deciding what share they will contribute
to the network. CDNs are dedicated networks, and individual nodes have no autonomy
at all. Tightly-coupled databases retain all control over the individual sites, whereas
multidatabase systems retain control over local operations.

Heterogeneity. Network environments encompass heterogeneous hardware and soft-
ware configurations that potentially use different protocols. This impacts applications
which have to be engineered to work across multiple interfaces, multiple data formats
and multiple protocols wherever applicable. Interoperability of the system, therefore,
refers to the degree of transparency a system provides for a user to access this infor-
mation, while being unaware of the underlying complexity.

Heterogeneity can also be split into many types depending on the differences at
various levels of the network stack. Koutrika [2005] has identified four different types
of heterogeneity in the case of data sources within digital libraries.

(1) System heterogeneity arises from different hardware platforms and operating sys-
tems.

(2) Syntactic heterogeneity arises from the presence of different protocols and encodings
used with the system.

(3) Structural heterogeneity originates from the data organized according to different
models and schemas.

(4) Semantic heterogeneity originates from different meanings given to the same data,
especially because of the use of different metadata schemas for categorizing the data.

It can be seen from the definitions of the data-intensive networks that the same
classification is applicable in the current context. System heterogeneity is a feature
of all the data-intensive networks discussed here. Though P2P networks, CDNs, and
DDBs can simultaneously store data in different formats, they require the estab-
lishment of common protocols within individual networks. CDNs and DDBs are also

ACM Computing Surveys, Vol. 38, March 2006.

14 S. Venugopal et al.

homogeneous when it comes to the structure of data as they enforce common schema
(Web content schema for CDNs and relational schema for DDBs). P2P networks offer
structural and semantic heterogeneity as they unify data from various sources and
allow the user to query across all of the available data.

The existence of different components, including legacy and otherwise, that speak
a variety of protocols and store data in their own (sometimes proprietary) formats
with little common structure or consistent metadata information means that Data
Grids contain data that is syntactically, structurally, and semantically heterogeneous.
However, where Data Grids truly differ from other data-intensive networks in this
regard is the level of interoperability required. Users within a Data Grid expect to
have an integrated view of data which abstracts out the underlying complexity behind
a simple interface. Without this interface, they would be required to manipulate the
data by applying transformations or conducting analysis, to view its results, and use
these results to conduct further operations. This means that not only should a Data
Grid provide interoperability between different protocols and systems, it should also be
able to extract meaningful information from the data according to users’ requirements.
This is different from P2P content sharing networks where the user only queries for
datasets matching a particular criterion and downloads them.

Management Entity. The management entity administers the tasks for maintaining
the aggregation. Generally, this entity is a collection of the stakeholders within the dis-
tribution network. While this body usually does not have control over individual nodes,
nevertheless it provides services such as a common data directory for locating content,
and an authentication service for the users of the network. For the Data Grid, we have
already discussed the concept of VO. Though entities in a P2P network are indepen-
dent, a central entity may provide directory service as in the case of Napster. CDNs are
owned and maintained by a corporation or a single organization. Likewise, DDBs are
also maintained by single organizations even though the constituent databases may be
independent.

Security Requirements. Security requirements differ depending on perspective. In
a data distribution network, security may have to be ensured against corruption of
content (data integrity), for safeguarding users’ privacy (anonymity), and for resources
to verify users’ identities (authentication). P2P Networks such as Freenet are more
concerned with preserving the anonymity of the users as they may be breaking local
censorship laws. A CDN primarily has to verify data integrity as access for manipulat-
ing data is granted only to the content provider. Users have to authenticate against a
DDB for carrying out queries and transactions, and data integrity has to be maintained
for deterministic operations.

Since Data Grids are multi-user environments with shared resources, the main se-
curity concerns are authentication of both users and resources and granting of permis-
sions for specific types of services to a user (authorization). Data Grids resources are
also spread among various administrative entities and, therefore, accepting security
credentials of a user also involves trusting the authority that issued the credentials in
the first place. Many VOs have adopted community-based authorization where the VO
itself provides the credentials or certifies certain authorities as trusted and sets the
access rights for the user. While these are issues within Grids in general, Data Grids
also need verification while accessing data to guard against malicious operations on
data while in transit. Also, more elaborate access controls than those required in Grids
are needed for safeguarding confidential data in Data Grids.

Thus, it can be seen that though Data Grids share many characteriztics with
other types of data-intensive network computing technologies, they are differentiated
by heavy computational requirements, wider heterogeneity and autonomy, and the
presence of VOs. Most of the current Data Grid implementations focus on scientific

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 15

Fig. 3. Data Grid elements.

applications. Recent approaches have, however, explored the integration of the men-
tioned technologies within Data Grids to take advantage of the strengths that they offer
in areas such as data discovery, storage management, and data replication. This is pos-
sible as Data Grids already encompass and build on diverse technologies. Foster and
Iamnitchi [2003] discuss the convergence of P2P and Grid computing and contend that
the latter will be able to take advantage of the failure resistance and scalability offered
by the former which gains from the experience in managing diverse and powerful re-
sources, complex applications, and the multitude of users with different requirements.
Ledlie et al. [2003] present a similar view and discuss the areas of aggregation, al-
gorithms, and maintenance where P2P research can be beneficial to Grids. Practical
Grid technologies such as Narada Brokering [Fox and Pallickara 2002] have used P2P
methods for delivering a scalable event service.

3. TAXONOMY

This section details a taxonomy that covers various aspects of Data Grids. As Data
Grids consist of several elements, our taxonomy covers each one of them in depth. This
taxonomy is split into four subtaxonomies as shown in Figure 3. The first subtaxonomy
is from the point of view of Data Grid organization. This classifies ongoing scientific
Data Grid efforts worldwide. The next subtaxonomy deals with the transport technolo-
gies used within Data Grids. This not only covers well-known file transfer protocols
but also includes other means of managing data transportation. A scalable, robust, and
intelligent replication mechanism is crucial to the smooth operation of a Data Grid and
the subtaxonomy presented next takes into account concerns of Grid environments such
as metadata and the nature of data transfer mechanisms used. The last subtaxonomy
categorizes resource allocation and scheduling research and looks into issues such as
locality of data.

While each of the areas of data transport, replica management, and resource
management, are independent fields of research and merit detailed investigations
on their own, in this article, these are studied from the point of view of the spe-
cific requirements of Data Grid environments that have been provided in previous
sections.

3.1. Data Grid Organization

Figure 4 shows a taxonomy based on the various organizational characteriztics of Data
Grid projects. These characteriztics are central to any Data Grid and are manifesed in
different ways in different systems.

Model. The model is the manner in which data sources are organized in a system. A
variety of models are in place for the operation of a Data Grid. These are dependent
on the source of data, whether single or distributed, the size of data, and the mode of
sharing. Four of the common models found in Data Grids are shown in Figure 5 and

ACM Computing Surveys, Vol. 38, March 2006.

16 S. Venugopal et al.

Fig. 4. Data Grid organization taxonomy.

Fig. 5. Possible models for organization of Data Grids.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 17

are discussed as follows:

(1) Monadic. This is the general form of a Data Grid in which all the data is gathered at
a central repository that then answers user queries and provides the data. The data
can be from many sources such as distributed instruments and senor networks and
is made available through a centralized interface such as a Web portal which also
verifies users and checks for authorization. This model is shown in Figure 5(a) and
has been applied in the NEESgrid Project (Network for Earthquake Engineering
Simulation) [2004] in the United States.

The difference between this and other models of Data Grids is that there is only a
single point for accessing the data. In contrast, within other models, the data can be
wholly or partially accessed at different points where it is made available through
replication. The central repository may be replicated in this case for fault tolerance
but not for improving locality of data. Thus, this model serves better in scenarios
where the overhead of replication is not compensated for by an increase in efficiency
of data access such as in the case where all accesses to a particular region are local.

(2) Hierarchical. This model is used in Data Grids where there is a single source for
data, and the data has to be distributed across collaborations worldwide. For ex-
ample, the MONARC (Models of Networked Analysis at Regional Centres) group
within CERN has proposed a tiered infrastructure model for distribution of CMS
data [Aderholz et al. 2000]. This model is presented in Figure 5(b) and specifies re-
quirements for transfer of data from CERN to various groups of physicists around
the world. The first level is the compute and storage farm at CERN which stores the
data generated from the detector. This data is then distributed to sites worldwide
called Regional Centers (RCs). From the RCs, the data is then passed downstream
to the national and institutional centers and finally on to the physicists. A Tier 1
or a Tier 2 center has to satisfy certain bandwidth, storage, and computational
requirements as shown in the figure.

The massive amounts of data generated in these experiments motivate the need
for a robust data distribution mechanism. Also, researchers at participating in-
stitutions may be interested only in subsets of the entire dataset that identified
by querying, using metadata. One advantage of this model is that maintenance of
consistency is much simpler as there is only one source for the data.

(3) Federation. The federation model [Rajasekar et al. 2004] is presented in
Figure 5(c) and is prevalent in Data Grids created by institutions who wish to share
data in already existing databases. One example of a federated Data Grid is the
BioInformatics Research Network (BIRN) [2005] in the United States. Researchers
at a participating institution can request data from any one of the databases within
the federation as long as they have the proper authentication. Each institution re-
tains control over its local database. Varying degrees of integration can be present
within a federated Data Grid. For example, Moore et al. [2004] discuss about 10
different types of federations that are possible using the Storage Resource Broker
(SRB) [Baru et al. 1998] in various configurations. The differences are based on the
degree of autonomy of each site, constraints on cross-registration of users, degree
of replication of data, and degree of synchronization.

(4) Hybrid. Hybrid models that combine the (1)–(3) models are beginning to emerge as
Data Grids mature and enter into production usage. These come out of the need for
researchers to collaborate and share products of their analysis. A hybrid model of a
hierarchical Data Grid with peer linkages at the edges is shown in Figure 5(d).

Scope. The scope of a Data Grid can vary depending on whether it is restricted to a
single domain (intradomain) or if it is a common infrastructure for various scientific

ACM Computing Surveys, Vol. 38, March 2006.

18 S. Venugopal et al.

areas (interdomain). In the former case, the infrastructure is adapted to the particular
needs of that domain. For example, special analysis software may be made available to
the participants of a domain-specific Data Grid. In the latter case, the infrastructure
provided will be generic.

Virtual Organizations. Data Grids are formed by VOs and, therefore, the design of
VOs reflects on the social organization of the Data Grid. A VO is collaborative if it is
created by entities who have come together to share resources and collaborate on a
single goal. Here, there is an implicit agreement between the participants on the usage
of resources. A regulated VO can be controlled by a single organization which lays down
rules for accessing and sharing resources. In an economy-based VO, resource providers
enter into collaborations with consumers due to profit motive. In such cases, service-
level agreements dictate the rights of each of the participants. A reputation-based VO
can be created by inviting entities to join a collaboration based on the level of services
that they are known to provide.

Data Sources. Data sources in a Data Grid may be transient or stable. A scenario for
a transient data source is a satellite which broadcasts data only at certain times of the
day. In such cases, applications need to be aware of the short life of the data stream.
As we will see later, most of the current Data Grid implementations have always-on
data sources such as mass storage systems or production databases. In the future, with
diversification, Data Grids are expected to handle transient data sources also.

Management. The management of a Data Grid can be autonomic or managed. Present
day Data Grids require plenty of human intervention for tasks such as resource moni-
toring, user authorization, and data replication. However, research is leading to auto-
nomic [Parashar and Hariri 2004; Ardaiz et al. 2003] or self-organizing, self-governing
systems whose techniques may find applications in future Data Grids.

3.2. Data Transport

The data transport mechanism is one of the fundamental technologies underlying a
Data Grid. Data transport involves not just movement of bits across resources, but also
other aspects of data access such as security, access controls and management of data
transfers. A taxonomy for data transport mechanisms within Data Grids is shown in
Figure 6.

Functions. Data transport in Grids can be modeled as a three-tier structure that is
similar to the networking stacks such as the OSI reference model. At the bottom is
the Transfer Protocol that specifies a common language for two nodes in a network to
initiate and control data transfers. This tier takes care of simple bit movement between
two hosts on a network. The most widely-used transport protocols in Data Grids are
FTP (File Transfer Protocol) [Postel and Reynolds 1985] and GridFTP [Allcock 2003].
The second tier is an optional Overlay Network that takes care of routing the data.
An overlay network provides its own semantics over the Internet protocol to satisfy a
particular purpose. In P2P networks, overlays based on distributed hash tables provide
a more efficient way of locating and transferring files [Andersen et al. 2001]. Overlay
networks in Data Grids provide services such as storage in the network, caching of
data transfers for better reliability, and the ability for applications to manage transfer
of large datasets. The topmost tier provides application-specific functions such as File
I/O. A file I/O mechanism allows an application to access remote files as if they are
locally available. This mechanism presents to the application a transparent interface
through APIs that hide the complexity and the unreliability of the networks. A data
transport mechanism can, therefore, perform one of these functions.

Security. Security is an important requirement when accessing or transferring files
to ensure proper authentication of users, file integrity, and confidentiality. Transport

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 19

Fig. 6. Data Transport Taxonomy.

security can be divided into three main categories: authentication and authorization
of users and encryption of data transfer. Authentication can be based on either
passwords or symmetric or asymmetric public key cryptographic protocols such as the
Kerberos [Neuman and Ts’o 1994] or the X.509 [Housley et al. 2002] mechanisms. In
the context of data movement, authorization of users is enforced by mechanisms such
as access controls on the data that is to be transferred. Coarse-grained authorization
methods use traditional methods such as UNIX file permissions to restrict the number
of files or collections that are accessible to the user. However, expansion of Data
Grids to fields such as medical research that have strict controls on the distribution
of data have led to requirements for fine-grained authorization. Such requirements
include restricting the number of accesses even for authorized users, delegating read
and write access rights to particular files or collections, and flexible ownership of
data [Moore et al. 2004]. Fine-grained access control methods that may be employed
to achieve these requirements include time- and usage-limited tickets, Access Control
Lists (ACLs), Role-Based Access Control (RBAC) methods [Sandhu et al. 1996],
and Task-Based Authorization Controls (TBAC) [Thomas and Sandhu 1997]. Data
encryption may be present or absent within a transfer mechanism. The most prevalent
form of data encryption is through SSL (Secure Sockets Layer) [Wagner and Schneier
1996].

Fault Tolerance. Fault tolerance is also an important feature that is required in a Data
Grid environment especially when transfers of large data files occur. Fault tolerance can
be subdivided into restarting over, resuming from interruption, and providing caching.
Restarting the transfer all over again means that the data transport mechanism does
not provide any failure tolerance. However, all data in transit would be lost and there is
a slight overhead for setting up the connection again. Protocols such as GridFTP allow
for resuming transfers from the last byte acknowledged. Overlay networks provide
caching of transfers via store-and-forward protocols. In this case, the receiver does not

ACM Computing Surveys, Vol. 38, March 2006.

20 S. Venugopal et al.

have to wait until the connections are restored. However, caching reduces performance
of the overall data transfer and the amount of data that can be cached is dependent on
the storage policies at the intermediate network points.

Transfer Mode. The last category is the transfer modes supported by the mechanism.
Block, stream, and compressed modes of data transfer have been available in traditional
data transmission protocols such as FTP. However, it has been argued that transfers of
large datasets such as those that are anticipated within Data Grids are restricted by
vanilla FTP and underlying Internet protocols such as Transmission Control Protocol
(TCP) which were initially designed for low bandwidth, high latency networks. As such,
these are unable to take advantage of the capabilities of high bandwidth, optical fibre
networks that are available for Data Grid environments [Lee et al. 2001]. Therefore,
several optimizations have been suggested for improving the performance of data
transfers in Grid environments by reducing latency and increasing transfer speed.
Some of them are listed.

—Parallel data transfer is the ability to use multiple data streams over the same chan-
nel to transfer a file. This also saturates available bandwidth in a channel while
completing the transfer.

—Striped data transfer is the ability to use multiple data streams to simultaneously
access different blocks of a file that is partitioned among multiple storage nodes (also
called striping). This distributes the access load among the nodes and also improves
bandwidth utilisation.

—Auto-resizing of buffers is the ability to automatically resize sender and receiver TCP
window and buffer sizes so that the available bandwidth can be more effectively
utilised.

—Container operations is the ability to aggregate multiple files into one large dataset
that can be transferred or stored more efficiently. The efficiency gains come from
reducing the number of connections required to transfer the data and also by reducing
the initial latency.

The first three are protocol-specific optimizations, while the last one is applied to
the transfer mechanism. We group these enhancements under bulk transfer mode. A
mechanism may support more than one mode and its suitability for an application can
be gauged by the features it provides within each of the transfer modes.

3.3. Data Replication and Storage

A Data Grid is a geographically-distributed collaboration in which all members require
access to the datasets produced within the collaboration. Replication of the datasets is
therefore a key requirement to ensure scalability of the collaboration, reliability of data
access and to preserve bandwidth. Replication is bounded by the size of storage available
at different sites within the Data Grid and the bandwidth between these sites. A replica
management system therefore ensures access to the required data while managing the
underlying storage.

A replica management system, shown in Figure 7, consists of storage nodes which
are linked to each other via high-performance data transport protocols. The replica
manager directs the creation and management of replicas according to the demands
of the users and the availability of storage, and a catalog or a directory keeps track of
the replicas and their locations. The catalog can be queried by applications to discover
the number and the locations of available replicas of a particular dataset. In some
systems, the manager and the catalog are merged into one entity. Client-side software
generally consists of a library that can be integrated into applications and a set of

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 21

Fig. 7. A replica management architecture.

Fig. 8. Replication taxonomy.

commands or GUI utilities that are built on top of the libraries. The client libraries allow
querying of the catalog to discover datasets and to request replication of a particular
dataset.

The important elements of a replication mechanism are, therefore, the architecture
of the system and the strategy followed for replication. The first categorization of Data
Grid replication is based on these properties as shown in Figure 8. The architecture of a
replication mechanism can be further subdivided into the categories shown in Figure 9.

Model and Topology. The model followed by the system largely determines the way
in which the nodes are organized and the method of replication. A centralized system
would have one master replica which is updated, and the updates are propagated to the
other nodes. A decentralized or peer-to-peer mechanism would have many copies, all
of which need to be synchronized with each other. Nodes under a replica management
system can be organized into a variety of topologies which can be grouped chiefly into
three types hierarchy, flat and hybrid. Hierarchical topologies have tree-like structure
in which updates propogate through definite paths. Flat topologies are found within
P2P systems, and progression of updates is entirely dependent on the arrangements
between the peers. These can be both structured and unstructured. Hybrid topologies
can be achieved in situations such as a hierarchy with peer connections at different
levels as discussed by Lamehamedi et al. [2002].

Storage Integration. The relation of replication to storage is very important and de-
termines the scalability, robustness, adaptability, and applicability of the replication
mechanism. Tightly-coupled replication mechanisms that exert fine-grained control
over the replication process are tied to the storage architecture on which they are im-
plemented. The replication system controls the file system and I/O mechanism of the
local disk. The replication is conducted at the level of processes and is often triggered
by a read or write request to a file at a remote location by a program. Such systems
more or less try to behave as a distributed file system such as NFS (Network File

ACM Computing Surveys, Vol. 38, March 2006.

22 S. Venugopal et al.

Fig. 9. Replica architecture taxonomy.

System) since they aim to provide transparent access to remote files to applications.
An example of such a mechanism is Gfarm [Tatebe et al. 2002]. Intermediately-coupled
replication systems exert control over the replication mechanism but not over the stor-
age resources. The file systems are hosted on diverse storage architectures and are
controlled by their respective systems. However, the replication is still initiated and
managed by the mechanism, and, therefore, it interacts with the storage system at
a very low level. Such mechanisms work at the level of individual applications, and
data transfer is handled by the system. While replication can be conducted that is,
transparent to users and applications, it is also possible for the latter to direct the
mechanism and thereby control the replication process. An example of such a system is
the SRB. Loosely-coupled replication mechanisms are superimposed over the existing
file systems and storage systems. The mechanism exerts no control over the file system.
Replication is initiated and managed by applications and users. Such mechanisms in-
teract with the storage systems through standard file transfer protocols and at a high
level. The architecture is capable of complete heterogeneity.

Transfer Protocols. The data transport protocols used within replica management
systems is also a differentiating characteriztic. Open protocols for data movement such
as GridFTP allow clients to transfer data independently of the replica management
system. The replicated data is accessible outside of the replica management system.
Systems that follow closed or unpublished protocols restrict access to the replicas to
their client libraries. Tightly-coupled replication systems are mostly closed in terms of

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 23

Fig. 10. Replication strategy taxonomy.

data transfer. RLS (Replica Location Service) [Chervenak et al. 2002] and GDMP (Grid
Data Mirroring Pilot) [Samar and Stockinger 2001] use GridFTP as their primary
transport mechanism. But the flipside to having open protocols is that the user or
the application must take care of updating the replica locations in the catalog if they
transfer data outside the replication management system.

Metadata. It is difficult, if not impossible, for users to identify particular datasets
out of hundreds and thousands that may be present in a large distributed collection.
From this perspective, having proper metadata about the replicated data aids users
in querying for datasets based on attributes that are more familiar to them. Metadata
can have two types of attributes: one is system-dependent metadata which consists of
file attributes such as creation date, size on disk, physical location(s), and file check-
sum; the other is user-defined attributes which consist of properties that depend on
the experiment or VO that the user is associated with. For example in a high-energy
physics experiment, the metadata could describe attributes such as experiment date,
mode of production (simulation or experimental), and event type. The metadata can
be actively updated by the replica management system or updated passively by the
users when they create new replicas, modify existing ones, or add a new file to the
catalog.

Replica Update Propagation. Within a Data Grid, data is generally updated at one
site and the updates are then propagated to the rest of its replicas. This can be in
synchronous or in asynchronous modes. While synchronous updating is followed in
databases, it is not practiced in Data Grids because of the expensive wide-area locking
protocols and the frequent movement of massive data required. Asynchronous updat-
ing can be epidemic [Holliday et al. 2000], that is, the primary copy is changed and
the updates are propagated to all the other replicas, or it can be on-demand as in
GDMP [Stockinger et al. 2001] wherein replica sites subscribe to update notifications
at the primary site and decide themselves when to update their copies.

Catalog Organization. A replica catalog can be distinguished on the basis of its organi-
zation. The catalog can be organized as a tree as in the case of LDAP-based (Lightweight
Directory Access Protocol) catalogs such as the Globus Replica Catalog [Allcock et al.
2001]. The data can be catalogued on the basis of document hashes as in P2P networks.
However, SRB and others follow the approach of storing the catalog within a database.

Replication strategies determine when and where to create a replica of the data.
These strategies are guided by factors such as demand for data, network conditions,
cost of transfer. The replication strategies can be categorized as shown in Figure 10.

ACM Computing Surveys, Vol. 38, March 2006.

24 S. Venugopal et al.

Method. The first classification is based on whether the strategies are static or dy-
namic. Dynamic strategies adapt to changes in demand, bandwidth and storage avail-
ability but induce overhead due to the large number of operations that they undertake
since the changes are run at regular intervals or in response to events (for example,
increase in demand for a particular file). Dynamic strategies are able to recover from
failures such as network partitioning. However, frequent transfers of massive datasets
that are the result of such strategies can lead to strain on the network resources. There
may be little gain from using dynamic strategies if the resource conditions are fairly sta-
ble in a Data Grid over a long period of time. Therefore, in such cases, static strategies
are applied for replication.

Granularity. The second classification relates to the level of subdivision of data that
the strategy works with. Replication strategies that deal with multiple files at the same
time work at the granularity of datasets. The next level of granularity is individual files;
there are some strategies that deal with smaller subdivisions of files such as objects or
fragments.

Objective Function. The third classification deals with the objective function of the
replication strategy. Possible objectives of a replication strategy are to maximise the
locality or move data to the point of computation to exploit popularity by replicating
the most requested datasets in order to minimize the update costs or to maximize some
economic objective such as profits gained by a particular site for hosting a particular
dataset versus the expense of leasing the dataset from some other site. Preservation-
driven strategies provide protection of data even in the case of failures such as corrup-
tion or obsolescence of underlying storage media or software errors. Another possible
objective function for a replication strategy is to ensure effective publication by propa-
gating new files to interested clients.

3.4. Resource Allocation and Scheduling

The requirements for large datasets and the presence of multiple replicas of these
datasets scattered at geographically-distributed locations makes scheduling of data-
intensive jobs different from that of computational jobs. Schedulers have to take into
account the bandwidth availability and the latency of transfer between a computational
node to which a job is going to be submitted and the storage resource(s) from which
the data required is to be retrieved. Therefore, the scheduler needs to be aware of
any replicas close to the point of computation and, if the replication is coupled to the
scheduling, create a new copy of the data. A taxonomy for scheduling of data-intensive
applications is shown in Figure 11. The categories are explained as follows:

Application Model. Scheduling strategies can be classified by the application model
toward which they are targeted. Application models are defined in the manner in which
the application is composed or distributed for scheduling over global grids. These can
range from fine-grained levels such as processes, to coarser levels such as individual
tasks to sets of tasks such as workflows. Here, a task is considered as the smallest
independent unit of computation. Each level has its own scheduling requirements.
Process-oriented applications are those in which the data is manipulated at the process
level. Examples of such applications are MPI (Message Passing Interface) programs
that execute over global grids [Foster and Karonis 1998]. Independent tasks having
different objectives are scheduled individually and it is ensured that each of them get
their required share of resources. A Bag of Tasks (BoT) application consists of a set of
independent tasks all of which must be executed successfully subject to certain common
constraints such as a deadline for the entire application. Such applications arise in
parameter studies [Abramson et al. 2000] wherein a set of tasks is created by running
the same program on different inputs. In contrast, a workflow is a sequence of tasks

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 25

Fig. 11. Data grid scheduling taxonomy.

in which each task is dependent on the results of its predecessor(s). The products of
the preceding tasks may be large datasets themselves (e.g., a simple two-step workflow
could be a data-intensive simulation task and the task for analysis of the results of
simulation). Therefore, scheduling of individual tasks in a workflow requires careful
analysis of the dependencies and the results to reduce the amount of data transfer.

Scope. Scope relates to the extent of application of the scheduling strategy within a
Data Grid. If the scope is individual, then the scheduling strategy is concerned only
with meeting the objectives from a user’s perspective. In a multi-user environment,
therefore, each scheduler would have its own independent view of the resources that it
wants to utilize. A scheduler is aware of fluctuations in resource availability caused by
other schedulers submitting their jobs to common resources, and it strives to schedule
jobs on the least-loaded resources that can meet its objectives. With the advent of
VOs, efforts have moved towards community-based scheduling in which schedulers
follow policies that are set at the VO level and enforced at the resource level through
service-level agreements and allocation quotas [Dumitrescu and Foster 2004; Wasson
and Humphrey 2003].

Data Replication. The next classification relates to whether job scheduling is coupled
to data replication or not. Assume a job is scheduled to be executed at a particular
compute node. When job scheduling is coupled to replication and the data has to be
fetched from remote storage, the scheduler creates a copy of the data at the point of
computation so that future requests for the same file that come from the neighborhood
of the compute node can be satisfied more quickly. Not only that, in the future, any job
dealing with that particular data will be scheduled at that compute node if available.
However, one requirement for a compute node is to have enough storage to store all the
copies of data. While storage management schemes such as LRU (Least Recently Used)
and FIFO (First In First Out) can be used to manage the copies, the selection of com-
pute nodes is prejudiced by this requirement. There is a possibility that promising

ACM Computing Surveys, Vol. 38, March 2006.

26 S. Venugopal et al.

computational resources may be disregarded due to lack of storage space. Also, the pro-
cess of creation of the replica and registering it into a catalog adds further overhead to
job execution. In a decoupled scheduler, the job is scheduled to a suitable computational
resource and a suitable replica location is identified to request the data required. The
storage requirement is transient, that is, disk space is required only for the duration
of execution. A comparison of decoupled against coupled strategies by Ranganathan
and Foster [2002] has shown that decoupled strategies promise increased performance
and reduce the complexity of designing algorithms for Data Grid environments.

Utility function. A job scheduling algorithm tries to minimize or maximize some form
of a utility function. The utility function can vary depending on the requirements of the
users and the architecture of the distributed system at which the algorithm is targeted.
Traditionally, scheduling algorithms have aimed at reducing the total time required for
computing all the jobs in a set, also called its makespan. Load-balancing algorithms try
to distribute load among the machines so that maximum work can be obtained out of
the systems. Scheduling algorithms with economic objectives try to maximize the users’
economic utility usually expressed as some profit function that takes into account the
economic costs of executing the jobs on the Data Grid. Another possible objective is to
meet the Quality-of-Service (QoS) requirements specified by the user. QoS requirements
that can be specified include minimizing the cost of computation, meeting a deadline,
meeting stricter security requirements and/or meeting specific resource requirements.

Locality. Exploiting the locality of data has been a tried and tested technique for
scheduling and load-balancing in parallel programs [Polychronopoulos and Kuck 1987;
Hockauf et al. 1998; McKinley et al. 1996] and in query processing in databases [Shatdal
et al. 1994; Stonebraker et al. 1994]. Similarly, data grid scheduling algorithms can
be categorized as to whether they exploit the spatial or temporal locality of the data
requests. Spatial locality is locating a job in such a way that all the data required for
the job is available on data hosts that are located close to the point of computation.
Temporal locality exploits the fact that, if data required for a job is close to a compute
node, subsequent jobs which require the same data are scheduled to the same node.
Spatial locality can be viewed as moving computation to data and temporal locality as
moving data to computation. It can be easily seen that schedulers which couple data
replication to job scheduling exploit the temporal locality of data requests.

4. MAPPING OF TAXONOMY TO VARIOUS DATA GRID SYSTEMS

In this section, we classify various Data Grid research projects according to the tax-
onomies we developed in Section 3. While the list of example systems is not exhaustive,
it is representative of the classes that have been discussed. The projects in each category
have been chosen based on several factors such as broad coverage of application areas,
project support for one or more applications, scope and visibility, large-scale problem
focus, and ready availability of documents from project Web pages and other sources.

4.1. Data Grid Projects

In this space, we study and analyze the various Data Grid projects that have been
developed for various application domains around the world. While many of these
projects cover aspects of Data Grid research such as middleware development,
advanced networking, and storage management, we will, however, only focus on those
projects which are involved in setting up infrastructure. A list of these projects and
a brief summary about each of them is provided in Table II. These are also classified
according to the taxonomy provided in Figure 4

Some of the scientific domains that are making use of Data Grids follows.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 27

Table II. Data Grid Projects Around the World
Country/

Name Domain Grid Type Remarks Region

LCG [2005] High Energy

Physics

Hierarchical model,

Intradomain,

Collaborative VO, Stable

Sources, Managed

To create and maintain a

data movement and

analysis infrastructure for

the users of LHC.

Global

EGEE [2005] High Energy

Physics,

Biomedical

Sciences

Hierarchical model,

Interdomain,

Collaborative VO, Stable

Sources, Managed

To create a seamless common

Grid infrastructure to

support scientific research.

Global

BIRN [2005] Bio-Informatics Federated model,

Intradomain,

Collaborative VO, Stable

Sources, Managed

To foster collaboration in

biomedical science

through sharing of data.

United States

NEESgrid

[Pearlman et al.

2004]

Earthquake

Engineering

Monadic model,

Intradomain,

Collaborative VO,

Transient Sources,

Managed

To enable scientists to carry

out experiments in

distributed locations and

analyse data through a

uniform interface.

United States

GriPhyn [Avery and

Foster 2001]

High Energy

Physics

Hierarchical model,

Intradomain,

Collaborative VO, Stable

Sources, Managed

To create an integrated

infrastructure that

provides computational

and storage facilities for

high-energy physics

experiments.

United States

Grid3 [Gardner

et al. 2004]

Physics, Biology Hierarchical model,

Interdomain,

Collaborative VO, Stable

Sources, Managed

To provide a uniform,

scalable and managed grid

infrastructure for science

applications

United States

BioGrid, Japan

[2005]

Protein

Simulation,

Brain Activity

Analysis

Federated model,

Intradomain,

Collaborative VO, Stable

Sources, Managed

Computational and data

infrastructure for medical

and biological research.

Japan

Virtual

Observatories

[Szalay and Gray

2001]

Astronomy Federated model,

Intradomain,

Collaborative VO, Stable

Sources, Managed

Infrastructure for accessing

diverse astronomy

observation and

simulation archives

through integrated

mechanisms.

Global

Earth System Grid

[Allcock et al.

2001]

Climate

Modelling

Federated model,

Intradomain,

Collaborative VO, Stable

Sources, Managed

Integrating computational,

data and analysis

resources to create

environment for next

generation climate

research.

United States

GridPP [Huffman

et al. 2002]

High Energy

Physics

Hierarchical model,

Intradomain,

Collaborative VO, Stable

Sources, Managed

To create computational and

storage infrastructure for

Particle Physics in the UK.

United

Kingdom

eDiaMoND [Brady

et al. 2003]

Breast Cancer

Treatment

Federated model,

Intradomain,

Collaborative VO, Stable

Sources, Managed

To provide medical

professionals and

researchers access to

distributed databases of

mammogram images.

United

Kingdom

Belle Analysis Data

Grid [Winton

2003]

High Energy

Physics

Hierarchical model,

Intradomain,

Collaborative VO, Stable

Sources, Managed

To create computational and

storage infrastructure in

Australia for physicists

involved in the Belle and

ATLAS experiments.

Australia

ACM Computing Surveys, Vol. 38, March 2006.

28 S. Venugopal et al.

High Energy Physics (HEP). The computational and storage requirements for HEP
experiments have already been covered in previous literature [Bunn and Newman
2003]. Other than the four experiments at the LHC already mentioned, the Belle ex-
periment at KEK, Japan, the BaBar experiment at the Stanford Linear Accelerator
Center (SLAC), and the CDF and D0 experiments at Fermi National Laboratory, US,
are also adopting Data Grid technologies for their computing infrastructure. There
have been numerous Grid projects around the world that are setting up the infras-
tructure for physicists to process data from HEP experiments. Some of these are the
LHC Computing Grid (LCG) led by CERN, the Particle Physics Data Grid (PPDG) and
Grid Physics Network (GriPhyN) in the United States, GridPP in the UK, and Belle
Analysis Data Grid (BADG) in Australia. These projects have common features such
as a tiered model for distributing the data, shared facilities for computing and storage,
and personnel dedicated, managing the infrastructure. Some of them are entering or
are being tested for production usage.

Astronomy. The community of astrophysicists around the globe are setting up Virtual
Observatories for accessing the data archives that have been gathered by telescopes
and instruments around the world. These include the National Virtual Observatory
(NVO) in the US, Australian Virtual Observatory, Astrophysical Virtual Observatory
in Europe, and AstroGrid in the UK [Szalay 2002]. The International Virtual Obser-
vatory Alliance (IVOA) is coordinating these efforts around the world for ensuring
interoperability. Commonly, these projects provide uniform access to data repositories,
along with access to software libraries and tools that might be required to analyze the
data. Other services that are provided include access to high-performance computing
facilities and visualization through desktop tools such as Web browsers. Other astron-
omy grid projects include those under construction for the LIGO (Laser Interferometer
Gravitational-wave Observatory) [2005] and SDSS (Sloan Digital Sky Survey) [2005]
projects.

BioInformatics. The increasing importance of realistic modeling and simulation of bi-
ological processes, coupled with the need for accessing existing databases, has led to the
adoption of Data Grid solutions by bioinformatics researchers worldwide. These projects
involve federating existing databases and providing common data formats for the in-
formation exchange. Examples of these projects are the BioGrid project in Japan for
online brain activity analysis and protein folding simulation, the eDiaMoND project in
the UK for breast cancer treatment, and the BioInformatics Research Network (BIRN)
for imaging of neurological disorders using data from federated databases.

Earth Sciences. Researchers in disciplines such as earthquake engineering and cli-
mate modeling and simulation are adopting Grids to solve their computational and
data requirements. NEESgrid is a project to link earthquake researchers with high-
performance computing and sensor equipment so that they can collaborate on designing
and performing experiments. Earth Systems Grid aims to integrate high-performance
computational and data resources to study the petabytes of data resulting from climate
modeling and simulation.

4.2. Data Transport Technologies

In this section, various projects involved in data transport over Grids are discussed
and classified according to the taxonomy provided in Section 3.2. The data transport
technologies studied here range from protocols such as FTP to over-lay methods, such
as Internet Backplane Protocol, to file I/O mechanisms. Each technology has unique
properties and is representative of the categories in which it is placed. A summary of
these technologies and their categorization is provided in Table III.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 29

Table III. Comparison Between Various Data Transport Technologies
Fault Transfer

Project Function Security Tolerance Mode
GASS File I/O PKI, Unencrypted,

Coarse-grained
Caching Block, Stream

append
IBP Overlay Mechanism Password, Unencrypted,

Coarse-grained
Caching Block

FTP Transfer Protocol Password, Unencrypted,
Coarse-grained

Restart All

SFTP Transfer Protocol PKI, SSL, Coarse-grained Restart All
GridFTP Transfer Protocol PKI, SSL, Coarse-grained Resume All
Kangaroo Overlay Mechanism PKI, Unencrypted,

Coarse-grained
Caching Block

Legion File I/O PKI, Unencrypted,
Coarse-grained

Caching Block

SRB File I/O PKI, SSL, Fine-grained Restart Block, Stream, Bulk
transfer

4.2.1. GASS. Global Access to Secondary Storage (GASS) [Bester et al. 1999] is a
data access mechanism provided within the Globus toolkit for reading local data at
remote machines and for writing data to remote storage and moving it to a local disk.
The goal of GASS is to provide a uniform remote I/O interface to applications running
at remote resources, while keeping the functionality demands on both the resources
and the applications limited.

GASS conducts its operations via a file cache which is an area on the secondary
storage where the remote files are stored. When a remote file is requested by an appli-
cation for reading, GASS by default fetches the entire file into the cache from where
it is opened for reading as in a conventional file access. It is retained in the cache as
long as applications are accessing it. While writing to a remote file, the file is created
or opened within the cache where GASS keeps track of all the applications writing to
it via reference count. When the reference count is zero, the file is transferred to the
remote machine. Therefore, all operations on the remote file are conducted locally in
the cache which reduces demand on bandwidth. A large file can be prestaged into the
cache, that is, fetched before an application requests it for reading. Similarly, a file
can be transferred out via poststaging. GASS operations also allow access to permitted
disk areas other than the file cache and are available through an API and also through
Globus commands. GASS is integrated with the Globus Resource Access and Moni-
toring (GRAM) service [Czajkowski et al. 1998] and is used for staging executables,
staging in files, and retrieving the standard output and error streams of the jobs.

GASS provides a limited ability for data transfer between remote nodes. As it
prefetches the entire file into the cache, it is not suitable as a transfer mechanism
for large data files (of a GigaByte upwards) as the required cache capacity might not
be available. Also, it does not provide features such as file striping, third-party trans-
fer, TCP tuning, etc., provided by protocols such as GridFTP. However, because of its
lightweight functionality, it is suitable for applications where the overhead of setting
up a GridFTP connection dominates.

4.2.2. IBP. Internet Backplane Protocol (IBP) [Plank et al. 1999; Bassi et al. 2002]
allows applications to optimize data transfer and storage operations by controlling
data transfer explicitly by storing the data at intermediate locations. IBP uses a store-
and-forward protocol to move data around the network. Each of the IBP nodes has a
temporary buffer into which data can be stored for a fixed amount of time. Applications
can manipulate these buffers so that data is moved to locations close to where it is
required.

ACM Computing Surveys, Vol. 38, March 2006.

30 S. Venugopal et al.

IBP is modeled after the Internet Protocol. The data is handled in units of fixed-
size byte arrays which are analogous to IP datagrams or network packets. Just as IP
datagrams are independent of the data link layer, byte arrays are independent of the
underlying storage nodes. This means that applications can move data around without
worrying about managing storage on the individual nodes. IBP also provides a global
addressing space that is based on global IP addressing. Thus, any client within an IBP
network can make use of any IBP node.

IBP can also be thought of as a virtualization layer or as an access layer built on top
of storage resources. IBP provides access to heterogeneous storage resources through
a global addressing space in terms of fixed block sizes, thus making access to data
independent of the storage method and media. The storage buffers can grow to any
size, and thus the byte arrays can also be thought of as files which live on the network.

IBP also provides a client API and libraries that provide semantics similar to UNIX
system calls. A client connects to an IBP depot, or a server, and requests storage alloca-
tion. In return, the server provides it three capabilities for reading from, writing to, and
managing the allocation. Capabilities are cryptographically secure byte strings which
are generated by the server. Subsequent calls from the client must make use of the same
capabilities to perform the operations. Thus, capabilities provide a notion of security
as a client can only manipulate its own data. Capabilities can be exchanged between
clients as it they are text. Higher-order aggregation of byte arrays is possible through
exNodes which are similar to UNIX inodes. exNodes allow uploading, replicating, and
managing of files on a network with an IBP layer above the networking layer [Plank
et al. 2002].

Beyond the use of capabilities, IBP does not have an address mechanism that keeps
track of every replica generated. There is no directory service that keeps track of ev-
ery replica and no information service that can return the IBP address of a replica
once queried. Though exNodes store metadata, IBP itself does not provide a metadata
searching service. IBP is more a low-level storage solution that functions just above the
networking layer.

4.2.3. FTP. FTP (File Transfer Protocol) [Postel and Reynolds 1985] is one of the
fundamental protocols for data movement in the Internet. FTP is, therefore, ubiquitous,
and every operating system ships with an FTP client.

FTP separates the process of data transfer into two channels, the control channel
used for sending commands and replies between a client and a server, and the data
channel through which the actual transfer takes place. The FTP commands set up the
data connection by specifying the parameters such as data port, mode of transfer, data
representation, and structure. Once the connection is set up, the server then initiates
the data transfer between itself and the client. The separation of control and data
channels also allows third-party transfers to take place. A client can open two control
channels to two servers and direct them to start a data transfer between themselves,
bypassing the client. Data can be transferred in three modes stream, block, and com-
pressed. In the stream mode, data is transmitted as is, and it is the responsibility of
the sending host to notify the end of stream. In the block mode, data is transferred as
a series of blocks preceded by header bytes. In the compressed mode, a preceding byte
denotes the number of replications of the following byte and filler bytes are represented
by a single byte.

Error recovery and restart within FTP does not cover corrupted data but takes care
of data lost due to the loss of the network a host, or of the FTP process itself. This
requires the sending host to insert markers at regular intervals within the data stream.
A transmission is restarted from the last marker sent by the sender before the previous
transfer crashed. However, restart is not available within the stream transfer mode.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 31

Security within FTP is very minimal and limited to the control channel. The username
and password are transmitted as clear text, and there is no facility for encrypting data
while in transit within the protocol. This limits the use of FTP for confidential transfers.

Numerous extensions to FTP have been proposed to offset its limitations. RFCs
2228 [Horowitz and Lunt 1997] and 2389 [Hethmon and Elz 1998] propose security
and features extensions to FTP, respectively. However, these are not implemented by
popular FTP servers such as wu-ftpd. SSH File Transfer Protocol (SFTP) [Galbraith
et al. 2006] is a secure file transfer protocol that uses the Secure Shell Protocol (SSH)
for both authentication and data channel encryption. SFTP is designed to be both a
transfer protocol and a remote file system access protocol. However, it does not support
features required for high-performance data transfer such as parallel and striped data
transfer, resumption of interrupted transmissions, or tuning of TCP windows.

4.2.4. GridFTP. GridFTP [Allcock 2003; Allcock et al. 2002] extends the default FTP
protocol by providing features that are required in a Data Grid environment. The aim of
GridFTP is to provide secure, efficient, and reliable data transfer in Grid environments.

GridFTP extends the FTP protocol by allowing GSI and Kerberos-based authentica-
tion. GridFTP provides mechanisms for parallel and striped data transfers and supports
partial file transfer, that is, the ability to access only part of a file. It allows changing
the sizes of the TCP buffers and congestion windows to improve transfer performance.
Transfer of massive datasets is prone to failures as the network may exhibit transient
behavior over long periods of time. GridFTP sends restart markers indicating a byte
range that has been successfully written by the receiver every 5 seconds over the con-
trol channel. In case of a failure, transmission is resumed from the point indicated by
the last restart marker received by the sender.

GridFTP provides these features by extending the basic FTP protocol through new
commands, features, and a new transfer mode. The Striped Passive(SPAS) command
is an extension to the FTP PASV command wherein the server presents a list of ports
to connect to, rather than just a single port. This allows for multiple connections to
download the same file or for receiving multiple files in parallel. The Extended Retrieve
(ERET) command supports partial file transfer, among other things. The Set Buffer
(SBUF) and AutoNegotiate Buffer (ABUF) extensions allow the resizing of TCP buffers
on both client and server sides. The Data Channel Authentication (DCAU) extension
provides for encrypting of data channels for confidential file transfer. DCAU is used only
when the control channel is authenticated through RFC 2228 [Horowitz and Lunt 1997]
mechanisms. Parallel and striped data transfers are realized through a new transfer
mode called the extended block mode (mode E). The sender notifies the receiver of
the number of data streams by using the End of Data (EOD) and End of Data Count
(EODC) codes. The EODC code signifies how many EOD codes should be received to
consider a transfer closed. An additional protocol is therefore required from the sender
side to ensure that the receiver obtains the data correctly. GridFTP implements RFC
2389 [Hethmon and Elz 1998] for negotiation of feature sets between the client and the
server. Therefore, the sender first requests the features supported by the receiver and
then sets connection parameters accordingly. GridFTP also supports restart for stream
mode transfers which is not provided in the vanilla FTP protocol.

The only public implementation for the GridFTP server-side protocols is provided
in the Globus Toolkit [Foster and Kesselman 1998]. The Globus GridFTP server is
a modified wu-ftpd server that supports most of GridFTP’s features except for striped
data transfer and automatic TCP buffer size negotiation. The Globus Toolkit provides li-
braries and APIs for clients to connect to GridFTP servers. A command-line tool, globus-
url-copy, built using these libraries functions as a GridFTP client. Another example of
a GridFTP client is the UberFTP [NCSA GridFTP Client 2005] client from NCSA.

ACM Computing Surveys, Vol. 38, March 2006.

32 S. Venugopal et al.

Evaluation of GridFTP protocols alongside FTP has shown that using the additional
features of GridFTP increases performance of data transfer [Ellert et al. 2002]. Par-
ticularly, the usage of parallel threads dramatically improves the transfer speed over
both loaded and unloaded networks. Also, parallel transfers saturate the bandwidth,
thus improving the link utilisation.

4.2.5. Kangaroo. Kangaroo [Thain et al. 2001] is an end-to-end data movement pro-
tocol that aims to improve the responsiveness and reliability of large data transfers
within the Grid. The main idea in Kangaroo is to conduct the data transfer as a back-
ground process so that failures due to server crashes and network partitions are handled
transparently by the process instead of the application having to deal with them.

Kangaroo uses memory and disk storage as buffers to which data is written by the
application and moved out by a background process. The transfer of data is performed
concurrently with CPU bursts thereby improving utilization. The transfer is conducted
through hops, or stages, where an intermediate server is introduced between the client
and the remote storage from which the data is to be read or written. Data received by the
intermediate stage is spooled into the disk from where it is copied to the next stage by a
background process called the mover. This means that a client application writing data
to a remote storage is isolated from the effects of a network crash or slowdown as long as
it can keep writing to the disk spool. However, it is also possible for a client to write data
to the destination server directly over a TCP connection using the Kangaroo primitives.

Kangaroo services are provided through an interface which implements four sim-
ple file semantics: get (nonblocking read), put(nonblocking write), commit (block until
writes have been delivered to the next stage) and push (block until all writes are de-
livered to the final destination). However, this provides only weak consistency since
it is envisioned for grid applications in which data flow is primarily in one direction.
Kangaroo is an output-oriented protocol which primarily deals with reliability of data
transfer between a client and a server.

The design of Kangaroo is similar to that of IBP even though their aims are different.
Both of them use store-and-forward method as a means of transporting data. However,
while IBP allows applications to explicitly control data movement through a network,
Kangaroo aims to keep the data transfer hidden through the usage of background
processes. Also, IBP uses byte arrays, whereas Kangaroo uses the default TCP/IP data-
grams for data transmission.

4.2.6. Legion I/O Model. Legion [Chapin et al. 1999] is a object-oriented grid middle-
ware for providing a single system image across a collection of distributed resources.
The I/O mechanism within Legion [White et al. 2000] aims to provide transparent ac-
cess to files stored on distributed resources through APIs and daemons that can be used
by native and legacy applications alike.

Resources within the Legion system are represented by objects. BasicFileObjects
correspond to files in a conventional file system, while ContextObjects correspond to di-
rectories. However, these are separated from the actual file system. A datafile is copied
to a BasicFileObject to be registered within the context space of Legion. The context
space provides location-independent identifiers which are bound to human-readable
context names. This presents a single address space and hierarchy from which users
can request files without worrying about their location. Also, the representation of
BasicFileObject is system independent, and therefore provides interoperability be-
tween heterogeneous systems.

Access to a Legion file object is provided through various means. Command-line
utilities provide a familiar interface to the Legion context space. Application developers
can use APIs which closely mimic C and C++ file primitives and Unix system calls. For

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 33

legacy codes, a buffering interface is provided through which applications can operate
on local files copied from the Legion objects and the changes are copied back. Another
method is to use a modified NFS daemon that translates client request to appropriate
Legion invocations.

Security for file transfer is provided by means of X.509 proxies which are delegated
to the file access mechanisms [Ferrari et al. 1999]. Data itself is not encrypted while
in transit. Caching and prefetching is implemented for increasing performance and to
ensure reliability.

4.2.7. SRB I/O. The Storage Resource Broker (SRB) [Baru et al. 1998] developed
at the San Diego Supercomputing Center (SDSC) focuses on providing a uniform and
transparent interface to heterogenous storage systems that include disks, tape archives,
and databases. A study of SRB as a replication mechanism is provided in the following
section; in this section, we will focus on the data transport mechanism within SRB.

Data transport within SRB provides features such as parallel data transfers for
performing bulk data transfer operations across geographically distributed sites. If
parallel transfer is requested by a client, the SRB server creates a number of parallel
streams depending on bandwidth availability and speed of the storage medium. SRB
also allows streaming data transfer and supports bulk ingest operations in which
multiple files are sent using multiple streams to a storage resource. SRB I/O can
transfer multiple files as containers and can stage files from tape or archival storage
to disk storage for faster access.

SRB provides for strong security mechanisms supported by fine-grained access con-
trols on data. Access security is provided through credentials such as passwords or
public key and private key pairs which can be stored within MCAT itself. Controlled
authorization for read access is provided through tickets issued by users who have con-
trol privileges on data. Tickets are time-limited or use-limited. Users can also control
access privileges along a collection hierarchy.

SRB also provides support for remote procedures. These are operations which can
be performed on the data within SRB without having to move it. Remote procedures
include execution of SQL queries, filtering of data, and metadata extraction. This also
provides for an additional level of access control as users can specify certain datasets
or collections to be accessible only through remote procedures.

4.3. Data Replication and Storage

In this section, four of the data replication mechanisms used within Data Grids are
studied in depth and classified according to the taxonomy given in Section 3.3. These
were chosen not only because of their wide usage but also because of the wide variations
in design and implementation that they represent. A summary is given in Table IV.
Table V encapsulates the differences between the various replication mechanisms on
the basis of the replication strategies that they follow. Some of the replication strategies
have been only simulated and, therefore, these are explained in a separate section.

4.3.1. Grid DataFarm. Grid Datafarm (Gfarm) [Tatebe et al. 2002] is an architecture
that couples storage, I/O bandwidth, and processing to provide scalable computing to
process petabytes (PB) of data. The architecture consists of nodes that have a large
disk space (in the order of terabytes (TB)), coupled with computing power. These nodes
are connected via a high speed interconnect such as Myrinet or Fast Ethernet. Gfarm
consists of the Gfarm file system, process scheduler, and the parallel I/O APIs.

The Gfarm file system is a parallel file system that unifies the file address-
ing space over all the nodes. It provides scalable I/O bandwidth by integrating
process scheduling with data distribution. A Gfarm file is a large file that is stored

ACM Computing Surveys, Vol. 38, March 2006.

34 S. Venugopal et al.

Table IV. Comparison Between Various Data Replication Mechanisms
Storage Data

Project Model Topology Integration Transport Metadata Update Catalog

Grid

Datafarm

centralized Hierarchy Tightly-coupled Closed System, Active Async., epidemic DBMS

RLS centralized Hierarchy Loosely-coupled Open User-defined,

Passive

Async.,

on-demand

DBMS

GDMP centralized Hierarchy Loosely-coupled Open User-defined,

Passive

Async.,

on-demand

DBMS

SRB Decentralised Flat Intermediate Closed User-defined,

Passive

Async.,

on-demand

DBMS

Table V. Comparison Between Replication Strategies
Project Method Granularity Objective Function
Grid Datafarm Static File, Fragment Locality
RLS Static Datasets, File Popularity, Publication
GDMP [Stockinger et al. 2001] Static Datasets, File, Fragment Popularity, Publication
SRB Static Containers, Datasets, File Preservation, Publication
Lamehamedi et al. [2002, 2003] Dynamic File Update Costs
Bell et al. [2003] Dynamic File Economic
Lee and Weissman [2001] Dynamic File Popularity
Ranganathan et al. [2002] Dynamic File Popularity

throughout the file system as fragments on multiple disks. Each fragment has arbi-
trary length and can be stored on any node. Individual fragments can be replicated,
and the replicas are managed through Gfarm metadata. Individual fragments may be
replicated, and the replicas are managed through the file system metadata and replica
catalog. Metadata is updated at the end of each operation on a file. A Gfarm file is
write-once, that is, if a file is modified and saved, then internally it is versioned and a
new file is created.

Gfarm targets data-intensive applications in which the same program is executed
over different data files and where the primary task is of reading a large body of data.
The data is split up and stored as fragments on the nodes. While executing a program,
the process scheduler dispatches it to the node that has the segment of data that the
program wants to access. If the nodes that contain the data and its replicas are under
heavy CPU load, then the file system creates a replica of the requested fragment on
another node and assigns the process to it. In this way, I/O bandwidth is gained by
exploiting the access locality of data. This process can also be controlled through the
Gfarm APIs. In addition, it is possible to access the file using a local buffer cache instead
of replication.

On the whole, Gfarm is a system that is tuned for high-speed data access within
a tightly-coupled yet large-scale architecture such as clusters consisting of hundreds
of nodes. It requires high-speed interconnects between the nodes so that bandwidth-
intensive tasks such as replication do not cause performance hits. This is evident
through experiments carried out over clusters and wide-area testbeds [Yamamoto
et al. 2004; Tatebe et al. 2004]. The scheduling in Gfarm is at the process level,
and applications have to use the API, though a system call trapping library is pro-
vided for interoperating with legacy applications. Gfarm targets applications such as
high-energy physics where the data is write-once read-many. For applications where
the data is constantly updated, there could be problems with managing the consis-
tency of the replicas and the metadata though an upcoming version aims to fix them
[Tatebe et al. 2004].

4.3.2. RLS. Giggle (GIGa-scale Global Location Engine) [Chervenak et al. 2002]
is an architectural framework for a Replica Location Service (RLS) that maintains

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 35

information about physical locations of copies of data. The main components of RLS
are the Local Replica Catalog (LRC) which maps the logical representation to the phys-
ical locations and the Replica Location Index (RLI) which indexes the catalog itself.

The actual data is represented by a logical file name (LFN) and contain some infor-
mation such as the size of the file, its creation date, and any other such metadata that
might help users to identify the files that they seek. A logical file has a mapping to the
actual physical location(s) of the data file and its replicas, if any. The physical location
is identified by a unique physical file name (PFN) which is a URL (Uniform Resource
Locator) to the data file on storage. Therefore, a LRC provides the PFN corresponding
to an LFN. The LRC also supports authenticated queries, that is, information about
the data is not available in the absence of proper credentials.

A data file may be replicated across several geographical and administrative bound-
aries, and information about its replicas may be present in several replica catalogs.
An RLI creates an index of replica catalogs as a set of logical file names and a pointer
to replica catalog entries. Therefore, it is possible to define several configurations of
replica indexes, for example, a hierarchical configuration, or a central, single-indexed
configuration, or a partitioned index configuration. Some of the possible configurations
are listed by Chervenak et al. [2002]. The information within an RLI is periodically up-
dated using soft-state mechanisms similar to those used in Globus MDS (Monitoring
and Discovery System). In fact, the structure of the replica catalog is quite similar to
that of MDS [Czajkowski et al. 2001].

RLS is aimed at replicating data that is write-once read-many. Data from scientific
instruments that needs to be distributed around the world falls into this category. This
data is seldom updated and, therefore, strict consistency management is not required.
Soft-state management is enough for such applications. RLS is also a standalone
replication service that does not handle file transfer or data replication itself. It
provides only an index for the replicated data.

4.3.3. GDMP. GDMP [Samar and Stockinger 2001; Stockinger et al. 2001] is a repli-
cation manager that aims to provide secure and high-speed file transfer services for
replicating large data files and object databases. GDMP provides point-to-point repli-
cation capabilities by utilizing the capabilities of other Data Grid tools such as replica
catalogs and GridFTP.

GDMP is based on the publish-subscribe model, wherein the server publishes the set
of new files that are added to the replica catalog and the client can request a copy of
these after making a secure connection to the server. GDMP uses GSI as its authentica-
tion and authorization infrastructure. Clients first register with the server and receive
notifications about new data that are available which are then requested for replica-
tion. Failure during replication is assumed to be handled by the client. For example, if
the connection fails while replicating a set of files, the client may reconnect with the
server and request a retransfer. The file transfer is conducted through GridFTP.

GDMP deals with object databases created by high-energy physics experiments. A
single file may contain up to a billion (109) objects and, therefore, it is advantageous for
the replication mechanisms to deal with objects rather than files. Objects requested by
a site are copied to a new file at the source. This file is then transferred to the recipient,
and the database at the remote end is updated to include the new objects. The file is
then deleted at the origin. In this case, replication is static as changing Grid conditions
are not taken into account by the source site. It is left up to the client site to determine
the time and the volume of replication.

GDMP was originally conceived for the CMS experiment at the LHC in which the
data is generated at one point and has to be replicated globally. Therefore, consistency
of replicas is not a big issue as there are no updates, and all the notifications are in

ACM Computing Surveys, Vol. 38, March 2006.

36 S. Venugopal et al.

a single direction. The data for this experiment was in the form of files containing
objects where each object represented a collision. GDMP can interact with the object
database to replicate specific groups of objects between sites.

4.3.4. SRB. The purpose of the SRB is to enable the creation of shared collections
through management of consistent state information, latency management, load level-
ing, logical resources usage, and multiple access interfaces [Baru et al. 1998; Rajasekar
et al. 2003]. SRB also aims to provide a unified view of the data files stored in disparate
media and locations by providing the capability to organize them into virtual collections
independent of their physical location and organization. It provides a large number of
capabilities that are not only applicable to Data Grids but also for collection building,
digital libraries, and persistent archival applications.

An SRB installation follows a three-tier architecture—the bottom tier is the actual
storage resource, the middleware lies in between, and, at the top, is the Application
Programming Interface (API) and the metadata catalog (MCAT). File systems and
databases are managed as physical storage resources (PSRs) which are then combined
into logical storage resources (LSRs). Data items in SRB are organized within a hi-
erarchy of collections and subcollections that is analogous to the UNIX file system
hierarchy. Collections are implemented using LSRs, while the data items within a col-
lection can be located on any PSR. Data items within SRB collections are associated
with metadata which describe system attributes such as access information and size,
and descriptive attributes which record properties deemed important by the users.
The metadata is stored within MCAT which also records attributes of the collections
and the PSRs. Attribute-based access to the data items is made possible by searching
MCAT.

The middleware is made up of the SRB Master daemon and the SRB Agent processes.
The clients authenticate to the SRB Master and the latter starts an Agent process that
processes the client requests. An SRB agent interfaces with the MCAT and the storage
resources to execute a particular request. It is possible to create a federation of SRB
servers by interconnecting the masters. In a federation, a server acts as a client to
another server. A client request is handed over to the appropriate server depending on
the location determined by the MCAT service.

SRB implements transparency for data access and transfer by managing data as
collections which own and manage all of the information required for describing the
data independent of the underlying storage system. The collection takes care of up-
dating and managing consistency of the data along with other state information such
as timestamps and audit trails. Consistency is managed by providing synchronization
mechanisms that lock stale data against access and propagates updates throughout
the environment until global consistency is achieved.

SRB is one of the most widely used Data Grid technologies in various application
domains around the world including the UK eScience (eDiaMoND), BaBar, BIRN, IVOA
and the California Digital Library [Rajasekar et al. 2002].

4.3.5. Other Replication Strategies. Lamehamedi et al. [2002, 2003] study replication
strategies based on the replica sites being arranged in different topologies such as ring,
tree, or hybrid. Each site or node maintains an index of the replicas it hosts and the
other locations of these replicas that it knows. Replication of a dataset is triggered when
requests for it at a site exceed some threshold. The replication strategy places a replica
at a site that minimises the total access costs including both read and write costs for
the datasets. The write cost considers the cost of updating all the replicas after a write
at one of the replicas. They show through simulation that the best results are achieved
when the replication process is carried out closest to the users.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 37

Table VI. Comparison Between Scheduling Strategies
Application Data Utility

Work/Project Model Scope Replication Function Locality
Casanova, et al. [2000] Bag-of-Tasks Individual Coupled Makespan Temporal
GrADS [Dail et al. 2004] Process-level Individual Decoupled Makespan Spatial
Ranganathan &

Foster [2002]
Independent
Tasks

Individual Decoupled Makespan Spatial

Kim and Weissman 2003 Independent
Tasks

Individual Decoupled Makespan Spatial

Takefusa, et. al [2003] Process-level Individual Coupled Makespan Temporal
Pegasus [Deelman et al.

2003]
Workflows Individual Decoupled Makespan Temporal

Thain et al. [2001] Independent
Tasks

Community Coupled Makespan Both

Chameleon [2003] Independent
Tasks

Individual Decoupled Makespan Spatial

SPHINX [In et al. 2003;
In et al. 2004]

Workflows Community Decoupled QoS Spatial

Gridbus
Broker [Venugopal
and Buyya 2005] and
Workflow [Yu and
Buyya 2004]

Bag-of-Tasks
and Workflows

Individual Decoupled QoS Spatial

Bell et al. [2003] present, a file replication strategy based on an economic model that
optimises the selection of sites for creating replicas. Replication is triggered by the
number of requests received for a dataset. Access mediators receive these requests and
start auctions to determine the cheapest replicas. A Storage Broker (SB) participates
in these auctions by offering a price at which it will sell access to a replica if it is
present. If the replica is not present at the local storage element, then the broker starts
an auction to replicate the requested file onto its storage if it determines that having
the dataset is economically feasible. Other SBs then bid with the lowest price that
they can offer for the file. The lowest bidder wins the auction but is paid the amount
bid by the second-lowest bidder. This is a Vickrey second-price auction [Vickrey 1961]
with descending bids.

Lee and Weissman [2001] present an architecture for dynamic replication within
a service Grid. The replicas are created on the basis of each site evaluating whether
its performance can be improved by requesting one more replica. The most popular
services are, therefore, most replicated as this entails a performance boost by lessening
the load requirements on a particular replica.

Ranganathan et al. [2002] present a dynamic replication strategy that creates copies
based on trade-offs between the cost and the future benefits of creating a replica. The
strategy is designed for peer-peer environments where there is a high degree of unre-
liability and hence, considers a minimum number of replicas that might be required,
given the probability of a node being up and the accuracy of information possessed by
a site in a peer-peer network.

4.4. Resource Allocation and Scheduling

This section deals with the study of resource allocation and scheduling strategies within
Data Grids. While Grid scheduling has been a well-researched topic, this study is lim-
ited to only those strategies that explicitly deal with transfer of data during processing.
Therefore, the focus is on features such as adapting to environments with varied data
sources and scheduling jobs in order to minimize the movement of data. Table VI sum-
marizes the scheduling strategies surveyed in this section and their classification.

ACM Computing Surveys, Vol. 38, March 2006.

38 S. Venugopal et al.

Scheduling strategies for data-intensive applications can be distinguished on the
basis of whether they couple data movement to job submission or they don’t. As men-
tioned earlier in Section 3.4, in the former case, the temporal locality of data requests
is exploited. Initial work focused on reuse of cached data. An example of this direction
is the work by Casanova et al. [2000] who introduce heuristics for scheduling inde-
pendent tasks sharing common files on a Grid composed of interconnected clusters.
Here, the strategy is to prefer nodes within clusters to which the data has already been
transferred rather than those clusters where the data is not present. The source of the
data is considered to be the client node, that is, the machine which submits the jobs
to the Grid. Later efforts looked at extending this to data replication where copies of
the data are maintained over a longer term to benefit requests coming from future job
submissions. Takefusa et al. [2003] have simulated job scheduling and data replica-
tion policies for central and tier model organization of Data Grids based on the Grid
Datafarm architecture [Tatebe et al. 2002]. Out of the several policies simulated, the
authors establish that the combination of Owner-Computes strategy (job is executed on
the resource that contains the data) for job scheduling along with background replica-
tion policies based on number of accesses (LoadBound-Replicate) or on the node with
the maximum estimated performance (Aggressive-Replication) provides the minimum
execution time for a job.

Similar in intent, Thain et al. [2001] describe a means of creating I/O communities
which are groups of CPU resources such as Condor pools clustered around a storage
resource. The storage appliance satisfies the data requirements for jobs that are exe-
cuted on both the processes within and outside the community. The scheduling strategy
in this work allows for both the data to be staged to a community where the job is exe-
cuted and allows the job to migrate to a community where the data required is already
staged. The decision is made by the user after comparing the overheads of either stag-
ing the application or replicating the data. This is different from the policies previously
mentioned wherein the replication process is based on heuristics and requires no user
intervention. Again, improving temporal locality of data by replicating it within a com-
munity improves the performance. Later in this section, we will look at another coupled
strategy proposed by Phan et al. [2005] that uses Genetic Algorithms as a scheduling
heuristic.

Strategies that decouple job submission from data movement attempt to reduce the
data transfer time either by scheduling the job close to or at the source of the data,
or by accessing the data from a replica site which is closest to the site of computa-
tion. Here, the term close refers to a site with minimum transfer time. Ranganathan
and Foster [2002] propose a decoupled scheduling architecture for data-intensive ap-
plications which consists of 3 components: the External Scheduler (ES) that decides to
which node the jobs must be submitted, the Local Scheduler (LS) on each node that
decides the priority of the jobs arriving at that node, and the Dataset Scheduler (DS)
that tracks the popularity of the datasets and decides which datasets to replicate or
delete. Through simulation, they evaluate combinations of 4 job-scheduling algorithms
for the ES and 3 replication algorithms for the DS. The results show that the worst
performance is given by executing a job at the source of data in the absence of replica-
tion. This is because a few sites which host the data were overloaded in this case. The
best performance is given by same job scheduling strategy but with data replication.
A similar strategy is proposed in Chameleon [Park and Kim 2003] wherein a site on
which the data has already been replicated is preferred for submitting a job over one
where the data is not present.

Most of the strategies studied try to reduce the makespan or the Minimum Comple-
tion Time (MCT) of the task which is defined as the difference between the time when
the job was submitted to a computational resource and the time it completed. Makespan

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 39

also includes the time taken to transfer the data to the point of computation if that is
allowed by the scheduling strategy. Takefusa et al. [2003] and the Grid Application De-
velopment Software (GrADS) project [Dail et al. 2004] use makespan schedulers that
operate at the system process level. Scheduling within the latter is carried out in three
phases: before the execution, there is an initial matching of an application’s require-
ments to available resources based on its performance model and this is called launch-
time scheduling; then, the initial schedule is modified during the execution to take into
account dynamic changes in the system availability which is called rescheduling; finally,
the coordination of all schedules is done through metascheduling. Contracts [Vraalsen
et al. 2001] are formed to ensure guaranteed execution performance. The mapping
and search procedure presented by Dail et al. [2002] forms Candidate Machine Groups
(CMG) consisting of available resources which are then pruned to yield one suitable
group per application. The mapper then maps the application data to physical location
for this group. Therefore, spatial locality is primarily exploited. The scheduler is tightly
integrated into the application and works at the process level. However, the algorithms
are themselves independent of the application. Recent work, however, has suggested
extending the GrADS scheduling concept to workflow applications [Cooper et al. 2004].
The treatment of data still remains the same.

Casanova et al. [2000] extend three heuristics for reducing makespan—Min-Min,
Max-Min, and Sufferage that were introduced by Maheswaran et al. [1999]—to consider
input and output data transfer times. Min-Min assigns tasks with the least makespan
to those nodes which will execute them the fastest, whereas Max-Min assigns tasks
with maximum makespan to the fastest executing nodes. Sufferage assigns tasks on
the basis of how much they would suffer if they are not assigned to a particular node.
This sufferage value is computed as the difference between the best MCT for a task on
a particular node and the second-best MCT on another node. Tasks with higher suffer-
age values receive more priority. The authors introduce another heuristic, XSufferage,
which is an extended version of Sufferage, that takes into account file locality before
scheduling jobs by considering MCT on the cluster level. Within XSufferage, a job is
scheduled to a cluster if the file required for the job has been previously transferred to
any node within the cluster.

Kim and Weissman [2003] introduce a Genetic Algorithm-based (GA) scheduler for
reducing makespan of Data Grid applications decomposable into independent tasks.
The scheduler targets an application model wherein a large dataset is split into multiple
smaller datasets and these are then processed in parallel on multiple virtual sites,
where a virtual site is considered to be a collection of compute resources and data
servers. The solution to the scheduling problem is represented as a chromosome in
which each gene represents a task allocated to a site. Each subgene is associated with
a value that represents the fraction of a dataset assigned to the site, and the whole
gene is associated with a value denoting the capability of the site given the fraction
of the datasets assigned, the time taken to transfer these fractions and the execution
time. The chromosomes are mutated to form the next generation of chromosomes. At
the end of an iteration, the chromosomes are ranked according to an objective function
and the iteration stops at a predefined condition. Since the objective of the algorithm
is to reduce the completion time, the iterations tend to favor those tasks in which the
data is processed close to or at the point of computation, thereby exploiting the spatial
locality of datasets. Phan et al. [2005] apply a similar GA-based strategy but, in their
case, data movement is coupled to job submission. The chromosome that they adopt
represents job ordering, assignments of jobs to compute nodes, and the assignment of
data to replica locations. At the end of a specified number of iterations (100 in this
case), the GA converges to a near-optimal solution that gives a job order queue, job
assignments, and data assignments that minimize makespan.

ACM Computing Surveys, Vol. 38, March 2006.

40 S. Venugopal et al.

While the previous strategies have concentrated on independent tasks or a BoT model
of Grid applications, Pegasus [Deelman et al. 2003] concentrates on reducing makespan
for workflow-based applications. The strategy reduces an abstract workflow that con-
tains the order of execution of components into a concrete workflow where the component
is turned into an executable job, and the locations of the computational resources and
the data are specified. The abstract workflow goes through a process of reduction where
the components whose outputs have already been generated and entered into a Replica
Location Service are removed from the workflow and substituted with the physical lo-
cation of the products. The emphasis is therefore on the reuse of already produced data
products. The planning process selects a source of data at random, that is, neither the
temporal nor the spatial locality is exploited.

Other projects aim to achieve different scheduling objectives such as achieving a spe-
cific QoS demanded by the application. SPHINX (Scheduling in Parallel for a Heteroge-
neous Independent NetworX) [In et al. 2003] is one such middleware project for schedul-
ing data-intensive applications on the Grid. Scheduling within SPHINX is based on a
client-server framework in which a scheduling client within a VO submits a metajob as
a Directed Acyclic Graph (DAG) to one of the scheduling servers for the VO, along with
QoS requirements such as number of CPUs required and deadline of execution. QoS
privileges that a user enjoys may vary with the groups to which he or she belongs. The
server is allocated a portion of the VO resources, and, in turn, it reserves some of these
for the job submitted by the client based on the allocated QoS for the user and sends the
client an estimate of the completion time. The server also reduces the DAG by removing
tasks whose outputs are already present. If the client accepts the completion time, then
the server begins execution of the reduced DAG. The scheduling strategy in SPHINX [In
et al. 2004] considers VO policies as a four-dimensional space with the resource provider,
resource properties, user, and time forming each of the dimensions. Policies are ex-
pressed in terms of quotas which are tuples formed by values of each dimension. The
optimal resource allocation for a user request is provided by a linear programming
solution which minimizes the usage of the user quotas on the various resources.

Data-intensive application scheduling within the Gridbus Broker [Venugopal and
Buyya 2005] is carried out on the basis of QoS factors such as deadline and budget.
The execution model in this work is that of parameter sweep or Bag of Tasks, each
of which depends on multiple data files, each replicated on multiple data resources.
The scheduling algorithm tries to minimize the economic objective by incrementally
building resource sets consisting of one compute resource for executing the job and one
data site each for each file that needs to be accessed by the job. The scheduler itself
performs no replication of data in this case. Scheduling of workflows is supported by the
Gridbus Workflow Engine [Yu and Buyya 2004] which otherwise has similar properties
with respect to the scheduling of data-intensive applications.

5. DISCUSSION

Figures 12–16 pictorially represent the mapping of the systems that were analyzed in
Section 4 to the taxonomy. Each of the boxes at the leaves of the taxonomy branches
contain those systems that exhibit the property at the leaf. A box containing (All) implies
that all the systems studied satisfy the property given by the corresponding leaf. From
the figures, it can be seen that the taxonomy is shown to be complete with respect to
the systems studied as each of them can be fully described by the categories within this
taxonomy.

Figure 12 shows the organizational taxonomy annotated with the Data Grid projects
that were studied in Section 4.1. As shown in the figure, current scientific Data Grids
mostly follow the hierarchical or the federated models of organization because the data

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 41

Fig. 12. Mapping of Data Grid organization taxonomy to Data Grid projects.

Fig. 13. Mapping of data transport taxonomy to various projects.

ACM Computing Surveys, Vol. 38, March 2006.

42 S. Venugopal et al.

Fig. 14. Mapping of data replication architecture taxonomy to various systems.

Fig. 15. Mapping of data replication strategy taxonomy to various systems.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 43

Fig. 16. Mapping of resource allocation and scheduling taxonomy to various systems.

sources are few and well established. These data sources are generally mass storage
systems from which data is transferred out as files or datasets to other repositories.
From a social point of view, such Data Grids are formed by establishing collaborations
between researchers from the same domain. In such cases, any new participants willing
to join or contribute have to be part of the particular scientific community to be inducted
into the collaboration.

The mapping of various Data Grid transport mechanisms studied in
Section 4.2 to the proposed taxonomy is shown in Figure 13. The requirement to
transfer large datasets has led to the development of high-speed low-latency transfer
protocols such as GridFTP which is rapidly becoming the default transfer protocol for
all Data Grid projects. While FTP is also used within certain projects for data with
lesser size and security constraints, and SRB I/O is applicable in any SRB installation,
IBP and Kangaroo are not deployed in existing Data Grids. This is due to the fact that
the latter are research projects rather than products and do not meet all requirements
of a Data Grid environment.

Figures 14 and 15 show mapping of the data replication systems covered in Sections
4.3 to the replica architecture and strategy taxonomy. The hierarchical model of the
HEP experiments in Figure 12 has motivated the development of tree-structured repli-
cation mechanisms that are designed to be top-down in terms of organization and data
propagation. Many of the projects that have followed the federation model have used
SRB which offers more flexibility in the organization model of replica sites. SRB is also
used by many HEP experiments, such as Belle and BaBar, but configured as a hierarchy
of sites. Currently, massive datasets are being replicated statically by project adminis-
trators in select locations for all the projects, and intelligent and dynamic replication
strategies have not yet found a place in production Data Grids. The static replication
strategy is guided by the objective of increasing locality of datasets. Most resource al-
location and scheduling efforts, especially those that involve coupling of replication to
job submission, follow similar strategies to reduce makespan. This can be inferred from
Figure 16 which illustrates mapping of scheduling efforts to the taxonomy.

ACM Computing Surveys, Vol. 38, March 2006.

44 S. Venugopal et al.

Table VII. Future Trends and Key Characteristics
Trend Organization Transport Replication Scheduling
Collaboration Hybrid models Fine-grained

access
Hybrid topology,

Active metadata,
Replica
Publication

Community

SOA Autonomic
Management

Overlay networks,
Fault Tolerance

Open Protocols,
Active metadata,
Popularity and
Economic-based
replication

Workflow
models, QoS

Market Interdomain systems,
Economic &
Reputation-based
VOs, Autonomic
Management

Fault Tolerance Decentralized
model, Dynamic
and
Economy-based
Replication

Profit, QoS

Enterprise
Requirements

Regulated, Economic
&
Reputation-based
VOs

Security Active metadata,
Replica update,
Preservation
strategy

Workflow
models, QoS

Data Grid technologies are only beginning to be employed in production environ-
ments and are still evolving to meet present and future requirements. Some of the new
developments in areas such as replication and resource allocation and scheduling have
already been covered in Section 4. In the next section, we will look at the emerging
trends and how these will drive the evolution of Data Grid technologies.

5.1. Future Trends

Four trends that will drive innovation within Data Grids are increased collaboration,
service-oriented architectures (SOAs), market mechanisms, and Enterprise require-
ments. The key properties of each of the constituent technologies, identified within the
taxonomy, that are required to realize this innovation is discussed in detail in the fol-
lowing and summarized in Table VII. However, it is important to note that this does
not exclude other characteriztics from consideration.

—Increased Collaboration. While Data Grids are built around VOs, current technologies
do not provide many of the capabilities required for enabling collaboration between
participants. For example, the tree structure of many replication mechanisms in-
hibits direct copying of data between participants that reside on different branches.
Replication systems, therefore, will follow hybrid topologies that involve peer-to-peer
links between different branches for enhanced collaboration. Exchange of data should
be accompanied by enhanced security guarantees. Therefore, this motivates the use
of fine-grained access controls throughout the system.

Since communities are formed by the pooling of resources by participants, resource
allocation must ensure fair shares to everyone. This requires community-based sched-
ulers that assign quotas to each of the users based on priorities and resource avail-
ability. Individual user schedulers could then submit jobs taking into account the
assigned quotas and could negotiate with the central scheduler for a quota increase
or a change in priorities. They could also be able to swap or reduce quotas in order
to gain resource share in the future. Users are able to plan ahead for future resource
requirements by advance reservation of resources.

—Service-Oriented Architecture. An important element within Web (or Grid) services
is the ability for services to be composed of other services by building on standard
protocols and invocation mechanisms. This is the key difference between an SOA

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 45

[Papazoglou and Georgakopoulos 2003] and a traditional client-server architecture.
The high level of transparency within SOAs requires greater reliability guarantees
that impact all of the consituent technologies. Service disruptions should be accounted
for and quickly from recovered. This requires clean failure models and transparent
service migration capabilities that can be realized by implementing autonomic sys-
tem management in service Grids. Service composition also requires selecting the
right services with the required QoS parameters. This impacts both replication and
resource allocation and leads to diversification of objective functions and strategies
from the current static methods.

As discussed in Section 2, the major focus on the realisation of SOAs in Grids
began with the introduction of the OGSA. To realise the requirements of OGSA,
the Web Service Resource Framework (WSRF) [Foster et al. 2005] specification has
been adopted by the Grid standards community. Globus Toolkit version 4.0 [Foster
2005] and WSRF.NET [Humphrey et al. 2004] are two implementations of the WSRF
that provide the basic infrastructure required for Grid services. However, service
composition in Grids is currently a work in progress and will only be aided by the
ongoing standardisation efforts at the GGF.

—Market mechanisms. The increasing popularity of Data Grids as a solution for large-
scale computational and storage problems will lead to the entry of commercial re-
source providers and, therefore, will lead to market-oriented VOs wherein demand-
and-supply patterns decide the price and availability of resources. This also provides
incentive for content owners to offer their data for consumption outside of specific do-
mains and opens up many interesting new applications. Such VOs are likely to have
a broad interdomain scope, and consumers will be able to access domain-specific ser-
vices by buying them from competing service providers.

From the previous discussion, it is clear that market mechanisms will be based on
SOAs. Additionally, resource allocation and replication policies need to be guided by
utility functions driven by profit and, at the same time, satisfy user-defined service
quality parameters. An example is a dynamic system that takes into account the cost
of data movement is presented by Lin [2005].

—Enterprise requirements. Enterprises already have production systems in place that
handle business functions using distributed data. However, the amount of data that
has to be retained and manipulated has been growing by leaps and bounds. Also,
with storage devices, even of terabyte capacity, being commoditized, the challenge
now is to organize massive volumes of data to enable time-bound extraction of useful
information.

Data Grids that provide a solution to these problems also need to take into account
the stricter reliability and security requirements in enterprise computing. Support
for transaction processing is required to provided consistent computation models in
enterprises. Another challenge is to extend the existing Grid mechanisms such as
replication, data transfer, and scheduling to work with new data sources such as
distributed databases found in businesses [Magowan 2003].

6. SUMMARY AND CONCLUSION

In this article, we have studied, characterized, and categorized several aspects of Data
Grid systems. Data Grids have several unique features such as presence of applications
with heavy computing requirements, geographically distributed and heterogeneous re-
sources under different administrative domains, and a large number of users sharing
these resources and wanting to collaborate with each other. We have enumerated sev-
eral characteriztics where Data Grids share similarities with, and are different from,

ACM Computing Surveys, Vol. 38, March 2006.

46 S. Venugopal et al.

other distributed data-intensive paradigms such as content delivery networks, peer-to-
peer networks, and distributed databases.

Further on, we focused on the architecture of the Data Grids and the fundamental
requirements of data transport mechanisms, data replication systems, and resource
allocation and job scheduling. We have developed taxonomies for each of these areas
to classify the common approaches and to provide a basis for comparison of Data Grid
systems and technologies. We then compared some of the representative systems in
each of these areas and categorized them according to the respective taxonomies. In
doing so, we have gained an insight into the architectures, strategies, and practices that
are currently followed within Data Grids. Also, through our characterization, we have
also been able to discover some of the shortcomings and identify gaps in the current
architectures and systems. These represent some of the directions that can be taken
in the future by researchers in this area. Thus, this article lays down a comprehensive
classification framework that, not only serves as a tool for understanding this complex
area, but also presents a reference for which future efforts can be mapped.

To conclude, Data Grids are being adopted widely for sharing data and collaboratively
managing and executing large-scale scientific applications that process large datasets
distributed around the world. However, more research needs to be undertaken in terms
of scalability, interoperability, and data maintainability among others, before Data
Grids can truly become the preferred infrastructure for such applications. But, solving
these problems creates the potential for Data Grids to evolve and become self-organized
and self-contained and thus, creating the next generation infrastructure for enabling
users to extract maximum utility out of the volumes of available information and data.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their detailed comments that have helped in improving
the quality of this article. We would like to acknowledge the efforts of all the developers of the Grid systems
surveyed in this article. We thank our colleagues at the University of Melbourne—Krishna Nadiminti, Tianchi
Ma, Sushant Goel, and Chee Shin Yeo- for their comments on this article. We would also like to express our
gratitude to Reagan Moore (San Diego Supercomputing Center) for his extensive and thought-provoking
comments and suggestions on various aspects of this taxonomy. We also thank Heinz Stockinger (University
of Vienna), Chris Mattman (JPL, NASA), and William Allcock (Argonne National Lab) for their instructive
comments on this article.

REFERENCES

ABRAMSON, D., GIDDY, J., AND KOTLER, L. 2000. High performance parametric modeling with Nimrod/G:
Killer application for the global Grid? In Proceedings of the 14th International Parallel and Distributed
Processing Symposium (IPDPS’00). Cancun, Mexico. IEE Press, Los Alamitos, CA.

CERN, STAFF 2000. Monarc project phase2 report. Tech. rep. (March) CERN.

ALLCOCK, B., BESTER, J., BRESNAHAN, J., CHERVENAK, A., FOSTER, I., KESSELMAN, C., MEDER, S., NEFEDOVA, V.,
QUESNEL, D., AND TUECKE, S. 2001. Secure, efficient data transport and replica management for high-
performance data-intensive computing. In Proceedings of IEEE Mass Storage Conference. San Diego.
IEEE Press, Los Alamitos, CA.

ALLCOCK, B., BESTER, J., BRESNAHAN, J., CHERVENAK, A. L., FOSTER, I., KESSELMAN, C., MEDER, S., NEFEDOVA, V.,
QUESNEL, D., AND TUECKE, S. 2002. Data management and transfer in high-performance computational
grid environments. Parall. Comput. 28, 5, 749–771.

ALLCOCK, B., FOSTER, I., NEFEDOVA, V., CHERVENAK, A., DEELMAN, E., KESSELMAN, C., LEE, J., SIM, A., SHOSHANI,
A., DRACH, B., AND WILLIAMS, D. 2001. High-performance remote access to climate simulation data: a
challenge problem for data Grid technologies. In Proceedings of the ACM/IEEE Conference on Super-
computing (SC’01) Denver, CO. ACM Press, New York, NY.

ALLCOCK, W. 2003. Gridftp protocol specification. Global Grid Forum Recommendation (GFD.20).

ALONSO, R. AND BARBARA, D. 1989. Negotiating data access in federated database systems. In Proceedings
of the 5th International Conference on Data Engineering. Los Angeles, CA. IEEE Press, Los Alamitos,
CA. 56–65.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 47

ANDERSEN, D., BALAKRISHNAN, H., KAASHOEK, F., AND MORRIS, R. 2001. Resilient overlay networks. In Proceed-
ings of the 18th ACM symposium on Operating systems principles (SOSP’01). Banff, Alberta, Canada.
ACM Press, New York, NY, 131–145.

ANDERSON, D. P., COBB, J., KORPELA, E., LEBOFSKY, M., AND WERTHIMER, D. 2002. Seti@home: An experiment
in public-resource computing. Comm. ACM 45, 11, 56–61.

ANTONIOLETTI, M., APKINSON, M., KRAUSE, A., LAWS, S., MALAIKA, S., PATON, M. W., PEARSON, D., AND RICCARDI, G.
2005. Web services data access and integration (ws-dai). Tech. rep., (June) GGF DAIS Working Group.

ARDAIZ, O., ARTIGAS, P., EYMANN, T., FREITAG, F., NAVARRO, L., AND REINICKE, M. 2003. Self-organizing
resource allocation for autonomic networks. In Proceedings of the 1st International Work-
shop on Autonomic Computing Systems. Prague, Czech Republic. IEEE Press, Los Alamitos,
CA.

AVERY, P. AND FOSTER, I. 2001. The GriPhyN project: Towards petascale virtual-data Grids. Tech. Rep.
GriPhyN 2001-14, The GriPhyN Collaboration.

BAKER, M., BUYYA, R., AND LAFORENZA, D. 2002. Grids and grid technologies for wide-area distributed com-
puting. Softw. Pract. Exper. 32, 15 (Dec.), 1437–1466. Wiley Publishing, Hoboken, NJ.

BARU, C., MOORE, R., RAJASEKAR, A., AND WAN, M. 1998. The SDSC storage resource broker. In Proceedings
of CASCON’98. IBM Press, Boston, MA.

BASSI, A., BECK, M., FAGG, G., MOORE, T., PLANK, J., SWANY, M., AND WOLSKI, R. 2002. The Internet backplane
protocol: A study in resource sharing. In Proceedings of the 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID’02). Berlin, Germany. IEEE Press, Los Alamitos, CA.

BELL, W. H., CAMERON, D. G., CARVAJAL-SCHIAFFINO, R., MILLAR, A. P., STOCKINGER, K., AND ZINI, F. 2003. Evalu-
ation of an economy-based file replication strategy for a data Grid. In Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2003 (CCGrid’03). Tokyo, Japan. IEEE
Press, Los Alamitos, CA.

BESTER, J., FOSTER, I., KESSELMAN, C., TEDESCO, J., AND TUECKE, S. 1999. GASS: A data movement and access
service for wide area computing systems. In Proceedings of the 6th Workshop on I/O in Parallel and
Distributed Systems. Atlanta, GA. ACM Press, New York, NY.

BIOGRID PROJECT, JAPAN. 2005. http://www.biogrid.jp/.

BIOMEDICAL INFORMATICS RESEARCH NETWORK (BIRN). 2005. http://www.nbirn.net.

BRADY, M., GAVAGHAN, D., SIMPSON, A., PARADA, M. M., AND HIGHNAM, R. 2003. Chapter eDiamond: A Grid-
Enabled Federated Database of Annotated Mammograms. Wiley Publishing, Hoboken, NJ, 923–943.

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., MALER, E., AND YERGEAU, F. 2004. Extensible markup language
(xml) 1.0 3rd ed. W3C Recommendation.

BUNN, J. AND NEWMAN, H. 2003. Grid Computing: Making the Global Infrastructure a Reality. Wiley Press,
London, UK.

BUYYA, R. AND VAZHKUDAI, S. 2001. Compute power market: Towards a market-oriented Grid. In Proceedings
of the 1st International Symposium on Cluster Computing and the Grid (CCGRID’01). IEEE Press, Los
Alamitos, CA, 574.

CASANOVA, H., LEGRAND, A., ZAGORODNOV, D., AND BERMAN, F. 2000. Heuristics for scheduling
parameter sweep applications in grid environments. In Proceedings of the 9th Heteroge-
neous Computing Systems Workshop (HCW’00). Cancun, Mexico. IEEE Press, Los Alamitos,
CA.

CERI, S. AND PELAGATTI, G. 1984. Distributed Databases: Principles and Systems. McGraw-Hill, New York,
NY.

CHAPIN, S., KARPOVICH, J., AND GRIMSHAW, A. 1999. The legion resource management system. In Proceedings
of the 5th Workshop on Job Scheduling Strategies for Parallel Processing. IEEE Press, Los Alamitos, CA.

CHERVENAK, A., DEELMAN, E., FOSTER, I., GUY, L., HOSCHEK, W., IAMNITCHI, A., KESSELMAN, C., KUNST, P., RIPEANU,
M., SCHWARTZKOPF, B., STOCKINGER, H., STOCKINGER, K., AND TIERNEY, B. 2002. Giggle: A framework for
constructing scalable replica location services. In Proceedings of the IEEE/ACM Conference on Super-
computing (SC’02). Baltimore, MD.

CHERVENAK, A., FOSTER, I., KESSELMAN, C., SALISBURY, C., AND TUECKE, S. 2000. The Data Grid: Towards an
architecture for the distributed management and analysis of large scientific datasets. J. Net. Comput.
Appl. 23, 3, 187–200.

CHOON-HOONG, D., NUTANONG, S., AND BUYYA, R. 2005. Peer-to-Peer Computing: Evolution of a Disruptive
Technology. Idea Group Publishers, Hershey, PA, 28–65.

CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W. 2001. Freenet: A distributed anonymous information
storage and retrieval system. In International Workshop on Designing Privacy Enhancing Technologies.
Berkeley, CA. Springer-Verlag, Berlin, Germany, 46–66.

ACM Computing Surveys, Vol. 38, March 2006.

48 S. Venugopal et al.

COOPER, K., DASGUPATA, A., KENNEDY, K., KOELBEL, C., MANDAL, A., MARIN, G., MAZINA, M., MELLOR-CRUMMEY, J.,
BERMAN, F., CASANOVA, H., CHIEN, A., DAIL, H., LIU, X., OLUGBILE, A., SIEVERT, O., XIA, H., JOHNSSON, L., LIU,
B., PATEL, M., REED, D., DENG, W., MENDES, C., SHI, Z., YARKHAN, A., AND DONGARRA, J. 2004. New Grid
scheduling and rescheduling methods in the GrADS project. In Proceedings of NSF Next Generation
Software Workshop: International Parallel and Distributed Processing Symposium. Santa Fe, NM. IEEE
Press, Los Alamitos, CA.

CZAJKOWSKI, K., FOSTER, I. T., KARONIS, N. T., KESSELMAN, C., MARTIN, S., SMITH, W., AND TUECKE, S. 1998. A
resource management architecture for metacomputing systems. In Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing (IPPS/SPDP’98) Orlando, FL. Springer-Verlag, Berlin,
Germany.

CZAJKOWSKI, K., KESSELMAN, C., FITZGERALD, S., AND FOSTER, I. 2001. Grid information services for distributed
resource sharing. In Proceedings of the 10th IEEE International Symposium on High Performance Dis-
tributed Computing. (HPDC10). San Francisco, CA. IEEE Press, Los Alamitos, CA.

DAIL, H., CASANOVA, H., AND BERMAN, F. 2002. A decoupled scheduling approach for the GrADS environment.
In Proceedings of the IEEE/ACM Conference on Supercomputing (SC’02). Baltimore, Mb. IEEE Press,
Los Alamitos, CA.

DAIL, H., SIEVERT, O., BERMAN, F., CASANOVA, H., YARKHAN, A., VADHIYAR, S., DONGARRA, J., LIU, C., YANG, L.,
ANGULO, D., AND FOSTER, I. 2004. Grid Resource Management: State of the Art and Future Trends.
Kluwer Academic Publishers, Cambridge, MA, 73–98.

DAVISON, B. D. 2001. A web caching primer. IEEE Internet Comput. 5, 4, 38–45.

DEELMAN, E., BLYTHE, J., GIL, Y., AND KESSELMAN, C. 2003. Grid Resource Management: State of the Art and
Future Trends. Kluwer Academic Publishers, Cambridge, MA, 99–117.

DILLEY, J., MAGGS, B., PARIKH, J., PROKOP, H., SITARAMAN, R., AND WEIHL, B. 2002. Globally distributed content
delivery. IEEE Internet Comput. 6, 5, 50–58.

DULLMANN, D., HOSCHEK, W., JAEN-MARTINEZ, J., SEGAL, B., SAMAR, A., STOCKINGER, H., AND STOCKINGER, K. 2001.
Models for replica synchronisation and consistency in a data Grid. In Proceedings of the 10th IEEE
International Symposium on High Performance Distributed Computing (HPDC-10’). San Francisco, CA.
IEEE Press, Los Alamitos, CA.

DUMITRESCU, C. AND FOSTER, I. 2004. Usage policy-based CPU sharing in virtual organizations. In Proceed-
ings of the 5th IEEE/ACM International Workshop on Grid Computing (GRID’04). Pittsburgh, PA. IEEE
Press, Los Alamitos, CA.

ELLERT, M., KONSTANTINOV, A., KONYA, B., SMIRNOVA, O., AND WAANANEN, A. 2002. Performance evaluation of
GridFTP within the NorduGrid project. Tech. Rep. cs.DC/0205023, (Jan.) NorduGrid Project.

ENABLING GRIDS FOR E-SCIENCE (EGEE). 2005. http://public.eu-egee.org/.

FERRARI, A., KNABE, F., HUMPHREY, M., CHAPIN, S. J., AND GRIMSHAW, A. S. 1999. A flexible security
system for metacomputing environments. In Proceedings of the 7th International Conference on
High-Performance Computing and Networking (HPCN’99). Springer-Verlag, Berlin, Germany, 370–
380.

FINKELSTEIN, A., GRYCE, C., AND LEWIS-BOWEN, J. 2004. Relating requirements and architectures: A study of
data-grids. J. Grid Comput. 2, 3, 207–222.

FOSTER, I. 2005. Globus toolkit version 4: Software for service-oriented systems. Lecture Notes in Computer
Science vol. 3779, Springer, verlag, Berlin, Germany, 2–13.

FOSTER, I., CZAJKOWSKI, K., FERGUSON, D., FREY, J., GRAHAM, S., MAGUIRE, T., SNELLING, D., AND TUECKE, S. 2005.
Modeling and managing state in distributed systems: The role of OGSI and WSRF. Proceedings of the
IEEE 93, 3 (March), 604–612.

FOSTER, I. AND IAMNITCHI, A. 2003. On death, taxes, and the convergence of peer-to-peer and Grid com-
puting. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems(IPTPS). Berke-
ley, CA. Lecture Notes in Computer Science, vol. 2735. Springer-Verlag, Berlin, Germany, 118–
128.

FOSTER, I. AND KARONIS, N. 1998. A Grid-enabled MPI: Message passing in heterogeneous distributed com-
puting systems. In Proceedings of the IEEE/ACM SuperComputing Conference 1998 (SC’98). San Jose,
CA. IEEE Press, Los Alamitos, CA.

FOSTER, I. AND KESSELMAN, C. 1998. The Globus project: A status report. In Proceedings of IPPS/SPDP
Heterogeneous Computing Workshop. IEEE Press, Los Alamitos, CA, 4–18.

FOSTER, I. AND KESSELMAN, C. 1999. The Grid: Blueprint for a Future Computing Infrastructure. Morgan
Kaufmann Publishers, San Francisco, CA.

FOSTER, I., KESSELMAN, C., NICK, J. M., AND TUECKE, S. 2002. Grid services for distributed system integration.
Comput. 35, 6, 37–46.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 49

FOSTER, I., KESSELMAN, C., TSUDIK, G., AND TUECKE, S. 1998. A security architecture for computational grids.
In Proceedings of the 5th ACM Conference on Computer and Communications Security Conference. San
Francisco, CA. ACM Press, New York, NY.

FOSTER, I., KESSELMAN, C., AND TUECKE, S. 2001. The anatomy of the Grid: Enabling scalable virtual orga-
nizations. Int. J. High Perform. Comput. Appl. 15, 3, 200–222.

FOSTER, I., TUECKE, S., AND UNGER, J. 2003. OGSA data services. Global Grid Forum 9.

FOX, G. AND PALLICKARA, S. 2002. The narada event brokering system: Overview and extensions. In Pro-
ceedings of the International Conference on Parallel and Distributed Processing Techniques and Appli-
cations(PDPTA’02). CSREA Press, Las Vegas, NV, 353–359.

GALBRAITH, J., SAARENMAA, O., YLONEN, T., AND LEHTINEN, S. 2006. SSH File Transfer Protocol (SFTP). Inter-
net Draft. http://www.ietf.org/internet-drafts-ietf-secsh-fliexfer-12.txt.

FOSTER, I. AND COLLEAGUES. 2004. The Grid2003 production grid: Principles and practice. In Proceedings of
the 13th Symposium on High Performance Distributed Computing (HPDC13). Honolulu, HI. IEEE Press,
Los Alamitos, CA.

GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D. 1996. The dangers of replication and a solution. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’96). Montreal,
Quebec, Canada. ACM Press, New York, NY, 173–182.

GRAY, J. AND REUTER, A. 1993. Transaction Processing: Concepts and Techniques. Morgan Kaufmann Pub-
lishers, San Mateo, CA.

HETHMON, P. AND ELZ, R. 1998. RFC 2389: Feature negotiation mechanism for the File Transfer Protocol.
Proposed Standard.

HEY, T. AND TREFETHEN, A. E. 2002. The UK e-Science Core Programme and the grid. J. Future Generat.
Comput. Syst. 18, 8, 1017–1031.

HOCKAUF, R., KARL, W., LEBERECHT, M., OBERHUBER, M., AND WAGNER, M. 1998. Exploiting spatial and tem-
poral locality of accesses: A new hardware-based monitoring approach for DSM systems. In Proceedings
of the 4th International Euro-Par Conference on Parallel Processing (Euro-Par’98). Southhampton, UK.
Lecture Notes in Computer Science, vol. 1470. Springer-Verlag, Berlin. Germany, 206–215.

HOLLIDAY, J., AGRAWAL, D., AND ABBADI, A. E. 2000. Database replication using epidemic update. Tech. Rep.
TRCS00-01, (Jan.) University of California at Santa Barbara.

HOLTMAN, K. AND COLLEAGUES. 2001. CMS requirements for the Grid. In Proceedings of Conference on Com-
puting in High Energy Physics (CHEP’01). Beijing, China. Science Press.

HOROWITZ, M. AND LUNT, S. 1997. RFC 2228: FTP security extensions. Proposed Standard.

HOSCHEK, W., JAEN-MARTINEZ, F. J., SAMAR, A., STOCKINGER, H., AND STOCKINGER, K. 2000. Data management
in an international data Grid project. In Proceedings of the 1st IEEE/ACM International Workshop on
Grid Computing (GRID’00). Bangalore, India. Springer-Verlag, Berlin, Germany.

HOUSLEY, R., POLK, W., FORD, W., AND SOLO, D. 2002. RFC 3280: Internet X.509 public key infrastructure
certificate and certificate revocation list profile. Standard

HUFFMAN, B. T., MCNULTY, R., SHEARS, T., DENIS, R. S., AND WATERS, D. 2002. The CDF/D0 UK GridPP project.
http://www.gridpp.ac.uk/datamanagement/metadata/SubGroups/UseCases/docs%/cdf5858.ps.gz.

HUMPHREY, M., WASSON, G., MORGAN, M., AND BEEKWILDER, N. 2004. An early evaluation of WSRF and WS-
Notification via WSRF.NET. In Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing (GRID’04). Pittsburgh, PA. IEEE Press, Los Alamitos, CA, 172–181.

IN, J.-U., ARBREE, A., AVERY, P., CAVANAUGH, R., KATAGERI, S., AND RANKA, S. 2003. Sphinx: A scheduling
middleware for data intensive applications on a grid. Tech. Rep. GriPhyN 2003-17, (May) GriPhyn Grid
Physics Network.

IN, J.-U., AVERY, P., CAVANAUGH, R., AND RANKA, S. 2004. Policy based scheduling for simple quality of service in
Grid computing. In Proceedings of the 18th International Parallel and Distributed Processing Symposium
(IPDPS’04). Santa Fe, NM. IEEE Press, Los Alamitos, CA.

JABBER PROJECT. 2005. Jabber protocols. http://www.jabber.org/protocol/.

KARLSSON, M. AND MAHALINGAM, M. 2002. Do we need replica placement algorithms in content delivery
networks? In Proceedings of the Web Content Caching and Distribution Conference (WCW’02). Boulder,
CA. http://www.iwcw.org/.

KIM, S. AND WEISSMAN, J. 2003. A GA-based approach for scheduling decomposable data Grid applications.
In Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04). Montreal, Canada.
IEEE Press, Los Alamitos, CA.

KOSSMANN, D. 2000. The state of the art in distributed query processing. ACM Comput. Surv. 32, 4, 422–469.

KOUTRIKA, G. 2005. Heterogeneity in digital libraries: Two sides of the same coin. DELOS Newsletter.

ACM Computing Surveys, Vol. 38, March 2006.

50 S. Venugopal et al.

KOUZES, R. T., MYERS, J. D., AND WULF, W. A. 1996. Collaboratories: Doing science on the internet. IEEE
Comput. 29, 8, 40–46.

KRAUTER, K., BUYYA, R., AND MAHESWARAN, M. 2002. A taxonomy and survey of Grid resource management
systems for distributed computing. Int. J. Softw.: Pract. Exper. 32, 2, 135–164.

KRISHNAMURTHY, B., WILLS, C., AND ZHANG, Y. 2001. On the use and performance of content distribution
networks. In Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement (IMW’01). San
Francisco, CA. ACM Press, New York, NY, 169–182.

KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATHERSPOON,
H., WELLS, C., AND ZHAO, B. 2000. Oceanstore: An architecture for global-scale persistent storage. In
Proceedings of the 9th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS IX). Cambridge, MA. ACM Press, New York, NY, 190– 201.

LAMEHAMEDI, H., SHENTU, Z., SZYMANSKI, B., AND DEELMAN, E. 2003. Simulation of dynamic data replication
strategies in data grids. In Proceedings of the 17th International Symposium on Parallel and Distributed
Processing (IPDPS’03). Nice, France. IEEE Press, Los Alamitos, CA.

LAMEHAMEDI, H., SZYMANSKI, B., SHENTU, Z., AND DEELMAN, E. 2002. Data replication strategies in Grid envi-
ronments. In Proceedings of the 5th International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP’02). IEEE Press, Los Alamitos, CA.

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY. 2005. http://www.ligo.caltech.edu/.

LEBRUN, P. 1999. The large hadron collider, a megascience project. In Proceedings of the 38th INFN
Eloisatron Project Workshop on Superconducting Materials for High Energy Colliders. Erice, Italy.

LEDLIE, J., SHNEIDMAN, J., SELTZER, M., AND HUTH, J. 2003. Scooped, again. In Proceedings of the 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS2003). Berkeley, CA. Lecture Notes in Computer
Science, vol. 2735. Springer-Verlag, Berlin, Germany.

LEE, B.-D. AND WEISSMAN, J. B. 2001. Dynamic replica management in the service Grid. In Proceedings of
the 10th IEEE International Symposium on High Performance Distributed Computing (HPDC10’). San
Francisco, CA. IEEE Press, Los Alamitos, CA.

LEE, J., GUNTER, D., TIERNEY, B., ALLCOCK, B., BESTER, J., BRESNAHAN, J., AND TUECKE, S. 2001. Applied tech-
niques for high bandwidth data transfers across wide area networks. In Proceedings of International
Conference on Computing in High Energy and Nuclear Physics Beijing, China.

LHC COMPUTING GRID. 2005. http://lcg.web.cern.ch/LCG/.

LIN, H. 2005. Economy-based data replication broker policies in data Grids. Tech. rep., (Jan.) University
of Melbourne, Australia.

MAGOWAN, J. 2003. A view on relational data on the Grid. In Proceedings of the 17th International Sym-
posium on Parallel and Distributed Processing (IPDPS’03). Nice, France. IEEE Press, Los Alamitos,
CA.

MAHESWARAN, M., ALI, S., SIEGEL, H. J., HENSGEN, D., AND FREUND, R. F. 1999. Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems. J. Parall. Distrib. Comput. 59, 107–131.

MATTMANN, C. A., MEDVIDOVIC, N., RAMIREZ, P., AND JAKOBAC, V. 2005. Unlocking the grid. In Proceedings of
the 8th ACM SIGSOFT Symposium on Component-based Software Engineering (CBSE8). St. Louis, MO.
ACM Press, New York, NY.

MCKINLEY, K. S., CARR, S., AND TSENG, C.-W. 1996. Improving data locality with loop transfor-
mations. In ACM Trans. Program. Lang. Syst. Vol. 18. ACM Press, New York, NY, 424–
453.

MILOJICIC, D. S., KALOGERAKI, V., LUKOSE, R., NAGARAJA, K., PRUYNE, J., RICHARD, B., ROLLINS, S., AND XU, Z. 2002.
Peer-to-peer computing. Tech. Rep. HPL-2002-57, HP Labs, Palo Alto, CA.

MOORE, R., JAGATHEESAN, A., RAJASEKAR, A., WAN, M., AND SCHROEDER, W. 2004. Data Grid management sys-
tems. In Proceedings of the 21st IEEE Conference on Mass Storage Systems and Technologies UMSS’04,
College Park, MD. IEEE Press, Los Alamitos, CA.

MOORE, R. AND MERZKY, A. 2002. Persistent archive basic components. GGF Document Series GFD.26,
Global Grid Forum. (July)

MOORE, R., PRINCE, T. A., AND ELLISMAN, M. 1998. Data-intensive computing and digital libraries. Comm.
ACM 41, 11, 56–62.

MOORE, R., RAJASEKAR, A., AND WAN, M. 2005. Data Grids, digital libraries and persistent archives: An
integrated approach to publishing, sharing and archiving datas. Proceedings of the IEEE (Special Issue
on Grid Computing) 93, 3.

NCSA GRIDFTP CLIENT. 2005. http://dims.ncsa.uiuc.edu/set/uberftp/.

NEUMAN, B. C. AND TS’O, T. 1994. Kerberos: An authentication service for computer networks. IEEE
Comm. 32, 9 (Sept.), 33–38.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 51

ORAM, A. 2001. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly & Associates, Inc.,
Sebastopol, CA.

OZSU, M. T. AND VALDURIEZ, P. 1999. Principles of Distributed Database Systems, 2nd Ed. Prentice-Hall, Inc.,
Upper Saddle River, NJ.

PAPAZOGLOU, M. P. AND GEORGAKOPOULOS, D. 2003. Service-oriented computing. Comm. ACM 46, 10.

PARASHAR, M. AND HARIRI, S. 2004. Autonomic Grid computing. In Proceedings of the International Confer-
ence on Autonomic Computing (ICAC’04). New York. IEEE Press, Los Alamitos, CA.

PARK, S.-M. AND KIM, J.-H. 2003. Chameleon: A resource scheduler in a data Grid environment. In Pro-
ceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003
(CCGrid’03). Tokyo, Japan. IEEE Press, Los Alamitos, CA.

PEARLMAN, L., KESSELMAN, C., GULLAPALLI, S., SPENCER JR., B., FUTRELLE, J., KATHLEEN, R., FOSTER, I., HUBBARD, P.,
AND SEVERANCE, C. 2004. Distributed hybrid earthquake engineering experiments: Experiences with
a ground-shaking Grid application. In Proceedings of the 13th IEEE Symposium on High Performance
Distributed Computing (HPDC-13). Honolulu, HI. IEEE Press, Los Alamitos, CA.

PHAN, T., RANGANATHAN, K., AND SION, R. 2005. Evolving toward the perfect schedule: Co-scheduling job
assignments and data replication in wide-area systems using a genetic algorithm. In Proceedings of the
11th Workshop on Job Scheduling Strategies for Parallel Processing. Cambridge, MA. Springer-Verlag,
Berlin, Germany.

PITOURA, E. AND BHARGAVA, B. 1999. Data consistency in intermittently connected distributed systems. IEEE
Trans. Knowl. Data Engin. 11, 6, 896–915.

PLANK, J., BECK, M., ELWASIF, W. R., MOORE, T., SWANY, M., AND WOLSKI, R. 1999. The internet backplane
protocol: Storage in the network. In Proceedings of the Network Storage Symposium (NetStore99). Seattle,
WA. University of Tennessee, Knoxville, http://loci.cs.utk.edu/dsi/netstore99/.

PLANK, J. S., MOORE, T., AND BECK, M. 2002. Scalable sharing of wide area storage resource. Tech. Rep.
CS-02-475, (Jan.) Department of Computer Science, University of Tennessee .

POLYCHRONOPOULOS, C. D. AND KUCK, D. J. 1987. Guided self-scheduling: A practical scheduling scheme for
parallel supercomputers. IEEE Trans. Comput. 36, 12, 1425–1439.

POSTEL, J. AND REYNOLDS, J. K. 1985. RFC 959: File transfer protocol. Standard.

QIN, X. AND JIANG, H. 2003. Data Grids: Supporting data-intensive applications in wide area networks.
Tech. Rep. TR-03-05-01, (May) University of Nebraska, Lincoln, NE.

RAJASEKAR, A., MOORE, R., LUDASCHER, B., AND ZASLAVSKY, I. 2002. The GRID adventures: SDSC’S storage
resource broker and Web services in digital library applications. In Proceedings of the 4th All-Russian
Scientific Conference (RCDL’02) Digital Libraries: Advanced Methods and Technologies, Digital Collec-
tions. Dubna, Russia, Joint Institute for Nuclear Research, Russia.

RAJASEKAR, A., WAN, M., MOORE, R., KREMENEK, G., AND GUPTIL, T. 2003. Data Grids, collections, and Grid
bricks. In Proceedings of the 20 th IEEE Conference on Mass Storage Systems and Technologies (MSS’03).
San Diego, CA. IEEE Press, Los Alamitos, CA.

RAJASEKAR, A., WAN, M., MOORE, R., AND SCHROEDER, W. 2004. Data Grid federation. In Proceedings of
the 11th International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’04). Las Vegas, NV. CSREA Press, Las Vegas, NV.

RANGANATHAN, K. AND FOSTER, I. 2002. Decoupling computation and data scheduling in dis-
tributed data-intensive applications. In Proceedings of the 11th IEEE Symposium on High
Performance Distributed Computing (HPDC). Edinburgh, Scotland. IEEE Press, Los Alamitos,
CA.

RANGANATHAN, K., IAMNITCHI, A., AND FOSTER, I. 2002. Improving data availability through dynamic model-
driven replication in large peer-to-peer communities. In Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID’02). Berlin, Germany. IEEE Press, Los Alami-
tos, CA.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SCHENKER, S. 2001. A scalable content-addressable
network. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM’01). ACM Press, New York, NY, 161–172.

ROWSTRON, A. I. T. AND DRUSCHEL, P. 2001. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware’01). Heidelberg, Germany. Springer-Verlag, Berlin, Germany,
329–350.

SAMAR, A. AND STOCKINGER, H. 2001. Grid data management pilot (GDMP): A tool for wide area replica-
tion. In Proceedings of the IASTED International Conference on Applied Informatics (AI’01). Innsbruck,
Austria. ACTA Press, Calgary, Canada.

ACM Computing Surveys, Vol. 38, March 2006.

52 S. Venugopal et al.

SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access control models.
Comput. 29, 2, 38–47.

SAROIU, S., GUMMADI, K. P., DUNN, R. J., GRIBBLE, S. D., AND LEVY, H. M. 2002. An analysis of internet content
delivery systems. SIGOPS Operat. Syst. Rev. 36, Special Issue: Network Behavi., 315–327.

SHATDAL, A., KANT, C., AND NAUGHTON, J. F. 1994. Cache conscious algorithms for relational query processing.
In Proceedings of the 20th International Conference on Very Large Data Bases(VLDB’94). Santiago, Chile.
Morgan Kaufmann Publishers Inc., San Francisco, CA, 510–521.

SHETH, A. P. AND LARSON, J. A. 1990. Federated database systems for managing distributed, heterogeneous,
and autonomous databases. ACM Comput. Surv. 22, 3, 183–236.

SLOAN DIGITAL SKY SURVEY. 2005. http://www.sdss.org/.

STOCKINGER, H., SAMAR, A., ALLCOCK, B., FOSTER, I., HOLTMAN, K., AND TIERNEY, B. 2001. File and object repli-
cation in data Grids. In Proceedings of the 10th IEEE Symposium on High Performance and Distributed
Computing (HPDC10). San Francisco, CA. IEEE Press, Los Alamitos, CA.

STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER, D. R., KAASHOEK, M. F., DABEK, F., AND BALAKRISHNAN, H. 2003.
Chord: A scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw. 11, 1,
17–32.

STONEBRAKER, M., DEVINE, R., KORNACKER, M., LITWIN, W., PFEFFER, A., SAH, A., AND STAELIN, C. 1994. An eco-
nomic paradigm for query processing and data migration in mariposa. In Proceedings of 3rd International
Conference on Parallel and Distributed Information Systems. Austin, TX. IEEE Press, Los Alamitos, CA.

SZALAY, A. AND GRAY, J. 2001. The world-wide telescope. Science 293, 5537, 2037–2040.

SZALAY, A. S., Ed. 2002. Proceedings of SPIE Conference on Virtual Observatories. Waikoloa, HI. Vol. 4846.
SPIE.

TAKEFUSA, A., TATEBE, O., MATSUOKA, S., AND MORITA, Y. 2003. Performance analysis of scheduling and repli-
cation algorithms on Grid datafarm architecture for high-energy physics applications. In Proceedings of
the 12th IEEE international Symposium on High Performance Distributed Computing(HPDC12). Seattle,
WA. IEEE Press, Los Alamitos, CA.

TATEBE, O., MORITA, Y., MATSUOKA, S., SODA, N., AND SEKIGUCHI, S. 2002. Grid datafarm architecture for
petascale data intensive computing. In Proceedings of the 2nd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid (CCGrid’02). Berlin, Germany. IEEE Press, Los Alamitos,
CA.

TATEBE, O., OGAWA, H., KODAMA, Y., KUDOH, T., SEKIGUCHI, S., MATSUOKA, S., AIDA, K., BOKU, T., SATO, M., MORITA,
Y., KITATSUJI, Y., WILLIAMS, J., AND HICKS, J. 2004. The second trans-pacific Grid datafarm testbed and
experiments for SC2003. In Proceedings of International Symposium on Applications and the Internet—
Workshops (SAINT’04). Tokyo, Japan. IEEE Press, Los Alamitos, CA.

TATEBE, O., SODA, N., MORITA, Y., MATSUOKA, S., AND SEKIGUCHI, S. 2004. Gfarm v2: A Grid file system that
supports high-performance distributed and parallel data computing. In Proceedings of the Computing
in High Energy and Nuclear Physics Conference (CHEP’04) Interlaken, Switzerland.

THAIN, D., BASNEY, J., SON, S.-C., AND LIVNY, M. 2001. The kangaroo approach to data movement on the Grid.
In Proceedings of the 10th IEEE Symposium on High Performance Distributed Computing (HPDC’10).
San Francisco, CA. IEEE Press, Los Alamitos, CA.

THAIN, D., BENT, J., ARPACI-DUSSEAU, A., ARPACI-DUSSEAU, R., AND LIVNY, M. 2001. Gathering at the well:
Creating communities for Grid I/O. In Proceedings of Supercomputing. Denver, CO. IEEE Press, Los
Alamitos, CA.

THOMAS, R. K. AND SANDHU, R. K. 1997. Task-based authorization controls (TBAC): A family of models for
active and enterprise-oriented authorization management. In Proceedings of the IFIP TC11 WG11.3 11th
International Conference on Database Securty XI. Lake Tahoe, CA. Chapman & Hall, Ltd., London, UK,
166–181.

TRANSACTION MANAGEMENT RESEARCH GROUP (GGF). 2005. http://www.data-grid.org/tm-rg-charter.
html.

VENUGOPAL, S. AND BUYYA, R. 2005. A deadline and budget constrained scheduling algorithm for e-Science
applications on data Grids. In Proceedings of the 6th International Conference on Algorithms and Archi-
tectures for Parallel Processing (ICA3PP’05). Melbourne, Australia. Lecture Notes in Computer Science,
vol. 3719. Springer-Verlag, Berlin, Germany.

VICKREY, W. 1961. Counter-speculation, auctions, and competitive sealed tenders. J. Finance 16, 1, 9–37.

VRAALSEN, F., AYDT, R., MENDES, C., AND REED, D. 2001. Performance contracts: Predicting and monitor-
ing Grid application behavior. In Proceedings of the 2nd International Workshop on Grid Comput-
ing (GRID’01). Denver, CO. Lecture Notes in Computer Science, vol. 2242. Springer-Verlag, Berlin,
Germany.

ACM Computing Surveys, Vol. 38, March 2006.

A Taxonomy of Data Grids 53

WAGNER, D. AND SCHNEIER, B. 1996. Analysis of the SSL 3.0 Protocol. In Proceedings of the 2nd USENIX
Workshop on Electronic Commerce. USENIX Press, Berkeley, CA.

WASSON, G. AND HUMPHREY, M. 2003. Policy and enforcement in virtual organizations. In Proceedings of the
4th International Workshop on Grid Computing. Phoenix, AZ. IEEE Press, Los Alamitos, CA.

WHITE, B. S., GRIMSHAW, A. S., AND NGUYEN-TUONG, A. 2000. Grid-based file access: The legion I/O model.
In Proceedings of the 9th IEEE International Symposium on High Performance Distributed Computing
(HPDC’00). Pittsburgh, PA. IEEE Press, Los Alamitos, CA.

WINTON, L. 2003. Data Grids and high energy physics—A Melbourne perspective. Space Science Re-
views 107, 1–2, 523–540.

YAMAMOTO, N., TATEBE, O., AND SEKIGUCHI, S. 2004. Parallel and distributed astronomical data analysis on
Grid datafarm. In Proceedings of 5th IEEE/ACM International Workshop on Grid Computing (Grid’04).
Pittsburgh, PA. IEEE Press, Los Alamitos, CA.

YU, J. AND BUYYA, R. 2004. A novel architecture for realizing Grid workflow using tuple spaces. In Proceed-
ings of the 5th IEEE/ACM International Workshop on Grid Computing (GRID’04). Pittsburgh, PA. IEEE
Press, Los Alamitos, CA.

ZHAO, B. Y., KUBIATOWICZ, J. D., AND JOSEPH, A. D. 2001. Tapestry: An infrastructure for fault-tolerant wide-
area location and. Tech. Rep. CSD-01-1141, University of California at Berkeley.

Received May 2005; revised November 2005; accepted January 2006

ACM Computing Surveys, Vol. 38, March 2006.

