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Abstract 

This paper presents a taxonomy of finite automata construction algorithms. Each algorithm 

is classified into ODe of two families: those based upon the structure of regular expressions, 

and those based upon the automata-theoretic work of Myhill and Nerode. 

Many of the algorithms appearing in the literature are based upon the structure of regular 

expressions. In this paper, we make this term precise by defining regular expressions as 

a ~>term algebra, and automata constructions as various E-algebras of automata. Each 

construction algorithm is then presented as the unique natural homomorphism from the E

term algebra of regular expressions to the appropriate E-algebra of automata. The concept 

of duality is introduced and used to derive more practical construction algorithms. In this 

way, we successfully present (and relate) algorithms given by Thompson, Berry and Sethi, 

McNaughton and Yamada, Glushkov, and Aho, Sethi, and Ullman. Efficient implementations 

(including those due to Chang and Paige, and Briiggemann-Klein) are also treated. As a 

side-effect we derive several new algorithms. 

A pair of impractical, but theoretically interesting, construction algorithms were presented 

by Myhill and Nerode. Some encoding techniques are used to make the algorithms practical 

- giving Brzozowski's algorithm based upon derivatives. DeRemer's algorithm is derived 

as an encoding of Brzozowski's algorithm. Two new algorithms, related to DeRemer's, are 

derived. Lastly, this family of algorithms is related to the first family. 

In addition to classifying the algorithms, we identify (and abstract from) the coding tricks 

and implementation details present in many of the published algorithms. This paper also 

presents an introduction to finite automata, E-algebras, and their properties. 

"Third printing. 
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1 Introduction 

The construction of finite automata (from regular expressions) is one of the oldest and most 

extensively developed areas of computing science. Just as the variety of applications has grown, 

so has the diversity of solutions. Some of the solutions were devised to deal with an extension of 

the problem, such as constructing a finite automaton from an extended regular expression!, while 

others were devised with efficiency in mind. Such a myriad of objectives in the algorithm design 

has lead to solutions that are difficult to compare. Frequently, people that study the algorithms 

(or constructions as they are called in this paper) marvel that two seemingly different algorithms 

construct isomorphic finite automata from the same regular expression. In order to differentiate 

these algorithms, a taxonomy of construction algorithms would be useful. This report presents 
such a taxonomy. A related taxonomy of finite automata minimization algorithms appears in 

[Wats93]. 

In developing a taxonomy, we have the luxury of rearranging the relationships between the 

algorithms, possibly introducing relationships that are not present in the history of an algorithm's 

development. In this paper, for example, we derive DeRemer's construction from Myhill and 

Nerode's construction. Historically, the theory of LR parsing had a much greater influence on 

DeRemer's construction. 

Section 2 gives definitions of finite automata and some transformations on them. Section 3 

introduces E-algebras, the foundations for the first family of finite automata constructions. Sec

tions 4 and 5 include the two families of finite automata constructions. Appendix A gives the basic 

definitions required for reading this paper, while Appendix B presents some proofs related to Sec

tion 4. The construction relationships are summarized in the "family tree" shown in Figure 1. 

The main results of the taxonomy are summarized in the conclusions - Section 6. 

In this taxonomy, the finite automata constructions are arranged into two families: those 

constructions that are based upon the structure of regular expressions, and those based upon the 

automata-theoretic results of Myhill and Nerode. 

The first family of constructions is presented in Section 4: 

• Thompson's construction as presented in [Thom68]. This algorithm constructs a (possibly 

nondeterministic) finite automaton (possibly with E-transitions). The description in this 

paper (Construction 4.3) is based upon those given in [AU92, HU79, Wood87, ASU86] as they 

are usually considered more readable than Thompson's original paper. Additionally, a more 

practical (top-down) version of Thompson's construction is presented (Construction 4.5). 

• The E-lookahead finite automaton construction. This algorithm (Construction 4.11) con
structs finite automata that are similar to those constructed by Thompson's construction. 

They may include so-called E-lookahead transitions. 

• The guarded commands program construction. This algorithm (Construction 4.17) con

structs a guarded commands program from a regular expression. The program is an acceptor 

for the regular language denoted by the regular expression. It is presented in this paper as 

a refinement (using hard-coded guarded commands) of the E-lookahead construction. 

• The left-biased and right-biased constructions. These two constructions (Constructions 4.22 

and 4.43 respectively) are related by being the mirror images (or duals) of one another. They 
both construct an f.-free (possibly nondeterministic) finite automaton. 

• Berry and Sethi's construction as presented in [BS86, Glus61, MY60]. This construction 

(Construction 4.32) uses some precomputation of sets to construct the same finite automa

ton as the left-biased construction. This construction is implicitly given by Glushkov [Glus61] 

and McNaughton and Yamada [MY60], where it is used as the nondeterministic finite au

tomaton construction underlying a deterministic finite automaton construction. Berry and 

Sethi [BS86] explicitly present this algorithm, and they relate it to Brzozowski's construction 

1 An extended regular expression is one that includes either the intersection or complementation operator. 
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"" E-.Jgebr"-' (§ 4) Myhill-Nerode (5.11) 

RL relation 
Thompson left-biased "'", right-biased 

-- - - ....... " 

(4.3) (4.22) - ~ (443) 
Myhill-Nerode minimal (5.19) 

top-down :RFA's derivatives item sets 

(4.5) 

-----.... . 

.,ji:ny-Sethi (4;2) ~ (445) Item sets (5.69) Brzozowski (5.34) 

---_. - -~ .. --
€-lookahead subset constr. : sobset constr. X filter 

---- ..... ----------". 

(4.11) 

-. .... 
Aho-Sethi-Ullman (4.50) 

DeRemer (5.75) 

guarded commands 
McNaughton- Yamada-Glushkov (4.39) 

Y filter 

(4.17) Improved item sets (5.82) 

Figure 1: The family trees of finite automata constructions. The constructions fall into two broad 

categories: those based on the structure of regular expressions (descended from E-algebras), and 

those based on the Myhill-Nerode theorem. Each construction presented in this paper appears 

as a vertex in this tree, along with the name that it is given in this paper. If the construction is 

presented explicitly (in this paper), the construction number appears in parentheses (indicating 

where it appears in this paper). Solid edges denote refinements of the solution (and therefore 

explicit relationships between constructions). They are labeled with the name of the refinement. 

Dotted edges denote relationships (between algorithms) that are not elaborated upon in this paper. 
Some of the dotted edges are labeled with the name of the relationship or refinement. Vertices 

that are connected by a dashed edge are related by duality (they are the "mirror images" of one 

another). 
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[Brzo64). We also present (in Construction 4.38) a variant of the Berry-Sethi construction 

that is more easily implemented in practice. 

• McNaughton, Yamada and Glushkov's construction as presented in [MY60, Glus61). This 

construction (Construction 4.39) produces a deterministic finite automaton. 

• The dual of the Berry-Sethi construction. This construction (Construction 4.45) is the 
"mirror image" of Berry and Sethi's construction. A variant of this construction was also 

mentioned in passing by Aho, Sethi, and Ullman [ASU86, Example 3.22, pg. 140); it appears 

in this paper as Construction 4.48. In OUf presentation of this construction, we correct an 

error appearing in Aho, Sethi, and Ullman's version (see Construction 4.48 of this paper). 

• Aho, Sethi, and Ullman's construction as presented in [ASU86, Alg. 3.5, Fig. 3.44). This 

construction (Construction 4.50) produces a deterministic finite automaton. It is the "mirror 
image" of the McNaughton-Yamada construction. 

The second family of constructions (from regular expressions) are those based upon the automata

theoretic results of Myhill and Nerode [RS59). They are presented in Section 5: 

• Myhill and Nerode's construction as presented in [RS59). This construction (Construc

tion 5.11, which is given as part of the proof of the Myhill-Nerode theorem) uses some 

language theoretical results to construct a deterministic finite automaton. A version of 

this construction (Construction 5.19) gives the unique (up to isomorphism) minimal finite 

automaton. It is not a very practical construction (and usually is not even given as a con

struction), as it relies on the computation of possibly infinite sets. Certain encoding schemes 

can be used to represent these infinite sets, making the construction practical. Brzozowski '8 

and DeRemer's constructions are two such encoding schemes. 

• Brzozowski's construction as presented in [Brz064). This construction (Construction 5.34) 

gives a deterministic finite automaton. We derive it as an encoding of the Myhill-Nerode 

construction, although Brzozowski's derivation was entirely independent. 

• The item set construction. This construction (Construction 5.69, not appearing in the 

literature) produces a deterministic finite automaton, and is based upon the concept of 

"items" which is borrowed from LR parsing [Knut65). In this paper, we present it as an 

encoding of the Myhill and Nerode construction. 

• DeRemer's construction as presented in [DeRe74). This construction (Construction 5.75) 

produces a deterministic finite automaton. In this paper, it is derived from the item set 

construction, although DeRemer made use of LR parsing in his derivation. 

• An improvement of the item set construction. This construction (Construction 5.82, not 

appearing in the literature) produces a deterministic finite automaton, and is also hased upon 

the item set construction. Furthermore, it is an improvement of DeRemer's construction. 

A variant (Construction 5.85) is also related to the Aho-Sethi-Ullman deterministic finite 

automaton construction. 
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2 Finite automata 

In this section we define finite automata, some of their properties, and some transformations on 

finite automata. 

Definition 2.1 (Finite automaton): A finite automaton (an FA) is a 6-tuple (Q, V,T,E,S,F) 

where 

• Q is a finite set of states, 

• V is an alphabet, 

• T E P(Q x V x Q) is a transition relation, 

• E E P(Q x Q) is an <-transition relation 

• S <:;; Q is a set of start states, and 

• F <:;; Q is a set of final states. 

The definitions of an alphabet and function P are in Definition A.9 and Convention A.I respec

tively. D 

Remark 2.2: We will take some liberty in our interpretation of the signatures of the transition 

relations. For example, we also uSe the signatures T E V -.., P( Q x Q), T E Q x Q -.., P(V), 

T E Q x V -.., P(Q), T E Q -.., P(V x Q), and E E Q -.., P(Q). In each case, the order of the 

Q's from left to right will be preserved; for example, the function T E Q -.., P(V x Q) is defined 

as T(p) = {(a,q): (p,a,q) E T}. The signature that is used will be clear from the context. See 

Remark A.3. The definition of -.., appears in Convention A.2. D 

Remark 2.3: Our definition of finite automata differs from the traditional approach in three 
ways: 

D 

• multiple start states are permitted; 

• the transition relations are presented in a symmetrical way (without any inherent left-to-right 

bias); and 

• the €-transitions (relation E) are separate from transitions on alphabet symbols (relation 

T). 

Since we only consider finite automata in this paper, we will frequently simply use the term 

automata. 

Convention 2.4 (Finite automaton state graphs): When drawing the state graph corre

sponding to a finite automaton, we adopt the following conventions: 

• All states are drawn as circles (vertices). 

• Transitions are drawn as labeled (with < or alphabet symbol a E V) directed edges between 
states. 

• Start states have an in-transition with no source (the transition does not come from another 

state). 

• Final states are drawn as two concentric circles. 

For example, the FA below has two states, one is the start state, and other is the final state, with 

a transition on a: 

D 
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2.1 Properties of finite automata 

In this subsection we define some properties of finite automata. To make these definitions more con

cise, we introduce particular finite automata M = (Q, V, T, E, 5, F), M o = (Qo, Va, To, Eo, So, Fo), 

and M, = (Q" Vl ,T"El ,5"F,). 

Definition 2.5 (Size of an FA): Define the size of an FA as IMI = IQI. 0 

Definition 2.6 (Isomorphism (~) of FA's): We define isomorphism (~) as an equivalence 

relation on FA's. Mo and Ml are isomorphic (written Mo ~ M,) if and only if Vo = VI and there 

exists a bijection 9 E Qo --+ Ql such that 

• Tl = {(g(p),a,g(q)): (p,a,q) E To}, 

• El = {(g(p),g(q)): (p,q) E Eo}, 

• 51 = {g(s) : S E 50}, and 

• Fl = {g(f) : f E Fo}. 

o 

Definition 2.7 (Extending the transition relation T): We extend transition relation T E 

V --+ P( Q x Q) to rEV' --+ P( Q x Q) as follows: 

T'(€) = E' 

and (for a E V,w E V') 

T'(aw) = E' 0 T(a) 0 r(w) 

Operator 0 (composition) is defined in Convention A.6. This definition could also have been 

presented symmetrically. 0 

Remark 2.8: We also sometimes use the signature T' E Q x Q --+ pry'). 0 

Remark 2.9: If E = 0 then E' = 0' = 1Q where 1Q is the identity relation on the states of M. 
o 

Definition 2.10 (The language between states): The language between any two states 

qo, ql E Q is T'(qo, q,). 0 

Definition 2.11 (Left and right languages): The left language of a state (in M) is given by 
;-

function L M E Q --+ PlY'), where 

;-

L M(q) = (u s: s E 5: r(s,q)) 

~ 

The right language of a state (in M) is given by function L M E Q --+ pry'), where 

~ 

L M(q) = (u f: f E F: T'(q,J)) 

The subscript M is usually dropped when no ambiguity can arise. 0 

Definition 2.12 (Language of an FA): The language of a finite automaton (with alphabet V) 

is given by the function LPA E FA --+ P(V') defined as: 

LPA(M) = (U s,f: s E 5 II f E F: T'(s, J)) 

o 



8 2 FINITE AUTOMATA 

Property 2.13 (Language of an FA): From the definitions of left and right languages (of a 

state), we can also write: 

..... 
CFA(M) = (U f : f E F: C (f)) 

and 

..... 
CFA(M) = (U s: s E S: C (s)) 

o 

Definition 2.14 (Extension of CFA): Function CFA is extended to [FA]", as CFA([M]",) = 

CFA(M). This use of brackets ([,l) is defined in Convention A.7. The choice of representative is 

irrelevant, as isomorphic FA's accept the same language. 0 

Definition 2.15 (Complete): A Complete finite automaton is one satisfying the following: 

Complete(M) == (1/ q, a: q E Q 1\ a E V : T(q, a) # 0) 

o 

Property 2.16 (Complete): For all Complete FA's (Q, V,T,E,S,F): 

..... 
(U q : q E Q: C (q)) = V' 

o 

Definition 2.17 (e-free): Automaton M is e-free if and only if E = 0. 0 

Remark 2.18: Even if Mis e-free it is still possible that e E CFA(M): in this case S n F # 0. 0 

Definition 2.19 (Reachable states): For M we can define a reach ability relation Reach(M) c;: 
(Q x Q) defined as 

Reach(M) = (if2(T) U E)' 

Functions 1f and if are defined in Convention A.4. Similarly the set of start-reachable states is 
defined to be: 

SReachable(M) = Reach(M)(S) 

and the set of final-reachable states is defined to be: 

FReachable(M) = (Reach(M))R(F) 

Reversal of a relation is defined in Definition A.20. The set of useful states is: 

Reachable(M) = SReachable(M) n FReachable(M) 

o 

Remark 2.20: For FA M = (Q, V,T,E,S,F), function SReachable satisfies the following inter
esting property: 

..... 
q E SReachable(M) == C M(q) # 0 

FReachable satisfies a similar property: 

..... 
q E FReachable(M) == C M(q) # 0 

o 
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Definition 2.21 (Useful automaton): A Useful finite automaton is one with only reachable 
states: 

Useful(M) == (Q = Reachable(M)) 

o 

Definition 2.22 (Start-useful automaton): A Useful, finite automaton is one with only start
reachable states: 

Useful,(M) == (Q = SReachable(M» 

o 

Definition 2.23 (Final-useful automaton): A Useful, finite automaton is one with only final

reachable states 

Useful,(M) == (Q = FReachable(M)) 

o 

Remark 2.24: Useful, and Useful, are closely related by FA reversal (to be presented in Trans

formation 2.34). For all M E FA we have Useful,(M) == Useful,(M R
). 0 

Property 2.25 (Deterministic finite automaton): A finite automaton M is deterministic if 

and only if 

• it does not have multiple start states, 

• it is f.-free, and 

• transition function T E Q x V ----> P(Q) does not map pairs in Q x V to multiple states. 

Formally, 

Det(M) == (lSI:S 1AE-free(E)A(lfq,a: q E QAaE V: IT(q,a)l:S 1» 

o 

Definition 2.26 (Deterministic FA's): DFA denotes the set of all deterministic finite automata. 

We call FA \ DFA the set of nondeterministic finite automata. 0 

Convention 2.27 (Thansition function of a DFA): For (Q, V, T, 0, S, F) E DFA we can consider 

the transition function to have signature T E Q x V + Q. (A definition of + appears in 

Convention A.2.) The transition function is total if and only if the DFA is Complete. 0 

Property 2.28 (Weakly deterministic automaton): Some authors use a definition of a 
deterministic automaton that is weaker than Det; it uses left languages and is defined as follows: 

, <- <-
Det (M) == (If qo,q, :qo E QAq, E QAqo #q,: £(qo)n Ltg,) = 0) 

o 

Remark 2.29: Det(M) => Det'(M) is easily proved. We can also demonstrate that there exists 

an M E FA such that Det'(M) A ,Det(M): 

({ qo, q,}, {b}, {(qo, b, qo), (qO, b, q,)}, 0, 0, 0) 

<- <-
In this FA, £ (qo) = £ (q,) = 0, but state qO has two out-transitions on symbol alphabet b. 0 



10 2 FINITE AUTOMATA 

Definition 2.30 (Minimality of a DFA): An M E DFA is minimal as follows: 

Min(M) == (V M' : M' E DFA II LFA(M) = LFA{M') : IMI :<; IM'I) 

Predicate Min is defined only on DFA's. Some definitions are simpler if we define a minimal, but 

still Complete, DFA as follows: 

Minc(M) == (V M' : M' E DFA II Complete{M') II LFA(M) = LFA(M') : IMI :<; IM'I) 

Predicate Mine is defined only on Complete DFA's. 0 

Property 2.31 (Minimality of a DFA): An M, such that Min(M), is the unique (modulo 

~) minimal DFA, as will be shown in Section 5. There is no similar uniqueness property for 

nondeterministic finite automata. 0 

Property 2.32 (An alternate definition of minimality of a DFA): For the purposes of 

minimizing a DFA, we use the definition (defined only on DFA's): 

Minimal(Q, V,T,0,S,F) == 
---4 ---4 

(VqO,ql :qo E Qllql E Qllqo #ql: L(qo) # L(qd) 

II Useful(Q,v,T,0,S,F) 

We have the property that (for all M E DFA) Minimal(M) == Min(M). It is easy to prove 

that Min(M) =? Minimal(M). The reverse direction follows from the Myhill-Nerode theorem 

(Theorem 5.7). 

A similar definition that relates to Mine is (also defined only on DFA's): 

---4 ---4 

MinimalC(Q, V,T,0,S,F) == (V qO,ql :qo E Qllql E Qllqo # ql: L(qo) # L(ql)) 

II Useful,(Q, V, T, 0, S, F) 

We have the property that (for all M E DFA such that Complete(M)) Minimalc(M) == Minc(M). 

The contrapositive of Minc(M) ~ Minirnalc{M) is easily proved, and the reverse direction also 
follows from Theorem 5.7. 0 

Remark 2.33: In the literature the second conjunct in the definition of predicate Minimale is 

sometimes erroneously omitted. The necessity of the conjunct can be seen by considering the DFA 

({p, q}, {a}, {(p, a,p), (q, a, q)}, 0, 0, {p}) 

f-- f-- ~--+ 

Here L (p) = L (q) = 0 (which is also the language of the DFA), t:. (p) = {a}', and t:. (q) = 0. 
Without the second conjunct, this DFA would be considered Minimale; clearly this is not the 

case, as the minimal Complete DFA accepting 0 is (0, {a}, 0, 0, 0, 0). 0 

2.2 Transformations on finite automata 

Transformation 2.34 (FA reversal): FA reversal is given by postfix (superscript) function 

R E FA --4 FA, defined as: 

(Q, V,T,E,S,F)R = (Q, V,TR,ER,F,S) 

Fnnction R satisfies 

and preserves E-free and Useful. 

Reversal functions are defined in Definition A.19, and preservation is defined in Definition A.IS. 
o 
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Remark 2.35: The property (CFA(MR))R = CFA(M) means that function CFA is its own dual, 

and is therefore symmetrical (see Definitions A.21 and A.22). 0 

Definition 2.36 (Extending reversal to [FA]",): We extend reversal to R E [FAle< ---> [FA]", 

defined as ([M],,)R = [MR]". The definition is independent of the choice of representative (of an 

equivalence class of "') since R and isomorphism commute. 0 

Transformation 2.37 (Useless state removal): There exists a function useful E FA ---> FA 

that removes states that are not reachable. A definition of this function is not given here, as it is 

not needed. Function useful satisfies 

(\I M: M E FA: Useful(useful(M)) II CFA(useful(M)) = CFA(M)) 

and can be defined so as to preserve ~-free, Useful, Det, and Min. 0 

Transformation 2.38 (Removing start state unreachable states): Transformation useful, E 

FA ---> FA removes those states that are not start-reachable: 

useful,(Q, V,T,E,S,F) = let U = SReachable(Q, V,T,E,S,F) 

in 

(U,V,Tn(U x V x U),En(U x U),SnU,FnU) 

end 

Function useful s satisfies 

(\I M: M E FA: Useful, (useful,(M)) II CFA(useful,(M)) = CFA(M)) 

and preserves Complete, <-free, Useful, Det, and (trivially) Mine and Min. 0 

Remark 2.39: A function useful, E FA ---> FA could also be defined, removing states that are 

not final-reachable. Such a function is not needed in this paper. 0 

Transformation 2.40 (Completing an FA): Function complete E FA ---> FA is defined as: 

complete(Q, V,T,E,S,F) = let s be a new (sink) state 

in 

end 

It satisfies the requirement that: 

let T' = {(p,a,s): ,(3 q: q E Q: (p,a,q) E Tn 

T" = if (T' i' 0) tben {s} x V x {s} else 0 fi 
in 

end 

(Q U if (T' i' 0) then {s} else 0 fi, V, 
T U T' u T", E, S,F) 

(\I M: M E FA : Complete(complete(M)) 1\ LFA(complete(M)) = LFA(M)) 

In general, this transformation adds a sink state to the FA. This transformation preserves ~-free, 

(trivially) Complete, Det, and Mine. 0 

Transformation 2.41 (~ removal): An ~ removal transformation remove( E FA ----10 FA is one 

that satisfies 

(\I M: M E FA: <-free(remove,(M)) II CFA(remove,(M)) = CFA(M)) 

There are several possible implementations of remove(. One implementation is: 

remove",ym(Q,V,T,E,S,F) = let T'(a)=E'oT(a)oE' 

in 

(Q, V, T', 0, E'(S), (E·)R(F)) 

end 

This implementation preserves Complete and Useful and is symmetrical. 0 
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Transformation 2.42 (Subset construction): The function subset transforms an E-free FA 
into a DFA (in the let clause T' E P(Q) x V -----> P(P(Q))) 

subset(Q, V, T, 0, S, F) let T'(U,a) = {(U q: q E U: T(q,a))} 
F' = {U: U E P(Q) /I U n F i- 0} 

in 

(P(Q), V, T', 0, {S}, F') 

end 

In addition to the obvious property that (for all M E FA) LFA(subset(M)) = LFA(M), function 

subset satisfies 

(V M: M E FA /I E-free(M) : Det(subset(M)) /I Complete(subset(M))) 

and preserves Complete, f.-free, Det, and Mine_ It is also known as the "powerset" construction. 

D 

Property 2.43 (Subset construction): Let Mo = (Qo, V,To,0,So,Fo) and M, = subset(Mo) 
be finite automata. By the subset construction, the state set of M, is P(Qo). We have the 

following property: 

-> -> 
(Vp:PEP(Qo): LM,(p)=(Uq:qEp: LMo(q))) 

D 

Definition 2.44 (Optimized subset construction): The function subsetopt transforms an 

E-free FA into a DFA. This function is an optimized version of subset. 

sUbsetopt(Q, V,T,0,S,F) = let T'(U,a) = {(U q: q E U: T(q,a))} 

Q' = P(Q) \ {0} 
F' = {U: U E P(Q) /I U n F i- 0} 

in 
(Q',v, T' n (Q' x V x Q'), 0, {s},F') 

end 

In addition to the property that (for all M E FA) LFA(subsetopt(M)) = LFA(M), function 

sUbsetopt satisfies 

(V M : M E FA /I E-free(M) : Det(subsetopt(M))) 

and preserves f.-free, Det. 0 

2.2.1 Algorithms implementing the subset construction 

Since many of the states in a subset-constructed DFA may be unreachable, we consider an algo

rithm implementing the composition useful s 0 subset. 

In this algorithm, D (for done) is the set of states (of the DFA being constructed) already 

considered, and U (for un-done) is the set of states to be considered. The type of S', D, and U 
is P(P(Q)) (in particular, S' is a set of states in the constructed DFA). This algorithm will yield 

a Complete DFA. In the case that the language of the automaton (being subset constructed) is 

not V', then there will be a state 0 E D which is the sink state. The algorithm is implemented in 

Dijkstra's guarded command language [Dijk76]. 



2.2 Transformations on finite automata 

Algorithm 2.45: 

{(Q,v,T,0,S,F) E FA} 

S',T':= {S},0; 
D,U:=: 0,8'; 

do U # 0-+ 

od; 

let u: u E U; 

D,U:= D u {u},U\ {u}; 
for a: a E V do 

rof 

d := (U q : q E u : T(q, a)); 
if d <t D -+ U:= U U {d} 

~ dE D -+ skip 
ft· , 
T':= T' U {(u,a,d)} 

F' := {d: d E DAd n F # 0} 
{(D, V,T',0,S',F') = useful, 0 subset(Q, V,T,0,S,F)} 
{Complete(D, V,T',0,S',F')} 
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An algorithm implementing useful, 0 subsetopt, yielding a (possibly non-Complete) DFA with 
no sink state is: 

Algorithm 2.46: 

{(Q, V,T,0,S,F) E FA} 

S',T':= (if (S # 0) then {S} else 0 ft),0; 

D,U:=:0,S'; 

do U#0-+ 
let u : U E U; 

D,U:=DU{u},U\{u}; 
for a : a E V A (3 q : q E u : T(q, a) # 0) do 

d := (U q : q E u : T(q, a)); 

if d <t D -+ U:= U U {d} 
! dE D -+ skip 
ft· , 
T':= T' U {(u,a,d)} 

rof 

od; 

F':={d:dEDAdnF#0} 

{(D, V, T', 0, S', F') = useful, 0 sUbsetopt(Q, V, T, 0, S, F)} 

Remark 2.47: The algorithm given above can be made more efficient by removing the 3 quan

tification from the for guard, and implementing it in an if-ft structure within the for statement. 

The algorithm is left in this form since it is used in Construction 4.50 to present the Aho-Sethi
Ullman algorithm. 0 
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3 ~-algebras and regular expressions 

Many of the known FA constructions have definitions that follow the syntactic structure of regular 
expressions. The best known (and perhaps the easiest to understand) is Thompson's construction 

[Thom68[. We would like to formalize the notion of "following the syntactic structure." This is 

done by introducing L:-algebras in this section. Regular expressions are then defined as a L:-algebra. 

3.1 Some basic definitions 

This subsection provides the basic definitions required for L:-algebras. Most of these definitions 

are taken, with slight modification, from [EM85]. 

Definition 3.1 (Sorts): Given set S (the elements of which are called sorts), a set of sets X is 

called S-sorted if the elements of X correspond one-te-one with S. The element of X corresponding 
to s E S is written X,. 0 

Definition 3.2 (Signature L:): A signature L: is a pair (S, r) where 

• S is a finite set, and 

• r is an (S' x S)-sorted set called the operators. 

We write elements of S· x S as « 81)"" Sk >, S >. We can make a couple of notational 
simplifications: 

o 

• Given 'Y E r «51, .. ,8",>,8> we write.,: 81 x ... X Sk -----j. s. Constant k is known as the arity 

of operator 'Y. 

• For, E r «>,8> we write 'Y : 5, and call 'Y a constant; that is, constants are operators of 
arity zero. 

Remark 3.3: Although the set S' x S is infinite (for S # 0), this does not imply that there are in-

finitely many operators. There may be « s" .. . , Sm >, s >E S' x S such that r «" ... ,',..>,'> = 

0; in that case, there is no operator f : 81 x ... X 8 m ----+ s. 0 

Several of the following definitions are with respect to signature L: = (S, r). 

Definition 3.4 (Term,,): The S-sorted set Term,; is the smallest S-sorted set such that2 

o 

• if'Y : s, x ... X Sk -----> s (for some k ~ 0) (s, 8" ... , Sk E S) and (for all 1 ::; i ::; k) 

ti E Term>:.; then 'Y[t" ... , tk] E Term>: •. We adopt the convention that 'Y[] is simply 
written 'Y-

Definition 3.5 (L:-algebra): A L:-algebra is a pair (V, F) such that 

• V is an S-sorted set, and 

• F is a set of functions to (with 'Y E r) such that 

Set V is called the carrier set of the L:-algebra. Set F is called the operator set of the L:-algebra. 
o 

2 Square brackets ([ and]) are used syntactically here. 
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Definition 3.6 (E-term algebra): The E-term algebra is the E-a1gebra (TermE, F) such that 

F = {Jo : (-y : s, x ... X Sk ----> s)} 

where (for all fo E F) fo E TermE .• , x ... x TermE .• , ----> TermE. is defined as fo(I" ... , tk) = 

'"I[t" ... , tkJ. 0 

Definition 3.7 (E-homomorphism): Given E-a1gebras (V,F) and (W,G), a E-homomorphism 

from (V, F) to (W, G) is an 5-indexed set of functions h such that 

• for all s E 5 we have h, E V, ----> W" and 

• for all f : 81 X ... X Sk -----I- S, j, E F, g-y E G, and el E VS1, • •• 1 ek E Vs /., 

o 

Remark 3.8: In the case that there is only one sort, a E-homomorphism is a singleton set and 

we speak of the homomorphic function. 0 

Definition 3.9 (Initial E-algebra): A E-algebra is initial if there is a unique E-homomorphism 

from it to all other E-algebras. 0 

Proposition 3.10 (E-term algebras): E-term algebras are initial. 0 

Example 3.11 (E-algebras): Consider signature E = (5, r) where 5 consists only of sort expr, 

and r consists of constant a : expr and operator plus: expr x expr ~ expr. Some examples of 

terms in the E-term algebra are plus[a,aJ and plus[plus[a,plus[a,aJ],aJ. 

We define another E-a1gebra X with the natural numbers as the carrier set, 0 (the natural 

number) as the constant, and fplu,(X,y) = (xmaxy) + 1 as the operator. 
As an example of a L:-homomorphism, we define the "expression tree height" function as a 

homomorphism from the E-term algebra to algebra X. With only one sort, we define function hexpr 

as hexpr(a) = 0 and h<xpr(plus[e, fll = fplu,(hexpr(e), hexpr(J» = (hexpr(e) max hexpr(J» + 1. 0 

3.2 Regular expressions as a ~>term algebra 

Definition 3.12 (Regular expressions): We define regular expressions (over alphabet V) as 

the E-term algebra over signature E = (S, 0) where 

• S consists of a single sort Reg (for regular expression), and 

.0 is a set of several constants: €,0,al1 ... ,an : Reg (where V = {al, ... ,an }) and five 

operators· : Reg x Reg ----> Reg (the dot operator), U : Reg x Reg ----> Reg, * : Reg ----> Reg, 
+ : Reg ----> Reg, and ? : Reg ----> Reg. 

Signature E will be used throughout the remainder of this paper. We make the following notational 

simplification when writing terms in the E-term algebra: 

• operators' (the dot) and U are written as infix operators; 

• operator' is usually not written , juxtaposition is used instead; 

• operators *, +, and ? are written as postfix (superscript) operator. 

The following will also be used for conciseness: 

• a term in the ~-term algebra is called a regular expression; 
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o 
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• the set TermE is denoted by RE; 

• the operators have (ascending) precedence: u, " * and + and ?; f, 0, and al, . .. , an E V are 
constants; 

• regular expressions are usually fully parenthesized; parentheses can be omitted where the 

operator precedence allows. 

Remark 3_13: The? operator is non-standard. It will be used to denote union with the language 

containing the empty string Eo See Definition 3.17. 0 

Remark 3.14: Some authors write U as (infix) + or as I. 0 

Example 3.15 (A regular expression): Given alphabet V = {a,b} the regular expression 

·IUla, fJ, .[b)) is usually written as (a U f)b'. This particular regular expression will be used in 

running examples of FA construction. 0 

Remark 3.16: Some authors leave 0, ?, or + out of the definition of regular expressions. Strictly 

speaking, operators f, +, and? are not needed in the signature, since they can be constructed 

from the other operators. There are some FA constructions (from REs) that have running time 

dependent on the size of the regular expression. In these cases, treating the extra operators fully 

(instead of as abbreviations) becomes advantageous. 0 

Definition 3.17 (The ~-algebra of regular languages): We define a ~-algebra of regular 

languages (over alphabet V), with carrier P{V') and constants: 

• {f} E P(V') (the language containing only the empty string); 

• 0 E P{V') (the empty language); 

• {a} E P{V') (for all a E V). 

and operators: 

• U E P(V') x P{V') ---; P(V') (language union); 

• . E P{V') x P{V') ---; P{V') (language concatenation); 

• * E P(V') ---; P{V') (Kleene closure); 

• + E P{V') ---; P{V') (+ closure), and 

• ? E P{V') ---; P{V') (union with {f}, see Definition A.14). 

Each of these operators corresponds (in the obvious way) to the operators of signature ~. 0 

Definition 3.18 {Language denoted by an RE}: The function CRE is the (unique) homomor

phism from the ~-term algebra of REs to the ~-algebra of regular languages. Function CRE maps 

regular expressions to the languages they denote. 0 

Definition 3.19 (Equivalence (==) of REs): Two regular expressions, Eo and E" are said to 

be equivalent (written Eo == E" note the dot above the =) if and only if they denote the same 

language. 0 

Definition 3.20 (The nullable ~-algebra): We define the nullable ~-algebra as follows: 

• The carrier set is {true,jalse}. 
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• The constants are: true, false, and false (corresponding respectively to E, 0, and a: a E V). 

Here the constant false corresponds to 0 and to all a E V. The operators are: V (disjunction), 

1\ (conjunction), the constant function true, the identity function, and (again) the constant 

function true (corresponding respectively to U, " *, +, and ?). The operators corresponding 

to * and to ? are interesting because they map their argument to the constant true. 

We denote the (unique) homomorphism from RE to this ~-algebra as Null. 0 

Property 3.21 (The nullable ~-algebra):The homomorphism Null has the property that for 

allEERE 

E E L.RE(E) == Null(E) 

o 

Definition 3.22 (RE reversal): Regular expression reversal is given by the postfix (superscript) 
isomorphism R E RE --; RE 

ER E 

0R 0 

aR a (foraEV) 

(Eo UEdR (Ef)) U (E[') 

(Eo· E,)R (E[') . (Ef)) 

(E')R (ER)' 

(E+)R (ER)+ 

(E')R (ER)' 

Function R satisfies the obvious property that 

o 

Remark 3.23: The property satisfied by regular expression reversal implies that L.RE is an 

example of a symmetrical function (according to Definition A.22). 0 



18 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE 

4 Constructions based on regular expression structure 

A finite automaton construction is any function f) such that the following diagram commutes: 

RE f FA 

~ 
CPA 

Creg 

In this section, we will be defining some I;-algebras with [FA]", as the carrier set; the idea 

behind the above commuting diagram still holds in this case, as all isomorphic FA's accept the 

same language. The isomorphism class of an FA corresponding to a given regular expression is 

the image of the regular expression under the (unique) homomorphism from RE to the other 

E-algebras. Such a homomorphism is a FA construction. Thompson's construction is considered 

first, followed by a derivation of Berry and Sethi's, McNaughton, Yamada and Glushkov's, and 

Aho, Sethi, and Ullman's constructions. We also consider methods of efficiently implementing 

some of the constructions, and methods of constructing FA '8 from extended regular expressions 

(see Definition 4.53). 

4.1 Thompson's construction 

One I;-algebra is based upon an RE to FA construction given by Thompson in [Thom68]. The 

explanations given in textbooks such as [HU79, Wood87, AU92, ASU86] are generally considered 

more readable than Thompson's original paper. None of those presentations made use of ~
algebras. 

Definition 4.1 (Thompson's ~>algebra of FA's): The carrier set is [FA]=:!. The operator 

requirement3 is: 

• For the binary operators, the representatives of the arguments must have disjoint state sets. 

For any two equivalence classes (under =:::) we can always choose a representative of each 

such that they satisfy this requirement. 

The correctness of the operators4 is not included here, but is discussed in Theorem B.l. Along with 

each operator we present a graphic representation of the operator. The operators are separated 

by horizontal lines for clarity. The operators (with subscript Th, for Thompson) are: 

let qo, q1 be new states 

in 

end 

let 
in 

end 

go, gl be new states 

[( {qo, q.}, V, 0, 0, {qo}, {q.} )]'" 

3~-algebras presented in this section may have a list of items such as this, stating the requirements on the 

arguments for the correctness of the operators. 

4For example, the concatenation operator is correct when (for all Mo, Ml in Thompson's ~-algebra) 

.cpA (C.,Th([Moj", [MIl,,)) = .cPA ([Moj,,).c FA ([MIl,,)· 
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Cu,Th let qo, ql be new states 

in 

end 

for all a E V. 

C.,Th([Mo]", [Md,,) = let (Qo, V,To,Eo, So, Fo) = Mo 

(Q" V,T"E
"

S"F,) = M, 
in 

let E' = Eo UE, u (Fo X S,) 
in 

[(Qo UQ" V,To UT
"

E',So,F,)]" 
end 

end 

Cu,Th([Mo]"" [Md",) = let (Qo, V, To, Eo, So, Fo) = Mo 

(Q" V,T
"

E
"

S"F,) = M, 

qo, ql be new states 

in 

end 

let Q' = Qo UQ, U {qo,q,} 

in 

end 

E' = Eo U E, u ({qo} x (So U S,)) 

U ((Fo U F,) X {q,}) 

[(Q', V, To UT" E', {qo}, {q,} )]'" 

Mo 

19 
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C.,Th([M)",,) = let (Q,v,T,E,S,F)=M 

qo, ql be new states 

in 
let Q' = Q u {qo,q,} 

E' = Eu ({qo} x S) u (F x S) U (F x {q,}) U {(qo,qIl} 

in 
[(Q', V, T,E', {qo}, {q'})b 

end 

end 

€ 

M 

€ 

C+,Th([Mje,) = let (Q,v,T,E,S,F) = M 

qo, ql be new states 

in 
let Q'=QU{qo,q,} 

E' = E U ({qo} x S) U (F x S) U (F x {q,}) 

in 
[(Q', V,T,E', {qo}, {q,}))"" 

end 

end 

€ 

M 

C',Th([M)",,) = let (Q,V,T,E,S,F)=M 

qo, ql be new states 

in 
let Q' = Q u {qo,q,} 

E' = E U ( {qo} x S) U (F x {q,}) U {( qo, ql)} 

in 
[(Q', V,T,E', {qo}, {q,}))"" 

end 

end 
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M 

These operators are symmetrical (see Definition A.22 for a definition of symmetrical operators 

and functions). Furthermore, they do not depend upon the choice of representative of the equiva

lence classes (under "'). An automaton in Thompson's I:-algebra (here we speak of a representative 

FA, instead of the isomorphism class) has the following properties: 

• It has a single start state with no in-transitions. 

• It has a single final state with no out-transitions. 

• Every state has either a single in-transition on a symbol (in V), or at most two € in

transitions. 

• Every state has either a single out-transition on a symbol (in V), or at most two € out

transitions. 

These properties are symmetrical because the operators are symmetricaL Hopcroft and Ullman 

have shown [HU79] that in practice these properties facilitate the quick simulation of M. For the 

remainder of this paper we will not duplicate properties such as these, but rather state whether 

the operator is symmetricaL 0 

Remark 4.2: In the literature, these operators are usually presented as having arguments and 

results of type FA instead of [FA]". Such a presentation is given in terms of particular represen

tatives, and ignores the nondeterminism in choosing new states. D 

Construction 4.3 (Thompson): Thompson's construction is the (unique) homomorphism Th 
from RE to Thompson's I:-algebra of FA's. 0 

Example 4.4 (Thompson's construction): We construct a particular representative5 of 

Th((a U t)b') C.,Th( Th(a U t), Th(b')) 

C.,Th (CU,Th( Th(a), Th(t», C"Th(b» 

C.,Th(CU,Th(Ca,Th, C"Th), C"Th(Cb,Th» 

(The regular expression is taken from Example 3.15.) The representative is shown in Figure 2. 0 

In the next two subsections, we consider two algorithms that construct an FA (from a regular 

expression) based on the top-down syntactic structure of the regular expression. In these two 

constructions, we use regular expressions as syntactic objects denoting regular languages. 

The first construction is a top-down version of Thompson's construction. The second one is 

also top-down, but constructs a so-called t-lookahead automaton. Such an automaton can be 

efficiently simulated or it can be converted to an efficient program, accepting the language of the 

automaton. 

50bviollsly, constructing the entire equivalence class of isomorphic FA's is not possible 
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E 

E 

E 

Figure 2: A representative FA of the isomorphism class Th((a U E)b'). 

4.1.1 A top-down version of Thompson's construction 

The top-down version of Thompson's construction is a practical implementation of homomorphism 

Th. It is a function of three parameters: a start state s, a regular expression E, and a final state 

j. It produces an FA, with start state s and final state j, accepting the language CRE(E). 

Construction 4.5 (Top-down Thompson's): We assume a universe of available states U, to 

define function 

td E U x HE x U --> FA 

The function is defined recursively on the structure of regular expressions: 

td(s,E,J) 

td(s,0,J) 

td(s, a, J) 

({s, f}, V, 0, {(s, j)}, {s}, {f}) 

({s, f}, V, 0, 0, {s}, {f}) 

({s, n, V, {(s, a, j)}, 0, {s}, {f}) (for all a E V) 

td(s, Eo· E 1 , J) = let p, q be new states 
in 

end 

let (Qo,v, To, Eo, {s}, {p}) = td(s,Eo,p) 

(Ql, V, T1 , E!,{q} , {f}) = td(q, E
" 

J) 

in 

(Qo U Ql, V, To U Tl,Eo U El U {(p,q)}, {s}, {f}) 

end 

td(s, Eo U E
" 

J) = let p, q, r, t be new states 

td(s, E', J) 

in 

end 

let (Qo,v, To, Eo, {p},{q}) = td(p,Eo,q) 

(Ql,V,T1 ,E1 ,{r},{t}) = td(r,El,t) 

in 

(Qo l.I Ql U {s, n, V, To U Tl,Eo U El 

U({s} x {p,r})U({q,t} x {f}),{s},{f}) 

end 

let p, q be new states 

in 
let (Q,v,T,E,{p}, {q}) = td(p,E,q) 

in 
(Q U {s, n, V, T, E U {(s,p), (q,p), (q, J), (s, j)}, {s}, {f}) 

end 
end 
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td(s, E+, J) let p, q be new states 
in 

let (Q,V,T,E,{p},{q}) = td(p,E,q) 

in 

(Q U {s, J}, V, T, E U {(s,p), (q,p), (q, J)}, {s}, {i}) 
end 

end 

td(s, E" J) let p, q be new states 

in 

let (Q,V,T,E, {p}, {q}) = td(p,E,q) 

in 

(Q U {s, J), V, T, E U {(s,p), (q, J), (s, J)}, {s}, {i}) 
end 

end 

Function td satsifies the property that, for all E ERE: 

Th(E) let s, f be new states 
in 

[td(s,E,J)]" 
end 

o 

The advantage offunction td over homomorphism Th (Construction 4.3) is one of implementation. 

In Thompson's construction, the subparts of the final FA are constructed in isolation; when two 
subparts are combined some states may have to be renamed to ensure that the subparts have 

disjoint state sets. In the top-down construction, more global knowledge is available concerning 

the final FA and this type of problem is avoided. (In practice, function td would make use of a 

global variable: the set of remaining available states.) 
We do not prove the correctness of construction td in this paper. 

4.1.2 Constructing E-Iookahead automata 

In this subsection, we extend the top-down Thompson construction (function td) to construct 

E-lookahead finite automata (LAFA). In an LAFA, every E-transition is qualified by a symbol of 

V (known as the lookahead symbol). When simulating an LAFA, an E-transition can be taken if 

the next symbol of the input string matches the lookahead symbol of the E-transition. Naturally, 

for any given state, it is desirable that there only be one f-transition from the state on any given 

symbol. The following definitions formalize this. 

Definition 4.6 (E-Iookahead automata): An E-lookahead finite automaton (LAFA) is a 6-tuple 

(Q, V,T,E,S,F) which is a normal FA with one exception: 

• E-transition relation is now E E P(Q x V x Q) instead of E E P(Q x Q). 

o 

Remark 4.7: A more commonly presented definition of LAFA's involves both E-Iookahead and 

normal E-transitions (also called don't-care transitions). Since we have combined the two, we 

implement normal E-transitions as lookahead transitions, where the lookahead set is V (the entire 
alphabet). 0 

~ ~ 

Remark 4.8: Naturally, we extend such functions as L, L, and LFA to use the definition of 

a LAFA. As a result, the language accepted by an LAFA is in accordance with the intuitive 
interpretation of an LAFA. 0 
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Remark 4.9: In order to present the following definition, we require the definition of function 

First E RE -----> P(V). Function First is defined in Definition 4.60. Informally, First(E) is the 

set of all alphabet symbols that can occur as the first symbol of a word in C. RE (E). 0 

Definition 4.10 (Lookahead function): In order to make the definition of the LAFA construc

tion readable, we introduce function look E RE x P(V) -----> P(V), defined as: 

look(E,L) = First(E) U if (Null(E» then Leise 0 fi 

Argument L is called the set of lollow symbols. 0 

We now define an LAFA construction, based on the top-down version of Thompson '8 construc
tion. 

Construction 4.11 (E-lookahead finite automaton): We define function K which takes four 

parameters: a start state s, a regular expression, final state I, and a lookahead set L E P(V). 

As with the top-down version of Thompson's construction, we assume a universe of states U. 
Function K E U x RE x U x P(V) -----> LAFA is defined recursively on the structure of regular 

expressions: 

K(s, E,f, L) 

K(s,0,I,L) 

K(s,a,I,L) 

= ({s,f},v,0,{s) x L x {f},{s},{f}) 

({s,1}, V,0,0,{s},{f}) 

({s, I}, V, {(s, a,f)},0, {s), {f}) (for all a E V) 

K(s,Eo ·E1 ,f,L) = let p,q be new states 

K(s,Eo UE1 ,I,L) 

K(s,E',f,L) 

in 

end 

let (Qo, V, To, Eo, {s), {p}) = K(s, Eo, p, look(E1 , L» 

(Ql, V,T1 ,E1 , {q}, {!}) = K(q,E1o/,L) 

in 

(Qo U Ql, V, To UT" Eo u El 

U({p) x look(E1 ,L) x {q}),{s},{f}) 

end 

let p, q, T, t be new states 
in 

end 

let (Qo,v, To, Eo, {p}, {q}) = K(p,Eo,q,L) 

(Ql, V, T1 , Edr}, {t}) = K(r, E
" 

t, L) 

in 

end 

(Qo U Q, u {s,!}, V, To U T"Eo U E, 

U ({s) x look(Eo,L) x {p}) 

U ({s) x look(E"L) x {r}) 

u({q,t} xLx {f}),{s},{f}) 

let p, q be new states 

in 

end 

let (Q, V, T,E, {p}, {q}) = K(p, E, q, L U First(E» 

in 

end 

(QU {s,I},V,T,EU ({s,q) x First(E) x {p}) 

U({s,q} x L x {f}), {s}, {f}) 
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K(s,E+,j,L) 

K(s,E',j,L) 

D 

let p, q be new states 

in 

end 

let (Q, V, T, E, {p}, {q}) = K(p, E, q, L U First(E)) 

in 

end 

(QU{s,f}, V,T,EU({s,q} x First(E) x {p}) 

U({q}xLx{J}),{s},{J}) 

let p, q be new states 

in 

end 

let (Q, V,T,E,{p},{q}) = K(p,E,q,L) 

in 

end 

(Q U is, f}, V, T,Eu ({s} x First(E) x {p}) 
U ({ s, q} x L x {J}), {s}, {f}) 
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Remark 4.12: Since we make use of a single symbol of lookahead, we assume that the input 

string always has an end-marker $ concatenated on its right. We assume that $ E V and that $ 

does not appear elsewhere in the regular expression. This means that, for E ERE: 

let s, j be new states 

in 

K(s, E, j, {$}) 
end 

is a LAFA accepting CRE(E). D 

Definition 4.13 (Deterministic LAFA's): A LAFA is deterministic if and only if it has at most 

one start state and no state has more than one out-transition (either an €-lookahead or a normal 
transition) on any given alphabet symbol. D 

We present some determinism conditions that ensure that Construction 4.11 produces deter

ministic LAFA's. 

Definition 4.14 (Determinism conditions): In order for function K to produce a deterministic 

LAFA we impose the following requirements for particular cases of K: 

• For K(s,Eo UE1,j,L) we require that look(Eo,L) n look(El,L) = 0 . 

• For K(s, E', j, L), K(s, E+, j, L), and K(s, E?, j, L) we require that First(E) n L = 0. 

D 

Remark 4.15: The lookahead transitions in LA FA 's make them are more efficient to simulate 
than an equivalent FA constructed with Thompson's construction. Simulation of a deterministic 

LAFA is as efficient as the simulation of a DFA. D 

Example 4.16 (LAFA): Given new states s, j, we construct the deterministic LAFA K(s, (a U 

€)b', j, {$}). The €-lookahead transitions are labeled with both € and the lookahead symbols. The 

state graph is given in Figure 3. 0 
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<, b 

<,a 

€,b,$ 

<, $ 

Figure 3: The LAFA K((a U <)b'). 

Construction 4.17 (Creating a program from a LAFA): A deterministic LAFA can also 

be converted into a program which is a hard-coded simulation of the LAFA. We now describe 

a mapping N E RE x P(V) --> GCL, where GCL denotes the set of all guarded commands 

programs [Dijk76J. This construction is based upon the LAFA construction. The created programs 

are correct when the determinism conditions of Definition 4.14 hold. In the generated program, 

we assume that variable w E V' is the input string (with an end-marker $ concatenated on its 

right), and that hd(w) refers to the first symbol of wand tl(w) refers to the remainder of w. We 

annotate the program fragments (in the definition of N) with the state names (in braces) in the 

corresponding definition of Construction 4.11. (The semantics of the guarded commands specify 

that if none of the guards in an if-fi statement are true, the statement is equivalent to abort.) 

N«,L) 

N(0,L) 

N(a,L) 

N(Eo ·E1,L) 

N(EoUE1,L) 

N(E',L) 

N(E+ ,L) 

N(E',L) 

= {s} 
if hd(w) E L --> skip 

Ii 

{f} 
{s} abort{f} 

{s} (forallaEV) 

if hd(w) = a ---+ w:= tl(w) 
Ii 

{f} 

{s} N(Eo, look(E1, L )){p}; 

{q}N(E" L){f} 
{s} 
if hd(w) E look(Eo,L) ---+ {p}N(Eo,L){q} 

~ hd(w) E look(E1,L) ---+ {r}N(El,L){t} 
Ii 

{f} 

{s} 
do hd(w) E First(E) ---+ {p}N(E, First(E) U L){q} 

od 

{f} 
{s} 
repeat {p}N(E, First (E) U L){q} 

until hd(w) '/. First(E) 

{f} 

{s} 
if hd(w) E First(E) ---+ {p}N(E,L){q} 

~ hd(w) E L ---+ skip 
Ii 

{f} 

As with Construction 4.11 we concatenate an end-marker $ on the right of the input string w. 
The entire program of the acceptor (for E ERE) is: 
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{w E V'{$}} 
N(E, {$}); 

if w = $ ---> skip 

fi 

{w E .cRE(E)} 

Termination of the program is equivalent to w E .cRE(E). 0 
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Example 4.18 (Programs from LAFA's): We construct the program corresponding to (aUE)b'. 

o 

{w E V'{$}} 
if hd(w) E {a} ---> 

if hd(w) = a ---> w := tl(w) 

fi 

~ hd(w) E {b, $} ---> 

fi· , 

if hd(w) E {b, $} ---> skip 

fi 

do hd(w) E {b} ---> 

od 

if hd(w) = b ---> w:= tl(w) 

fi 

if w = $ ---> skip 

fi 

{w E {a, E}{b}'} 

4.2 Towards the Berry-Sethi construction 

We now consider E-algebras of E-free FA's. One such E-algebra can be given with symmetrical 

operators. 

Definition 4.19 (Symmetrical E-free E-algebra operators): The carrier set is [FA]",. The 

operator requirement is (as with Thompson's E-algebra): 

• For the binary operators, the representatives of the arguments must have disjoint state sets. 

The symmetrical E-free preserving operators of the E-algebra are defined using Thompson's E

algebra operators and symmetrical function remove",y= (which is extended to [FA]" ---> [FA],,): 

Cf;,Sym 

C0,sym 

Ca,sym 

C.,syrn 

CU,sym 

remove€,sym 0 C€,Th 

removeE,sym 0 C0,Th 

remove£,sym 0 Ca,Th 

remove€,sym 0 C.,Th 

remove€,sym 0 CU,Th 

remove€,sym a C*,Th 

remove€,sym 0 C+,Th 

removet,sym 0 C? ,Tk 

(for all a E V) 

These operators are symmetrical since they are compositions of symmetrical operators (see Propo

sition A.23). An FA in this E-algebra has the property that it is E-free. 0 
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These operators are cumbersome to present fully. Furthermore, they are not particularly useful 

in practice. For this reason, we now consider asymmetrically defined c-free preserving operators. 

The first asymmetrical <-free preserving ~-algebra operators that we consider are the left-biased 

ones. The image of a RE in this ~-algebra is easier to compute than its image in the ~-algebra 
given in Definition 4.19). 

Definition 4.20 (~-algebra of left-biased <-free operators): The carrier set is [FAJ"". The 

operator requirements are: 

• For binary operators, the representatives of the arguments must have disjoint state sets . 

• The following is required of the representatives of each argument: 

it is €-free, 

it has a single start state, and 

the single start state has no in-transitions. 

A proof of the correctness of these operators is outlined in Theorem B.2. As in Thompson's 

E-algebra, each operator is presented here with a graphic representation of the operator6. Parts 

of the operator definitions are intentionally clumsy or verbose. This is done to facilitate the 

derivation of a ~-algebra of reduced FA's (in Definition 4.29). The operators are: 

C0,LBFA 

Ca,LBFA 

for all a E V. 

let 

in 

end 

let 

in 

end 

let 

in 

end 

qo be a new state 

[( {qo}, V, 0, 0, {qo}, {qo} )J" 

-0 
qo be a new state 

[( {qo}, V, 0, 0, {qo}, 0)J" 

qo, ql be new states 

6The graphic representations of the operators depict only the simplest cases of each operator. Thick arrowed 

lines are intended to depict multiple transitions, while dotted arrowed lines are transitions that are removed from 

the constructed FA. In the case of the non-constant operators, the start states (of the arguments) is struck out 

indicating that it is removed. 
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C.,LBPA([Mo);",[M,j",j = let (Qo,V,To,0,{so},Fo)=Mo 

(Q" V, T
" 

0, {sd,F, ) = M, 
No = E E LPA(Mo) 

in 

end 

N, = E E LFA(M, ) 
N = E E (LPA(Mo)LPA(M,») 
qo be a new state 

let Q' = Qo \ {so} U Q, \ {sd U {qo} 
T' = To U T, U (Fo x T,(S,)) 

in 

end 

Mo 

u ({qo} x (To(so) 

U if (No) then T,(S,) else 0 Ii)) 
F' = F, U if (N,) then Fo else 0 Ii 

U if (N) then {qo} else 0 Ii 

[(Q', V,T' n (Q' x V x Q'), 

0,{qo},F'nQ')b 

CU,LBFA([Mo]""[M,j,,,) = let (Qo,V,To,0,{so},Fo)=Mo 
(Q" V, T" 0, {sd,F, ) = M, 

in 

end 

N = E E (LPA(Mo) U LPA(M, )) 
qo be a new state 

let Q' = Qo \ {so} U Q, \ {sd U {qo} 

in 

end 

T' = To UT, U ({qo} x (To(so) UT,(s,»)) 
F' = Fo U F, U if (N) then {qo} else 0 Ii 

[(Q', V, T' n (Q' x V x Q'), 
0,{qo},F'nQ')]", 

Mo 0 

29 
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C.,LBFA([M]",) = let (Q, V,T,0, {s},F) = M 
N = f E LFA(M)' (see Remark 4.21) 

in 

end 

qo be a new state 

let Q'=Q\{s}U{qo} 

in 

end 

T' = Tu (FU {qo}) x T(s) 
F' = F U if (N) then {qo} else 0 fi 

[(Q', V,T' n (Q' x V x Q'), 
0, {qo}, F' n Q')]", 

M 

C+,LBFA([M]"d = let (Q,v,T,0, {s},F) = M 
N = f E LFA(M)+ 

in 

end 

qo be a new state 

let Q'=Q\{s}U{qo} 

in 

end 

T' = Tu (FU {qo}) x T(s) 
F' = F U if (N) then {qo} else 0 fi 

[(Q', V, T' n (Q' x V x Q'), 

0, {qo},F' n Q')]", 
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let (Q,v,T,0,{s},F) = M 
N = € E CPA(M)' 

in 
qo be a new state 

let Q' = Q \ {s } U {qo} 

T'=TU({qo}xT(s)) 

(see Remark 4.21) 

F' = F U if (N) then {qo} else 0 fi 
in 

end 
end 

[(Q', V,T' n (Q' x V x Q'), 

0, {qo}, F' n Q')]" 

M OJ 
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The choice of representatives in these operators is irrelevant. For construction purposes, we 

note that € E CPA (M) '" s E F. 
Let LBFA (where LBFA C FA) denote the set of all finite automata that are images7 in this 

~;'algebra of some E ERE. (That is, LBFA is the smallest set that contains the LBFA constants 
aud is closed under the LBFA operators.) An LBFA has the following properties: 

• It is f.-free. 

• It has a single start state. 

• The single start state has no in-transitions. 

• All in-transitions to a state are on the same symbol (in V). This can be seen by consid

ering the constants Ca,LBFA (for all a E V), which are the only operators introducing new 

transitions on an alphabet symbol. 

Only the constants are symmetrical. 0 

Remark 4.21: Parts of the operator definitions of Definition 4.20 are intentionally clumsy; they 

are presented this way to facilitate the derivation of a ~-a1gebra of reduced FA's (Definition 4.29). 
o 

Construction 4.22 (Left-biased finite automata): Define construction lbfa E RE ----> 

[LBFA]", to be the unique homomorphism from REs to [LBFA]",. 0 

Example 4.23 (~-algebra of LBFA's): We construct a representative of the isomorphism class 

lbfa((a U <)b') (the regular expression is from Example 3.15). The representative is shown in 
Figure 4. 0 

Computing within the ~-algebra of LBFA's is inefficient. Each operator defined above does 

much redundant work. For example, the start states of the arguments to the operators are always 

removed, with only the out-transitions from the argument's start state being used. Additionally, 

the if-fi structures within the final states definition are of the same structure in each operator. 

We wish to introduce an encoding of LBFA's that will allow us to find cheap constructions that 

are equivalent to lbfa. We now describe such an encoding. 

A method of encoding an LBFA (Q, V, T, 0, {s}, F) is: 

7The images are really elements of [LBFAl~. We consider a particular representative of the image. 
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a 
a 

a b 

b 

b 

Figure 4: A representative LBFA of the isomorphism class Ibfa«a u ,)b'). 

• The ,-transitions are not needed (since LBFA's are ,-free). 

• State s has no in-transitions; only T(s) (the out-transitions from the start state) and s E F 
are needed. 

• All in-transitions to a state are on the same symbol (in V). Therefore, a state-ta-symbol 

map can be used, and the symbol components of T and T(s) can be removed. 

In the following subsection, we introduce reduced FA '8 as an encoding of LBFA's. 

4.2.1 Reduced FA's 

Definition 4.24 (RFA): A reduced FA (RFA) is a 7-tuple (Q, V,!ollow,first, last, null, Qmap) 
where 

o 

• Q is a finite set of states, 

• V is a alphabet, 

• follow E P(Q x Q) is a follow relation (replacing the transition relation), 

• first <; Q is a set of initial states (replacing T(s) in an LBFA) , 

• last <; Q is a set of final states, 

• null E {true,!alse} is a Boolean value (encoding s E F in an LBFA), and 

• Qmap E P( Q x V) maps each state to exactly one symbol (it is also viewed as Qmap E 

Q --> V, and its inverse as Qmap-l E V+ P(Q)). 

Definition 4.25 (Isomorphism of RFA's): We extend isomorphism ("') to RFA's. 0 

Definition 4.26 (Reversal of RFA's): Reversal of RFA's is given by postfix (superscript) 

function R E RFA --> RFA defined as: 

(Q, V,!ollow,first, last, null, Qmap)R = (Q, V,!ollow R, last,first, null, Qmap) 

o 

Definition 4.27 (Extending reversal to [RFAh'): We extend reversal to [RFA]", --> [RFA]", 

as ([M].,jR = [M R]". 0 

We can now give isomorphisms between [LBFA]", and [RFA]". These isomorphisms will be 
used to present a ~-algebra of RFA's. 
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Definition 4.28 (An isomorphism between [LBFAJ", and [RFAjo-): We define isomorphism 

encode E [LBFAj", --> [RFAj", 

encode([(Q, V,T, 0, {s},F)]",) = let Q'=Q\{s} 
in 

end 

[(Q', V, 1r2(T) n (Q' X Q'), 7r2(T(s», 
F n Q', s E F, (1r1 (T»R)j", 

and its inverse decode E [RFAj", --> [LBFAj", as 

decode([Mj",) = let (Q, V,follow,first, last, null, Qmap) = M 
s be a new state 

in 

end 

let T= {(qo,Qmap(ql),q,): (qo,qJ) Efollow} 
T' = {(s, Qmap(q),q): q E first} 
F = last U if (null) then {s} else 0 fi 

in 
[(Q U {s}, V, Tu T', 0, {s},F)j", 

end 

It is easy to verify that both of these functions are isomorphisms, and that decode is the inverse 

of encode. 0 

Given function encode and decode, we would like to obtain a E-algebra with [RFAj", as carrier 

(and a corresponding unique homomorphism rfa E RE --> [RFAj",) such that the following 

diagram commutes·. 

RE _",lbf,,,,a_[LBFAJ,,, 

rfa / 
/decode 

[RFAj", 

We can now define a E-algebra of RFA '5; it will be cheaper to compute the RFA image of 

a regular expression and map the RFA to an LBFA, than to compute the LBFA directly. The 

operators of the E-algebra of RFA's are defined using the LBFA operators and the isomorphisms 

encode and decode. 

Definition 4.29 (E-algebra of RFA's): The carrier is [RFAj",. Given the operator requirement 

in the E-algebra of LBFA's, the operator requirement in this E-algebra is: 

• For binary operators, the argument representatives must have disjoint state sets. 

The operators of the E-algebra of RFA's are defined in terms of the operators of LBFA's: 

Cf,RFA 

C0,RFA 
Ca,RFA 

C.,RFA([Mo]"" [MI ]",) 

Cu,RFA([Mo]"" [MI ],,) 

C"RFA([Mj",) 
C+,RFA([M]",) 
C',RFA ([Mj",) 

encode (C"LBFA) 
= encode ( C0,LBFA) 

encode(Ca,LBFA) (for all a E V) 
encode 0 C.,LBFA (decode ([Mo]",), decode([MJ],,) 

encode 0 Cu,LBFA(decode([Mo],,), decode([MJ]",)) 

= encode 0 C"LBFA (decode ([MJ",)) 
encode 0 C+,LBFA(decode([M]",) 
encode 0 C"LBFA(decode([Mj",)) 
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In full: 

C~,RFA 

For all a E V: 

Ca,RFA 

[(0, v, 0, 0, 0, true, 0)J", 

[(0, v, 0, 0, 0,!alse, 0)J", 

let qo be a new state 

in 

end 

[( {qo}, V, 0, {qo}, {qo},false, {(qo, a)})],., 

let (Qo, V,followo,firsto, lasto, nullo, Qmapo) = Mo 

(Q" V,Joliow " first" last" null" Qmap,) = M, 
in 

end 

let first' = firsto U if (nullo) then first, else 0 Ii 
last' = last, U if (null,) then lasto else 0 Ii 

in 

end 

[(Qo U Q" V,followo Ufollow, U (lasto x first,), 

first', last', nullo A null" Qmapo U Qmap,)J", 

CU,RFA([Mo],." [M,J",) = let (Qo, V,followo,firsto, lasto, nUllo, Qmapo) = Mo 

(Q" V,Jollow"first, , last"null" Qmap,) = M, 
in 

[(Qo U Q" V,!ollowo U follow" firsto U first" 

lasto U last" nullo V null" Qmapo U Qmap, )J", 
end 

let (Q, V,follow,first, last, null, Qmap) = M 

in 

[(Q, V,jollow U (last x first), first, last, true, Qmap)J", 

end 

C+,RFA([MJ",) = let (Q, V,follow,first, last, null, Qmap) = M 

in 

[(Q, V,follow U (last x first),first, last, null, Qmap)J", 

end 

let (Q, V,Jollow,first, last, null, Qmap) = M 

in 

[( Q, V,follow, first, last, true, Qmap) J '" 

end 

An ME RFA (the image of some E ERE) in this ~:-algebra has the following interesting property: 

• The number of states in M equals the number of (not necessarily distinct) symbols (of V) 

occuring in E. This follows from the fact that the operators Ca,RFA (for all a E V) are the 

only RFA operators that introduce new states. This property will be used in Section 4.5 to 

derive a practical implementation of the RFA operators. 

We can also note the following about the operators: 

• The operators do not depend on the choice of representatives of the equivalence classes. 
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• An important fact is that the operators of this ~;'a1gebra are symmetrical. That is, each 

operator is its own dual. 

o 

Definition 4.30 (Homomorphism from RE to [RFAJ",): We define rfa E RE ---> [RFAJ", to 
be the unique homomorphism from REs to [RFAJ",. 0 

Property 4.31 (Homomorphism rfa): Since the operators of the E-algebra of RFA's are 

symmetrical (symmetrical functions are defined in Definition A.22), so is rfa. That is, rfaoR(E) = 

Ro rfa(E). 0 

In Section 4.5 practical implementations of the E-a1gebra of RFA's (in particular, of homomor

phism rfa) are discussed. 

4.2.2 The Berry-Sethi construction 

Given the E-a1gebra of RFA's, we have the desired property that (for E ERE): 

Ibfa(E) = decode 0 rfa(E) 

We now present Berry and Sethi's FA construction. 

Construction 4.32 (Berry-Sethi): Construction BS E RE ---> [FAJ", is defined as: 

BS(E) = decode 0 rfa(E) 

An automaton constructed using this function has the same properties as one constructed with 

function lbfa, namely: 

• It is t-free. 

• It has a single start state. 

• The single start state has no in-transitions. 

• All in-transitions to a state are on the same symbol (of V). 

In practice, function BS is cheaper to compute than lbfa. 0 

Remark 4.33: The history of this algorithm is somewhat complicated. The following account is 

given by Briiggemann-Klein [B-K93bJ. GJushkov and McNaughton and Yamada simultaneously 

(and independently) discovered the same DFA construction [Glus61, MY60J. These papers use 

the same underlying t-free FA construction to which they apply the subset construction'- Un

fortunately, neither of them present the f.-free FA construction (without the subset construction) 

explicitly. The underlying t-free FA construction was presented in some depth (with correctness 

arguments) by Berry and Sethi in [BS86, Alg. 4.4J. In their paper, Berry and Sethi also relate 

the construction to the Brzozowski construction (Brzozowski '8 construction appears as Construc

tion 5.34 in this paper). 

In this paper, we adopt the convention that the t-free FA construction (without subset con

struction) is named after Berry and Sethi, while the construction with the subset construction is 

named after McNaughton, Yamada, and Glushkov. 0 

Example 4.34 (Berry-Sethi): A representative of the equivalence class BS((a U t)b') is shown 

in Figure 4 appearing on page 32. This is the same FA as in Example 4.23. (This follows from the 

fact that the Berry-Sethi construction and the LBFA E-algebra are commuting ways of arriving 

at the same FA isomorphism class). 0 

8The underlying construction may actually produce a nondeterministic finite automata. 
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It is possible to find a composition offunctions that commutes with Ibfa (and therefore decode 0 

ria) and is cheaper to compute in practice. We first give some required definitions. 

Definition 4.35 (Non-isomorphic mapping from [HFA]" to [FA],,): Function convert E 

[HFA]" --> [FA]" is defined as: 

convert([M],,) let (Q, V,follow,first, last, null, Qmap) = M 
in 

let T = {(qO, Qmap(qIl,qIl: (qo,qIl E follow} 
in [(Q,v,T,0,first, last)]" 
end 

end 

An important property of this function is that: 

(V E : E E HE : CFA 0 convert 0 rfa(E) = V-I CRE(E» 

This follows from the fact that convert simply discards the transitions that would be out of the 

start state. Function convert does not add any new states, unlike function decode which adds a 

new start state. 0 

Definition 4.36 (Adding a begin-marker): Define function markerb E HE --> HE as: 

markerb(E) = $ . E 

Where $ is an alphabet symbol, called a begin-marker. (In the literature, it is usually assumed -

for no particular reason - that symbol $ does not occur in regular expression E.) This function 
satisfies the obvious property that: 

(V E: E E HE : CRE(markerb(E» = {$}CRE(E» 

o 

Given functions markerbl ria, convert, and the following important property, we can construct an 
efficient alternative to homomorphism lbfa. 

Property 4.37 (Functions markerb, rfa, and convert): Because of the properties of convert 
and markerbl we can show that: 

convert 0 rfa 0 markerb(E) 

= {Definition of markerb } 

convert 0 rfa($ . E) 

{Definitions of rfa, C.,RFA } 

convert 0 C,RFA(rfa($), rfa(E» 

= {Definitions of rfa, CI,RFA } 

convert 0 C.,RFA(CI,RFA, rfa(E» 

{Definitions of convert, C,RFA, C1,RFA, rfa, and decode} 

decode 0 rfa(E) 

= { Commutativity} 

Ibfa(E) 

The composite convert 0 rfa 0 markerb is an alternative (and in practice, cheaper) implementation 

of Ibfa. 0 
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The fact that convert 0 rfa 0 markerb is a construction is depicted in the following commuting 

diagram: 

RE _",lbjc::a~. [LBFA]", 

markerb convert 

RE _-"r!c::.a_. [RFA]", 

Construction 4.38 (A variation on the Berry-Sethi construction): Instead of constructing 

an FA using the functions lbfa or BS, it is cheaper in practice to use the composite function 

convert a rfa a markerb (E) 

o 

4.2.3 The McNaughton-Yamada-Glushkov construction 

Since the Berry-Sethi construction produces an <-free (possibly nondeterministic) FA, we now 

consider making the resulting FA deterministic. 

Construction 4.39 (McNaughton-Yamada-Glushkov): (We assume that the composite 
function useful, a subset is extended to [FA)", ---+ [DFA]",.) The McNaughton-Yamada-Glushkov 

DFA construction is MYG E RE ---+ [DFA]"" defined as: 

MYG(E) = useful, a subset a decode a rfa(E) 

A DFA produced by MYG is Complete (by a property of useful, a subset). A practical imple

mentation is given in Algorithm 4.42 (given below), which implements useful, a subset a decode. 

Homomorphism rfa can be implemented using the techniques described in Section 4.5. This algo

rithm is the same9 as that given by McNaughton and Yamada [MY60, Construction method on 

pg. 44]. 0 

Example 4.40 (McNaughton-Yamada-Glushkov): In the case of (a u <)b' ERE, the Berry

Sethi construction produces a deterministic FA. Function MYG produces a similar DFA, with a 

sink state added to make it Complete. The state graph of a representative DFA of isomorphism 

class MYG«a U <)b') is shown in Figure 5. 0 

Remark 4.41: The variation on the Berry-Sethi construction (Construction 4.38) can be used 

for a practical implementation of the McNaughton-Yamada-Glushkov construction. This would 

yield a construction not appearing in the literature. 0 

9The only difference is that the unrolled first iteration step is not presented explicitly in McNaughton and 

Yamada's paragraph describing their algorithm. 
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a 
a 

a 
b 

a a,b 
b 

b 

Figure 5: A representative DFA of the isomorphism class MYG((a U <)b'). 

Composite function useful, 0 subset 0 decode can be implemented using Algorithm 2.45 (which 

implements useful, 0 subset). Here, the first iteration is unrolled to accommodate the definition 

of function decode, and some obvious improvements have not yet been made). 

{(Q, V,Jollow,first, last, null, Qmap) E RFA} 
let S = {{ s}} : S is a new state, s rt Q; 
T :=0; 
D,U:= 0,S; 
let u: u E U; 

D,U:= D U {u},U\ {u}; 
fora:aEVdo 

rof; 

d:= (U p:pE u: {q: qEfirstA Qmap(q) =a}); 

if d rt D ~ U := U U {d} 

idE D ~ skip 
fi· , 
T:= Tu {(u,a,d)} 

do U#0~ 

ad; 

let u: u E U; 

D,U:= D U {u},U\ {u}; 
for a: a E V do 

rof 

d:= (u p: p E u: {q: (p,q) E follow A Qmap(q) = a}); 

if d rt D ~ U:= U U {d} 
~ dE D ~ skip 

fi; 

T:= T U {(u,a, d)} 

F:= {d: d E DAd n last # 0} U if (null) then S else 0 fi 
{[(D, V, T, 0, S, F)]" = useful, 0 subset 0 

decode ([(Q, V,Jollow,first, last, null, Qmap)],,)} 

{Complete(D, V, T, 0, S, F)} 
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Some simplification gives the algorithm: 

Algorithm 4.42 (McNaughton-Yamada-Glushkov): 

{(Q, V,Jollow,first, last, null, Qmap) E RFA} 

let S = {{ s}} : s is a new state, s rt Q; 

T:=0; 

D,U:=S,0; 

for a: a E V do 

d:= {q: q E first II Qmap(q) = a} 

U:=UU{d}; 

T:= TU {({s},a,d)} 
roC; 

doU#0---> 

ad; 

let u: u E U; 

D,U:= D U {u},U \ {u}; 
for a: a E V do 

rof 

d:= (U p: p E u: {q: (p,q) E follow II Qmap(q) = a}); 

if d rt D ---> U:= U U {d} 
~ d E D ---> skip 

ft· , 
T:= Tu {(u,a, d)} 

F := {d : d E D II d n last # 0} U if (null) then S else 0 ft 
{[(D, V, T, 0, S, F)b = useful, 0 subset 0 

decode([(Q, V,Jollow,first, last, null, Qmap)],,)} 

{Complete(D, V, T, 0, S, F)} 

This algorithm is used in the McNaughton-Yamada construction [MY60]. 

4.3 The dual of the Berry-Sethi construction 
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The following commuting diagram gives a property of regular expressions and regular languages 

that will prove to be useful: 

RE _-,C",R",E,--_ Creg 

R R 

RE _-,C",R",E,--_, Creg 

In this diagram, the two reversal operators are different: one is reversal of REs, while the other 

is reversal of languages. 

Given the definition of an FA construction f and the above diagram, we have the property 

that the dual of a construction is again a construction. That is, R 0 foR is also a construction. 

Such a dual construction is less efficient than f (since it involves two reversal functions), and we 

explore ways to efficiently implement the dual constructions. 

Construction 4.43 (Right-biased): We can use R 0 lbfa 0 R as a construction. For any given 

E ERE, a representative of R 0 lbfa 0 R(E) has the following properties (the properties are based 

upon those of the left-biased E-algebra): 
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b 

a 

a 

Figure 6: A representative FA of the isomorphism class R 0 lbfa 0 R((a U <)b'). 

• It is f.-free. 

• It has a single final state. 

• The single final state has no out-transitions. 

• All out-transitions from a state are on the same symbol (in V). 

D 

Example 4.44 (Right-biased construction): We construct a representative FA of the isomor

phism class R 0 lbfa 0 R((a U <W) The representative is shown in Figure 6. D 

To consider the dual of the Berry-Sethi construction, we combine the commuting diagrams of 
duals of a construction (above) and construction decode 0 rfa, giving: 

RE [FA]", _.:;::L-"FA,,-~. Lreg 

R R R 

RE __ r~fa,--~. [RFA]=----,d",ec""o"dee.....- [FA]", _.:;::L""FA"----~. Lreg 

The source is the upper-left vertex, and the sink is the upper FA vertex. 

The construction RodecodeorfaoR (in this diagram) is still inefficient, requiring two redundant 

reversal operations. We can make it more efficient, by finding functions that form new paths in 

the commuting diagram. 

From the definitions of the E-algebra of RFA's (Definition 4.29) and homomorphism rfa (Def

inition 4.30) we know that the RFA operators are symmetrical, and so is ria. In other words 

rfa 0 R(E) = R 0 rfa(E). This allows us to add two new edges to the above commuting diagram; 
the resulting diagram is: 
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RE 
rfa , [RFA]", [FA]", CFA Creg 

R R R R 

RE 
rfa 

, [RFA]~ decode [FA]", CFA Creg 

Construction 4.45 (The dual of Berry-Sethi): The construction is: 

R 0 decode 0 R 0 rfa(E) 

This construction is the dual of the Berry-Sethi construction (Construction 4.32). 0 

We give R 0 decode 0 R in full: 

Ro decode oR([M]",) let (Q, V,follow,first, last, null, Qmap) = M 

f be a new state 

in 

end 

let T = {(qQ, Qmap(qQ), q.) : (qQ, q.) E follow} 

T' = {(q, Qmap(q),J) : q E last} 
5 = first U if (null) then {f} else 0 Ii 

in 

[(Q U {f}, V, T U T', 0, 5, {f} )]'" 
end 

The FA resulting from this construction is the same a.'l given in Example 4.44 
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We can also consider improving the dual of the variation on the Berry-Sethi construction 

(Construction 4.38). We combine the commuting diagram showing the dual of a construction, 
with construction convert 0 rIa 0 markerb, giving: 

RE [FA]", _-=C,-"F,,-A~ Creg 

R R R 

RE 
markerb 

RE _-,-,rf,.::a_~. [RFA]", convert, [FA]", _-"C~F,-"A,--~, Creg 

Again, the source is the upper-left RE vertex, while the sink is the upper-right FA vertex. 

Consider the composite function RoconvertorfaomarkerboR. We begin with the two rightmost 

functions: 

markerb 0 R( E) 

{Writing R as postfix and superscript} 

markerb(ER
) 

{Definition of marker, (Definition 4.36) } 

$ . (ER) 

{Function R 0 R is the identity (see Definition A.19) } 

R 0 R($· (ER)) 

{ Definition of R on . regular expressions} 
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R((ER)R . ($)R) 

{Definition of Rand R 0 R} 

R(E· $) 

To make this definition more concise, we define an end-marker function. 

Definition 4.46 (Adding an end-marker): Define function marker, E RE --t RE as: 

marker,(E) = E· $ 

where $ is assume to be a symbol in the alphabet. 0 

Property 4.47 (marker,): Function marker, is the dual of function markerb (Definition 4.36): 

markerb 0 R(E) = R 0 marker,(E) 

o 

With the above property, we can transform the above commuting diagram, by adding two new 

edges: 

RE markere RE [FA] '" _.=L-"FA"----_. Lreg 

R R R R 

RE markerb 
RE rfa • [RFA]~ convert [FA]", _..::L:LFA"---_ Lreg 

The composite Ro convert 0 ria 0 Ro marker e is no more efficient even with the use of marker e. 

Fortunately, since ria is symmetrical, we can replace ria 0 R by R 0 rfa, giving: 

RE 
marker e RE 

rfa 
• [RFA]", [FA]", LFA Lreg 

R R R] R R 

RE 
markerb. 

RE 
rfa 

• [RFA]", convert [FA]", LFA • Lreg 

The composite function R 0 convert 0 R is particularly easy to present, using the definitions of 

R and convert (Definition 4.35): 

R 0 convert 0 R([R]",) let (Q, V,Jol/ow,jirst, last, null, Qmap) = R 

in 

let T = {(qO, Qmap(qo),q,): (qO,q,) E follow} 

in [(Q, V, T, 0,jirst, last)]", 

end 

end 

This leads to the following construction. 
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Figure 7: A representative DFA of the isomorphism class ASU((a u <)b'). 

Construction 4.48 (The dual of the variation on the Berry-Sethi construction): The 

construction is: 

R 0 convert 0 R 0 rfa 0 marker, (E) 

This construction is also presented very informally by Aho, Sethi, and Ullman [ASU86, Exam

ple 3.22, pg. 140[. There appears to be an error in item two of the three steps describing the 
construction in [ASU86[. Instead of 

2. label each directed edge (i,j) by the symbol at position j, and 

the step should read 

2. label each directed edge (i,j) by the symbol at position i, and 

o 

Example 4.49 (The dual of the variation on the Berry-Sethi construction): A represen

tative FA of the isomorphism class R 0 convert 0 R 0 rfa 0 marker,((a U <)b') is shown in Figure 6 

on page 40. This is the same FA as in Example 4.44. 0 

4.3.1 The Aho-Sethi-Ullman DFA construction 

In order to obtain a (possibly non-Complete) DFA we use the composite function useful,osubsetopt 

(given in Definition 2.44), extended to [FA)", ----> [DFA)". 

We can immediately give the Aho-Sethi-Ullman DFA construction using this composite func
tion. 

Construction 4.50 (Aho-Sethi-Ullman): The construction is ASU ERE ----> [DFA)" defined 
as: 

ASU(E) = useful, 0 subsetopt 0 R 0 convert 0 R 0 rfa 0 marker,(E) 

Algorithm 4.52 (given below) is an imperative program implementing 

use/ul
oS 

0 subsetopt 0 R 0 convert a R 

Homomorphism rfa can be implemented using the techniques described in Section 4.5, and function 
marker, is trivial to implement. The Aho-Sethi-Ullman algorithm is given in [ASU86, Alg. 3.5, 
Fig. 3.44). 0 

Example 4.51 (Aho-Sethi-Ullman): We give a representative DFA of the isomorphism class 

ASU((a U <)b'). The state graph is shown in Figure 7. 0 

We compose useful, 0 subsetopt (as implemented by Algorithm 2.46) with Ro convert oR. The 

resulting algorithm is simplified in a similar way to the McNaughton-Yamada-Glushkov algorithm 
(Algorithm 4.42). 
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Algorithm 4.52 (Aho-Sethi-Ullman): 

{(Q, V,Jollow,first, last, null, Qmap) E RFA} 

S,T:= (if (first # 0) then {first) else 0 fi),0; 

D,U:= 0,8; 
do U # 0---. 

ad; 

let u: u E U; 

D,U:=DU{u},U\{u}; 
for a: a E V II (3 q: q E u: Qmap(q) = allfoUow(q) # 0) do 

d := (U q : q E u II Qmap(q) = a : follow(q)); 

if d \l D ---. U:= U U {d) 
~ d E D ---. skip 
fi· , 
T:= T U {(u,a,d)) 

rof 

F:= {d: d E D II d n last # 0} 
{[(D, V, T, 0, S, F)]" = useful, 0 subsetopt 0 

R 0 convert 0 R([(Q, V,Jollow,first, last, null, Qmap)]e,)} 

4.4 Extending regular expressions 

For some regular languages, the regular expressions denoting the language can be can be consid
erably more succinct when operators such as intersection en) and complement (--,) are available 

in REs. Without formally adding them to the signature L:, we briefly consider how to implement 

operator n in the left-biased L:-algebra of FA's. 

Definition 4.53 (Extended regular expressions and their languages): The set of extended 

regular expressions (over alphabet V), ERE, and the languages they denote, are exactly as RE, 

with the addition of the operators n E ERE x ERE ---. ERE (an infix operator) and ' E 

ERE ---. ERE (a prefix operator). Operator n has the same precedence as U, while, has higher 

precedence than *. The language of an ERE is defined using the function LERE E ERE ---. Lreg 

which is as function LRE, with the extensions 

LERE(Eo n E , ) LER£tEo) n LERE(E, ) 

LERE(,Eo) = V' \ LERE(Eo) 

o 

Remark 4.54: The L:-algebra definition of regular expressions are not used in this section as the 

algebraic structure is not needed. 0 

Definition 4.55 (Intersection of LBFA's): In defining intersection, we assume that the two 

arguments have been constructed in the L:-algebra of LBFA. In particular, we require that for 

each state, all in-transitions are on the same symbol. Assuming the argument representatives 
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have disjoint state sets, one possible implementation of the operator is lO
: 

Cn,LBFA([Ma]"" [M,J",) = let (Qa, V, Ta, 0, {sa}, Fa) = Ma 
(Ql, V, T 1 , 0, {sd,Fd = Ml 
qO be a new state 

N =, E (,cFA(Ma) n ,cFA(M1)) 

in 

45 

let Q' = {ga} U (U b: b E V : 7r2(Ta(b)) x 7r2(T1(b))) 

in 

end 

end 

The expression 

T'(a) = {ga} x (Ta(sa,a) x T1(sl,a)) 
U {((p,g),(p',g')): (p,p') E Ta(a) /lp# Sa 

/I (g,g') E T1(a) /I g # Sl 

/I (3 b: b E V : p E 7r2(Ta(b)) /I g E 7r2(T1(b)))} 

[(Q',v,T',0,{ga},(Fax F1)nQ' 
u if (N) then {ga} else 0 fi)]", 

Q' = {ga} U (u b: b E V: 7r2(Ta(b)) x 7r2(T1(b))) 

in the let clause deserves some explanation. A state in the constructed LBFA is either the new 

state ga, or a pair of states (p, g) where p and g (p # Sa, g # S1) are from Ma and Ml respectively. If 
p and g do not have an in-transition on the same symbol, the state (p, g) will be start-unreachable 

in the constructed LBFA. For this reason, it is omitted. The definition of the transition relation 

is similar. The constructed LBFA is sometimes called the cross-product LBFA. Although the 

operator removes most start-unreachable states, some may still remain. 0 

We can now present an intersection operator for RFA's. 

Definition 4.56 (Intersection of RFA's): We define intersection of RFA's as: 

Cn,RFA([Ma]"" [M1]",) = encode 0 Cn,LBFA(decode([Ma]",), decode ([M, ]",)) 

In full: 

let (Qa, V,followa, firsta, lasta, nulla, Qmapa) = Ma 
(Ql, V,followl,firstl,last1,nulll, Qmapd = Ml 

in 

end 

Note that this operator is symmetrical. 0 

let Q' = (U b: b E V : Qmapi]l(b) x Qmapl1(b)) 

in 

end 

follow' = {((p,g),(p',g')): (p,p') E followa 
/I (g, g') E follow 1 

/I Qmapa(p) = Qmapl (g) 
/I Qmapa(p') = Qmapl(g')} 

first' = {(p, g) : p E firsta /I g E first 1 
/I Qmapa(p) = Qmapa(g)} 

Qmap,-l(a) = Qmapi]l(a) x Qmapjl(a) 

[(Q', V,follow',first', (last a x lastd n Q', 
nulla /I nulll, Qmap')]", 

lOThe definition presented here is intentionally clumsy, making it easier to present intersection of RFA's 
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In their original paper [MY60, Section lVI, McNaughton and Yamada attempt to define intersec

tion. Unfortunately, their informal presentation is difficult to understand. Subsequent presenta

tions of the RFA operators have all omitted intersection. For example, Berry and Sethi note (in 

[BS86, Remark 3.1]): 

"The approach ... does not extend to regular expressions with intersection and com

plementation operators." 

We can construct an RFA operator for any regular operator (an operator on languages that 

preserves the regularity property) for which we can construct an LBFA operator. Examples of 

such operators are intersection, symmetrical difference, complement, asymmetrical difference, and 
prefix closure. 

4.5 Efficiently computing with RFA's 

In this section, we consider some practical methods for constructing RFA's. The first subsection 

considers a practical implementation of the (E-algebra of) RFA operators, while the second sub

section introduces some improvements (due to Chang, Paige, and Briiggemann-Klein) to the RFA 
operators. 

4.5.1 A practical implementation of the RFA operators 

In an RFA, the states are mapped to their corresponding symbol (of V) by the seventh component 

(usually called Qmap) of the RFA. This seventh component would be redundant if the states and 

symbols were in a one-to-one correspondence. Furthermore, the symbols could then be used as 

the states. In this .subsection, we explore this encoding method, and the requirements on the REs 
for this method to work. We will also be defining a new, restricted, mapping ria' E RE+ RFA. 
We will be able to use this mapping for regular expressions in which each alphabet symbol occurs 

no more than once. 

We first define an important auxiliary function. 

Definition 4.57 (Occurrences of symbols in REs): We define function Oce E RE -----> P(V) 
such that Oee(E) is the set of symbols (of V) occurring in E. We can also define Oec recursively 

as follows: 

o 

Oce«) 
Oce(0) 

Dec (a) 
Oee(E. F) 

Oee(E U F) 

Oec(E*) 
Oee(E+) 

Oce(E') 

o 
o 
{a} (for a E V) 

Oee(E) U Oec(F) 
Oce(E) U Dec (F) 

Dec (E) 
Dec (E) 
Oee(E) 

Definition 4.58 (RRE): We define RRE C RE as the smallest set satisfying: 

• < E RRE, 

.0 E RRE, 

• a E RRE (for a E V), 

• if E, FERRE, and Oce(E) n Oee(F) = 0 then E· FERRE and E U FERRE, and 

• if E E RRE then E* E RRE, E+ E RRE, and E' E RRE. 
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Intuitively, RRE (for restricted regular expressions) denotes the set of all E E RE such that each 

symbol (of V) occurs no more than once in E. 0 

Example 4.59 (RRE): A RRE is (a U ,)b'. 0 

In order to give our alternative RE to RFA mapping, rfa' E RRE ~ RFA, we first define 

some more auxiliary functions. The definitions of these functions also follow directly from the 

RFA operators. 

Definition 4.60 (First): We define First E RE ~ P(V) recursively (recall from Example 3.20 

that Null(E) == « E LRE(E))): 

First«) 

First(0) 

First(a) 

First(E . F) 

First(E U F) 

First(E') 

First(E+) 

First(E? ) 

o 
o 
{a} (for a E V) 

First(E) U if (Null(E)) then First(F) else 0 fi 
First(E) U First(F) 

First(E) 

= First(E) 

First (E) 

This definition follows directly from the first tuple element of the RFA operator definitions. 0 

Remark 4.61: It is useful to have an intuitive understanding of function First. First(E) is the 

set of all symbols that can occur as the first symbol of a string in LRE(E). 0 

Definition 4.62 (Last): Function Last is defined to be the dual of First. 0 

Remark 4.63: Last(E) is the set of all symbols that can occur as the last symbol of a string in 

LRE(E). 0 

Definition 4.64 (Follow): We define Follow E RE ~ P(V x V) recursively: 

Follow«) 

Follow (0) 

Follow (a) 

Follow(E· F) 

Follow (E U F) 

Follow (E') 

Follow(E+) 

Follow (E?) 

= 0 
o 
o (for a E V) 

Follow(E) U Follow(F) U (Last(E) x First(F)) 

Follow(E) U Follow (F) 

Follow(E) U (Last(E) x First(E)) 

= Follow(E) U (Last(E) x First(E)) 

Follow(E) 

This definition follows directly from the follow tuple element of the RFA operator definitions. 0 

Remark 4.65: For a, b E V, (a, b) E Follow(E) is equivalent to ab being a substring of some 

string in LRE(E). 0 

Example 4.66 (First, Last, Null, Follow): We use the regular expression (a U ,)b' (from Exam

ple 3.15): 

First((a U <)b') = {a, b} 

Last«a U <)b') {a,b} 

Null((a U <)b') = true 

Follow«aU <)b') = {(a, b), (b, b)} 

0 

We now have the auxiliary functions required for the definition of ria'. 
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Definition 4.67 (Function rfa' E RRE ---> RFA): The definition of rfa' is straightforward: 

rfa' (E) = (Occ(E), V, Follow(E), First(E), Last(E), Null (E) , Iv) 

where Iv is the identity function on alphabet symbols. 0 

Example 4.68 (rfa'): Using the results of the above example, we have: 

rfa' «a U E)b') = ({a, b}, {a, b}, {(a, b), (b, b)}, {a, b}, {a, b}, true, {(a, a), (b, b)}) 

o 

Property 4.69 (rfa'): Given E E RRE then rfa(E) = [rfa'(E»).,. 0 

Function rfa' is convenient, as all of the auxiliary functions can easily be computed bottom-up 

on the structure of E. 

Construction 4.70 (An encoding of BS): The method of constructing an RFA (using rfa') 

leads to a particularly concise definition of BS. For example, we define BSenc E RRE ---> FA: 

o 

BSenc(E) = let s be a new state 

in 

end 

let T = ((a,b,b): (a,b) E Follow(E)} 

T' = {(s,a,a): a E First(E)} 
F = Last(E) U if (Null(E» then {s} else 0 fi 

in 
(Occ(E) U {s}, V, T U T', 0, {s}, F) 

end 

Remark 4.71: Compare the definition of BSenc to the definition of decode (Definition 4.28). 0 

Property 4.72 (Construction BSenc): For E E RRE: 

[BSenc(E)]", = BS(E) 

o 

Remark 4.73: By inspection, we see that (for E E RRE) the FA BSenc(E) (equivalently BS(E» 

is deterministic. This implies that: 

MYG(E) = complete 0 BS(E) 

o 

Remark 4.74: In Section 5.4 we will show that Brzozowski's construction (with an appropriate 

encoding) produces a DFA (from an E E RRE) that is isomorphic to the one produced by BSenc 

(and therefore BS). 0 
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Similarly, the Aho-Sethi-Ullman algorithm becomes quite concise (from Algorithm 4.52): 

{E E RRE} 

E' := marker,(E); 

S, T:= (if (First(E') 0; 0) then {First(E')} else 0 fi), 0; 
D,U:= 0,S; 

do U 0; 0--+ 
let u: u E U; 

D,U:= D U {u},U\ {u}; 

for a : a E u A Follow(E')(a) 0; 0 do 

d := (Follow(E'))(a); 

rof 

if d It' D --+ U:= U U {d} 

~ d E D --+ skip 
fi· , 
T:= TU {(u,a,d)} 

odj 

F:={d:dEDA$Ed} 

{.cFA(D, V,T,0,S,F) = .cRE(E)} 

This algorithm is very similar to the one given in [ASU86J. 
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The only problem remaining is how to deal with an E E RE when E It' RRE. The method 

usually used is to "mark" the symbols of E (perhaps with an integer subscript), making each 

symbol unique. For example, (a+ U ab) It' RRE but after marking we get (at U a2b3) E RRE. 

Once the corresponding FA is constructed from the marked regular expression, the marks are 

removed (the FA is "unmarked") and the FA accepts .cRE(E). There are a few different styles of 
marking. For example, consider a+ Uab: McNaughton-Yamada mark this as ai Ua2b1 , Berry-Sethi 

use at U a2b3 , and Aho-Sethi-Ullman use 1 + U 23. 
The only disadvantage to the use of marking to encode RFA computation is that marking is 

unable to deal with some of the other regular operators, such as intersection, and complementation. 

For all E, FERRE we have the property that .cRE(EnF) = .cRE(E)n.cRE(F) = 0. For example, 
given" aa n a' (with language .cRE(aa n a') = .cRE(aa) n .cRE(a') = {aa}). After marking we 

get ala2 n a3 after marking (with .cRE(ala2 n a3) = 0). In Section 4.4 we saw how these operators 

can be readily implemented with RFA's (without the encoding scheme of this section). 

The approach presented in this subsection is essentially due to McNaughton and Yamada 

[MY60], Glushkov [Glus61]' and Berry and Sethi [BS86J. The presentations in [B-K93a, Section 2], 

[BS86], [tEvG93J, and [ASU86, Fig. 3.40, pp. 134-141J are particularly clear. Those interested 

in a rigorous treatment of this approach to RFA's can refer to the paper of ten Eikelder and van 

Geldrop [tEvG93]. 

4.5.2 More efficient RFA operators 

The definition of the RFA operators may still result in inefficient implementation. In particular, 

Briiggemann-Klein and Chang and Paige found that the implementation of the (u) in the RFA 

operators may require more than constant time [B-K93a, Chan92, CP92]. In most cases the 

arguments (of u) are disjoint; the only possible exception is the union follow U (last x first), 

appearing in the C'.RF A and C+,RF A operators. Two solutions to this problem will be presented 

here. 

Convention 4.75 (Constant time union): We use the symbol I±J to denote union where the 

arguments to !±I are assumed to be disjoint. 0 

11 Here we assume, for the moment, that .c RE can deal with the intersection operator. 
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The first solution was proposed by Chang aud Paige [Chan92, CP92). 

Definition 4.76 (Chang-Paige RFA): We add an eighth component W to each RFA 

(Q, V,follow,first, last, null, Qmap, W) 

such that 

W = (last x first) \ follow 

These modified RFA's will be called Chang-Paige RFA's, and are denoted by RFA'. 0 

We only give the new operators, instead of the ~-algebra. The operators follow directly from 

the above definition. 

Construction 4.77 (Operators of the ~-algebra of Chang-Paige RFA's): As usual, the 

operator requirement is: 

• For binary operators, the representatives have disjoint state sets. 

CaEV,RFA' 

[(0, v, 0, 0, 0, true, 0, 0))", 

[(0, v, 0, 0, 0,false, 0, 0))", 

let qo be a new state 

in 

[( {qo}, V, 0, {qo}, {qo},false, {(qo, a)}, {(qo, qo)} ))'" 
end 

C,RFA' ([Mo)"" [M,)",) let (Qo, V,followo, firsto, lasto, nullo, Qmapo, Wo) = Mo 
(Q1, V,/olloWI,jirstl, last l , null!, Qmapl, Wd = MI 

CU,RFA' ([Mo)"" [M,l<><) 

in 

end 

let first' = firsto l!! if (nUllo) then first, else 0 Ii 
last' = last, l!! if (null,) then lasto else 0 Ii 
W' = if (null,) then Wo else 0 Ii 

in 

end 

W" = if (nullo) then W, else 0 fi 

[(Qo l!! Q" V,followo l!!foliowll!! (lasto x first,), 

first' , last', nullo /\ nulh, Qmapo ltJ Qmapl, 

(last, x firsto) l!! W' l!! W"))", 

let (Qo, V,Jollowo,firsto, lasto, nullo, Qmapo, Wo) = Mo 

(Q" V,fOliOWI, first I , last" null" QmapI, W,) = M, 

in 

end 

[(Qo l!! Q" V,followo l!! followl,firsto l!!first
" lasto l!! last" nullo V null" Qmapo l!! QmapI, 

(lasto x first,) l!! (last I x firsto) l!! Wo l!! W,))", 

let (Q, V,follow,first, last, null, Qmap, W) = M 

in 

[(Q, V,follow l!! W,first, last, true, Qmap,0))", 

end 



4.5 Efficiently computing with RFA's 51 

let (Q, V,/ollow,first, last, null, Qmap, W) = M 

in 
[(Q, V,follow I±J W,first, last, null, Qmap,0)J", 

end 

C?,RFA'([MJ",) = let (Q, V,follow,first, last, null, Qmap, W) = M 

in 

[(Q, V,/ollow,first, last, true, Qmap, W)J", 

end 

These operators are symmetrical. The correctness of these operators is shown in Theorem B.3. 0 

Chang and Paige make additional running-time savings by computing the components of a RFA' 
only as needed in the operators C*,RFAI and C+,RFAI. The running-time and space savings, along 

with implementation details are given in [Chan92, CP92J. 

The second solution also involves adding an eighth tuple element to RFA's, giving RFA". 

Definition 4.78 (RFA"): We add an eighth component W to each RFA 

(Q, V,follow,first, last, null, Qmap, W) 

such that 

W = follow \ (last x first) 

These modified RFA's are denoted by RFA". 0 

As before, the new operators follow directly from the above definition. 

Construction 4.79 (Operators of the E-algebra of RFA"): As usual, the requirement for 

binary operators is that the representatives of the arguments are chosen such that they have 
disjoint state sets. 

C(,RFA" 

C0 ,RFA" 

Ca,EV,RFA" 

[(0, v, 0, 0, 0, true, 0, 0)J", 

[(0, v, 0, 0, 0, false, 0, 0)J", 

let qo be a new state 

in 

[( {qo}, V, 0, {qo}, {qo},Jalse, {(qO, a)}, 0)J" 
end 

C.,RFA" ([MoJ"" [M,]",) = let (Qo, V,Jollowo,firsto, lasto, nullo, Qmapo, Wo) = Mo 

(Q" V,fOlloWl ,first 1 ,last
" 

null 1 , Qmapl, WI) = M, 

in 

end 

let first' = first o bJ if (nullo) then first, else 0 fi 
last' = last , I±J if (nullI) then lasto else 0 fi 
W' = if (null I) then Wo else followo fi 

in 

end 

W" = if (nullo) then W, else follow 1 fi 

W" = if (nullo II null I) then 0 else (lasto x firstI) fi 

[( Qo I±J Q" V, followo I±J follow 1 bJ (last o x first 1 ), 

first', last', nullo A nullt, Qmapo I:!:J Qmapl, 

W' l±J W" l±J W'fI)J£!<, 
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CU,RFA" ([Mo]", , [M,J",) let (Qo, V,followo , firsto, lasto, nullo, Qmapo, Wo) = Mo 

(Q., V,follow., first., last., null., Qmap., Wd = M. 

in 

end 

[( Qo OJ Q., V,followo eJ follow., firsto eJ first., 

lasto eJ last., nullo V null., Qmapo eJ Qmap., 

Wo eJ Wd]", 

C.,RFA" ([M]",) = let (Q, V,follow,first, last, null, Qmap, W) = M 

in 
[(Q, V, W eJ (last x first), first, last, true, Qmap, W)]", 

end 

let (Q, V,follow,first, last, null, Qmap, W) = M 

in 
[(Q, V, W eJ (last x first), first, last, null, Qmap, W)j., 

end 

let (Q, V,follow,first, last, null, Qmap, W) = M 

in 

[(Q, V,follow,first, last, true, Qmap, W)j., 

end 

These operators are symmetrical. Their correctness is shown in Theorem B.4. 0 

Definition 4.80 (Mapping [RFA']", and [RFA"]", to [RFA]",): The mapping is 7rs. 0 

Remark 4.81: Although this construction does not appear in the literature, a related one does: 

Briiggemann-Klein describes a transformation on regular expressions which closely parallels the 

RFA" operators. A regular expression E is first transformed into a star normal-form expression, 

denoted by E-j the RFA image of E· has similar properties to the RFA" image of E. The details 

of the star normal-form transformations (and the running time improvements resulting from them) 
are described in [B-K93a]. 0 
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5 The Myhill-Nerode, Brzozowski and DeRemer construc

tions 

In this section, we explore a DFA construction method - due to Myhill and Nerode - from 

which we derive Brzozowski's construction. First, we make some observations about determinism 

in finite automata. 

Recall a property of weakly deterministic automata - Property 2.28. Given that the set of 

left languages (of the states) in a DFA are disjoint, we will be exploring methods of computing a 

set of left languages to construct an automaton. 

Definition 5.1 (Left languages of a DFA): Define the left languages of a DFA as: 

<- <-
C (Q, V,T,E,S,F) = {C (q): q E Q} 

o 

Since the elements of this set are pairwise disjoint (by Property 2.28), we can also view it as the 

(finite) set of equivalence classes of some equivalence relation on V'. There are two potential 

problems with this: 

<-
• In the case that an ME DFA is not Comptete then C (M) is a partial partition of V'. (This 

follows from Property 2.16.) To make the definitions in this section easier to present, we 

restrict ourselves to Complete DFA's . 

• It may be that 0 is a left language of some state - corresponding to a start-unreachable 

state. In this section, we will not be interested in DFA's with start-unreachable states. 

<-
Since CPA (Q, V, T, E, S, F) = (u f : f E F : C U)) (see Definition 2.12) we also note that the 

<-
language of an automaton M is the union of some of the equivalence classes in C (M). 

Definition 5.2 (Right invariance of an equivalence relation): An equivalence relation E 
on V* is right-invariant if and only if 

(lIu,a:uE V'l\aE V: (3 v: v E V': [U]E' {a} <;; [V]E» 

o 

Property 5.3 (Right invariance of an equivalence relation): Sometimes right invariance of 
equivalence relation E on V* is given as 

(II u, z : u E V' 1\ z E V' : (3 v : v E V' : rUlE ' {z } <;; [v] E» 

This is equivalent to the definition given above (by induction on the length of Z E V'). 0 

<-
We can now formulate an important property of C (M), the partition of V', 

<-
Property 5.4 (Right invariance of a partition of V'): Partition C (Q, V, T, E, S, F) is right-

invariant if and only if 

<- <-
(lIp,a:PE Ql\aE V: (3 q: qE Q: C(p). {a} <;; C(q») 

o 

<-
Remark 5.5: It should be clear that for all M E DFA such that Comptete(M), C (M) is right-

invariant; this follows since for all states p, (and transition relation T E Q x V --> Q, since 

ME DFA) (and a E V): 

<- <-
C(p)' {a}<;; C(T(p,a)) 

o 
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Remark 5.6: Had we been considering non-Complete DFA's, we would not have a partition on 
<-

V'; right invariance could still be defined (for partial partition L (Q, V, T, E, S, F)) as: 

<- <-
(Vp,a:PE QAaE V AT'(p,a) #0: (3 q: qE Q: L(p). {a} ~ L(q))) 

We will not be using this definition. We give it to point out that the techniques of this section are 

also usable in constructing non-Complete DFA's (as Brzozowski demonstrated in [Brz064]). 0 

5.1 The Myhill-Nerode construction 

Before considering how to construct finite automata, we first present the Myhill-Nerode theorem. 

A good text book introduction to the theorem is [HU79l. 

Theorem 5.7 (Myhill-Nerode): The Myhill-Nerode theorem states that the following state

ments are equivalent [Myhi57, Nero58, RS59, HU79l: 

1. L is a regular language. 

2. L is the union of some of the equivalence classes of a right-invariant equivalence relation (on 

V') of finite index. 

3. Let RL be the right-invariant equivalence relation defined by 

(x,y) E RL == (V z: Z E V' : (xz E L) == (yz E L)) 

Relation RL is of finite index. 

Proof: 

A following proof is given in [HU79, Theorem 3.9l. 

(1) =? (2): Assume L is accepted by M E DFA such that Camplete(M). Let E be the equivalence 
<- <-

relation corresponding to L (M). UE is finite, and L = (U f : f E F : L (I)). (See 

Definition A.8 for the definition of n 
(2) =? (3): We show that for an equivalence relation E satisfying (2) that E ~ RL . (Here ~ 

denotes equivalence relation refinement, see Definition A.IO.) We start the derivation using 

the right invariance property of E (Property 5.4, written slightly differently): 

(V u: u E V' : (V w: w E V' : (3 v: v E V' : ([UlE' {w}) ~ [VlE))) 

=? {Assumption that E satisfies (2), for all v E V': ([VlE ~ L) V ([VlE n L = 0)} 

(V u: u E V' : (V w: wE V' : «[UlE' {w}) ~ L) V «[UlE' {w}) n L = 0))) 

=? {Definition of RL } 

(V u: u E V' : (3 v : v E V' : [UlE ~ [VlRL)) 

= {Definition of refinement (~) - Definition A.ll} 

[v'lE ~ [V'lRL 

{Definition of refinement (~) - Definition A.lO} 

E~ RL 

=? {Property of refinement - Property A.12} 

UE 2 URL 

It follows that since UE is finite, so is URL. 



5.1 The Myhill-Nerode construction 

(3) =? (1): We can construct the following Complete DFA (from RL) accepting L: 

let T([wIRL' a) = {[waIRL} 
F = {[wIRL : w E L} 

in 

end 

It follows that L is a regular language. 

o 
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Property 5.8 (Index of equivalence relation E): Given L E .creg, M E DFA accepting L, 

and E (satisfying statement 2 and constructed as in the proof of (1) =? (2) of the Myhill-Nerode 
<-

theorem) then ~E ::; IMI (since ~E = ~.c (M) by definition of E and Det'). 0 

Property 5.9 (Uniqueness and minimality of equivalence relation RL): Of all equivalence 

relations satisfying statement 2 of the Myhill-Nerode theorem, RL is the unique minimal one. This 

follows from the fact that all others are refinements of RL (see the proof of (2) =? (3)). 0 

The theorem does not say much about how to find equivalence relations satisfying statement 2, 

other than providing a definition of the unique minimal one, RL . 

We can formalize statement 2 of the Myhill-Nerode theorem: 

Definition 5.10 (Predicate MN): For regular language L and equivalence relation E (on V') 

MN(L, E) is equivalent to 

• ~E is finite, 

• L = (u v : vEL: [vIE)' and 

• E is right-invariant. 

o 

Note that MN(L,RL ). 

The DFA construction given in the (3) =? (1) proof can be used with other right-invariant 
equivalence relations. 

Construction 5.11 (Myhill-Nerode): Given a language L and right-invariant equivalence 

relation E such that MN(L, E) we can construct an automaton accepting L using the function 

MNconstr(L, E) let T([wIE, a) = {[walE} 
F = {[wIE : w E L} 

in 

([V'IE, V, T, 0, {[fIE}, F) 
end 

This construction has the following properties: 

• The definition is independent of the choice of representatives of the equivalence classes of E. 

• By inspection we can see that the FA constructed by MNconstr is a Complete DFA. 

<-
• For any state U E [V'IE we have .c (U) = U. 

• All states in the constructed automaton are start-reachable. 

• The number of states is tiE. 

• The construction satisfies the property 

(Ii L,E: MN(L,E): .cFA(MNconstr(L,E)) = L) 

o 
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5.2 The minimal equivalence relation RL 

The only relation (corresponding to L E 'creg) that Myhill and Nerode actually defined was R L . 

This relation is particularly important, being the unique one of minimal index. 

Theorem 5.12 (Unique minimal DFA): Given L E 'creg, M = MNconstr(L, RL) is the unique 

minimal Complete DFA accepting L; that is, Minc(M). 

Proof: 

Assume there exists M' E DFA such that Complete(M'), 'cFA(M') = Land IM'I :<: IMI. From 
<- <-

the proof of (2) '* (3) (and Property 5.8), ~RL :<: ~,c (M'). In summary, ~RL :<: ~,c (M') :<: IM'I :<: 
IMI = ~RL, and so (by Property A.12) IM'I = IMI, E = RL and M' "" M. 0 

Property 5.13 (Reformulating RL): We can rewrite the definition of RL using derivatives (see 
Definition A.15) as follows: 

o 

(x,y) E RL 

{Property of derivatives and definition of RL } 

(V z: z E V': (z E x-IL) == (z E y-IL» 

{Definition of = on languages} 

x-IL = y-1L 

We could combine this definition of RL with MNconstr to get a minimal DFA construction. 

Such a function would have a clumsy definition, and therefore we explore some encoding tricks. 

5.2.1 Encoding RL 

An encoding trick is hinted at by Property 5.13: every equivalence class [WJRL of RL can be 
characterized by the language w- 1 L. 

Definition 5.14 (Derivative set of a language): We define the set of derivatives of language 

Las 

deriv(L) = {v- I L: v E V'} 

o 

We have the following theorem relating to deriv 

Theorem 5.15 (Finiteness of derivatives): If L E 'creg then Ideriv(L)1 is finite. 
Proof: 

~RL is finite (from the Myhill-Nerode theorem), and since I deriv(L) I = ~RL, Ideriv(L)1 is also 
finite. 0 

This theorem has also been given by Brzozowski [Brz064J. His proof is, however, somewhat more 

complicated, and is by induction on the structure of language L. 

Definition 5.16 (Encoding an equivalence class): We define a derivative encoding function 

(for a given L E 'creg) encderivL E [V'JRL --> deriv(L) as 

encderiv£l[wJRL) = w-I L 

This function has inverse encderivr;'(v-' L) = [VJRL' Both of these functions are independent of 
the choice of representative of equivalence class of RL. 0 
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Remark 5.17: In Construction 5.11 (with RL as the equivalence class parameter) the equivalence 

classes of RL are the left languages of the states of a DFA constructed from RL. The function 

encderiv L maps these left languages (equivalence classes) to their corresponding right languages 

(the derivatives). The right language (encderivdU)) of a particular equivalence class U E [V']RL 
is called the continuation of U (in language L) by Berry and Sethi [BS86]. 0 

Property 5.18 (Derivatives and function encderivLJ: Note that (for a E V, w E V'): 

• encderivL([<]RL) = <-'L = L, 

• encderivd[wa]RL) = (wa)-'L = a-'(w-'L). 

These properties follow from Property A.16, and the definition of encderivL' 0 

Noting the form of function MNconstr, we use the encoding (function encderivLJ to obtain 

construction MNmin E Lreg ----> DFA. 

Construction 5.19 (MNmin): Combining MNconstr (Construction 5.11) with encderivL (and 

its inverse) gives construction MNmin E Creg ~ DFA: 

MNmin(L) = let T(w-'L,a) = {a-'(w-'Ll} 

F = {w-'L: < E w-IL} 

in 

(deriv(L), V, T, 0, {L}, F) 
end 

Since MNmin is defined using MNconstr, the properties are similar: 

o 

• By inspection we can see that the FA constructed by MNmin is a Complete DFA. 

-; 

• For any state U E deriv(L) we have L (U) = U. 

• All states in the constructed automaton are start-reachable. 

• The only state that is not final-reachable is 0. The state 0 exists in automaton MNmin(L) 

if and only if L f V'. It follows that we can remove the sink state 0, to obtain a (possibly) 

non- Complete DFA with only useful states. 

• The constructed DFA is the unique (up to isomorphism) minimal Complete DFA accepting 
L (since RL is implicit in the definition). 

• The construction satisfies the property 

(V L: L E Lreg: LFACMNmin(L)) = L) 

Example 5.20 (MNmin construction): We construct the minimal Complete DFA corresponding 

to the regular language {<, a}{b}', denoted by regular expression (a U < )b' (the regular expression 
from Example 3.15). 

After some calculation (using Property A.17): 

a-l( {<, a}{b} ') (a- l { <, a}){b}' U a-l{b}' 

{<}{b}' U (a- l {b}){b}' 

{b}' 

b- l ({ <, a }{b}') (b- l {<, a}){b}' U b- l {b}' 

0{b}' U (b-l{b}){b}' 

= {b}' 
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b 

a 

a,b 

Figure 8: The DFA MNmin({E,a}{b}'). 

(a- 1 {b}){b}' 

0{b}' 

o 
= W'{b}){b}' 

{b}' 

o 
o 

we determine that the three derivatives are: L = {E,a}{b}', L, = {b}', and 0. The state graph is 

shown in Figure 8. 0 

5.3 The Brzozowski construction 

We now concentrate on constructing DFA's from extended regular expressions, as opposed to 

constructing them from regular languages. In Property A.17, a method is given for computing 

a derivative of a regular language (based upon the structure of the language). Being able to 

compute derivatives in this way also provides us with a definition of derivatives of extended 

regular expressions (EREs). Extended regular expressions were defined in Definition 4.53. 

Remark 5.21: The E-algebra definition of regular expressions is not used in this section as the 

algebraic structure is not needed. Regular expressions are used only as syntactic objects, denoting 

regular languages. 0 

Remark 5.22: The remaining constructions in this section do not necessarily depend on extended 

regular expressions (normal regular expressions can also be used). They are introduced because 

some regular languages have more succinct descriptions as EREs than as REs. 0 

Definition 5.23 (Derivatives of EREs): Assuming a E V and E, Eo, E, E ERE 

a- 10 0 

a-IE = 0 

a- 1b 

a-1(EoEd = 

a-1 (EoU Ed 

if (a = b) then E else 0 fi (for all bE V) 

(a- 1 Eo)E, U if (E E L.ERE(Eo)) then a-'E, else 0 fi 

(a- 1 Eo) U (a- 1 E, ) 



5.3 The Brzozowski construction 

o 

a-liE') = 
a-l(E+) 

a-liE?) 

a-l(Eo nEd 
a-l(,E) 

(a- l E)E' 

(a- l E)E' 

a-lE 

(a- l Eo) n (a- l Ed 
,(a- l E) 
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Property 5.24 (Derivatives of ERE's): By inspecting the definition of derivatives of EREs, 

we can verify that (for a E V, E E ERE) a- l CERE(E) = CERE(a- l E). 0 

Remark 5.25: Given equivalence relation == (equivalence of regular expressions, extended to 

ERE), an E E ERE will have a finite number of derivatives. More formally, [{[w- l Ej.:. : w E V'}[ 

is finite. Brzozowski gave the same result by induction on the structure of a ERE in [Brz064, 

Theorem 4.30.]. 0 

Definition 5.26 (Similarity (~) of regular expressions): Similarity (written ~) is an equiv

alence relation on EREs. Two EREs are similar if and only if they are identical or one can be 

transformed into the other using the following rules: 

I. Eo U E, = E, U Eo (commutativity of U), 

2. Eo U (E, U E,) = (Eo U E , ) U E, (associativity of u), and 

3. E U E = E (idempotence of u). 

o 

Property 5.27 (Similarity): ~C;;=; that is, ~ is a refinement of =. 0 

Definition 5.28 (The derivatives of an ERE): Function derivERE E ERE ~ P([EREl_) is 
defined as 

o 

Before proving that deriv ERE (E) is finite (for all E E ERE), we need the following proposition. 

Proposition 5.29 (Similarity equivalence class of a union ERE): Assume a finite set H C;; 

ERE and a fully parenthesized regular expression 

where (for 1 :s i :s k) hi E H; each hi is called a term of J. Using ~ we can always find a similar 

(and, of course, equivalent) regular expression K, where K is the union of at most jHj terms of 

1. This is because the rules defining ~ can be used to reassociate and commute the terms of J 

(to place identical terms adjacent to one another), while the idem potence rule of ~ can be used 

to remove identical terms. 0 

Proposition 5.30 (Similarity): Given a finite set H C;; ERE, the set of all non-similar EREs 

that are unions of terms hi E H is finite. 0 

Theorem 5.31 (Finiteness of derivatives under similarity): For all E E ERE, [derivERE{E)[ 

is finite. 

Proof: 

This proof is similar to the one given in Brzozowski's original paper [Brz064, Theorem 5.2]. The 

proof is by induction on the number of operators in E E ERE. 
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Basis: The theorem is true for each of the constants: derivERE(t) = {[t1-, [0J-}, derivERE(0) = 

{[01-}' and derivERE(a) = {[aJ-, 1t1-, [0J-} (for a E V). 

Induction hypothesis: Assume that IderivERE(E)1 is finite for all E E ERE where E has fewer 

than k operators. 

Induction step: Assume E E ERE has k operators. We use case analysis to deal with the 

possible forms of E: 

o 

E = Eo u E,: It is possible to show that 

{[w-' (Eo U E,)I_ : w E V'} = {[w-' Eo U w-' E,J- : w E V'} 

By the induction hypothesis, IderivERE(Eo)1 and IderivERE(E')1 are finite, and so is 

Ideriv ERE(E)I. 

E = Eo n E, or E = E~ or E = ,Eo: An argument similar to that for U applies to these 

cases. 

E = Eo· E,: In order to analyze I deriv ERE (Eo ·E,)!, we consider a particular w-'(Eo ·E,) 

(for w E V'). Let w = a, ... an where each ai E V. Writing out w-, (Eo· E,) we get 

w-'(Eo . E,) 

= (a, ... an)-'((a,'Eo)E, uif (t E CERE(Eo)) then a,'E, else 0 fi) 

Had we been able to continue this rewriting, we would see that [w-' (Eo ·E,)J_ is equal 

to 

[(w-' Eo) . E, U (U u,v : uv = w : if (t E CERE(U-' Eo)) then v-' E, else 0 fi)J_ 

That is, w-'(Eo . Etl is the union of a set of terms, one of which is (w-'Eo) . E" 

and the remaining ones are either a derivative of E" or 0 E ERE. By the induction 

hypothesis (the set of derivatives of E, is finite) the set of possible terms is finite. It 

follows from Propositions 5.29 and 5.30 that I deriv ERE(E)I is finite. 

E = Eo or E = Et: As in the Eo . E, case, we could write out w-'(Eo ) for a particular 

w E V*. If we do this, we see that it is the union of terms, each of which is a derivative 

of Eo concatenated with Eo. The set of possible terms is finite - by the induction 

hypothesis. Again, it follows from Propositions 5.29 and 5.30 that IderivERE(E)1 is 
finite. 

Remark 5.32: Unfortunately, using similarity (in computing derivatives) may yield more deriva

tives than recognizing equivalence (=) of derivatives (as shown in Example 5.37). The rules 

defining similarity can be augmented with others to decrease the redundancy of the derivatives 

(and therefore the size of the constructed DFA). Any equivalence relation G such that -<;; G <;;= 
is usable for this. Examples of additional rules are (for Eo, E" E, E ERE): 

1. Eo· 0 = 0 (0 is the zero of concatenation), 

2. Eo u 0 = Eo (0 is the unit of U), 

3. Eo· t = Eo (t is the unit of concatenation), 

4. 0' = E (a property of *), 

5. Eo . (E, U E,) = Eo . E, U Eo . E, (- distributes over U), 

6. Eo n0 = 0 (0 is the zero of n), 

7. Eo n E, = E, n Eo (commutativity of n), 
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8. Eo n (EI n E 2) = (Eo n EI) n E2 (associativity of n). 

9. EnE = E (idempotence of n). 

o 

There is a property of similarity that will be needed to present the Brzozowski construction. 

Definition 5.33 (Derivative of a similarity equivalence class): For E E ERE and a E V 
we have a-I[EI_ = [a-IEI_. This definition does not depend on the choice of representative of 

the equivalence class (under ~). 0 

The Brzozowski construction is an encoding of MNmin to use EREs and equivalence classes 

of "-'. 

Construction 5.34 (Brzozowski): Function Brz E ERE ---> DFA is defined as: 

Brz(E) = let T([v-IEI_,a) = {a-l[v-IEI_} 

F = {[w- l El_ : < E L.ERE(W- l En 
in 

(deriv ERE(E), V, T, 0, {[El_}, F) 
end 

The properties of Brz correspond to those of MNmin: 

o 

• The construction is independent of the representatives of equivalence classes. 

• By inspection we can see that Brz constructs Complete DFA's. 

~ 

• For any state E' E derivERE(E) we have L. (E') = L.ERE(E'). 

• All states in the constructed automaton are start-reachable. 

• There may be a state that is not final-reachable; this sink state will exists if and only if 

L.ERE(E) # V'. The sink state corresponds to the derivative 0 E ERE. 

• The construction satisfies the property 

(\I E : E E ERE: L.PA (Brz(E)) = L.ERE(E)) 

Remark 5.35: Any equivalence relation G (on EREs) such that ~<; G <;= can be used in place 
of,,-, in Brzozowski's construction. 0 

Remark 5.36: In Brzozowski's original paper [Brz0641, the sink state (corresponding to derivative 

o E ERE) was always omitted from the constructed DFA, producing a possibly non- Complete DFA. 
o 

Example 5.37 (Brzozowski's construction): We construct a Complete DFA corresponding 

to regular expression (a U <)b' (the regular expression from Example 3.15). The derivatives are: 

a-l«aU<)b') (a-l(aU<))b' Ua-l(b') 

(a-Ia U a-leW U (a-Ib)b' 

« U 0)b' U 0b' 

b-l«a U <)b') (b-l(a U <))b' U b-l(b') 

= (b-Ia U b-l<)b' U (b-Ib)b' 

= (0 U 0)b' U eb' 
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a 
a 

b 
a 

b 

b 

Figure 9: The DFA Brz((a U f)b'). 

0b' U fb' 

a-I((f U 0)b' U 0b') a-I((f U 0)b') U a-I (0b') 

= ((a-I(f U 0»b' U a-'(b'» U (a- 10)b' 

(((a-I, U a- 10)b') U (a-Ib)b') U 0b' 

((0 U 0)b' U (0)b') U 0b' 

0b' 

b-I ((fU0)b' u0b') b- l ((fU0)b')Ub- I (0b') 

((b-I(f U 0»b' U (b-Ib)b') U W '0)b' 

= ((b-If U b-' 0)b' U (f)b') U 0b' 

= ((0 U 0)b' U fb') U 0b' 

0b' U fb' 

a-I (0b' U fb') = a-I (0b') U a-I(fb') 

(a- 1 0)b' U ((a-If)b' U (a-Ib)b') 

0b' 

b- I (0b' U fb') b- I (0b') U b-l(fb') 

W ' 0)b' U (W1f)b' U W1b)b') 

0b' U fb* 

a- I (0b') (a-10)b' 

0b' 

b- I (0b') (b-10)b' 

0b' 

The four derivatives (under -) are: do = (a U ,)b', d, = (f U 0)b' U 0b', d, = 0b' U tb', and 

d3 = 0b'. The state graph is shown in Figure 9. Had we been able to recognize equivalence of 
EREs, we would have had a smaller DFA since (f U 0)b' U 0b' = 0b' U fb', and we could have 

identified states dl and d2 . 0 

5.3.1 Computing derivatives of an ERE 

Brzozowski also shows [Brzo64) if E E ERE has n derivatives (including E, under any equivalence 

relation G such that -C; G C;=) then they are all of the form V-I E where Ivl < n [Brz064, 

Theorem 4.3b). Also part of this theorem is if all derivatives (of E) with respect to strings of 

length not greater than n have been found, and no new ones are found with respect to strings of 

length n + 1, then no new ones will be found with respect to strings of length greater than n. This 

useful property of derivatives (in fact a slightly stronger property) can be stated as follows: 
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Theorem 5.38 (Finding derivatives): For all r 2: 0 

{tw- 1 E]_ : w E V' 1\ Iwl = r} <; {[w- 1 E]_ : w E V' 1\ Iwl < r} 

o 

This gives the following algorithm (in the guarded commands of [Dijk76]) which computes the 

derivatives of a regular expression E (D <; [ERE]_ and next <; [ERE]_): 

Algorithm 5.39: 

{E E ERE} 

D,next,k:= 0, {[E)_},O; 

{invariant: D = {[w-1 E]_ : w E V' 1\ Iwl < k} 1\ next = {[w-1 E]_ : w E V' 1\ Iwl = k}} 

do next \l: D ----> 

D,next,k:= D U next, {a-IF : a E V 1\ F E next},k + 1 

od{D = derivERE(E)} 

5.3.2 Extending derivatives 

It is sometimes useful to extend derivatives to deal with additional operators: prefix closure 

and certain functions on languages. We now briefly give the definition of derivatives of regular 

languages (and thus regular expressions) with these operators. 

The prefix closure of a language is defined as: 

pref(L) = {u: u-1 L oF 0} 

and the derivative of a prefix closed language is: 

a-1(pref(L» = pref(a-1 L) 

For certain functions f E Lreg x Lreg ------+ Lreg, derivatives are defined as: 

Some examples of such functions are n, U, asymmetrical difference, and symmetrical difference. 

For more on this see [Brz064). 

5.4 Relating the Brzozowski and Berry-Sethi constructions 

It turns out that for RREs (recall from Definition 4.58 that an E E RRE is an RE such that each 

symbol of V Occurs at most once in E), the Brzozowski construction (with sink state removal -

as in Brzozowski's original paper - and a suitable encoding) and the Berry-Sethi construction 

produce isomorphic DFA's. In this section, we consider only RREs. Berry and Sethi first presented 

this result in [BS86]. 

We will be using the following version of Brzozowski's construction (for E E RRE), which does 

not introduce a sink state (the sink state is equivalent ("') to 0 E RRE - its language under CRE 
is 0). 

Construction 5.40 (Brzozowski - without sink state): Given E ERE, the following 

constructs a DFA accepting CRE(E): 

let Q = ([w-' E]_ : w E V' 1\ CRe(w-' E) oF 0} 

in 

end 

T([v- 1 E)_,a) = if (CRE(a-1(v- 1 E» oF 0) then {a-1[v- 1 E)_} else 0 Ii 
F = {[w-1 E]_ : Null(w- 1 E)} 

(Q,v, T, 0, {[E)_}, F) 
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In the let clause, the transition function has signature T E Q x V ----> P(Q). Recall from 

Definition 3.20 that Nul/(E) ~ < E L.RdE). 0 

For any E E RRE, the only way that L.RE(b-l«wa)-l E)) '" 0 is if L.RE«wa)-l E) '" 0 and a 

b can follow a wa in some string in L. RE (E). 

In order to make the above construction practical, we explore the possibility of characterizing 

all of the derivatives of an E E RE (except for the derivative E itself) by the symbols occuring in 

E. 

Definition 5.41 (Unambiguous regular expressions): An E ERE is said to be unambiguous 

if and only if, for all a E Oee(E) (function Oee is defined in Definition 4.57), the following set is 

a singleton set: 

In other words, all derivatives of E by wa (for w E V' and a E V) are either equivalent to 

o E RRE, or are similar to one another. 0 

Remark 5.42: If an E E RE is unambiguous, its derivatives are either E or 0, or can be 

characterized by an element of Oce(E). 0 

Remark 5.43: The regular expression (a U a) is unambiguous, but is not an RRE. 0 

Remark 5.44: Unambiguous regular expressions are also defined by Champarnaud [Cham93], 

although he characterizes them quite differently, and he does not make use of derivatives. Cham

parnaud calls such regular expressions local. 0 

Theorem 5.45 (Characterizing derivatives of RRE's): For any E E RRE, E is unambiguous. 

This theorem is also given by Berry and Sethi [BS86, Theorem 3.4J. 

Proof: 

We proceed by induction on the number of operators in E E RRE. 

Basis: The theorem is trivially true for the RRE base cases < and 0 since Oee«) = Oee(0) = 0. 
It is also trivially true for the RRE a E V. 

Induction hypothesis: Assume that the theorem is true for any E E RRE with fewer than k 

operators. 

Induction step: We now consider E E RRE with k operators. We noW examine the possible 

structure of E (assuming a E Oee(E)). 

E = Eo U E , : Given w E V' such that L.RE«wa)-l E) '" 0 

(wa)-l(Eo U Ed = «wa)-l Eo) U ((wa)-l Ed 

Since E E RRE, then either a E Oee(Eo) or a E Oee(E,) (but not both). It follows 
that (wa)-l(Eo U E , ) is similar to (wa)-l Eo U 0 or similar to (wa)-l E, U 0 (but not 

both). The theorem then follows from the induction hypothesis. 

E = Eo· E , : From Theorem 5.31 we know that (for wE V',a E V) [(wa)-l(Eo · E,)]_ is 

equal to: 

[((wa)-l Eo)E, U (U U, v :uva = wa: if « E L.ERE(U- l Eo)) then (va)-l E, else 0 fi)J_ 

Since E E RRE, then either a E Oee(Eo) or a E Oee(E,) (but not both). It follows, 

by an argument similar to the E = Eo U E, case (above), that the theorem holds from 

the induction hypothesis. 

E = Eo, E = Et or E = EJ: The argument for these cases proceeds similarly to the E = 

Eo . El case. For more on this type of argument see Theorem 5.31. 
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o 

Remark 5.46: The above theorem implies that each derivative of E E RRE (under similarity) is 

either 0 (which we ignore since it corresponds to the sink state) or E, or it can be characterized 
by an a E Oee(E). 0 

Definition 5.47 (Encoding the derivatives of an RRE): Given the theorem above, E E RRE, 

we can now give a partial encoding function eneE (corresponding to the E E RRE) from the deriva· 

tivesofEto Oee(E) such that (forw E V',aE V) enee«wa)-IE) = a when LRE«wa)-IE) oJ 0, 
and eneE is undefined otherwise. Note that this function is not defined on E. 0 

The following property makes use of the definitions of Null, Oee, First, Last, and Follow 

(Definitions 3.20, 4.57, 4.60-4.64 respectively). 

Property 5.48 (Functions Follow, First, and Last): The following properties will be used: 

• (a,b) E Follow(E) = (3 w: w E V': LRE(b-1«wa)-IE» oJ 0). 

• a E First(E) = LRE(a-1 E) oJ 0. 

• a E Last(E) = LRE(Ea-1) oJ 0 = (3 w : w E V' : € E LRE«wa)-1 E». 

Derivatives on the right are mentioned in Definition A.l5. 0 

We can rewrite our sink stateless version of Brzozowski's construction, using the above prop

erties, to obtain the construction now following. 

Construction 5.49 (Encoding Brzozowski for RRE's): We can now give our encoded version 

(using Oee, First, Last, Null, and Follow) of Construction 5.40, as Brzene E RRE ----> DFA: 

Brzene(E) 

o 

let s be a new state (characterizing E E RRE) 

in 

end 

let T = {(a,b,b): (a,b) E Follow(El} 

T' = {(s,a,a): a E First(El} 
F = Last(E) uif (Null(E» then {B} else 0 Ii 

in 

(Oee(E) U is}, V,T UT',0, is}, F) 
end 

Remark 5.50: Using the set Oee(E) as the set of states can yield a DFA with start-unreachable 

states. For example, in the DFA Brzene(0 . a), we have start-unreachable state a. 0 

Remark 5.51: By inspection we see that, for all E E RRE, Brzene(E) ~ BSene(E) (Construc

tion 4.70). It follows from Remark 4.73, that for E E RRE, [Brz(E)J .. = MYG(E). 0 

Remark 5.52: Finally, we note that the construction Brzene produces a correct DFA for any 

E E RE such that E is unambiguous. That is, E E RRE is not required. This property is not 

noted in the literature. This follows from Definition 5.41 and the definition of Brzene. 0 

5.5 Towards DeRemer's construction 

In this subsection, we consider several more constructions based upon the MNconstr and MNmin 

constructions (Constructions 5.11 and 5.19). The idea is to characterize the derivatives of a 

regular expression by so-called dotted regular expressions. We only consider constructing a DFA 

from an RE, as opposed to an ERE. Since some of the proofs are tedious to present, we give this 

construction in an informal manner. 

We begin by introducing dotted regular expressions, which are essentially regular expressions 

with a dot (.) appearing in each of them. 
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Remark 5.53: We will be characterizing derivatives, not equivalence classes (as is required for 

MNconstr). Using dotted REs, it is considerably easier to characterize the derivatives than the 
equivalence classes. 0 

The dot should not be confused with the concatenation dot, the star normal-form dot of 

Briiggemann-Klein (presented in Section 4.5), or the bullet used in typesetting lists. 

Definition 5.54 (Dotted regular expressions, their languages, and undot): We recursively 

define dotted regular expressions (DREs) , function R. E DRE ----> P{V'), and function undot E 

DRE ----> RE. Function R. maps DREs to the (regular) language to the right of the dot, and 

function undot removes the dot in a DRE. 

1. If E E RE then 

(a) oE E DRE, R.{oE) = CRE{E), and undot{oE) = E; 

(b) Eo E DRE, R.{Eo) = {f}, and undot{Eo) = E. 

2. If E E RE and D E DRE then 

(a) E u D E DRE, DuE E DRE, R.{E U D) = R.{D U E) = R.{D), undot{E U D) = 

E U undot{D), and undot{D U E) = undot{D) U E; 

(b) E· DE DRE, D· E E DRE, R.{E. D) = R.{D), R.{D· E) = R.{D)· CRE{E), undot{E· 
D) = E . undot{D), and undot{D . E) = undot{D) . E; 

(c) D' E DRE, R.{D') = R.{D)· CRE{undot{D))', and undot{D') = undot{D)'; 

(d) D+ E DRE, R.{D+) = R.{D)· CRE{undot{D))', and undot{D+) = undot{D)+; 

(e) D' E DRE, R.{D') = R.{D), and undot{D') = undot{D)' . 

3. Nothing else is a DRE. 

A dotted regular expression is also known as an item, from LR parsing [Knut65]; we will frequently 

use this name. 0 

We also require a function mapping a regular expression to all of its dottings. 

Definition 5.55 (Function dots): We define function dots E RE ----> P{DRE) as follows: 

dots{E) = {D : D E DRE f\ undot{D) = E} 

D 

Remark 5.56: For a given E ERE, we will be using sets of items (elements of P(dots{E))) to 

characterize the derivatives of CRE{E) when constructing a DFA accepting CRE{E). D 

Property 5.57 (dots): For all E ERE, Idots{E)1 is finite, and so is IP{dots{E))I. D 

We define an item set, and its language as follows: 

Definition 5.58 (Item sets and their languages): An item set J is a subset of DRE such 

that: 

(3 E : E E RE : J ~ dots{E)) 

IS denotes the set of all item sets. Essentially, an IS is a set of items, all of which are dottings of 

the same regular expression. We also extend undot to IS. D 

Definition 5.59 (Language of an IS): The language of a J E IS is given by function CIS E 

IS ----> P(V') defined as: 

CIS{]) = (U I: I E J: R.{I)) 

D 
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Remark 5.60: We.!Vill use item sets to characterize the derivatives of an RE. 0 

We now define derivatives of item sets. 

Definition 5.61 (Derivative of an item set): Given J E IS and a E V we define a-IJ to be 

the following set: 

o 

1. If [ E J has a subexpression .a then [' is in a-I J, where [' is the same as I with the 

subexpression .a replaced by a •. 

2. Nothing else is in a-IJ. 

We can now define a special type of function, which we call a closure function. 

Definition 5.62 (Closure functions): Any function £ E IS ---., IS can be used a.s a closure 

function, provided that 

(V J: J E IS : CIS(£(J)) = C1S(J) II £ 0 £(J) = £(J)) 

and 

(V E, J: E E RE II J <; dots(E) : E E C1S(J) == (Eo) E £(J)) 

and 

o 

We are now in a position to define our first closure function, and an auxiliary relation. 

Definition 5.63 (Dot closure relation D): We define a binary relation D on DRE. D is the 

smallest relation such that: 

l. If E, FE RE, then (here we use infix notation for relation D): 

OE D EO 

o(E. F) D (oE)· F 
(Eo). F D E· (oF) 
E· (Fo) D (E· F)o 
o(E U F) D (oE) U F 
o(E U F) D E U (oF) 

(Eo) U F D (E U F)o 

E U (Fo) D (EU F)o 
o(E') D (oE)' 
o(E') D (E')o 
(Eo)' D (oE)' 

(Eo )' D (E')o 
o(E+) D (oE)+ 
(Eo)+ D (oE)+ 
(Eo)+ D (E+)o 

orE') D (oEl' 
o(E') D (E')o 
(Eo)' D (E')o 

2. If E E RE and Do, D, E DRE such that (Do, D,) E D, then: 

(a) (EUDo,EUD,) E D, (DoUE,D,UE) ED, (E-Do,E-D,) E D, and (Do·E,D,·E) E D. 
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(b) (Dij,Di) E D, (Dt,DtJ E D, and (D~,DiJ E D. 

o 

Definition 5.64 (Closure function C): We define function C E IS --> IS as: 

C(J) = D'(J) 

Function C satisfies the Definition 5.62, making it a closure function. 0 

Remark 5.65: The closure function C presented here is an extension (to deal with our definition 

of regular expressions) of the one usually given for LR parsing. 0 

Example 5.66 (Function C): C({.«aU€)b')}) is computed to be {.«aU€)b'), (.(aU€»b', (.aU 
€)b', (a U Of)b', (a U €O)b', «a U €).)b', (a U €)(.(b'», (a U €)(.W, (a U €)(b'.), «a U €)b')'}. 0 

In order to construct a DFA for an RE, we require a set of item sets which characterize the set 

of derivatives of a the regular expression. The following definition gives the necessary conditions. 

Definition 5.67 (Derivative item set): Given E ERE, the set D ~ P(dots(E» (that is, 

D ~ IS and for each JED, E = undot(J» characterizes (under some closure function £) the 
derivatives of E if and only if: 

{W-'£RE(E) : wE V'} = {£/s(J): JED} 

and 

(\I J: JE D: J=£(J» 

and 

(\I J, a: JED II a E V : £(a-1 J) ED) 

We write this property DIS(E, D, E). The set D is called a derivative item set for E. 0 

We are now in a position to modify Algorithm 5.39 to compute such a derivative item set (under 

some closure function E), instead of a set of derivatives. In the following algorithm, D, next ~ IS. 

Algorithm 5.68: 

{E ERE} 

D, next := 0, {£( {.Em; 
do next !t: D --> 

D,next :=DUnext,{£(a-1I): aE V III E next} 
od 

{DIS(E, D,£)} 

This algorithm terminates since IP(dots(E»1 is finite (Property 5.57). With the set D computed 

above, we can now construct a DFA accepting £RE(E). 

Construction 5.69 (Item set construction): Function Iconstr E RE x P(IS)+ DFA takes 

a regular expression (E) and a derivative item set (D) for the RE (such that DIS(E,D,C», and 
constructs a DFA: 

Iconstr(E,D) = let T(J,a) = {C(a-1J)} 

S = {C( {.Em 
F = {J : JED II E. E J} 

in 

(D,v,T,0,S,F) 
end 

A DFA constructed with Iconstr has the following property: 

(\I E,D: DIS(E,D,C): £FA(Iconstr(E,D» = £RE(E» 

The DFA is also Complete. 0 



5.5 Towards DeRemer's construction 69 

b 

a a 

Figure 10: The DFA Iconstr«au f)b'). 

Figure 11: The DFA Iconstr(b'). 

Example 5.70 (Iconstr): We construct the DFA corresponding to (auf)b'. The derivative item 

set is (the individual item sets have been compressed, as a notational convenience, and each item 

set is given a label): 

{Io = o(o(oa U OfO)O)(O(ob)'o)o, I, = «a 0 Uf)O)(O(Ob)'o)o,J. = ((a U f))«obo),o)o,I3 = 0} 

The DFA is shown in Figure 10 0 

5.5.1 Making the construction more efficient 

Because of the definition of C, function Iconstr sometimes constructs a DFA which is larger than 
necessary, as shown in the following example. 

Example 5.71 (A DFA that is not minimal): We use lconstr to construct a DFA for b' E 

RE. The two item sets are D = {{o(b'), (ob)', (b')o},{(bo)', (ob)',(b')o}}. The DFA is shown 

in Figure 11. The problem is that the two item sets should have been recognized as denoting 
equivalent derivatives since: 

.c/s ( {o(b'), (ob)', (b')o}) = .c/s( {(bo)', (ob)', (b')o}) 

They only differ in the items orb') and (bo)'. 0 

The problem is that for some J E IS, there is much redundant information in C(J). In 

particular, there may be a J' C J such that .c/s(J') = .c/s(J). We can introduce a function X 

such that X 0 C is a closure function. That is, X is used as a filter. 

Definition 5.72 (Item set optimization function X): Given J E IS such that J = C(J), 

X(J) is the same as J, with the following removed: any item containing a subexpression of the 

form o(E U F), orE'), or (Eo)'. 0 

Property 5.73 (Function X 0 C): Function X 0 C satisfies Definition 5.62, and is a closure 
function. 0 
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Figure 12: The DFA DeRemer(b'). 

Remark 5.74: The reason that such items are removed is that the definition of C ensures that 

they are redundant; other items will have been added to the item set to ensure that these ones are 

not needed. For example, in the case of o(E U F) function C will ensure that oE U F and E U of 

are added to the item set. In this case R( o(E U F)) = R( oE U F) U R(E U of). 0 

Using composite function X oe, we can now present a revised version of the above construction. 

Construction 5.75 (DeRemer's construction): DeRemer's construction is function DeRemer, 

which is exactly as Iconstr, except that the composite function XoC is used as the closure function 

wherever C was used in Iconstr. This construction is due to DeRemer [DeRe74J, where he attributes 

the idea behind the definition of X to Earley [Earl70J. 0 

Remark 5.76: DeRemer presented this construction in a slightly different context: he extended 

an LR parser to deal with grammar production rules with regular expression as right haud sides 

[DeRe74J. Remark 5.78 points out a slight problem with the original presentation by DeRemer. 0 

Example 5.77 (DeRemer): We use DeRemer to construct a DFA for b' ERE. The only item set 

is {(ob)', (b')o} and the DFA is shown in Figure 12. With alphabet V = {b}, this is the minimal 

Complete DFA accepting LRE(b'). 0 

Remark 5.78: DeRemer and Earley specify that both the closure (function C) and the opti

mization (function X) operations are to be performed simultaneously. Unfortunately, when < is 
permitted as an RE (as we have done) it is possible that the process never terminates. For exam

ple, consider the closure (with optimization) of {o(a U E)'}, in the style of DeRemer and Earley. 
After the first step we have {o( a U E)' , (o( a U E))' }. After an optimization step, and a few more 

steps we have {(oa U <)',((a U flo),}, after which we add (o(a U <))' which we had originally 
removed. The rewriting process begins again. In this paper, we avoid this problem by defining 

the closure and optimization steps separately. 0 

We can devise an even more effective optimization function than X. 

Definition 5.79 (Function Y): Given lEIS corresponding to E E RE such that 1 = C(l), 

Y(l) is a subset of l, keeping only the following items: 

1. Any item containing a subexpression of the form ea (for some regular expression a E V). 

2. The item Eo (if present in l). 

o 

Property 5.80 (Function yo C): Composite function Y 0 C satisfies Definition 5.62, and is a 

closure function. 0 

Remark 5.81: The function Y makes the computation of derivatives (of alE IS such that 

1 = C(J)) particularly easy, as the items in Y(l) are precisely those required in the computation 

of derivatives and for determining if < E LIS(l). 0 

Construction 5.82 (Improved item sets): Our optimized construction, called Oeonstr, is as 

Iconstr, except that the composite function Y 0 C is used wherever C was used in Iconstr. This 
construction does not appear in the literature. 0 
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a 

Figure 13: The DFA Geonstr((a U <)b'). 

a 

a,b,c 

Figure 14: The DFA's Brz(ae U be) and Geonstr(ae U be). 

Example 5.83 (Geonstr): Using Geonstr, we construct a DFA for (a U <)b'. The derivative 

item sets are (each item set is given a label for use in the state graph): {Io = {( oa U < )b' , (a U 

<)(ob)',(aU<)b'o}'!l = {(aU<)(ob)',(aU<)b'o},h = 0}. The DFA is shown in Figure 13. This 
is the minimal Complete DFA for the given regular expression. 0 

As seen in the above example, function Geonstr constructs a smaller DFA than Brz did in 

Example 5.37. The two constructions seem difficult to compare, as the following example shows: 

Example 5.84 (Comparing BTZ to Geonstr): We use Brz and Geonstr to construct DFA's for 

ae U be. The derivatives (under extended similarity - see Remark 5.32, each given a label) are: 

{do = aeU be,d, = e,d2 = <,d3 = 0}. The derivative item sets (using yoC, each given a label) 

are: {Io = {oaeU be, aeU obe},!, = {a 0 e U be}, 12 = {ae U b 0 e}'!3 = {rae U be)o},!, = 0} The 
results are shown in Figure 14. Construction Geonstr is unable to recognize that states!, and h 
are equivalent. (An equivalence relation on IS - much like ~ on EREs - could be defined in 

order to identify such equivalent states.) 0 

We can make a more practical implementation by concatenating an end-marker $ onto E E RE 

(using function marker, - see Definition 4.46). The second rule defining Y (Definition 5.79) is 
then no longer required. 
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Construction 5.85 (OeonstT with end-marker): Using the end-marker, the body of the 

DeonstT construction becomes (assuming that DIS(E$, D, Yo C)): 

let T(J, a) = {Y 0 C(a- 1 J)} 
S = {YoC({oE})} 

F = {J: JED 1\ $-lJ '" 0) 
in 

(D,v,T,0,S,F) 
end 

o 

Remark 5.86: The Aho-Sethi-Ullman construction (Construction 4.50) can be viewed as a heavily 

encoded variation on the Oconstr construction. Each item in an item set of D is of the form 

... 0 a ... (for a E V) and corresponds to the basis RFA's that are used in the construction of 
the RFA for E. The subset construction (with start-unreachable state removal) of the Aho-Sethi

Ullman algorithm (Algorithm 4.52) is folded into the algorithm computing the derivative item set 
(using composite function yo C) and the definition of a derivative of an item set. Compare the 

DFA produced in Example 4.51 to that produced in Example 5.83; the only difference is the sink 

state in the latter example. 0 
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6 Conclusions 

The conclusions of this paper fall into two groups, depending on the section to which they relate: 

constructions based upon the structure of regular expressions (Section 4), or constructions based 

upon the Myhill-Nerode theorem (Section 5). 

The conclusions about constructions based on regular expression structure are: 

• Finite automaton constructions are frequently said to be "based upon the structure of regular 

expressions." The ~>algebra framework (given in Sections 3 and 4) was useful in formalizing 

this notion. The ~>algebras were particularly useful in the following ways: 

They placed Thompson's, the left-biased, the right-biased, and the reduced finite au

tomata (RFA) constructions in a common framework. 

They highlighted the fact that the type of object produced by the Thompson's, the 

left-biased and the right-biased constructions is actually the isomorphism class of a 

finite automaton, as opposed to a finite automaton. 

• The concept of duality (that one construction can be the mirror image of another) played 

a central part in finding common parts in constructions. Duality was made more obvious 

through the use of ~>algebras. The following constructions were found to be related by 

duality: 

The Berry-Sethi nondeterministic finite automaton construction (also known in the lit

erature as the McNaughton-Yamada or the Glushkov nondeterministic finite automata 

construction) and the dual of the Berry-Sethi construction (a variant of which is also 

known as the Aho-Sethi-Ullman nondeterministic finite automata contruction [ASU86, 

Example 3.22, pg. 140)). 

The McNaughton-Yamada-Glushkov deterministic finite automaton (DFA) construc

tion and the Aho-Sethi-Ullman DFA construction12
. 

• The use of end-markers (concatenated to either the left or the right of a regular expression) 

was found to be a simple coding trick, which may be useful in practice. End markers do not 

playa central role in any of the constructions, although they have previously been portrayed 

as important. 

• The concept of marking a regular expression (each alphabet symbol occuring in the regular 
expression is given a unique mark, making all of the symbols unique - see Section 4.5) 

is an encoding trick. Marking is not central to the correctness of any of the constructions, 

although it is a useful technique in the practical implementation of some of the constructions. 

• Marking was found to cause problems in some of the constructions. In particular, intersec

tion, complementation, and language difference cannot be dealt with using marking13. In 

the E-algebra framework, intersection, complementation, and language difference can easily 

be implemented for the Berry-Sethi, McNaughton-Yamada-Glushkov, and Aho-Sethi-Ullman 

constructions - constructions that are all traditionally defined using marking. 

• Two interpretations of marking appear in the literature. In the first one, being "at a mark" 

(Aho, Sethi, and Ullman use the phrase "at a position" [ASU86]) means to be in the state 

resulting from making a transition on the alphabet symbol associated with the particular 

mark14
. The second interpretation equates being "at a mark" with being in the state which 

12Here we assume that the sink state (if it exists) is removed from a DFA produced by the McNaughton-Ya.mada

Glushkov construction. 

13 Actually, McNaughton and Yamada (MY60] attempted to define intersection and complementation. Their 

informal descriptions are difficult to understand, a.nd more recent papers use marking a.nd have abandoned trying 

to define intersection or complementation. See Section 4.4. 

14This is the interpreta.tion taken by Glushkov, McNaughton and Yamada, and Berry and Sethi (Glus61, MY60, 

BS86J. 
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has an out-transition on the alphabet symbol associated with the particular mark (that 

is, the marked symbol is valid as the next input symbol)". The two interpretations are 

duals of one another, and arise naturally from the duality of the left-biased and right-biased 

constructions. For example, the interpretations give rise to the duality between McNaughton, 

Yamada and Glushkov's DFA and Aho, Sethi, and Ullman's DFA constructions. 

• The improvements to the Berry-Sethi construction'6 due to Briiggemann-Klein [B-K93a] and 

Chang and Paige [Chan92, CP92] have been difficult to compare. This has been largely due 

to the fact that Chang and Paige's improvements are to the finite automaton construction 

itself, while Briiggemann-Klein's improvements involve transforming the regular expression. 

In Section 4.5, we presented an improvement to the construction (not found in the literature) 

that mirrors Briiggemann-Klein's improvements (not on regular expressions, but on finite 

automata), and is easy to compare to Chang and Paige's construction. 

• Some relationships between the constructions were found that were not made obvious by the 

E-algebra derivations: 

- For restricted regular expressions (where each alphabet symbol occurs at most once

as in marked regular expressions) the Berry-Sethi construction produces a deterministic 

FA. As a consequence, the Berry-Sethi construction and the McNaughton-Yamada
Glushkov DFA construction produce isomorphic finite automata (with the exception of 

the sink state present in a McNaughton-Yamada-Glushkov DFA). 

The Berry-Sethi construction (and therefore the McNaughton-Yamada-Glushkov DFA 

construction) and the Brzozowski construction (under an appropriate encoding) pro

duce isomorphic finite automata for restricted regular expressions. This result was 

originally presented by Berry and Sethi [BS86]. 

The conclusions about the Myhill-Nerode, Brzozowski, and DeRemer constructions (Section 5) 

are: 

• Deriving the second major family of constructions from the Myhill-Nerode theorem proved 

useful in a number of ways: 

The use of equivalence classes makes the correctness argument for the Myhill-Nerode 

construction particularly clear. 

The unique minimal DFA (for a particular language) can be easily constructed using a 

particular equivalence class as the parameter to the Myhill-Nerode construction. 

- Derivatives (of a language) are a useful encoding of the equivalence classes of Myhill 

and Nerode's unique minimal-index equivalence relation RL. 

The definition of derivatives provides an efficient method to compute finite sets which 

encode the infinite sets that are used in the Myhill-Nerode construction. 

• The Brzozowski construction can be viewed as an ingenious encoding of the Myhill-Nerode 

minimal DFA construction. 

• Brzozowski's original paper provided a proof (a similar one is given in this paper) that his 

construction also works when only similarity of regular expressions is recognized. Similarity 

is defined in his paper using four rules} and is defined in this paper using only three rules. 

The missing fourth rule (that E is the unit of concatenation) is not required in the definition 

of similarity for the correctness of our presentation of Brzozowski's construction. 

15This is the interpretation taken by Aho, Sethi, and Ullman [ASU86J. 

16Which is therefore an improvement to the McNaughton-Yamada-Glushkov and the Aho-Sethi-Ullman nonde

terministic finite automaton constructions. 
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• We defined the equivalence and the similarity of regular expressions as equivalence relations 

on regular expressions. We also demonstrated that any such equivalence relation E can 

be used in Brzozowski's construction, provided that E is a refinement of equivalence and 

similarity is a refinement of E. 

• For restricted regular expressions, Brzozowski's construction (with an encoding), the Berry

Sethi construction, and the McNaughton-Yamada-Glushkov construction produce isomor

phic DFA's. 

• The use of dotted regular expressions (also known as items, from LR parsing) is a useful, 

if obscure, encoding of the derivatives of a regular expression. We obtained the following 

results on the use of dotted regular expressions: 

Computing the set of all dotted regular expressions (from a given regular expression) 

can be defined very simply. The derivatives of dotted regular expressions, and the 

construction of a DFA can be defined simply. This construction does not appear in the 

literature. 

- The straightforward definition of dotted regular expressions is unable to deal with inter

section and complementation. This is for the same reason that marking constructions 

are unable to deal with intersection and complementation. 

- DeRemer specified a DFA construction that appears to be very easy to implement. It 

is an optimization over the straightforward dotted regular expression construction, and 

the constructed DFA is always smaller. 

- The original specification of item closure, due to DeRemer and Earley, is incomplete. 

They attempted to define closure and optimization as a single step. This can lead 

to non-termination, as we have demonstrated. The problem can be easily solved by 

defining closure and optimization steps separately. 

We show that additional optimizations, added to DeRemer's construction, can reduce 

the size of the produced DFA. This construction is not given in the literature. Further
more, the optimizations are arguably easier to understand than those of DeRemer, and 

likely easier to implement. 

It is possible to show that this improved construction is related to the Aho-Sethi-Ullman 
DFA construction. 
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A Some basic definitions 

Convention A.I (Powerset): For any set A we use PtA) to denote the set of all subsets of A. 
PtA) is called the powerset of A; it is sometimes written 2A D 

Convention A.2 (Sets of functions): For sets A and B, A --> B denotes the set of all total 

functions from A to B, while A + B denotes the set of all partial functions from A to B. D 

Remark A.3: For sets A, B and relation C <;: A x B we can interpret C as a function C E A --> 

PCB). D 

Convention A.4 (Tuple projection): For an n-tuple t = (XI,X2, ... ,Xn) we use the notation 

1I'i(t) (1 :S i :S n) to denote tuple element Xi; we use the notation ;ri(t) (1 :S i :S n) to denote the 

(n - 1 )-tuple (Xl, ... , Xi-I, Xi+ 1, ... xn). Both 11' and ;r extend naturally to sets of tuples. D 

Convention A.5 (Tuple arguments to functions): For functions (or predicates) taking a 

single tuple as an argument, we usually drop one set of parentheses in a function application. 0 

Convention A.6 (Relation composition): Given sets A, B, C (not necessarily different) and 

two relations, E <;: A x Band F <;: B x C, we define relation composition (infix operator 0) as: 

Eo F = {(a, c) : (3 b: bE B : (a, b) E Ell (b, c) E F)} 

D 

Convention A.7 (Equivalence classes of an equivalence relation): For any equivalence 

relation E on set A we denote the set of equivalence classes of E by [AlE; that is 

[AlE = {[alE: a E A} 

Set [AlE is also called the partition of A induced by E. D 

Definition A.S (Index of an equivalence class): For equivalence relation E on set A, define 

ijE = I[AlEI. ijE is called the index of E. D 

Definition A.9 (Alphabet): An alphabet is a non-empty set of finite size. D 

Definition A.IO (Refinement of an equivalence relation): For equivalence relations E and 

E' (on set A), E is a refinement of E' if and only if E <;: E'. D 

Definition A.l1 (Refinement ([;;) relation on partitions): For equivalence relations E and 

E' (on set A), [AlE is said to be a refinement of [AlE' (written [AlE [;; [AlE') if and only if E <;: E'. 
An equivalent statement is that [AlE [;; [AlE' if and only if every equivalence class (of A) under 

E is entirely contained in some equivalence class (of A) under E'. 0 

Property A.12 (Equivalence relations): Given two equivalence relations E,F, we have the 
following property: 

(E <;: F) II (UE = W) =? (E = F) 

D 

Definition A.13 (Regular languages): Cregv denotes the set of all regular languages over 

alphahet V. That is, Cregv <;: P(V') is the smallest set containing V that is closed under u 

(language union), . (a dot, language concatenation), and * (Kleene closure). The subscript V is 

dropped when no ambiguity arises. D 

Definition A.I4 (Operator? on languages): We define? as a postfix (superscript) operator 

on languages as L' = L u {f}. D 
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Definition A.15 (Left derivatives): Given language A <; V' and w E V' we define the left 

derivative of A with respect to w as: 

w-'A = {x E V' :wx E A} 

Sometimes derivatives are written as DwA or as ~~. Right derivatives are analogously defined. 

Derivatives can also be extended to B-' A where B is also a language. 0 

Property A.16 (Left derivatives): The following two properties follow from Definition A.15 

(assuming L is a language): 

• W E L == € E w- 1 L, and 

o 

Property A.17 (Derivatives of regular languages): Assuming a E V and L,Lo,L. E Creg , 
derivatives have the following properties (given with respect to the structure of regular languages): 

a-'0 0 

a-'{f} 0 

a-'{b} = if (a = b) then {f} else 0 Ii 

a-'(LoL,J = (a-' Lo)L. U if (E E Lo) then a-' L. else 0 Ii 

a-'(Lo U L,J (a-' Lo) U (a-' L.) 

a-'(U) (a-' L)U 

a-'(L+) (a-' L)L' 

a-'(L?) a-' L 

a-'(Lo n L.) (a-' Lo) n (a-' L.) 

a-'(,L) = ,(a-' L) 

The definition related to Kleene closure is shown as follows: 

a-'(£') 

= { Definition of * } 
a-'«L \ {E}W U {f}) 

{Definition of a-'(Lo U L,J} 

a-'((L \ {E} W) U a-' {E} 

{Definition of derivative of concatenation and {f} } 

(a-'(L \ {E})W 

{Definition of derivative of {<} } 

(a-'L)£, 

The definition related to complementation, is as follows: 

a-'(,L) 

{Definition of derivative} 

{x: ax E ,L} 

{ Definition of ' operator} 

,{x:axEL} 

{Definition of a-' L} 

,(a-' L) 
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o 

Definition A.18 (Preserving a predicate): A (partial) function I E Bn + B (for fixed 

n 2: 0) is said to preserve predicate (or property) P (on B) if and only if 

(Ii B' : B' E B n n (domain(f)) /I (Ii k: 1 :s k :s n: P(7rk(B'») : PU(B'») 

The set domain(f) refers to those elements of B n on which I is defined. 0 

Intuitively, a function I preserves a property P if, when every argument of I satisfies P, the result 

of I applied to the arguments also satisfies P. 

Definition A.19 (Reversal operator): A reversal operator R (usually written postfix and 

superscript) for a set A is a function REA ----> A such that RoR (equivalently R2) is the identity 

function on A. We sometimes write the reversal operator as a standard (prefix notation) function. 
o 

Definition A.20 (Tuple and relation reversal): For an n-tuple (Xl, Xz,' .. ,xn ) define reversal 

as (postfix and superscript) function R: 

Given a set A of tuples, we define AR = {xR : X E A}. 0 

Definitidn A.21 (Dual of a function): We assume two sets A and B whose reversal operators 

are Rand R' respectively. Two functions, I E A ----> Band Id E A ----> B are one another's dual 

if and only if 

I(a) = (/d(aR))R' 

In some cases we relax the equality to isomorphism (when isomorphism is defined on B). 0 

Definition A.22 (Symmetrical function): A symmetrical function is one that is its own dual. 

o 

Proposition A.23 (Symmetrical functions): The composition of two symmetrical functions 

is again symmetrical. 0 
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B Proofs of some L;-algebra operators 

In this section, we sketch proofs of the correctness of the operators of Thompson's E-a1gebra (Defi

nition 4.1), the left-biased E-algebra operators (Definition 4.20), the Chang-Paige RFA' operators 

(Construction 4.77), and the RFA" operators (Construction 4.79). 

Theorem B.I (Correctness of Thompson's E-algebra of FA's): Recall the operator def

initions of Definition 4.1. We only present a correctness proof for the operator CU,Th. In the 

following derivation we assume the context of the innermost let clause of the operator definition . 

o 

.cpA(Cu,Th([Mo]", [M,]",)) 

{Definition of .cPA} 

(To UT,)'(qO,q,) 

{Definition of E' } 

(U s,f: s E SoAf E Fo: To'(s,J))U(U s,J: s E S, Af E F, : T,'(s, f)) 

{Definitions of .cFA([Mo]",), .cFA([M, ]",)} 

.cPA ([Mo],,) U .cPA ([M,]",) 

Theorem B.2 (Correctness of the LBFA operators): Recall the operator definitions of 

Definition 4.20. We present a correctness proof of the operator Cu ,LBPA. In the following derivation 
we assume the context of the innermost let clause of the operator definition . 

o 

.cPA (Cu,LBPA([Mo]"" [M,],,)) 

{Definitions of .cPA and F'} 

(U f: f E Fo n Q' : T"(qo,J)) U (U f: f E F, n Q' : T"(qo,J)) 

U if (N) then T"(qo, qo) else 0 Ii 

{Definitions of LPA([Mo)",), LPA([M,J",), N, T'} 

.cPA([Mo],,) U .cFA([M,],,) U if (f E (.cPA (Mo) U .cPA(M,»)) then {f} else 0 Ii 

{Definition of .cPA ([Mo].,) U .cPA([M, ].,)} 

.cPA ([Mo],,) U .cPA ([M, ],,) 

Theorem B.3 (Correctness of the Chang-Paige RFA' operators): Recall Definition 4.76 

and Construction 4.77. We only present the derivation of the eighth component (usually called 

W) for operators C.,RPA' and CU,RFA' (the others are easy to prove). We assume the context of 

the innermost let clause for both operators. 

C.,RFA': last' x first' \ (followo!±l follow 1 !±Ilasto x first,) 

{Definitions of first' and last' } 

(last, !±I if (null,) then lasto else 0 Ii) x (firsto!±l if (nullo) then first , else 0 Ii) 
\ (followo !±I follow 1 !±Ilasto x firstd 

= { Rewriting} 

(last, x firsto!±l if (nullo) then last, x firstl else 0 Ii 
!±I if (null,) then lasto x firsto else 0 fi 
!±I if (nullo A null,) then lasto x first 1 else 0 fi 
\ (followo !±I follow 1 !±I lasto x first,) 

{Assumption that Qo n Ql = 0 } 

last , x first o !±I if (nullo) then last, x first, \ follow 1 else 0 Ii 
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I±J if (null,) then lasto x firsto \ follow 0 else 0 fi 

{Definitions of Wo and W, } 

last, x firsto I±J if (nullo) then W, else 0 fi I±J if (null,) then Wo else 0 fi 

= {Definitions of W' and W" } 

last, x firsto I±J W' I±J W" 

CU,RFA': (lasto I±J last,) x (first o I±J first,) \ (followo I±J follow,) 

o 

{ Rewriting} 

(lasto x firsto I±J lasto x first, I±J last, x firsto I±J last, x first,) \ (followo I±J follow,) 

{Assumption that Qo n Q, = 0} 

(lasto x firsto \ followo) I±J lasto x first, I±J last, x firsto I±J (last, x first, \ follow,) 

{Definitions of Wo and W, } 

lasto x first,l±J last, x firsto I±J Wo I±J W, 

Theorem B,4 (Correctness of the RFA" operators): Recall Definition 4.78 and Construc

tion 4.79. We only present the derivation of the eighth component (usually called W) for operators 

C.,RFA" and CU,RFA" (the others are easy to prove). We assume the context of the innermost 
let clause for both operators. 

C,RFA": (followo I±Jfollow,l±J (lasto x first,») \ (last' x first') 

= {Definitions of first' and last' } 

(follow a I±J follow, I±J (lasto x first d) \ (( last, I±J if (null,) then lasto else 0 fi) 

x (firsto l±Jif (nullo) then first, else 0 fi)) 

{ Rewriting} 

(followo I±J follow, I±J (lasto x first,») \ (last, x firsto 

I±J if (nullo) then last I x first, else 0 Ii 

I±J if (null,) then lasto x firsto else 0 fi 

I±J if (nullo II null,) then lasto x first, else 0 Ii) 

{ Assumption that Qo n Q, = 0 } 

if (nUllo) then follow, \ last, x first, else follow, fi 

I±J if (null,) then follow a \ lasto x first a else followo fi 

I±J if (nUllo II null,) then lasto x first, \ lasto x first, else last a x first, fi 

{Definitions of Wo and W,; rewriting} 

if (nUllo) then W, else follow, fi I±J if (null,) then Wo else follow a fi 

I±J if (nullo /I null,) then 0 else lasto x first, fi 

{Definitions of W', W", and W"'} 

W' I±J W" l±I W'" 

CU,RFA": (follow a I±J follow,) \ ((lasto I±J lastd x (firsto I±J firstd) 

{ Rewriting} 

(followo I±J follow,) \ (lasto x firsto I±J lasto x first, I±J last, x first o I±J last, x firslJ) 

= {Assumption that Qo n Q, = 0} 

followo \ (lasto x firsto) I±Jfollow, \ (last, x firstd 

= {Definitions of Wo and WI } 

Wol±JW, 

o 
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