A taxonomy of finite automata construction algorithms

Citation for published version (APA):

Watson, B. W. (1993). A taxonomy of finite automata construction algorithms. (Computing science notes; Vol. 9343). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/1993

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Eindhoven University of Technology
 Department of Mathematics and Computing Science

A taxonomy of finite automata construction algorithms
by
Bruce W. Watson
93/43

ISSN 0926-4515
All rights reserved
editors: prof.dr. J.C.M. Baeten
prof.dr. M. Rem

A taxonomy of finite automata construction algorithms*

Bruce W. Watson
Faculty of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
e-mail: watson@win.tue.nl
Tel: +3140474319

January 24, 1995

Abstract

This paper presents a taxonomy of finite automata construction algorithms. Each algorithm is classified into one of two families: those based upon the structure of regular expressions, and those based upon the automata-theoretic work of Myhill and Nerode.

Many of the algorithms appearing in the literature are based upon the structure of regular expressions. In this paper, we make this term precise by defining regular expressions as a Σ-term algebra, and automata constructions as various Σ-algebras of automata. Each construction algorithm is then presented as the unique natural homomorphism from the Σ term algebra of regular expressions to the appropriate Σ-algebra of automata. The concept of duality is introduced and used to derive more practical construction algorithms. In this way, we successfully present (and relate) algorithms given by Thompson, Berry and Sethi, McNaughton and Yamada, Glushkov, and Aho, Sethi, and Ullman. Efficient implementations (including those due to Chang and Paige, and Brüggemann-Klein) are also treated. As a side-effect we derive several new algorithms.

A pair of impractical, but theoretically interesting, construction algorithms were presented by Myhill and Nerode. Some encoding techniques are used to make the algorithms practical - giving Brzozowski's algorithm based upon derivatives. DeRemer's algorithm is derived as an encoding of Brzozowski's algorithm. Two new algorithms, related to DeRemer's, are derived. Lastly, this family of algorithms is related to the first family.

In addition to classifying the algorithms, we identify (and abstract from) the coding tricks and implementation details present in many of the published algorithms. This paper also presents an introduction to finite automata, Σ-algebras, and their properties.

[^0]
Contents

1 Introduction 3
2 Finite automata 6
2.1 Properties of finite automata 7
2.2 Transformations on finite automata 10
2.2.1 Algorithms implementing the subset construction 12
$3 \quad \Sigma$-algebras and regular expressions 14
3.1 Some basic definitions 14
3.2 Regular expressions as a Σ-term algebra 15
4 Constructions based on regular expression structure 18
4.1 Thompson's construction 18
4.1.1 A top-down version of Thompson's construction 22
4.1.2 Constructing ϵ-lookahead automata 23
4.2 Towards the Berry-Sethi construction 27
4.2.1 Reduced FA's 32
4.2.2 The Berry-Sethi construction 35
4.2.3 The McNaughton-Yamada-Glushkov construction 37
4.3 The dual of the Berry-Sethi construction 39
4.3.1 The Aho-Sethi-Ullman $D F A$ construction 43
4.4 Extending regular expressions 44
4.5 Efficiently computing with RFA's 46
4.5.1 A practical implementation of the $R F A$ operators 46
4.5.2 More efficient RFA operators 49
5 The Myhill-Nerode, Brzozowski and DeRemer constructions 53
5.1 The Myhill-Nerode construction 54
5.2 The minimal equivalence relation R_{L} 56
5.2.1 Encoding R_{L} 56
5.3 The Brzozowski construction 58
5.3.1 Computing derivatives of an ERE 62
5.3.2 Extending derivatives 63
5.4 Relating the Brzozowski and Berry-Sethi constructions 63
5.5 Towards DeRemer's construction 65
5.5.1 Making the construction more efficient 69
6 Conclusions 73
A Some basic definitions 76
B Proofs of some Σ-algebra operators 79
References 81

List of Figures

1 The family tree of finite automata constructions 4
2 A representative $F A$ of the isomorphism class $T h\left((a \cup \epsilon) b^{*}\right)$. 22
3 The LAFA $K\left((a \cup \epsilon) b^{*}\right)$. 26
4 A representative $L B F A$ of the isomorphism class $l b f a\left((a \cup \epsilon) b^{*}\right)$ 32
5 A representative $D F A$ of the isomorphism class $M Y G\left((a \cup \epsilon) b^{*}\right)$. 38
6 A representative $F A$ of the isomorphism class $R \circ l b f a \circ R\left((a \cup \epsilon) b^{*}\right)$. 40
7 A representative $D F A$ of the isomorphism class $A S U\left((a \cup \epsilon) b^{*}\right)$ 43
8 The DFA MNmin $\left(\{\epsilon, a\}\{b\}^{*}\right)$ 58
9 The $D F A B r z\left((a \cup \epsilon) b^{*}\right)$. 62
10 The DFA Iconstr $\left((a \cup \epsilon) b^{*}\right)$. 69
11 The DFA Iconstr(b^{*}). 69
12 The DFA DeRemer (b^{*}) 70
13 The DFA Oconstr $\left((a \cup \epsilon) b^{*}\right)$. 71
14 The DFA's Brz $(a c \cup b c)$ and $O c o n s t r(a c \cup b c)$. 71

1 Introduction

The construction of finite automata (from regular expressions) is one of the oldest and most extensively developed areas of computing science. Just as the variety of applications has grown, so has the diversity of solutions. Some of the solutions were devised to deal with an extension of the problem, such as constructing a finite automaton from an extended regular expression ${ }^{1}$, while others were devised with efficiency in mind. Such a myriad of objectives in the algorithm design has lead to solutions that are difficult to compare. Frequently, people that study the algorithms (or constructions as they are called in this paper) marvel that two seemingly different algorithms construct isomorphic finite automata from the same regular expression. In order to differentiate these algorithms, a taxonomy of construction algorithms would be useful. This report presents such a taxonomy. A related taxonomy of finite automata minimization algorithms appears in [Wats93].

In developing a taxonomy, we have the luxury of rearranging the relationships between the algorithms, possibly introducing relationships that are not present in the history of an algorithm's development. In this paper, for example, we derive DeRemer's construction from Myhill and Nerode's construction. Historically, the theory of LR parsing had a much greater influence on DeRemer's construction.

Section 2 gives definitions of finite automata and some transformations on them. Section 3 introduces Σ-algebras, the foundations for the first family of finite automata constructions. Sections 4 and 5 include the two families of finite automata constructions. Appendix A gives the basic definitions required for reading this paper, while Appendix B presents some proofs related to Section 4. The construction relationships are summarized in the "family tree" shown in Figure 1. The main results of the taxonomy are summarized in the conclusions - Section 6.

In this taxonomy, the finite automata constructions are arranged into two families: those constructions that are based upon the structure of regular expressions, and those based upon the automata-theoretic results of Myhill and Nerode.

The first family of constructions is presented in Section 4:

- Thompson's construction as presented in [Thom68]. This algorithm constructs a (possibly nondeterministic) finite automaton (possibly with ϵ-transitions). The description in this paper (Construction 4.3) is based upon those given in [AU92, HU79, Wood87, ASU86] as they are usually considered more readable than Thompson's original paper. Additionally, a more practical (top-down) version of Thompson's construction is presented (Construction 4.5).
- The ϵ-lookahead finite automaton construction. This algorithm (Construction 4.11) constructs finite automata that are similar to those constructed by Thompson's construction. They may include so-called ϵ-lookahead transitions.
- The guarded commands program construction. This algorithm (Construction 4.17) constructs a guarded commands program from a regular expression. The program is an acceptor for the regular language denoted by the regular expression. It is presented in this paper as a refinement (using hard-coded guarded commands) of the ϵ-lookahead construction.
- The left-biased and right-biased constructions. These two constructions (Constructions 4.22 and 4.43 respectively) are related by being the mirror images (or duals) of one another. They both construct an ϵ-free (possibly nondeterministic) finite automaton.
- Berry and Sethi's construction as presented in [BS86, Glus61, MY60]. This construction (Construction 4.32) uses some precomputation of sets to construct the same finite automaton as the left-biased construction. This construction is implicitly given by Glushkov [Glus61] and McNaughton and Yamada [MY60], where it is used as the nondeterministic finite automaton construction underlying a deterministic finite automaton construction. Berry and Sethi [BS86] explicitly present this algorithm, and they relate it to Brzozowski's construction

[^1]

Figure 1: The family trees of finite automata constructions. The constructions fall into two broad categories: those based on the structure of regular expressions (descended from Σ-algebras), and those based on the Myhill-Nerode theorem. Each construction presented in this paper appears as a vertex in this tree, along with the name that it is given in this paper. If the construction is presented explicitly (in this paper), the construction number appears in parentheses (indicating where it appears in this paper). Solid edges denote refinements of the solution (and therefore explicit relationships between constructions). They are labeled with the name of the refinement. Dotted edges denote relationships (between algorithms) that are not elaborated upon in this paper. Some of the dotted edges are labeled with the name of the relationship or refinement. Vertices that are connected by a dashed edge are related by duality (they are the "mirror images" of one another).
[Brzo64]. We also present (in Construction 4.38) a variant of the Berry-Sethi construction that is more easily implemented in practice.

- McNaughton, Yamada and Glushkov's construction as presented in [MY60, Glus61]. This construction (Construction 4.39) produces a deterministic finite automaton.
- The dual of the Berry-Sethi construction. This construction (Construction 4.45) is the "mirror image" of Berry and Sethi's construction. A variant of this construction was also mentioned in passing by Aho, Sethi, and Ullman [ASU86, Example 3.22, pg. 140]; it appears in this paper as Construction 4.48. In our presentation of this construction, we correct an error appearing in Aho, Sethi, and Ullman's version (see Construction 4.48 of this paper).
- Aho, Sethi, and Ullman's construction as presented in [ASU86, Alg. 3.5, Fig. 3.44]. This construction (Construction 4.50) produces a deterministic finite automaton. It is the "mirror image" of the McNaughton-Yamada construction.

The second family of constructions (from regular expressions) are those based upon the automatatheoretic results of Myhill and Nerode [RS59]. They are presented in Section 5:

- Myhill and Nerode's construction as presented in [RS59]. This construction (Construction 5.11, which is given as part of the proof of the Myhill-Nerode theorem) uses some language theoretical results to construct a deterministic finite automaton. A version of this construction (Construction 5.19) gives the unique (up to isomorphism) minimal finite automaton. It is not a very practical construction (and usually is not even given as a construction), as it relies on the computation of possibly infinite sets. Certain encoding schemes can be used to represent these infinite sets, making the construction practical. Brzozowski's and DeRemer's constructions are two such encoding schemes.
- Brzozowski's construction as presented in [Brzo64]. This construction (Construction 5.34) gives a deterministic finite automaton. We derive it as an encoding of the Myhill-Nerode construction, although Brzozowski's derivation was entirely independent.
- The item set construction. This construction (Construction 5.69, not appearing in the literature) produces a deterministic finite automaton, and is based upon the concept of "items" which is borrowed from LR parsing [Knut65]. In this paper, we present it as an encoding of the Myhill and Nerode construction.
- DeRemer's construction as presented in [DeRe74]. This construction (Construction 5.75) produces a deterministic finite automaton. In this paper, it is derived from the item set construction, although DeRemer made use of LR parsing in his derivation.
- An improvement of the item set construction. This construction (Construction 5.82, not appearing in the literature) produces a deterministic finite automaton, and is also based upon the item set construction. Furthermore, it is an improvement of DeRemer's construction. A variant (Construction 5.85) is also related to the Aho-Sethi-Ullman deterministic finite automaton construction.

2 Finite automata

In this section we define finite automata, some of their properties, and some transformations on finite automata.

Definition 2.1 (Finite automaton): A finite automaton (an $F A$) is a 6-tuple ($Q, V, T, E, S, F)$ where

- Q is a finite set of states,
- V is an alphabet,
- $T \in \mathcal{P}(Q \times V \times Q)$ is a transition relation,
- $E \in \mathcal{P}(Q \times Q)$ is an ϵ-transition relation
- $S \subseteq Q$ is a set of start states, and
- $F \subseteq Q$ is a set of final states.

The definitions of an alphabet and function \mathcal{P} are in Definition A. 9 and Convention A. 1 respectively.

Remark 2.2: We will take some liberty in our interpretation of the signatures of the transition relations. For example, we also use the signatures $T \in V \longrightarrow \mathcal{P}(Q \times Q), T \in Q \times Q \longrightarrow \mathcal{P}(V)$, $T \in Q \times V \longrightarrow \mathcal{P}(Q), T \in Q \longrightarrow \mathcal{P}(V \times Q)$, and $E \in Q \longrightarrow \mathcal{P}(Q)$. In each case, the order of the Q 's from left to right will be preserved; for example, the function $T \in Q \longrightarrow \mathcal{P}(V \times Q)$ is defined as $T(p)=\{(a, q):(p, a, q) \in T\}$. The signature that is used will be clear from the context. See Remark A.3. The definition of \longrightarrow appears in Convention A.2.

Remark 2.3: Our definition of finite automata differs from the traditional approach in three ways:

- multiple start states are permitted;
- the transition relations are presented in a symmetrical way (without any inherent left-to-right bias); and
- the ϵ-transitions (relation E) are separate from transitions on alphabet symbols (relation T).

Since we only consider finite automata in this paper, we will frequently simply use the term automata.

Convention 2.4 (Finite automaton state graphs): When drawing the state graph corresponding to a finite automaton, we adopt the following conventions:

- All states are drawn as circles (vertices).
- Transitions are drawn as labeled (with ϵ or alphabet symbol $a \in V$) directed edges between states.
- Start states have an in-transition with no source (the transition does not come from another state).
- Final states are drawn as two concentric circles.

For example, the FA below has two states, one is the start state, and other is the final state, with a transition on a :

2.1 Properties of finite automata

In this subsection we define some properties of finite automata. To make these definitions more concise, we introduce particular finite automata $M=(Q, V, T, E, S, F), M_{0}=\left(Q_{0}, V_{0}, T_{0}, E_{0}, S_{0}, F_{0}\right)$, and $M_{1}=\left(Q_{1}, V_{1}, T_{1}, E_{1}, S_{1}, F_{1}\right)$.

Definition 2.5 (Size of an $F A$): Define the size of an $F A$ as $|M|=|Q|$.
Definition 2.6 (Isomorphism (\cong) of $F A$'s): We define isomorphism (\cong) as an equivalence relation on $F A$'s. M_{0} and M_{1} are isomorphic (written $M_{0} \cong M_{1}$) if and only if $V_{0}=V_{1}$ and there exists a bijection $g \in Q_{0} \longrightarrow Q_{1}$ such that

- $T_{1}=\left\{(g(p), a, g(q)):(p, a, q) \in T_{0}\right\}$,
- $E_{1}=\left\{(g(p), g(q)):(p, q) \in E_{0}\right\}$,
- $S_{1}=\left\{g(s): s \in S_{0}\right\}$, and
- $F_{1}=\left\{g(f): f \in F_{0}\right\}$.

Definition 2.7 (Extending the transition relation T): We extend transition relation $T \in$ $V \longrightarrow \mathcal{P}(Q \times Q)$ to $T^{*} \in V^{*} \longrightarrow \mathcal{P}(Q \times Q)$ as follows:

$$
T^{*}(\epsilon)=E^{*}
$$

and (for $a \in V, w \in V^{*}$)

$$
T^{*}(a w)=E^{*} \circ T(a) \circ T^{*}(w)
$$

Operator \circ (composition) is defined in Convention A.6. This definition could also have been presented symmetrically.

Remark 2.8: We also sometimes use the signature $T^{*} \in Q \times Q \longrightarrow \mathcal{P}\left(V^{*}\right)$.
Remark 2.9: If $E=\emptyset$ then $E^{*}=\emptyset^{*}=I_{Q}$ where I_{Q} is the identity relation on the states of M.

Definition 2.10 (The language between states): The language between any two states $q_{0}, q_{1} \in Q$ is $T^{*}\left(q_{0}, q_{1}\right)$.

Definition 2.11 (Left and right languages): The left language of a state (in M) is given by function $\overleftarrow{\mathcal{L}}_{M} \in Q \longrightarrow \mathcal{P}\left(V^{*}\right)$, where

$$
\overleftarrow{\mathcal{L}}_{M}(q)=\left(\cup s: s \in S: T^{*}(s, q)\right)
$$

The right language of a state (in M) is given by function $\overrightarrow{\mathcal{L}}_{M} \in Q \longrightarrow \mathcal{P}\left(V^{*}\right)$, where

$$
\overrightarrow{\mathcal{L}}_{M}(q)=\left(\cup f: f \in F: T^{*}(q, f)\right)
$$

The subscript M is usually dropped when no ambiguity can arise.
Definition 2.12 (Language of an $F A$): The language of a finite automaton (with alphabet V) is given by the function $\mathcal{L}_{F A} \in F A \longrightarrow \mathcal{P}\left(V^{*}\right)$ defined as:

$$
\mathcal{L}_{F A}(M)=\left(\cup s, f: s \in S \wedge f \in F: T^{*}(s, f)\right)
$$

Property 2.13 (Language of an $F A$): From the definitions of left and right languages (of a state), we can also write:

$$
\mathcal{L}_{F A}(M)=(\cup f: f \in F: \overleftarrow{\mathcal{L}}(f))
$$

and

$$
\mathcal{L}_{F A}(M)=(\cup s: s \in S: \overrightarrow{\mathcal{L}}(s))
$$

Definition 2.14 (Extension of $\left.\mathcal{L}_{F A}\right)$: Function $\mathcal{L}_{F A}$ is extended to $[F A]_{\cong}$ as $\mathcal{L}_{F A}\left([M]_{\cong}\right)=$ $\mathcal{L}_{F A}(M)$. This use of brackets ([,]) is defined in Convention A.7. The choice of representative is irrelevant, as isomorphic FA's accept the same language.

Definition 2.15 (Complete): A Complete finite automaton is one satisfying the following:

$$
\text { Complete }(M) \equiv(\forall q, a: q \in Q \wedge a \in V: T(q, a) \neq \emptyset)
$$

Property 2.16 (Complete): For all Complete $F A$'s (Q, V, T, E, S, F) :

$$
(\cup q: q \in Q: \overleftarrow{\mathcal{L}}(q))=V^{*}
$$

Definition 2.17 (ϵ-free): Automaton M is ϵ-free if and only if $E=\emptyset$.
Remark 2.18: Even if M is ϵ-free it is still possible that $\epsilon \in \mathcal{L}_{F A}(M)$: in this case $S \cap F \neq \emptyset$.
Definition 2.19 (Reachable states): For M we can define a reachability relation Reach $(M) \subseteq$ $(Q \times Q)$ defined as

$$
\operatorname{Reach}(M)=\left(\bar{\pi}_{2}(T) \cup E\right)^{*}
$$

Functions π and $\bar{\pi}$ are defined in Convention A.4. Similarly the set of start-reachable states is defined to be:

$$
S \operatorname{Reachable}(M)=\operatorname{Reach}(M)(S)
$$

and the set of final-reachable states is defined to be:

$$
\text { FReachable }(M)=(\operatorname{Reach}(M))^{R}(F)
$$

Reversal of a relation is defined in Definition A.20. The set of useful states is:
$\operatorname{Reachable}(M)=\operatorname{SReachable}(M) \cap \operatorname{FReachable}(M)$

Remark 2.20: For $F A M=(Q, V, T, E, S, F)$, function SReachable satisfies the following interesting property:

$$
q \in \operatorname{SReachable}(M) \equiv \overleftarrow{\mathcal{L}}_{M}(q) \neq \emptyset
$$

FReachable satisfies a similar property:

$$
q \in \operatorname{FReachable}(M) \equiv \overrightarrow{\mathcal{L}}_{M}(q) \neq \emptyset
$$

Definition 2.21 (Useful automaton): A Useful finite automaton is one with only reachable states:

$$
\operatorname{Useful}(M) \equiv(Q=\operatorname{Reachable}(M))
$$

Definition 2.22 (Start-useful automaton): A Useful ${ }_{s}$ finite automaton is one with only startreachable states:

$$
\operatorname{Useful}_{s}(M) \equiv(Q=\operatorname{SReachable}(M))
$$

Definition 2.23 (Final-useful automaton): A $U_{s e f u l}^{f}$ finite automaton is one with only finalreachable states

$$
\operatorname{Useful}_{f}(M) \equiv(Q=F \operatorname{Reachable}(M))
$$

Remark 2.24: Useful $_{s}$ and $U s e f u l_{f}$ are closely related by $F A$ reversal (to be presented in Transformation 2.34). For all $M \in F A$ we have $U s e f u l_{f}(M) \equiv U_{s e f u l}^{s}\left(M^{R}\right)$.

Property 2.25 (Deterministic finite automaton): A finite automaton M is deterministic if and only if

- it does not have multiple start states,
- it is ϵ-free, and
- transition function $T \in Q \times V \longrightarrow \mathcal{P}(Q)$ does not map pairs in $Q \times V$ to multiple states. Formally,

$$
\operatorname{Det}(M) \equiv(|S| \leq 1 \wedge \epsilon-\operatorname{free}(E) \wedge(\forall q, a: q \in Q \wedge a \in V:|T(q, a)| \leq 1))
$$

Definition 2.26 (Deterministic $F A$'s): $D F A$ denotes the set of all deterministic finite automata. We call $F A \backslash D F A$ the set of nondeterministic finite automata.

Convention 2.27 (Transition function of a $D F A$): For $(Q, V, T, \emptyset, S, F) \in D F A$ we can consider the transition function to have signature $T \in Q \times V \nrightarrow Q$. (A definition of \nrightarrow appears in Convention A.2.) The transition function is total if and only if the DFA is Complete.

Property 2.28 (Weakly deterministic automaton): Some authors use a definition of a deterministic automaton that is weaker than Det; it uses left languages and is defined as follows:

$$
\operatorname{Det}^{\prime}(M) \equiv\left(\forall q_{0}, q_{1}: q_{0} \in Q \wedge q_{1} \in Q \wedge q_{0} \neq q_{1}: \overleftarrow{\mathcal{L}}\left(q_{0}\right) \cap \overleftarrow{\mathcal{L}}\left(q_{1}\right)=\emptyset\right)
$$

Remark 2.29: $\operatorname{Det}(M) \Rightarrow \operatorname{Det}^{\prime}(M)$ is easily proved. We can also demonstrate that there exists an $M \in F A$ such that $\operatorname{Det}^{\prime}(M) \wedge \neg \operatorname{Det}(M)$:

$$
\left(\left\{q_{0}, q_{1}\right\},\{b\},\left\{\left(q_{0}, b, q_{0}\right),\left(q_{0}, b, q_{1}\right)\right\}, \emptyset, \emptyset, \emptyset\right)
$$

In this $F A, \overleftarrow{\mathcal{L}}\left(q_{0}\right)=\overleftarrow{\mathcal{L}}\left(q_{1}\right)=\emptyset$, but state q_{0} has two out-transitions on symbol alphabet b

Definition 2.30 (Minimality of a $D F A$) : An $M \in D F A$ is minimal as follows:

$$
\operatorname{Min}(M) \equiv\left(\forall M^{\prime}: M^{\prime} \in D F A \wedge \mathcal{L}_{F A}(M)=\mathcal{L}_{F A}\left(M^{\prime}\right):|M| \leq\left|M^{\prime}\right|\right)
$$

Predicate Min is defined only on $D F A$'s. Some definitions are simpler if we define a minimal, but still Complete, DFA as follows:

$$
\operatorname{Min}_{C}(M) \equiv\left(\forall M^{\prime}: M^{\prime} \in D F A \wedge \text { Complete }\left(M^{\prime}\right) \wedge \mathcal{L}_{F A}(M)=\mathcal{L}_{F A}\left(M^{\prime}\right):|M| \leq\left|M^{\prime}\right|\right)
$$

Predicate Min ${ }_{C}$ is defined only on Complete DFA's.
Property 2.31 (Minimality of a $D F A$): An M, such that $\operatorname{Min}(M)$, is the unique (modulo \cong) minimal $D F A$, as will be shown in Section 5. There is no similar uniqueness property for nondeterministic finite automata.

Property 2.32 (An alternate definition of minimality of a $D F A$): For the purposes of minimizing a $D F A$, we use the definition (defined only on $D F A$'s):

$$
\begin{aligned}
\operatorname{Minimal}(Q, V, T, \emptyset, S, F) \equiv & \left(\forall q_{0}, q_{1}: q_{0} \in Q \wedge q_{1} \in Q \wedge q_{0} \neq q_{1}: \overrightarrow{\mathcal{L}}\left(q_{0}\right) \neq \overrightarrow{\mathcal{L}}\left(q_{1}\right)\right) \\
& \wedge \operatorname{Useful}(Q, V, T, \emptyset, S, F)
\end{aligned}
$$

We have the property that (for all $M \in D F A$) $\operatorname{Minimal}(M) \equiv \operatorname{Min}(M)$. It is easy to prove that $\operatorname{Min}(M) \Rightarrow \operatorname{Minimal}(M)$. The reverse direction follows from the Myhill-Nerode theorem (Theorem 5.7).

A similar definition that relates to $M i n_{C}$ is (also defined only on $D F A$'s):

$$
\begin{aligned}
\text { Minimal }_{C}(Q, V, T, \emptyset, S, F) \equiv & \left(\forall q_{0}, q_{1}: q_{0} \in Q \wedge q_{1} \in Q \wedge q_{0} \neq q_{1}: \overrightarrow{\mathcal{L}}\left(q_{0}\right) \neq \overrightarrow{\mathcal{L}}\left(q_{1}\right)\right) \\
& \wedge \text { Useful }_{s}(Q, V, T, \emptyset, S, F)
\end{aligned}
$$

We have the property that (for all $M \in D F A$ such that $\operatorname{Complete}(M)$) $\operatorname{Minimal}_{C}(M) \equiv \operatorname{Min}_{C}(M)$. The contrapositive of $\operatorname{Min}_{C}(M) \Rightarrow \operatorname{Minimal}_{C}(M)$ is easily proved, and the reverse direction also follows from Theorem 5.7.

Remark 2.33: In the literature the second conjunct in the definition of predicate Minimal ${ }_{C}$ is sometimes erroneously omitted. The necessity of the conjunct can be seen by considering the DFA

$$
(\{p, q\},\{a\},\{(p, a, p),(q, a, q)\}, \emptyset, \emptyset,\{p\})
$$

Here $\overleftarrow{\mathcal{L}}(p)=\overleftarrow{\mathcal{L}}(q)=\emptyset$ (which is also the language of the $D F A$), $\overrightarrow{\mathcal{L}}(p)=\{a\}^{*}$, and $\overrightarrow{\mathcal{L}}(q)=\emptyset$. Without the second conjunct, this $D F A$ would be considered Minimal ${ }_{C}$; clearly this is not the case, as the minimal Complete DFA accepting \emptyset is $(\emptyset,\{a\}, \emptyset, \emptyset, \emptyset, \emptyset)$.

2.2 Transformations on finite automata

Transformation 2.34 ($F A$ reversal): $F A$ reversal is given by postfix (superscript) function $R \in F A \longrightarrow F A$, defined as:

$$
(Q, V, T, E, S, F)^{R}=\left(Q, V, T^{R}, E^{R}, F, S\right)
$$

Function R satisfies

$$
\left(\forall M: M \in F A:\left(\mathcal{L}_{F A}(M)\right)^{R}=\mathcal{L}_{F A}\left(M^{R}\right)\right)
$$

and preserves ϵ-free and Useful.
Reversal functions are defined in Definition A.19, and preservation is defined in Definition A.18.

Remark 2.35: The property $\left(\mathcal{L}_{F A}\left(M^{R}\right)\right)^{R}=\mathcal{L}_{F A}(M)$ means that function $\mathcal{L}_{F A}$ is its own dual, and is therefore symmetrical (see Definitions A. 21 and A.22).
Definition 2.36 (Extending reversal to $[F A] \underline{\cong}$): We extend reversal to $R \in[F A]_{\cong}^{\longrightarrow} \longrightarrow[F A]_{\cong}$ defined as $\left([M]_{\cong}\right)^{R}=\left[M^{R}\right] \cong$. The definition is independent of the choice of representative (of an equivalence class of \cong) since R and isomorphism commute.

Transformation 2.37 (Useless state removal): There exists a function useful $\in F A \longrightarrow F A$ that removes states that are not reachable. A definition of this function is not given here, as it is not needed. Function useful satisfies

$$
\left(\forall M: M \in F A: \operatorname{Useful}(\operatorname{useful}(M)) \wedge \mathcal{L}_{F A}(u \operatorname{seful}(M))=\mathcal{L}_{F A}(M)\right)
$$

and can be defined so as to preserve ϵ-free, Useful, Det, and Min.
Transformation 2.38 (Removing start state unreachable states): Transformation useful ${ }_{s} \in$ $F A \longrightarrow F A$ removes those states that are not start-reachable:

$$
\begin{aligned}
\text { useful }_{s}(Q, V, T, E, S, F)= & \begin{array}{l}
\text { let } \\
\text { in }
\end{array} \quad U=\operatorname{SReachable}(Q, V, T, E, S, F) \\
& \text { end } \quad(U, V, T \cap(U \times V \times U), E \cap(U \times U), S \cap U, F \cap U)
\end{aligned}
$$

Function useful $_{s}$ satisfies

$$
\left(\forall M: M \in F A: U^{2} e f u l_{s}\left(\text { useful }_{s}(M)\right) \wedge \mathcal{L}_{F A}\left(\text { useful }_{s}(M)\right)=\mathcal{L}_{F A}(M)\right)
$$

and preserves Complete, ϵ-free, Useful, Det, and (trivially) Min ${ }_{C}$ and Min.
Remark 2.39: A function useful $_{f} \in F A \longrightarrow F A$ could also be defined, removing states that are not final-reachable. Such a function is not needed in this paper.

Transformation 2.40 (Completing an $F A$): Function complete $\in F A \longrightarrow F A$ is defined as:

$$
\begin{aligned}
& \operatorname{complete}(Q, V, T, E, S, F)=\text { let } s \text { be a new (sink) state } \\
& \text { in } \\
& \text { let } \quad T^{\prime}=\{(p, a, s): \neg(\exists q: q \in Q:(p, a, q) \in T)\} \\
& T^{\prime \prime}=\text { if }\left(T^{\prime} \neq \emptyset\right) \text { then }\{s\} \times V \times\{s\} \text { else } \emptyset \text { fi } \\
& \text { in } \\
& \left(Q \cup \text { if }\left(T^{\prime} \neq \emptyset\right) \text { then }\{s\} \text { else } \emptyset \text { fi, } V,\right. \\
& \left.T \cup T^{\prime} \cup T^{\prime \prime}, E, S, F\right) \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

It satisfies the requirement that:
$\left(\forall M: M \in F A:\right.$ Complete $($ complete $(M)) \wedge \mathcal{L}_{F A}($ complete $\left.(M))=\mathcal{L}_{F A}(M)\right)$
In general, this transformation adds a sink state to the $F A$. This transformation preserves ϵ-free, (trivially) Complete, Det, and Minc.
Transformation 2.41 (ϵ removal): An ϵ removal transformation remove $\epsilon_{\epsilon} \in F A \longrightarrow F A$ is one that satisfies

$$
\left(\forall M: M \in F A: \epsilon-\text { free }\left(\text { remove }_{\epsilon}(M)\right) \wedge \mathcal{L}_{F A}\left(\text { remove }_{\epsilon}(M)\right)=\mathcal{L}_{F A}(M)\right)
$$

There are several possible implementations of remove ϵ_{ϵ}. One implementation is:

$$
\begin{aligned}
\operatorname{remove}_{\epsilon, s y m}(Q, V, T, E, S, F)= & \text { let } \quad T^{\prime}(a)=E^{*} \circ T(a) \circ E^{*} \\
& \text { in } \quad\left(Q, V, T^{\prime}, \dot{\emptyset}, E^{*}(S),\left(E^{*}\right)^{R}(F)\right) \\
& \text { end }
\end{aligned}
$$

This implementation preserves Complete and Useful and is symmetrical.

Transformation 2.42 (Subset construction): The function subset transforms an ϵ-free $F A$ into a $D F A$ (in the let clause $T^{\prime} \in \mathcal{P}(Q) \times V \longrightarrow \mathcal{P}(\mathcal{P}(Q)$))

$$
\begin{aligned}
\operatorname{subset}(Q, V, T, \emptyset, S, F)= & \text { let } \quad \begin{array}{l}
T^{\prime}(U, a)=\{(\cup q: q \in U: T(q, a))\} \\
F^{\prime}=\{U: U \in \mathcal{P}(Q) \wedge U \cap F \neq \emptyset\}
\end{array} \\
& \text { in } \quad\left(\mathcal{P}(Q), V, T^{\prime}, \emptyset,\{S\}, F^{\prime}\right)
\end{aligned} \quad \text { end } \quad .
$$

In addition to the obvious property that (for all $M \in F A) \mathcal{L}_{F A}(\operatorname{subset}(M))=\mathcal{L}_{F A}(M)$, function subset satisfies

$$
(\forall M: M \in F A \wedge \epsilon-\operatorname{free}(M): \operatorname{Det}(\operatorname{subset}(M)) \wedge \operatorname{Complete}(\operatorname{subset}(M)))
$$

and preserves Complete, ϵ-free, Det, and $M i i_{C}$. It is also known as the "powerset" construction.

Property 2.43 (Subset construction): Let $M_{0}=\left(Q_{0}, V, T_{0}, \emptyset, S_{0}, F_{0}\right)$ and $M_{1}=\operatorname{subset}\left(M_{0}\right)$ be finite automata. By the subset construction, the state set of M_{1} is $\mathcal{P}\left(Q_{0}\right)$. We have the following property:

$$
\left(\forall p: p \in \mathcal{P}\left(Q_{0}\right): \overrightarrow{\mathcal{L}}_{M_{1}}(p)=\left(\cup q: q \in p: \overrightarrow{\mathcal{L}}_{M_{0}}(q)\right)\right)
$$

Definition 2.44 (Optimized subset construction): The function subsetopt transforms an ϵ-free $F A$ into a $D F A$. This function is an optimized version of subset.

$$
\begin{array}{rll}
\text { subsetopt }(Q, V, T, \emptyset, S, F)= & \text { let } \quad & T^{\prime}(U, a)=\{(\cup q: q \in U: T(q, a))\} \\
& Q^{\prime}=\mathcal{P}(Q) \backslash\{\emptyset\} \\
& F^{\prime}=\{U: U \in \mathcal{P}(Q) \wedge U \cap F \neq \emptyset\} \\
\text { in } \quad & \left(Q^{\prime}, V, T^{\prime} \cap\left(Q^{\prime} \times V \times Q^{\prime}\right), \emptyset,\{S\}, F^{\prime}\right) \\
& \text { end }
\end{array}
$$

In addition to the property that (for all $M \in F A) \mathcal{L}_{F A}$ (subsetopt (M)) $=\mathcal{L}_{F A}(M)$, function subsetopt satisfies

$$
(\forall M: M \in F A \wedge \epsilon-\operatorname{free}(M): \operatorname{Det}(\operatorname{subsetopt}(M)))
$$

and preserves ϵ-free, Det.

2.2.1 Algorithms implementing the subset construction

Since many of the states in a subset-constructed DFA may be unreachable, we consider an algorithm implementing the composition usefuls o subset.

In this algorithm, D (for done) is the set of states (of the $D F A$ being constructed) already considered, and U (for un-done) is the set of states to be considered. The type of S^{\prime}, D, and U is $\mathcal{P}\left(\mathcal{P}(Q)\right.$) (in particular, S^{\prime} is a set of states in the constructed $D F A$). This algorithm will yield a Complete $D F A$. In the case that the language of the automaton (being subset constructed) is not V^{*}, then there will be a state $\emptyset \in D$ which is the sink state. The algorithm is implemented in Dijkstra's guarded command language [Dijk76].

Algorithm 2.45:

```
\(\{(Q, V, T, \emptyset, S, F) \in F A\}\)
\(S^{\prime}, T^{\prime}:=\{S\}, \emptyset ;\)
\(D, U:=\emptyset, S^{\prime} ;\)
do \(U \neq \emptyset \longrightarrow\)
    let \(u: u \in U\);
    \(D, U:=D \cup\{u\}, U \backslash\{u\} ;\)
    for \(a: a \in V\) do
        \(d:=(\cup q: q \in u: T(q, a)) ;\)
        if \(d \notin D \longrightarrow U:=U \cup\{d\}\)
        \(\| d \in D \longrightarrow\) skip
        fi;
        \(T^{\prime}:=T^{\prime} \cup\{(u, a, d)\}\)
    rof
od;
\(F^{\prime}:=\{d: d \in D \wedge d \cap F \neq \emptyset\}\)
\(\left\{\left(D, V, T^{\prime}, \emptyset, S^{\prime}, F^{\prime}\right)=u_{s e f u l}^{s}\right.\) o subset \(\left.(Q, V, T, \emptyset, S, F)\right\}\)
\(\left\{\right.\) Complete \(\left.\left(D, V, T^{\prime}, \emptyset, S^{\prime}, F^{\prime}\right)\right\}\)
```

An algorithm implementing $u s e f u l_{s} \circ$ subsetopt, yielding a (possibly non-Complete) $D F A$ with $^{\text {a }}$, no $\sin k$ state is:

Algorithm 2.46:

```
\(\{(Q, V, T, \emptyset, S, F) \in F A\}\)
\(S^{\prime}, T^{\prime}:=(\) if \((S \neq \emptyset)\) then \(\{S\}\) else \(\emptyset\) fi), \(\emptyset ;\)
\(D, U:=\emptyset, S^{\prime}\);
do \(U \neq \emptyset \longrightarrow\)
    let \(u: u \in U\);
    \(D, U:=D \cup\{u\}, U \backslash\{u\} ;\)
    for \(a: a \in V \wedge(\exists q: q \in u: T(q, a) \neq \emptyset)\) do
                \(d:=(\cup q: q \in u: T(q, a)) ;\)
                if \(d \notin D \longrightarrow U:=U \cup\{d\}\)
            \(\| d \in D \longrightarrow\) skip
            fi;
            \(T^{\prime}:=T^{\prime} \cup\{(u, a, d)\}\)
        rof
od;
\(F^{\prime}:=\{d: d \in D \wedge d \cap F \neq \emptyset\}\)
\(\left\{\left(D, V, T^{\prime}, \emptyset, S^{\prime}, F^{\prime}\right)=u_{s e f u l}^{s}\right.\) 。 \(\left.\operatorname{subsetopt}(Q, V, T, \emptyset, S, F)\right\}\)
```

Remark 2.47: The algorithm given above can be made more efficient by removing the \exists quantification from the for guard, and implementing it in an if-fi structure within the for statement. The algorithm is left in this form since it is used in Construction 4.50 to present the Aho-SethiUllman algorithm.

3Σ-algebras and regular expressions

Many of the known FA constructions have definitions that follow the syntactic structure of regular expressions. The best known (and perhaps the easiest to understand) is Thompson's construction [Thom68]. We would like to formalize the notion of "following the syntactic structure." This is done by introducing Σ-algebras in this section. Regular expressions are then defined as a Σ-algebra.

3.1 Some basic definitions

This subsection provides the basic definitions required for Σ-algebras. Most of these definitions are taken, with slight modification, from [EM85].

Definition 3.1 (Sorts): Given set S (the elements of which are called sorts), a set of sets X is called S-sorted if the elements of X correspond one-to-one with S . The element of X corresponding to $s \in S$ is written X_{s}.

Definition 3.2 (Signature Σ): A signature Σ is a pair (S, Γ) where

- S is a finite set, and
- Γ is an $\left(S^{*} \times S\right)$-sorted set called the operators.

We write elements of $S^{*} \times S$ as $\ll s_{1}, \ldots, s_{k}>, s>$. We can make a couple of notational simplifications:

- Given $\gamma \in \Gamma_{\left.\left.\ll s_{1}, \ldots, s_{k}\right\rangle, s\right\rangle}$ we write $\gamma: s_{1} \times \ldots \times s_{k} \longrightarrow s$. Constant k is known as the arity of operator γ.
- For $\gamma \in \Gamma_{\ll>, s\rangle}$ we write $\gamma: s$, and call γ a constant; that is, constants are operators of arity zero.

Remark 3.3: Although the set $S^{*} \times S$ is infinite (for $S \neq \emptyset$), this does not imply that there are infinitely many operators. There may be $\left.\ll s_{1}, \ldots, s_{m}\right\rangle, s>\in S^{*} \times S$ such that $\Gamma_{\left.\left\langle<s_{1}, \ldots, s_{m}\right\rangle, s\right\rangle}=$ \emptyset; in that case, there is no operator $\gamma: s_{1} \times \ldots \times s_{m} \longrightarrow s$.

Several of the following definitions are with respect to signature $\Sigma=(S, \Gamma)$.
Definition $3.4\left(\right.$ Term $\left._{\Sigma}\right)$: The S-sorted set Term $_{\Sigma}$ is the smallest S-sorted set such that ${ }^{2}$

- if $\gamma: s_{1} \times \ldots \times s_{k} \longrightarrow s$ (for some $\left.k \geq 0\right)\left(s, s_{1}, \ldots, s_{k} \in S\right)$ and (for all $1 \leq i \leq k$) $t_{i} \in \operatorname{Term}_{\Sigma_{s_{i}}}$ then $\gamma\left[t_{1}, \ldots, t_{k}\right] \in \operatorname{Term}_{\Sigma_{s}}$. We adopt the convention that $\gamma[]$ is simply written γ.

Definition 3.5 (Σ-algebra): A Σ-algebra is a pair (V, F) such that

- V is an S-sorted set, and
- F is a set of functions f_{γ} (with $\gamma \in \Gamma$) such that

$$
- \text { if } \gamma: s_{1} \times \ldots \times s_{k} \longrightarrow s \text { then } f_{\gamma} \in V_{s_{1}} \times \ldots \times V_{s_{k}} \longrightarrow V_{s}
$$

Set V is called the carrier set of the Σ-algebra. Set F is called the operator set of the Σ-algebra.

[^2]Definition 3.6 (Σ-term algebra): The Σ-term algebra is the Σ-algebra ($\operatorname{Term}_{\Sigma}, F$) such that

$$
F=\left\{f_{\gamma}:\left(\gamma: s_{1} \times \ldots \times s_{k} \longrightarrow s\right)\right\}
$$

where (for all $\left.f_{\gamma} \in F\right) f_{\gamma} \in \operatorname{Term}_{\Sigma_{s_{1}}} \times \ldots \times \operatorname{Term}_{\Sigma_{s_{k}}} \longrightarrow \operatorname{Term}_{\Sigma_{s}}$ is defined as $f_{\gamma}\left(t_{1}, \ldots, t_{k}\right)=$ $\gamma\left[t_{1}, \ldots, t_{k}\right]$.

Definition 3.7 (Σ-homomorphism): Given Σ-algebras (V, F) and (W, G), a Σ-homomorphism from (V, F) to (W, G) is an S-indexed set of functions h such that

- for all $s \in S$ we have $h_{s} \in V_{s} \longrightarrow W_{s}$, and
\bullet for all $\gamma: s_{1} \times \ldots \times s_{k} \longrightarrow s, f_{\gamma} \in F, g_{\gamma} \in G$, and $e_{1} \in V_{s_{1}}, \ldots, e_{k} \in V_{s_{k}}$

$$
h_{s}\left(f_{\gamma}\left(e_{1}, \ldots, e_{k}\right)\right)=g_{\gamma}\left(h_{s_{1}}\left(e_{1}\right), \ldots, h_{s_{k}}\left(e_{k}\right)\right)
$$

Remark 3.8: In the case that there is only one sort, a Σ-homomorphism is a singleton set and we speak of the homomorphic function.

Definition 3.9 (Initial Σ-algebra): A Σ-algebra is initial if there is a unique Σ-homomorphism from it to all other Σ-algebras.

Proposition 3.10 (Σ-term algebras): Σ-term algebras are initial.
Example 3.11 (Σ-algebras): Consider signature $\Sigma=(S, \Gamma)$ where S consists only of sort expr, and Γ consists of constant $a:$ expr and operator plus : expr \times expr \longrightarrow expr. Some examples of terms in the Σ-term algebra are plus $[a, a]$ and $\operatorname{plus}[p l u s[a, p l u s[a, a]], a]$.

We define another Σ-algebra X with the natural numbers as the carrier set, 0 (the natural number) as the constant, and $f_{\text {plus }}(x, y)=(x \max y)+1$ as the operator.

As an example of a Σ-homomorphism, we define the "expression tree height" function as a homomorphism from the Σ-term algebra to algebra X. With only one sort, we define function $h_{\text {expr }}$ as $h_{e x p r}(a)=0$ and $h_{\text {expr }}(p l u s[e, f])=f_{p l u s}\left(h_{\text {expr }}(e), h_{\text {expr }}(f)\right)=\left(h_{\text {expr }}(e) \max h_{\text {expr }}(f)\right)+1$.

3.2 Regular expressions as a Σ-term algebra

Definition 3.12 (Regular expressions): We define regular expressions (over alphabet V) as the Σ-term algebra over signature $\Sigma=(S, O)$ where

- S consists of a single sort Reg (for regular expression), and
- O is a set of several constants: $\epsilon, \emptyset, a_{1}, \ldots, a_{n}: \operatorname{Reg}$ (where $V=\left\{a_{1}, \ldots, a_{n}\right\}$) and five operators $\cdot: \operatorname{Reg} \times \operatorname{Reg} \longrightarrow \operatorname{Reg}$ (the dot operator), $\cup: \operatorname{Reg} \times \operatorname{Reg} \longrightarrow \operatorname{Reg}, *: \operatorname{Reg} \longrightarrow \operatorname{Reg}$, $+:$ Reg \longrightarrow Reg, and ? : Reg \longrightarrow Reg .
Signature Σ will be used throughout the remainder of this paper. We make the following notational simplification when writing terms in the Σ-term algebra:
- operators • (the dot) and U are written as infix operators;
- operator • is usually not written, juxtaposition is used instead;
- operators $*,+$, and ? are written as postfix (superscript) operator.

The following will also be used for conciseness:

- a term in the Σ-term algebra is called a regular expression;
- the set $\operatorname{Term}_{\Sigma}$ is denoted by $R E$;
- the operators have (ascending) precedence: $\cup, \cdot, *$ and + and ?; ϵ, \emptyset, and $a_{1}, \ldots, a_{n} \in V$ are constants;
- regular expressions are usually fully parenthesized; parentheses can be omitted where the operator precedence allows.

Remark 3.13: The ? operator is non-standard. It will be used to denote union with the language containing the empty string ϵ. See Definition 3.17.

Remark 3.14: Some authors write \cup as (infix) + or as \mid.
Example 3.15 (A regular expression): Given alphabet $V=\{a, b\}$ the regular expression $\cdot[\cup[a, \epsilon], *[b]]$ is usually written as $(a \cup \epsilon) b^{*}$. This particular regular expression will be used in running examples of $F A$ construction.

Remark 3.16: Some authors leave \emptyset, ?, or + out of the definition of regular expressions. Strictly speaking, operators $\epsilon,+$, and ? are not needed in the signature, since they can be constructed from the other operators. There are some $F A$ constructions (from $R E$'s) that have running time dependent on the size of the regular expression. In these cases, treating the extra operators fully (instead of as abbreviations) becomes advantageous.

Definition 3.17 (The Σ-algebra of regular languages): We define a Σ-algebra of regular languages (over alphabet V), with carrier $\mathcal{P}\left(V^{*}\right)$ and constants:

- $\{\epsilon\} \in \mathcal{P}\left(V^{*}\right)$ (the language containing only the empty string);
- $\emptyset \in \mathcal{P}\left(V^{*}\right)$ (the empty language);
- $\{a\} \in \mathcal{P}\left(V^{*}\right)$ (for all $\left.a \in V\right)$.
and operators:
- $U \in \mathcal{P}\left(V^{*}\right) \times \mathcal{P}\left(V^{*}\right) \longrightarrow \mathcal{P}\left(V^{*}\right)$ (language union);
- $\in \mathcal{P}\left(V^{*}\right) \times \mathcal{P}\left(V^{*}\right) \longrightarrow \mathcal{P}\left(V^{*}\right)$ (language concatenation);
- $* \in \mathcal{P}\left(V^{*}\right) \longrightarrow \mathcal{P}\left(V^{*}\right)$ (Kleene closure);
- $+\in \mathcal{P}\left(V^{*}\right) \longrightarrow \mathcal{P}\left(V^{*}\right)(+$ closure $)$, and
- $? \in \mathcal{P}\left(V^{*}\right) \longrightarrow \mathcal{P}\left(V^{*}\right)$ (union with $\{\epsilon\}$, see Definition A.14).

Each of these operators corresponds (in the obvious way) to the operators of signature Σ.
Definition 3.18 (Language denoted by an $R E$): The function $\mathcal{L}_{R E}$ is the (unique) homomorphism from the Σ-term algebra of $R E$'s to the Σ-algebra of regular languages. Function $\mathcal{L}_{R E}$ maps regular expressions to the languages they denote.

Definition 3.19 (Equivalence (\doteq) of $R E$'s): Two regular expressions, E_{0} and E_{1}, are said to be equivalent (written $E_{0} \doteq E_{1}$, note the dot above the $=$) if and only if they denote the same language.

Definition 3.20 (The nullable Σ-algebra): We define the nullable Σ-algebra as follows:

- The carrier set is $\{$ true, false $\}$.
- The constants are: true, false, and false (corresponding respectively to ϵ, \emptyset, and $a: a \in V$). Here the constant false corresponds to \emptyset and to all $a \in V$. The operators are: \vee (disjunction), \wedge (conjunction), the constant function true, the identity function, and (again) the constant function true (corresponding respectively to $\cup, \cdot, *,+$, and ?). The operators corresponding to $*$ and to ? are interesting because they map their argument to the constant true.

We denote the (unique) homomorphism from $R E$ to this Σ-algebra as $N u l l$.
Property 3.21 (The nullable Σ-algebra): The homomorphism Null has the property that for all $E \in R E$

$$
\epsilon \in \mathcal{L}_{R E}(E) \equiv N u l l(E)
$$

Definition 3.22 ($R E$ reversal): Regular expression reversal is given by the postfix (superscript) isomorphism $R \in R E \longrightarrow R E$

$$
\begin{aligned}
\epsilon^{R} & =\epsilon \\
\emptyset^{R} & =\emptyset \\
a^{R} & =a \\
\left(E_{0} \cup E_{1}\right)^{R} & =\left(E_{0}^{R}\right) \cup\left(E_{1}^{R}\right) \quad(\text { for } a \in V) \\
\left(E_{0} \cdot E_{1}\right)^{R} & =\left(E_{1}^{R}\right) \cdot\left(E_{0}^{R}\right) \\
\left(E^{*}\right)^{R} & =\left(E^{R}\right)^{*} \\
\left(E^{+}\right)^{R} & =\left(E^{R}\right)^{+} \\
\left(E^{?}\right)^{R} & =\left(E^{R}\right)^{?}
\end{aligned}
$$

Function R satisfies the obvious property that

$$
\left(\forall E: E \in R E:\left(E^{R}\right)^{R}=E \wedge\left(\mathcal{L}_{R E}\left(E^{R}\right)\right)^{R}=\mathcal{L}_{R E}(E)\right)
$$

Remark 3.23: The property satisfied by regular expression reversal implies that $\mathcal{L}_{R E}$ is an example of a symmetrical function (according to Definition A.22).

4 Constructions based on regular expression structure

A finite automaton construction is any function f, such that the following diagram commutes:

In this section, we will be defining some Σ-algebras with $[F A]_{\cong}$ as the carrier set; the idea behind the above commuting diagram still holds in this case, as all isomorphic FA's accept the same language. The isomorphism class of an $F A$ corresponding to a given regular expression is the image of the regular expression under the (unique) homomorphism from $R E$ to the other Σ-algebras. Such a homomorphism is a $F A$ construction. Thompson's construction is considered first, followed by a derivation of Berry and Sethi's, McNaughton, Yamada and Glushkov's, and Aho, Sethi, and Ullman's constructions. We also consider methods of efficiently implementing some of the constructions, and methods of constructing $F A$'s from extended regular expressions (see Definition 4.53).

4.1 Thompson's construction

One Σ-algebra is based upon an $R E$ to $F A$ construction given by Thompson in [Thom68]. The explanations given in textbooks such as [HU79, Wood87, AU92, ASU86] are generally considered more readable than Thompson's original paper. None of those presentations made use of Σ algebras.

Definition 4.1 (Thompson's Σ-algebra of $F A$'s): The carrier set is $[F A]_{\cong}$. The operator requirement ${ }^{3}$ is:

- For the binary operators, the representatives of the arguments must have disjoint state sets. For any two equivalence classes (under \cong) we can always choose a representative of each such that they satisfy this requirement.
The correctness of the operators ${ }^{4}$ is not included here, but is discussed in Theorem B.1. Along with each operator we present a graphic representation of the operator. The operators are separated by horizontal lines for clarity. The operators (with subscript Th, for Thompson) are:

$$
\begin{aligned}
C_{\epsilon, T h}= & \text { let } \quad q_{0}, q_{1} \text { be new states } \\
& \text { in }\left[\left(\left\{q_{0}, q_{1}\right\}, V, \emptyset,\left\{\left(q_{0}, \varphi\right.\right.\right.\right. \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
C_{\emptyset, T h}= & \text { let } \quad q_{0}, q_{1} \text { be new states } \\
& \text { in } \quad\left[\left(\left\{q_{0}, q_{1}\right\}, V, \emptyset, \emptyset,\left\{q_{0}\right.\right.\right. \\
& \text { end }
\end{aligned}
$$

[^3]
\[

$$
\begin{aligned}
C_{a, T h}= & \text { let } q_{0}, q_{1} \text { be new states } \\
& \text { in }\left[\left(\left\{q_{0}, q_{1}\right\}, V,\left\{\left(q_{0}, a, q_{1}\right)\right\}, \emptyset,\left\{q_{0}\right\},\left\{q_{1}\right\}\right)\right] \cong
\end{aligned}
$$
\]

for all $a \in V$.

$$
\begin{aligned}
C_{\cdot, T h}\left(\left[M_{0}\right]_{\cong,}\left[M_{1}\right]_{\cong}\right)= & \text { let } \quad \begin{array}{l}
\left(Q_{0}, V, T_{0}, E_{0}, S_{0}, F_{0}\right)=M_{0} \\
\left(Q_{1}, V, T_{1}, E_{1}, S_{1}, F_{1}\right)=M_{1}
\end{array} \\
& \text { in }
\end{aligned}
$$

let $\quad E^{\prime}=E_{0} \cup E_{1} \cup\left(F_{0} \times S_{1}\right)$
in
end
end

$$
\begin{aligned}
& C_{\mathrm{U}, T h}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right)=\text { let }\left(Q_{0}, V, T_{0}, E_{0}, S_{0}, F_{0}\right)=M_{0} \\
& \left(Q_{1}, V, T_{1}, E_{1}, S_{1}, F_{1}\right)=M_{1} \\
& q_{0}, q_{1} \text { be new states } \\
& \text { in } \\
& \text { let } \quad Q^{\prime}=Q_{0} \cup Q_{1} \cup\left\{q_{0}, q_{1}\right\} \\
& E^{\prime}=E_{0} \cup E_{1} \cup\left(\left\{q_{0}\right\} \times\left(S_{0} \cup S_{1}\right)\right) \\
& \cup\left(\left(F_{0} \cup F_{1}\right) \times\left\{q_{1}\right\}\right) \\
& \text { in } \\
& {\left[\left(Q^{\prime}, V, T_{0} \cup T_{1}, E^{\prime},\left\{q_{0}\right\},\left\{q_{1}\right\}\right)\right] \cong} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
C_{*, T h}\left([M]_{\cong}\right)= & \text { let } \quad \begin{array}{l}
(Q, V, T, E, S, F)=M \\
q_{0}, q_{1} \text { be new states }
\end{array} \\
& \text { in } \begin{array}{l}
\text { let } \quad Q^{\prime}=Q \cup\left\{q_{0}, q_{1}\right\} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\text { end } \quad
\end{array} \quad\left[\left(Q^{\prime}, V, T, E^{\prime},\left\{q_{0}\right\},\left\{q_{1}\right\}\right)\right] \cong
\end{aligned}
$$

$$
C_{+, T h}\left([M]_{\cong}\right)=\text { let } \quad \begin{aligned}
& (Q, V, T, E, S, F)=M \\
& q_{0}, q_{1} \text { be new states }
\end{aligned}
$$

in
let $\quad Q^{\prime}=Q \cup\left\{q_{0}, q_{1}\right\}$ $E^{\prime}=E \cup\left(\left\{q_{0}\right\} \times S\right) \cup(F \times S) \cup\left(F \times\left\{q_{1}\right\}\right)$
in $\left[\left(Q^{\prime}, V, T, E^{\prime},\left\{q_{0}\right\},\left\{q_{1}\right\}\right)\right]_{\propto}$ end
end

$$
\begin{aligned}
& C_{?, T h}\left([M]_{\cong}\right)=\text { let } \quad(Q, V, T, E, S, F)=M \\
& q_{0}, q_{1} \text { be new states } \\
& \text { in }
\end{aligned}
$$

These operators are symmetrical (see Definition A. 22 for a definition of symmetrical operators and functions). Furthermore, they do not depend upon the choice of representative of the equivalence classes (under \cong). An automaton in Thompson's Σ-algebra (here we speak of a representative $F A$, instead of the isomorphism class) has the following properties:

- It has a single start state with no in-transitions.
- It has a single final state with no out-transitions.
- Every state has either a single in-transition on a symbol (in V), or at most two ϵ intransitions.
- Every state has either a single out-transition on a symbol (in V), or at most two ϵ outtransitions.

These properties are symmetrical because the operators are symmetrical. Hopcroft and Uliman have shown [HU79] that in practice these properties facilitate the quick simulation of M. For the remainder of this paper we will not duplicate properties such as these, but rather state whether the operator is symmetrical.

Remark 4.2: In the literature, these operators are usually presented as having arguments and results of type $F A$ instead of $[F A]_{\cong}$. Such a presentation is given in terms of particular representatives, and ignores the nondeterminism in choosing new states.

Construction 4.3 (Thompson): Thompson's construction is the (unique) homomorphism Th from $R E$ to Thompson's Σ-algebra of $F A$'s.

Example 4.4 (Thompson's construction): We construct a particular representative ${ }^{5}$ of

$$
\begin{aligned}
T h\left((a \cup \epsilon) b^{*}\right) & =C_{\cdot, T h}\left(T h(a \cup \epsilon), T h\left(b^{*}\right)\right) \\
& =C_{\cdot, T h}\left(C_{\cup, T h}(T h(a), T h(\epsilon)), C_{*, T h}(b)\right) \\
& =C_{\cdot, T h}\left(C_{\cup, T h}\left(C_{a, T h}, C_{\epsilon, T h}\right), C_{*, T h}\left(C_{b, T h}\right)\right)
\end{aligned}
$$

(The regular expression is taken from Example 3.15.) The representative is shown in Figure 2.
In the next two subsections, we consider two algorithms that construct an $F A$ (from a regular expression) based on the top-down syntactic structure of the regular expression. In these two constructions, we use regular expressions as syntactic objects denoting regular languages.

The first construction is a top-down version of Thompson's construction. The second one is also top-down, but constructs a so-called ϵ-lookahead automaton. Such an automaton can be efficiently simulated or it can be converted to an efficient program, accepting the language of the automaton.

[^4]

Figure 2: A representative $F A$ of the isomorphism class $T h\left((a \cup \epsilon) b^{*}\right)$.

4.1.1 A top-down version of Thompson's construction

The top-down version of Thompson's construction is a practical implementation of homomorphism $T h$. It is a function of three parameters: a start state s, a regular expression E, and a final state f. It produces an $F A$, with start state s and final state f, accepting the language $\mathcal{L}_{R E}(E)$.

Construction 4.5 (Top-down Thompson's): We assume a universe of available states U, to define function

$$
t d \in U \times R E \times U \longrightarrow F A
$$

The function is defined recursively on the structure of regular expressions:

$$
\begin{aligned}
& t d(s, \epsilon, f)=(\{s, f\}, V, \emptyset,\{(s, f)\},\{s\},\{f\}) \\
& t d(s, \emptyset, f)=(\{s, f\}, V, \emptyset, \emptyset,\{s\},\{f\}) \\
& t d(s, a, f)=(\{s, f\}, V,\{(s, a, f)\}, \emptyset,\{s\},\{f\}) \quad \text { (for all } a \in V) \\
& t d\left(s, E_{0} \cdot E_{1}, f\right)=\begin{array}{l}
\text { let } \\
\text { in }
\end{array} \quad p, q \text { be new states } \\
& \text { let }\left(Q_{0}, V, T_{0}, E_{0},\{s\},\{p\}\right)=t d\left(s, E_{0}, p\right) \\
& \left(Q_{1}, V, T_{1}, E_{1},\{q\},\{f\}\right)=t d\left(q, E_{1}, f\right) \\
& \text { in } \\
& \left(Q_{0} \cup Q_{1}, V, T_{0} \cup T_{1}, E_{0} \cup E_{1} \cup\{(p, q)\},\{s\},\{f\}\right) \\
& \text { end } \\
& \text { end } \\
& t d\left(s, E_{0} \cup E_{1}, f\right)=\text { let } \quad p, q, r, t \text { be new states } \\
& \text { in } \\
& \text { let }\left(Q_{0}, V, T_{0}, E_{0},\{p\},\{q\}\right)=t d\left(p, E_{0}, q\right) \\
& \left(Q_{1}, V, T_{1}, E_{1},\{r\},\{t\}\right)=t d\left(r, E_{1}, t\right) \\
& \text { in } \\
& \left(Q_{0} \cup Q_{1} \cup\{s, f\}, V, T_{0} \cup T_{1}, E_{0} \cup E_{1}\right. \\
& \cup(\{s\} \times\{p, r\}) \cup(\{q, t\} \times\{f\}),\{s\},\{f\}) \\
& \text { end } \\
& \text { end } \\
& t d\left(s, E^{*}, f\right)=\underset{\text { in }}{\text { let }} \quad p, q \text { be new states } \\
& \text { let }(Q, V, T, E,\{p\},\{q\})=t d(p, E, q) \\
& \text { in } \\
& (Q \cup\{s, f\}, V, T, E \cup\{(s, p),(q, p),(q, f),(s, f)\},\{s\},\{f\}) \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

```
\(t d\left(s, E^{+}, f\right)=\) let \(_{\text {in }} \quad p, q\) be new states
    let \((Q, V, T, E,\{p\},\{q\})=t d(p, E, q)\)
    in
        \((Q \cup\{s, f\}, V, T, E \cup\{(s, p),(q, p),(q, f)\},\{s\},\{f\})\)
    end
    end
\(t d\left(s, E^{?}, f\right)=\) let \(\quad p, q\) be new states
    in
    let \((Q, V, T, E,\{p\},\{q\})=\operatorname{td}(p, E, q)\)
    in \((Q \cup\{s, f\}, V, T, E \cup\{(s, p),(q, f),(s, f)\},\{s\},\{f\})\)
    end
    end
```

Function $t d$ satsifies the property that, for all $E \in R E$:

$$
\begin{aligned}
T h(E)= & \begin{array}{l}
\text { let } \quad s, f \text { be new states } \\
\text { in } \\
\\
\\
\text { end }
\end{array} \quad[t d(s, E, f)] \cong
\end{aligned}
$$

The advantage of function $t d$ over homomorphism $T h$ (Construction 4.3) is one of implementation. In Thompson's construction, the subparts of the final $F A$ are constructed in isolation; when two subparts are combined some states may have to be renamed to ensure that the subparts have disjoint state sets. In the top-down construction, more global knowledge is available concerning the final $F A$ and this type of problem is avoided. (In practice, function $t d$ would make use of a global variable: the set of remaining available states.)

We do not prove the correctness of construction $t d$ in this paper.

4.1.2 Constructing ϵ-lookahead automata

In this subsection, we extend the top-down Thompson construction (function $t d$) to construct ϵ-lookahead finite automata ($L A F A$). In an $L A F A$, every ϵ-transition is qualified by a symbol of V (known as the lookahead symbol). When simulating an $L A F A$, an ϵ-transition can be taken if the next symbol of the input string matches the lookahead symbol of the ϵ-transition. Naturally, for any given state, it is desirable that there only be one ϵ-transition from the state on any given symbol. The following definitions formalize this.

Definition 4.6 (ϵ-lookahead automata): An ϵ-lookahead finite automaton ($L A F A$) is a 6-tuple (Q, V, T, E, S, F) which is a normal $F A$ with one exception:

- ϵ-transition relation is now $E \in \mathcal{P}(Q \times V \times Q)$ instead of $E \in \mathcal{P}(Q \times Q)$.

Remark 4.7: A more commonly presented definition of $L A F A$'s involves both ϵ-lookahead and normal ϵ-transitions (also called don't-care transitions). Since we have combined the two, we implement normal ϵ-transitions as lookahead transitions, where the lookahead set is V (the entire alphabet).

Remark 4.8: Naturally, we extend such functions as $\overleftarrow{\mathcal{L}}, \overrightarrow{\mathcal{L}}$, and $\mathcal{L}_{F A}$ to use the definition of a $L A F A$. As a result, the language accepted by an $L A F A$ is in accordance with the intuitive interpretation of an $L A F A$.

Remark 4.9: In order to present the following definition, we require the definition of function First $\in R E \longrightarrow \mathcal{P}(V)$. Function First is defined in Definition 4.60. Informally, First (E) is the set of all alphabet symbols that can occur as the first symbol of a word in $\mathcal{L}_{R E}(E)$.

Definition 4.10 (Lookahead function): In order to make the definition of the LAFA construction readable, we introduce function look $\in R E \times \mathcal{P}(V) \longrightarrow \mathcal{P}(V)$, defined as:

$$
\operatorname{look}(E, L)=\operatorname{First}(E) \cup \text { if }(N u l l(E)) \text { then } L \text { else } \emptyset \mathrm{fi}
$$

Argument L is called the set of follow symbols.
We now define an $L A F A$ construction, based on the top-down version of Thompson's construction.

Construction 4.11 (ϵ-lookahead finite automaton): We define function K which takes four parameters: a start state s, a regular expression, final state f, and a lookahead set $L \in \mathcal{P}(V)$. As with the top-down version of Thompson's construction, we assume a universe of states U. Function $K \in U \times R E \times U \times \mathcal{P}(V) \longrightarrow L A F A$ is defined recursively on the structure of regular expressions:

$$
\begin{aligned}
& K(s, \epsilon, f, L)=(\{s, f\}, V, \emptyset,\{s\} \times L \times\{f\},\{s\},\{f\}) \\
& K(s, \emptyset, f, L)=(\{s, f\}, V, \emptyset, \emptyset,\{s\},\{f\}) \\
& K(s, a, f, L)=(\{s, f\}, V,\{(s, a, f)\}, \emptyset,\{s\},\{f\}) \quad \text { (for all } a \in V) \\
& K\left(s, E_{0} \cdot E_{1}, f, L\right)=\underset{\text { in }}{\text { let }} \quad p, q \text { be new states } \\
& \text { let } \quad\left(Q_{0}, V, T_{0}, E_{0},\{s\},\{p\}\right)=K\left(s, E_{0}, p, \operatorname{look}\left(E_{1}, L\right)\right) \\
& \left(Q_{1}, V, T_{1}, E_{1},\{q\},\{f\}\right)=K\left(q, E_{1}, f, L\right) \\
& \text { in } \\
& \left(Q_{0} \cup Q_{1}, V, T_{0} \cup T_{1}, E_{0} \cup E_{1}\right. \\
& \left.\cup\left(\{p\} \times \operatorname{look}\left(E_{1}, L\right) \times\{q\}\right),\{s\},\{f\}\right) \\
& \text { end } \\
& \text { end } \\
& K\left(s, E_{0} \cup E_{1}, f, L\right)=\underset{\text { in }}{\text { let }} p, q, r, t \text { be new states } \\
& \text { let }\left(Q_{0}, V, T_{0}, E_{0},\{p\},\{q\}\right)=K\left(p, E_{0}, q, L\right) \\
& \left(Q_{1}, V, T_{1}, E_{1},\{r\},\{t\}\right)=K\left(r, E_{1}, t, L\right) \\
& \text { in } \\
& \left(Q_{0} \cup Q_{1} \cup\{s, f\}, V, T_{0} \cup T_{1}, E_{0} \cup E_{1}\right. \\
& \cup\left(\{s\} \times \operatorname{look}\left(E_{0}, L\right) \times\{p\}\right) \\
& \cup\left(\{s\} \times \operatorname{look}\left(E_{1}, L\right) \times\{r\}\right) \\
& \cup(\{q, t\} \times L \times\{f\}),\{s\},\{f\}) \\
& \text { end } \\
& \text { end } \\
& K\left(s, E^{*}, f, L\right)=\text { let } p, q \text { be new states } \\
& \text { in } \\
& \text { let }(Q, V, T, E,\{p\},\{q\})=K(p, E, q, L \cup \operatorname{First}(E)) \\
& \text { in } \\
& (Q \cup\{s, f\}, V, T, E \cup(\{s, q\} \times \operatorname{First}(E) \times\{p\}) \\
& \cup(\{s, q\} \times L \times\{f\}),\{s\},\{f\}) \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

```
\(K\left(s, E^{+}, f, L\right)=\begin{aligned} & \text { let } \\ & \text { in }\end{aligned} \quad p, q\) be new states
        let \(\quad(Q, V, T, E,\{p\},\{q\})=K(p, E, q, L \cup \operatorname{First}(E))\)
        in
        \((Q \cup\{s, f\}, V, T, E \cup(\{s, q\} \times \operatorname{First}(E) \times\{p\})\)
                                \(\cup(\{q\} \times L \times\{f\}),\{s\},\{f\})\)
        end
    end
\(K\left(s, E^{?}, f, L\right)=\operatorname{let}_{\text {in }} \quad p, q\) be new states
    let \((Q, V, T, E,\{p\},\{q\})=K(p, E, q, L)\)
    in
        \((Q \cup\{s, f\}, V, T, E \cup(\{s\} \times \operatorname{First}(E) \times\{p\})\)
        \(\cup(\{s, q\} \times L \times\{f\}),\{s\},\{f\})\)
    end
    end
```

Remark 4.12: Since we make use of a single symbol of lookahead, we assume that the input string always has an end-marker $\$$ concatenated on its right. We assume that $\$ \in V$ and that $\$$ does not appear elsewhere in the regular expression. This means that, for $E \in R E$:

```
let s,f be new states
in
    K(s,E,f,{$})
end
```

is a $L A F A$ accepting $\mathcal{L}_{R E}(E)$.
Definition 4.13 (Deterministic $L A F A ' s$): A $L A F A$ is deterministic if and only if it has at most one start state and no state has more than one out-transition (either an ϵ-lookahead or a normal transition) on any given alphabet symbol.

We present some determinism conditions that ensure that Construction 4.11 produces deterministic $L A F A$'s.

Definition 4.14 (Determinism conditions): In order for function K to produce a deterministic $L A F A$ we impose the following requirements for particular cases of K :

- For $K\left(s, E_{0} \cup E_{1}, f, L\right)$ we require that $\operatorname{look}\left(E_{0}, L\right) \cap \operatorname{look}\left(E_{1}, L\right)=\emptyset$.
- For $K\left(s, E^{*}, f, L\right), K\left(s, E^{+}, f, L\right)$, and $K\left(s, E^{?}, f, L\right)$ we require that $\operatorname{First}(E) \cap L=\emptyset$.

Remark 4.15: The lookahead transitions in $L A F A$'s make them are more efficient to simulate than an equivalent $F A$ constructed with Thompson's construction. Simulation of a deterministic $L A F A$ is as efficient as the simulation of a $D F A$.

Example $4.16(L A F A)$: Given new states s, f, we construct the deterministic $L A F A K(s,(a \cup$ $\epsilon) b^{*}, f,\{\$\}$). The ϵ-lookahead transitions are labeled with both ϵ and the lookahead symbols. The state graph is given in Figure 3.

Figure 3: The $L A F A K\left((a \cup \epsilon) b^{*}\right)$.

Construction 4.17 (Creating a program from a $L A F A$): A deterministic $L A F A$ can also be converted into a program which is a hard-coded simulation of the $L A F A$. We now describe a mapping $N \in R E \times \mathcal{P}(V) \longrightarrow G C L$, where $G C L$ denotes the set of all guarded commands programs [Dijk76]. This construction is based upon the LAFA construction. The created programs are correct when the determinism conditions of Definition 4.14 hold. In the generated program, we assume that variable $w \in V^{*}$ is the input string (with an end-marker $\$$ concatenated on its right), and that $h d(w)$ refers to the first symbol of w and $t l(w)$ refers to the remainder of w. We annotate the program fragments (in the definition of N) with the state names (in braces) in the corresponding definition of Construction 4.11. (The semantics of the guarded commands specify that if none of the guards in an if-fi statement are true, the statement is equivalent to abort.)

```
\(N(\epsilon, L)=\{s\}\)
        if \(h d(w) \in L \longrightarrow\) skip
        fi
        \(\{f\}\)
\(N(\emptyset, L) \quad=\{s\} \operatorname{abort}\{f\}\)
\(N(a, L) \quad=\{s\} \quad\) (for all \(a \in V\) )
        if \(h d(w)=a \longrightarrow w:=t l(w)\)
    fi
        \(\{f\}\)
\(N\left(E_{0} \cdot E_{1}, L\right)=\{s\} N\left(E_{0}, \operatorname{look}\left(E_{1}, L\right)\right)\{p\} ;\)
        \(\{q\} N\left(E_{1}, L\right)\{f\}\)
\(N\left(E_{0} \cup E_{1}, L\right)=\{s\}\)
        if \(h d(w) \in \operatorname{look}\left(E_{0}, L\right) \longrightarrow\{p\} N\left(E_{0}, L\right)\{q\}\)
        \(\| h d(w) \in \operatorname{look}\left(E_{1}, L\right) \longrightarrow\{r\} N\left(E_{1}, L\right)\{t\}\)
        fi
        \{f\}
\(N\left(E^{*}, L\right)=\{s\}\)
        do \(h d(w) \in \operatorname{First}(E) \longrightarrow\{p\} N(E, \operatorname{First}(E) \cup L)\{q\}\)
        od
        \(\{f\}\)
\(N\left(E^{+}, L\right) \quad=\{s\}\)
        repeat \(\{p\} N(E, \operatorname{First}(E) \cup L)\{q\}\)
        until \(h d(w) \notin\) First \((E)\)
        \(\{f\}\)
\(N\left(E^{?}, L\right)=\{s\}\)
    if \(h d(w) \in \operatorname{First}(E) \longrightarrow\{p\} N(E, L)\{q\}\)
        \(\| h d(w) \in L \longrightarrow\) skip
        fi
        \(\{f\}\)
```

As with Construction 4.11 we concatenate an end-marker $\$$ on the right of the input string w. The entire program of the acceptor (for $E \in R E$) is:

```
{w\in\mp@subsup{V}{}{*}{$}}
N(E,{$});
if w=$\longrightarrow skip
fi
{w\in\mathcal{L}
```

Termination of the program is equivalent to $w \in \mathcal{L}_{R E}(E)$.
Example 4.18 (Programs from $L A F A ' s$): We construct the program corresponding to $(a \cup \epsilon) b^{*}$.

```
    \(\left\{w \in V^{*}\{\$\}\right\}\)
    if \(h d(w) \in\{a\} \longrightarrow\)
        if \(h d(w)=a \longrightarrow w:=t l(w)\)
        fi
    \(\| h d(w) \in\{b, \$\} \longrightarrow\)
        if \(h d(w) \in\{b, \$\} \longrightarrow\) skip
        fi
    fi;
    do \(h d(w) \in\{b\} \longrightarrow\)
        if \(h d(w)=b \longrightarrow w:=t l(w)\)
        fi
    od
    if \(w=\$ \longrightarrow\) skip
    fi
    \(\left\{w \in\{a, \epsilon\}\{b\}^{*}\right\}\)
```


4.2 Towards the Berry-Sethi construction

We now consider Σ-algebras of ϵ-free $F A$'s. One such Σ-algebra can be given with symmetrical operators.

Definition 4.19 (Symmetrical ϵ-free Σ-algebra operators): The carrier set is $[F A] \cong$. The operator requirement is (as with Thompson's Σ-algebra):

- For the binary operators, the representatives of the arguments must have disjoint state sets.

The symmetrical ϵ-free preserving operators of the Σ-algebra are defined using Thompson's Σ algebra operators and symmetrical function remove $e_{\epsilon, \text { sym }}$ (which is extended to $[F A]_{\cong} \longrightarrow[F A]_{\cong}$):

$$
\begin{aligned}
& C_{\epsilon, s y m}=\text { remove }_{\epsilon, s y m} \circ C_{\epsilon, T h} \\
& C_{\emptyset, \text { sym }}=\text { remove }_{\epsilon, \text { sym }} \circ C_{\emptyset, T h} \\
& C_{a, s y m}=\text { remove }_{\epsilon, s y m} \circ C_{a, T h} \quad \text { (for all } a \in V \text {) } \\
& C_{\text {.,sym }}=\text { remove }_{\epsilon, \text { sym }} \circ C_{\text {.,Th }} \\
& C_{U, s y m}=\text { remove }_{\epsilon, \text { sym }} \circ C_{\cup, T h} \\
& C_{*, s y m}=\text { remove }_{\epsilon, \text { sym }} \circ C_{*, T h} \\
& C_{+, s y m}=\text { remove }_{\epsilon, s y m} \circ C_{+, T h} \\
& C_{?, \text { sym }}=\text { remove }_{\epsilon, \text { sym }} \circ C_{?, T h}
\end{aligned}
$$

These operators are symmetrical since they are compositions of symmetrical operators (see Proposition A.23). An $F A$ in this Σ-algebra has the property that it is ϵ-free.

These operators are cumbersome to present fully. Furthermore, they are not particularly useful in practice. For this reason, we now consider asymmetrically defined ϵ-free preserving operators.

The first asymmetrical ϵ-free preserving Σ-algebra operators that we consider are the left-biased ones. The image of a $R E$ in this Σ-algebra is easier to compute than its image in the Σ-algebra given in Definition 4.19).

Definition 4.20 (Σ-algebra of left-biased ϵ-free operators): The carrier set is $[F A]_{\cong}$. The operator requirements are:

- For binary operators, the representatives of the arguments must have disjoint state sets.
- The following is required of the representatives of each argument:
- it is ϵ-free,
- it has a single start state, and
- the single start state has no in-transitions.

A proof of the correctness of these operators is outlined in Theorem B.2. As in Thompson's Σ-algebra, each operator is presented here with a graphic representation of the operator ${ }^{6}$. Parts of the operator definitions are intentionally clumsy or verbose. This is done to facilitate the derivation of a Σ-algebra of reduced $F A$'s (in Definition 4.29). The operators are:

$$
\begin{aligned}
C_{\epsilon, L B F A}= & \text { let } q_{0} \text { be a new state } \\
& \text { in } \\
& \text { end }\left[\left(\left\{q_{0}\right\}, V, \emptyset, \emptyset,\left\{q_{0}\right\},\left\{q_{0}\right\}\right)\right]_{\cong}
\end{aligned}
$$

$$
\begin{aligned}
C_{\emptyset, L B F A}= & \text { let } q_{0} \text { be a new state } \\
& \text { in } \\
& \text { end }\left[\left(\left\{q_{0}\right\}, V, \emptyset, \emptyset,\left\{q_{0}\right\}, \emptyset\right)\right]_{\cong}
\end{aligned}
$$

$$
\begin{aligned}
C_{a, L B F A}= & \text { let } q_{0}, q_{1} \text { be new states } \\
& \text { in }\left[\left(\left\{q_{0}, q_{1}\right\}, V,\left\{\left(q_{0}, a, q_{1}\right)\right\}, \emptyset,\left\{q_{0}\right\},\left\{q_{1}\right\}\right)\right] \cong \\
& \text { end }
\end{aligned}
$$

for all $a \in V$.

[^5]\[

$$
\begin{aligned}
C_{\cdot, L B F A}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right] \cong\right)=\text { let } \quad & \left(Q_{0}, V, T_{0}, \emptyset,\left\{s_{0}\right\}, F_{0}\right)=M_{0} \\
& \left(Q_{1}, V, T_{1}, \emptyset,\left\{s_{1}\right\}, F_{1}\right)=M_{1} \\
& N_{0}=\epsilon \in \mathcal{L}_{F A}\left(M_{0}\right) \\
& N_{1}=\epsilon \in \mathcal{L}_{F A}\left(M_{1}\right) \\
& N=\epsilon \in\left(\mathcal{L}_{F A}\left(M_{0}\right) \mathcal{L}_{F A}\left(M_{1}\right)\right)
\end{aligned}
$$
\]

q_{0} be a new state
in

$$
\text { let } \quad Q^{\prime}=Q_{0} \backslash\left\{s_{0}\right\} \cup Q_{1} \backslash\left\{s_{1}\right\} \cup\left\{q_{0}\right\}
$$

$$
T^{\prime}=T_{0} \cup T_{1} \cup\left(F_{0} \times T_{1}\left(s_{1}\right)\right)
$$

$$
\cup\left(\left\{q_{0}\right\} \times\left(T_{0}\left(s_{0}\right)\right.\right.
$$

$$
\cup \text { if }\left(N_{0}\right) \text { then } T_{1}\left(s_{1}\right) \text { else } \emptyset \text { fi)) }
$$

$$
F^{\prime}=F_{1} \cup \text { if }\left(N_{1}\right) \text { then } F_{0} \text { else } \emptyset \text { fi }
$$

in

$$
\cup \text { if }(N) \text { then }\left\{q_{0}\right\} \text { else } \emptyset \text { fi }
$$

$$
\begin{gathered}
{\left[\left(Q^{\prime}, V, T^{\prime} \cap\left(Q^{\prime} \times V \times Q^{\prime}\right),\right.\right.} \\
\left.\left.\emptyset,\left\{q_{0}\right\}, F^{\prime} \cap Q^{\prime}\right)\right] \cong
\end{gathered}
$$

end
end

$$
\begin{aligned}
C_{\cup, L B F A}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right] \cong\right)=\text { let } & \left(Q_{0}, V, T_{0}, \emptyset,\left\{s_{0}\right\}, F_{0}\right)=M_{0} \\
& \left(Q_{1}, V, T_{1}, \emptyset,\left\{s_{1}\right\}, F_{1}\right)=M_{1} \\
& N=\epsilon \in\left(\mathcal{L}_{F A}\left(M_{0}\right) \cup \mathcal{L}_{F A}\left(M_{1}\right)\right)
\end{aligned}
$$

q_{0} be a new state
in
let $Q^{\prime}=Q_{0} \backslash\left\{s_{0}\right\} \cup Q_{1} \backslash\left\{s_{1}\right\} \cup\left\{q_{0}\right\}$ $T^{\prime}=T_{0} \cup T_{1} \cup\left(\left\{q_{0}\right\} \times\left(T_{0}\left(s_{0}\right) \cup T_{1}\left(s_{1}\right)\right)\right)$ $F^{\prime}=F_{0} \cup F_{1} \cup$ if (N) then $\left\{q_{0}\right\}$ else \emptyset fi
in
$\left[\left(Q^{\prime}, V, T^{\prime} \cap\left(Q^{\prime} \times V \times Q^{\prime}\right)\right.\right.$, $\left.\left.\emptyset,\left\{q_{0}\right\}, F^{\prime} \cap Q^{\prime}\right)\right] \underline{\cong}$
end
end

$$
\begin{align*}
C_{*, L B F A}\left([M]_{\cong}\right)=\text { let } & (Q, V, T, \emptyset,\{s\}, F)=M \\
& N=\epsilon \in \mathcal{L}_{F A}(M)^{*} \tag{seeRemark4.21}\\
& q_{0} \text { be a new state }
\end{align*}
$$

in
let $Q^{\prime}=Q \backslash\{s\} \cup\left\{q_{0}\right\}$ $T^{\prime}=T \cup\left(F \cup\left\{q_{0}\right\}\right) \times T(s)$
$F^{\prime}=F \cup$ if (N) then $\left\{q_{0}\right\}$ else $\emptyset \mathrm{fi}$
in
$\left[\left(Q^{\prime}, V, T^{\prime} \cap\left(Q^{\prime} \times V \times Q^{\prime}\right)\right.\right.$,
$\left.\left.\emptyset,\left\{q_{0}\right\}, F^{\prime} \cap Q^{\prime}\right)\right] \cong$
end
end

$$
\begin{aligned}
& C_{+, L B F A}\left([M]_{\cong}\right)=\text { let }(Q, V, T, \emptyset,\{s\}, F)=M \\
& N=\epsilon \in \mathcal{L}_{F A}(M)^{+} \\
& q_{0} \text { be a new state } \\
& \text { in } \\
& \text { let } \quad Q^{\prime}=Q \backslash\{s\} \cup\left\{q_{0}\right\} \\
& T^{\prime}=T \cup\left(F \cup\left\{q_{0}\right\}\right) \times T(s) \\
& F^{\prime}=F \cup \text { if }(N) \text { then }\left\{q_{0}\right\} \text { else } \emptyset \mathrm{fi} \\
& \text { in } \\
& {\left[\left(Q^{\prime}, V, T^{\prime} \cap\left(Q^{\prime} \times V \times Q^{\prime}\right),\right.\right.} \\
& \left.\left.\emptyset,\left\{q_{0}\right\}, F^{\prime} \cap Q^{\prime}\right)\right]_{\underline{\simeq}} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$


```
\(C_{?, L B F A}\left([M]_{\underline{\Upsilon}}\right)=\) let \((Q, V, T, \emptyset,\{s\}, F)=M\)
\(N=\epsilon \in \mathcal{L}_{F A}(M)^{?} \quad\) (see Remark 4.21)
\(q_{0}\) be a new state
in
let \(\quad Q^{\prime}=Q \backslash\{s\} \cup\left\{q_{0}\right\}\)
\(T^{\prime}=T \cup\left(\left\{q_{0}\right\} \times T(s)\right)\)
\(F^{\prime}=F \cup\) if \((N)\) then \(\left\{q_{0}\right\}\) else \(\emptyset \mathbf{f i}\)
in
\(\left[\left(Q^{\prime}, V, T^{\prime} \cap\left(Q^{\prime} \times V \times Q^{\prime}\right)\right.\right.\),
\(\left.\left.\emptyset,\left\{q_{0}\right\}, F^{\prime} \cap Q^{\prime}\right)\right] \cong\)
end
end
```


The choice of representatives in these operators is irrelevant. For construction purposes, we note that $\epsilon \in \mathcal{L}_{F A}(M) \equiv s \in F$.

Let $L B F A$ (where $L B F A \subset F A$) denote the set of all finite automata that are images ${ }^{7}$ in this Σ-algebra of some $E \in R E$. (That is, $L B F A$ is the smallest set that contains the $L B F A$ constants and is closed under the $L B F A$ operators.) An $L B F A$ has the following properties:

- It is ϵ-free.
- It has a single start state.
- The single start state has no in-transitions.
- All in-transitions to a state are on the same symbol (in V). This can be seen by considering the constants $C_{a, L B F A}$ (for all $a \in V$), which are the only operators introducing new transitions on an alphabet symbol.
Only the constants are symmetrical.
Remark 4.21: Parts of the operator definitions of Definition 4.20 are intentionally clumsy; they are presented this way to facilitate the derivation of a Σ-algebra of reduced FA's (Definition 4.29).

Construction 4.22 (Left-biased finite automata): Define construction lbfa $\in R E \longrightarrow$ $[L B F A] \cong$ to be the unique homomorphism from $R E$ s to $[L B F A]_{\cong}$.

Example 4.23 (Σ-algebra of $L B F A$'s): We construct a representative of the isomorphism class $l b f a\left((a \cup \epsilon) b^{*}\right)$ (the regular expression is from Example 3.15). The representative is shown in Figure 4.

Computing within the Σ-algebra of $L B F A$'s is inefficient. Each operator defined above does much redundant work. For example, the start states of the arguments to the operators are always removed, with only the out-transitions from the argument's start state being used. Additionally, the if-fi structures within the final states definition are of the same structure in each operator. We wish to introduce an encoding of $L B F A$'s that will allow us to find cheap constructions that are equivalent to lbfa. We now describe such an encoding.

A method of encoding an $L B F A(Q, V, T, \emptyset,\{s\}, F)$ is:

[^6]

Figure 4: A representative $L B F A$ of the isomorphism class $l b f a\left((a \cup \epsilon) b^{*}\right)$.

- The ϵ-transitions are not needed (since $L B F A$'s are ϵ-free).
- State s has no in-transitions; only $T(s)$ (the out-transitions from the start state) and $s \in F$ are needed.
- All in-transitions to a state are on the same symbol (in V). Therefore, a state-to-symbol map can be used, and the symbol components of T and $T(s)$ can be removed.

In the following subsection, we introduce reduced FA's as an encoding of $L B F A$'s.

4.2.1 Reduced $F A$'s

Definition 4.24 ($R F A$): A reduced $F A(R F A$) is a 7-tuple (Q, V, follow, first, last, null, Qmap) where

- Q is a finite set of states,
- V is a alphabet,
- follow $\in \mathcal{P}(Q \times Q)$ is a follow relation (replacing the transition relation),
- first $\subseteq Q$ is a set of initial states (replacing $T(s)$ in an $L B F A$),
- last $\subseteq Q$ is a set of final states,
- null $\in\{$ true, false $\}$ is a Boolean value (encoding $s \in F$ in an LBFA), and
- $Q m a p \in \mathcal{P}(Q \times V)$ maps each state to exactly one symbol (it is also viewed as $Q m a p \in$ $Q \longrightarrow V$, and its inverse as $\left.Q m a p^{-1} \in V \nrightarrow \mathcal{P}(Q)\right)$.

Definition 4.25 (Isomorphism of $R F A ' s$): We extend isomorphism (\cong) to $R F A$'s.
Definition 4.26 (Reversal of $R F A$'s): Reversal of RFA's is given by postfix (superscript) function $R \in R F A \longrightarrow R F A$ defined as: $(Q, V, \text { follow, first, last, null, } Q m a p)^{R}=\left(Q, V\right.$, follow R, last, first, null, Qmap)

Definition 4.27 (Extending reversal to $[R F A]_{\cong}$): We extend reversal to $[R F A]_{\cong} \longrightarrow[R F A]_{\cong}$ as $\left([M]_{\cong}\right)^{R}=\left[M^{R}\right]_{\cong}$.

We can now give isomorphisms between $[L B F A] \cong$ and $[R F A] \cong$. These isomorphisms will be used to present a Σ-algebra of $R F A$'s.

Definition 4.28 (An isomorphism between $[L B F A]_{\cong}$ and $[R F A]_{\cong}$): We define isomorphism encode $\in[L B F A]_{\cong} \longrightarrow[R F A]_{\cong}$

$$
\begin{aligned}
\text { encode }\left([(Q, V, T, \emptyset,\{s\}, F)]_{\cong}\right)= & \left.\left.\begin{array}{l}
\text { let } \quad Q^{\prime}=Q \backslash\{s\} \\
\text { in } \\
\\
\\
\\
\\
\\
\\
\quad \text { end } \quad\left[\left(Q^{\prime}, V, \bar{\pi}_{2}(T) \cap\left(Q^{\prime} \times Q^{\prime}\right), \pi_{2}(T(s)),\right.\right.
\end{array} \quad F Q^{\prime}, s \in F,\left(\bar{\pi}_{1}(T)\right)^{R}\right)\right] \cong
\end{aligned}
$$

and its inverse decode $\in[R F A]_{\cong} \longrightarrow[L B F A] \cong$ as

$$
\begin{aligned}
& \operatorname{decode}\left([M]_{\cong}\right)=\text { let }(Q, V, \text { follow, first, last, null, Qmap })=M \\
& s \text { be a new state } \\
& \text { in } \\
& \text { let } \quad T=\left\{\left(q_{0}, \operatorname{Qmap}\left(q_{1}\right), q_{1}\right):\left(q_{0}, q_{1}\right) \in \text { follow }\right\} \\
& T^{\prime}=\{(s, \operatorname{Qmap}(q), q): q \in \text { first }\} \\
& F=l a s t \cup \text { if }(n u l l) \text { then }\{s\} \text { else } \emptyset \mathbf{f i} \\
& \text { in } \\
& {\left[\left(Q \cup\{s\}, V, T \cup T^{\prime}, \emptyset,\{s\}, F\right)\right] \cong} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

It is easy to verify that both of these functions are isomorphisms, and that decode is the inverse of encode.

Given function encode and decode, we would like to obtain a Σ-algebra with $[R F A]_{\cong}$ as carrier (and a corresponding unique homomorphism rfa $\in R E \longrightarrow[R F A]_{\cong \text {) such that the following }}$ diagram commutes:

We can now define a Σ-algebra of $R F A$'s; it will be cheaper to compute the $R F A$ image of a regular expression and map the $R F A$ to an $L B F A$, than to compute the $L B F A$ directly. The operators of the Σ-algebra of $R F A$'s are defined using the $L B F A$ operators and the isomorphisms encode and decode.

Definition 4.29 (Σ-algebra of $R F A ' s$): The carrier is $[R F A]_{\cong}$. Given the operator requirement in the Σ-algebra of $L B F A$'s, the operator requirement in this Σ-algebra is:

- For binary operators, the argument representatives must have disjoint state sets.

The operators of the Σ-algebra of $R F A$'s are defined in terms of the operators of $L B F A$'s:

$$
\begin{array}{ll}
C_{\epsilon, R F A} & =\operatorname{encode}\left(C_{\epsilon, L B F A}\right) \\
C_{\emptyset, R F A} & =\operatorname{encode}\left(C_{\emptyset, L B F A}\right) \\
C_{a, R F A} & =\operatorname{encode}\left(C_{a, L B F A}\right) \\
C_{, R F A}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right) & =\text { encode } \circ C_{\cdot, L B F A}\left(\operatorname{decode}\left(\left[M_{0}\right]_{\cong}\right), \operatorname{decode}\left(\left[M_{1}\right]_{\underline{\varkappa}}\right)\right) \\
C_{\cup, R F A}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right) & =\text { encode } \circ C_{\cup, L B F A}\left(\operatorname{decode}\left(\left[M_{0}\right]_{\cong}\right), \operatorname{decode}\left(\left[M_{1}\right]_{\cong}\right)\right) \\
C_{*, R F A}\left([M]_{\cong}\right) & =\text { encode } \circ C_{*, L B F A}\left(\operatorname{decode}\left([M]_{\cong}\right)\right) \\
C_{+, R F A}\left([M]_{\cong}\right) & =\text { encode } \circ C_{+, L B F A}\left(\operatorname{decode}\left([M]_{\cong}\right)\right) \\
C_{?, R F A}\left([M]_{\cong}\right) & =\text { encode } \circ C_{?, L B F A}\left(\operatorname{decode}\left([M]_{\cong}\right)\right)
\end{array}
$$

In full:

$$
\begin{aligned}
C_{\epsilon, R F A} & =[(\emptyset, V, \emptyset, \emptyset, \emptyset, \text { true }, \emptyset)] \cong \\
C_{\emptyset, R F A} & =[(\emptyset, V, \emptyset, \emptyset, \emptyset, \text { false }, \emptyset)] \cong
\end{aligned}
$$

For all $a \in V$:

$$
\begin{aligned}
& C_{a, R F A}=\underset{ }{\text { let }} \quad q_{0} \text { be a new state } \\
& \text { in } \\
& \text { end }\left[\left(\left\{q_{0}\right\}, V, \emptyset,\left\{q_{0}\right\},\left\{q_{0}\right\}, \text { false, }\left\{\left(q_{0}, a\right)\right\}\right)\right] \cong \\
& C_{,, R F A}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right)=\text { let }\left(Q_{0}, V, \text { follow }_{0}, \text { first }_{0}, \text { last }_{0}, \text { null }_{0}, \text { Qmap }_{0}\right)=M_{0} \\
& \left(Q_{1}, V, \text { follow }_{1}, \text { first }_{1}, \text { last }_{1}, \text { null }_{1}, \text { Qmap }_{1}\right)=M_{1}
\end{aligned}
$$

in
let \quad first $^{\prime}=f i r s t_{0} \cup$ if $\left(n u l l_{0}\right)$ then first t_{1} else $\emptyset \mathrm{fi}$ last $^{\prime}=$ last $_{1} \cup$ if $\left(n u l l_{1}\right)$ then last $_{0}$ else $\emptyset \mathrm{fi}$
in $\left[\left(Q_{0} \cup Q_{1}, V\right.\right.$, follow $_{0} \cup$ follow $_{1} \cup\left(\right.$ last $_{0} \times$ first $\left._{1}\right)$, first ${ }^{\prime}$, last $^{\prime}, n u l l_{0} \wedge$ null $_{1}, Q \operatorname{map} p_{0} \cup$ Qmap $\left.\left._{1}\right)\right]_{\cong}$ end
end
$C_{U, R F A}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right)=$ let $\left(Q_{0}, V\right.$, follow $_{0}$, first $_{0}$, last $_{0}$, null $_{0}$, Qmap $\left._{0}\right)=M_{0}$ $\left(Q_{1}, V\right.$, follow $_{1}$, first $_{1}$, last $_{1}$, null $_{1}$, Qmap $\left._{1}\right)=M_{1}$
in
$\left[\left(Q_{0} \cup Q_{1}, V\right.\right.$, follow $_{0} \cup$ follow $_{1}$, first $_{0} \cup$ first $_{1}$, last $_{0} \cup$ last $_{1}$, null $_{0} \vee$ null $\left.\left._{1}, Q \operatorname{map}_{0} \cup Q \operatorname{map}_{1}\right)\right]_{\underline{\simeq}}$
end
in
$[(Q, V, \text { follow } \cup(\text { last } \times \text { first }), \text { first, last }, \text { true }, \text { Qmap })]_{\cong}$
end
$C_{+, R F A}\left([M]_{\cong}\right)=\begin{aligned} & \text { let } \\ & \text { in }\end{aligned}(Q, V$, follow, first, last, null, Qmap $)=M$
in $\quad(Q, V$ follow \cup (last \times first) first last, n
end
$C_{?, R F A}\left([M]_{\cong}\right)=\operatorname{let}_{\text {in }}(Q, V$, follow, first, last, null, Qmap $)=M$
$[(Q, V$, follow, first, last, true, Qmap $)] \cong$
end

An $M \in R F A$ (the image of some $E \in R E$) in this Σ-algebra has the following interesting property:

- The number of states in M equals the number of (not necessarily distinct) symbols (of V) occuring in E. This follows from the fact that the operators $C_{a, R F A}$ (for all $a \in V$) are the only $R F A$ operators that introduce new states. This property will be used in Section 4.5 to derive a practical implementation of the RFA operators.

We can also note the following about the operators:

- The operators do not depend on the choice of representatives of the equivalence classes.
- An important fact is that the operators of this Σ-algebra are symmetrical. That is, each operator is its own dual.

Definition 4.30 (Homomorphism from $R E$ to $[R F A]_{\cong}$): We define $r f a \in R E \longrightarrow[R F A]_{\cong}$ to be the unique homomorphism from $R E$ s to $[R F A]_{\underline{n}}$.

Property 4.31 (Homomorphism rfa): Since the operators of the Σ-algebra of RFA's are symmetrical (symmetrical functions are defined in Definition A.22), so is rfa. That is, $r f a \circ R(E)=$ $R \circ r f a(E)$.

In Section 4.5 practical implementations of the Σ-algebra of $R F A$'s (in particular, of homomorphism rfa) are discussed.

4.2.2 The Berry-Sethi construction

Given the Σ-algebra of $R F A$'s, we have the desired property that (for $E \in R E$):

$$
l b f a(E)=\text { decode } \circ r f a(E)
$$

We now present Berry and Sethi's FA construction.
Construction 4.32 (Berry-Sethi): Construction $B S \in R E \longrightarrow[F A]_{\cong}$ is defined as:

$$
B S(E)=\text { decode } \circ r f a(E)
$$

An automaton constructed using this function has the same properties as one constructed with function lbfa, namely:

- It is ϵ-free.
- It has a single start state.
- The single start state has no in-transitions.
- All in-transitions to a state are on the same symbol (of V).

In practice, function $B S$ is cheaper to compute than $l b f a$.
Remark 4.33: The history of this algorithm is somewhat complicated. The following account is given by Brüggemann-Klein [B-K93b]. Glushkov and McNaughton and Yamada simultaneously (and independently) discovered the same DFA construction [Glus61, MY60]. These papers use the same underlying ϵ-free FA construction to which they apply the subset construction ${ }^{8}$. Unfortunately, neither of them present the ϵ-free FA construction (without the subset construction) explicitly. The underlying ϵ-free $F A$ construction was presented in some depth (with correctness arguments) by Berry and Sethi in [BS86, Alg. 4.4]. In their paper, Berry and Sethi also relate the construction to the Brzozowski construction (Brzozowski's construction appears as Construction 5.34 in this paper).

In this paper, we adopt the convention that the ϵ-free $F A$ construction (without subset construction) is named after Berry and Sethi, while the construction with the subset construction is named after McNaughton, Yamada, and Glushkov.

Example 4.34 (Berry-Sethi): A representative of the equivalence class $B S\left((a \cup \epsilon) b^{*}\right)$ is shown in Figure 4 appearing on page 32. This is the same $F A$ as in Example 4.23. (This follows from the fact that the Berry-Sethi construction and the $L B F A \Sigma$-algebra are commuting ways of arriving at the same $F A$ isomorphism class).

[^7]It is possible to find a composition of functions that commutes with lbfa (and therefore decodeo $r f a$) and is cheaper to compute in practice. We first give some required definitions.

Definition 4.35 (Non-isomorphic mapping from $[R F A]_{\cong}$ to $[F A]_{\cong}$): Function convert \in $[R F A]_{\cong} \longrightarrow[F A]_{\cong}$ is defined as:

$$
\begin{aligned}
\operatorname{convert}\left([M]_{\underline{\propto}}\right)= & \text { let } \quad(Q, V, \text { follow, first, last, null, Qmap })=M \\
& \text { in } \\
& \begin{array}{l}
\text { let } \quad T=\left\{\left(q_{0}, Q \operatorname{map}\left(q_{1}\right), q_{1}\right):\left(q_{0}, q_{1}\right) \in \text { follow }\right\} \\
\\
\\
\\
\\
\\
\text { in } \\
\text { end }
\end{array}
\end{aligned}
$$

An important property of this function is that:

$$
\left(\forall E: E \in R E: \mathcal{L}_{F A} \circ \text { convert } \circ r f a(E)=V^{-1} \mathcal{L}_{R E}(E)\right)
$$

This follows from the fact that convert simply discards the transitions that would be out of the start state. Function convert does not add any new states, unlike function decode which adds a new start state.

Definition 4.36 (Adding a begin-marker): Define function marker ${ }_{b} \in R E \longrightarrow R E$ as:

$$
\operatorname{marker}_{b}(E)=\$ \cdot E
$$

Where $\$$ is an alphabet symbol, called a begin-marker. (In the literature, it is usually assumed for no particular reason - that symbol $\$$ does not occur in regular expression E.) This function satisfies the obvious property that:

$$
\left(\forall E: E \in R E: \mathcal{L}_{R E}\left(\text { marker }_{b}(E)\right)=\{\$\} \mathcal{L}_{R E}(E)\right)
$$

ㅁ
Given functions markerb, rfa, convert, and the following important property, we can construct an efficient alternative to homomorphism lbfa.

Property 4.37 (Functions marker $_{b}$, rfa, and convert): Because of the properties of convert and marker $_{b}$, we can show that:

```
    convert \circ rfa ○ markerb
= {Definition of markerb}
    convert orfa($.E)
= {Definitions of rfa,C.,RFA}
    convert \circ C.,RFA (rfa($), rfa(E))
={Definitions of rfa, C}\mp@subsup{C}{$,RFA}{}
    convert \circ C C,RFA (C
= {Definitions of convert, C,RFA},\mp@subsup{C}{$,RFA}{},rfa,\mathrm{ and decode }
    decode orfa(E)
= {Commutativity }
    lbfa(E)
```

The composite convertorfa \circ marker $_{b}$ is an alternative (and in practice, cheaper) implementation of $l b f a$.

The fact that convert $\circ r f a \circ$ marker $_{b}$ is a construction is depicted in the following commuting diagram:

Construction 4.38 (A variation on the Berry-Sethi construction): Instead of constructing an $F A$ using the functions $l b f a$ or $B S$, it is cheaper in practice to use the composite function

```
convert o rfa o marker ( }E\mathrm{ )
```


4.2.3 The McNaughton-Yamada-Glushkov construction

Since the Berry-Sethi construction produces an ϵ-free (possibly nondeterministic) $F A$, we now consider making the resulting $F A$ deterministic.

Construction 4.39 (McNaughton-Yamada-Glushkov): (We assume that the composite function useful $_{s} \circ$ subset is extended to $[F A]_{\cong}^{\longrightarrow}[D F A]_{\cong}$.) The McNaughton-Yamada-Glushkov $D F A$ construction is $M Y G \in R E \longrightarrow[D F A]_{\cong}$, defined as:

$$
M Y G(E)=u s e f u l_{s} \circ \text { subset } \circ \text { decode } \circ r f a(E)
$$

A $D F A$ produced by $M Y G$ is Complete (by a property of usefuls o subset). A practical implementation is given in Algorithm 4.42 (given below), which implements useful l_{s} subset \circ decode. Homomorphism rfa can be implemented using the techniques described in Section 4.5. This algorithm is the same ${ }^{9}$ as that given by McNaughton and Yamada [MY60, Construction method on pg. 44].

Example 4.40 (McNaughton-Yamada-Glushkov): In the case of $(a \cup \epsilon) b^{*} \in R E$, the BerrySethi construction produces a deterministic FA. Function $M Y G$ produces a similar $D F A$, with a sink state added to make it Complete. The state graph of a representative $D F A$ of isomorphism class $M Y G\left((a \cup \epsilon) b^{*}\right)$ is shown in Figure 5.

Remark 4.41: The variation on the Berry-Sethi construction (Construction 4.38) can be used for a practical implementation of the McNaughton-Yamada-Glushkov construction. This would yield a construction not appearing in the literature.

[^8]

Figure 5: A representative $D F A$ of the isomorphism class $M Y G\left((a \cup \epsilon) b^{*}\right)$.

Composite function useful \circ o subset \circ decode can be implemented using Algorithm 2.45 (which implements u seful ${ }_{s}$ o subset). Here, the first iteration is unrolled to accommodate the definition of function decode, and some obvious improvements have not yet been made).
$\{(Q, V$, follow, first, last, null, Q map $) \in R F A\}$
let $S=\{\{s\}\}: s$ is a new state, $s \notin Q$;
$T:=\emptyset ;$
$D, U:=\emptyset, S$;
let $u: u \in U$;
$D, U:=D \cup\{u\}, U \backslash\{u\} ;$
for $a: a \in V$ do
$d:=(\cup p: p \in u:\{q: q \in$ first $\wedge Q \operatorname{map}(q)=a\}) ;$
if $d \notin D \longrightarrow U:=U \cup\{d\}$
$\| d \in D \longrightarrow$ skip
fi;
$T:=T \cup\{(u, a, d)\}$
rof;
do $U \neq \emptyset \longrightarrow$
let $u: u \in U$;
$D, U:=D \cup\{u\}, U \backslash\{u\} ;$
for $a: a \in V$ do
$d:=(\cup p: p \in u:\{q:(p, q) \in$ follow $\wedge \operatorname{Qmap}(q)=a\}) ;$
if $d \notin D \longrightarrow U:=U \cup\{d\}$
$\| d \in D \longrightarrow$ skip
fi;
$T:=T \cup\{(u, a, d)\}$
rof
od;
$F:=\{d: d \in D \wedge d \cap$ last $\neq \emptyset\} \cup$ if (null) then S else \emptyset fi
$\left\{[(D, V, T, \emptyset, S, F)] \underline{\underline{n}}=\right.$ useful $_{s} \circ$ subset \circ
decode $([(Q, V$, follow, first, last, null, Qmap $)] \cong)\}$
$\{\operatorname{Complete}(D, V, T, \emptyset, S, F)\}$

Some simplification gives the algorithm:
Algorithm 4.42 (McNaughton-Yamada-Glushkov):

```
\(\{(Q, V\), follow, first, last, null, \(Q\) map \() \in R F A\}\)
let \(S=\{\{s\}\}: s\) is a new state, \(s \notin Q\);
\(T:=\emptyset\);
\(D, U:=S, \emptyset ;\)
for \(a: a \in V\) do
    \(d:=\{q: q \in\) first \(\wedge Q \operatorname{map}(q)=a\}\)
    \(U:=U \cup\{d\} ;\)
    \(T:=T \cup\{(\{s\}, a, d)\}\)
rof;
do \(U \neq \emptyset \longrightarrow\)
    let \(u: u \in U\);
    \(D, U:=D \cup\{u\}, U \backslash\{u\} ;\)
    for \(a: a \in V\) do
            \(d:=(\cup p: p \in u:\{q:(p, q) \in\) follow \(\wedge \operatorname{Qmap}(q)=a\}) ;\)
            if \(d \notin D \longrightarrow U:=U \cup\{d\}\)
            \(\| d \in D \longrightarrow\) skip
            fi;
            \(T:=T \cup\{(u, a, d)\}\)
    rof
od;
\(F:=\{d: d \in D \wedge d \cap\) last \(\neq \emptyset\} \cup\) if (null) then \(S\) else \(\emptyset\) fi
\(\left\{[(D, V, T, \emptyset, S, F)] \cong=u_{\text {useful }}^{s}\right.\) 。 subset \(\circ\)
    decode \(([(Q, V\), follow, first, last , null, \(Q\) map \()] \cong)\}\)
\(\{\operatorname{Complete}(D, V, T, \emptyset, S, F)\}\)
```

This algorithm is used in the McNaughton-Yamada construction [MY60].

4.3 The dual of the Berry-Sethi construction

The following commuting diagram gives a property of regular expressions and regular languages that will prove to be useful:

In this diagram, the two reversal operators are different: one is reversal of $R E$'s, while the other is reversal of languages.

Given the definition of an $F A$ construction f and the above diagram, we have the property that the dual of a construction is again a construction. That is, $R \circ f \circ R$ is also a construction. Such a dual construction is less efficient than f (since it involves two reversal functions), and we explore ways to efficiently implement the dual constructions.

Construction 4.43 (Right-biased): We can use $R \circ l b f a \circ R$ as a construction. For any given $E \in R E$, a representative of $R \circ l b f a \circ R(E)$ has the following properties (the properties are based upon those of the left-biased Σ-algebra):

Figure 6: A representative $F A$ of the isomorphism class $R \circ l b f a \circ R\left((a \cup \epsilon) b^{*}\right)$.

- It is ϵ-free.
- It has a single final state.
- The single final state has no out-transitions.
- All out-transitions from a state are on the same symbol (in V).

Example 4.44 (Right-biased construction): We construct a representative $F A$ of the isomorphism class $R \circ l b f a \circ R\left((a \cup \epsilon) b^{*}\right)$ The representative is shown in Figure 6.

To consider the dual of the Berry-Sethi construction, we combine the commuting diagrams of duals of a construction (above) and construction decode orfa, giving:

The source is the upper-left vertex, and the sink is the upper $F A$ vertex.
The construction $R \circ$ decodeorfa $\circ R$ (in this diagram) is still inefficient, requiring two redundant reversal operations. We can make it more efficient, by finding functions that form new paths in the commuting diagram.

From the definitions of the Σ-algebra of $R F A$'s (Definition 4.29) and homomorphism rfa (Definition 4.30) we know that the $R F A$ operators are symmetrical, and so is rfa. In other words $r f a \circ R(E)=R \circ r f a(E)$. This allows us to add two new edges to the above commuting diagram; the resulting diagram is:

Construction 4.45 (The dual of Berry-Sethi): The construction is:
$R \circ$ decode $\circ R \circ r f a(E)$
This construction is the dual of the Berry-Sethi construction (Construction 4.32).
We give $R \circ$ decode $\circ R$ in full:

$$
\begin{aligned}
& R \circ \text { decode } \circ R\left([M]_{\cong}\right)=\text { let }(Q, V \text {, follow, first, last, null, Qmap })=M \\
& f \text { be a new state } \\
& \text { in } \\
& \text { let } \quad T=\left\{\left(q_{0}, \operatorname{Qmap}\left(q_{0}\right), q_{1}\right):\left(q_{0}, q_{1}\right) \in \text { follow }\right\} \\
& T^{\prime}=\{(q, \operatorname{Qmap}(q), f): q \in \text { last }\} \\
& S=\text { first } \cup \text { if (null) then }\{f\} \text { else } \emptyset \mathbf{f i} \\
& \text { in } \\
& {\left[\left(Q \cup\{f\}, V, T \cup T^{\prime}, \emptyset, S,\{f\}\right)\right] \cong} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

The $F A$ resulting from this construction is the same as given in Example 4.44
We can also consider improving the dual of the variation on the Berry-Sethi construction (Construction 4.38). We combine the commuting diagram showing the dual of a construction, with construction convert $\circ r f a \circ$ marker $_{b}$, giving:

Again, the source is the upper-left $R E$ vertex, while the sink is the upper-right $F A$ vertex.
Consider the composite function Roconverto $\tau f a \circ$ marker $_{b} \circ R$. We begin with the two rightmost functions:

```
    marker \(_{b} \circ R(E)\)
\(=\quad\{\) Writing \(R\) as postfix and superscript \(\}\)
    marker \(_{b}\left(E^{R}\right)\)
\(=\quad\{\) Definition of marker \(\quad\) (Definition 4.36) \}
    \(\$ \cdot\left(E^{R}\right)\)
\(=\quad\{\) Function \(R \circ R\) is the identity (see Definition A.19) \(\}\)
    \(R \circ R\left(\$ \cdot\left(E^{R}\right)\right)\)
\(=\{\) Definition of \(R\) on \(\cdot\) regular expressions \(\}\)
```

$$
=\begin{aligned}
& R\left(\left(E^{R}\right)^{R} \cdot(\$)^{R}\right) \\
& \quad\{\text { Definition of } R \text { and } R \circ R\} \\
& R(E \cdot \$)
\end{aligned}
$$

To make this definition more concise, we define an end-marker function.
Definition 4.46 (Adding an end-marker): Define function marker $_{e} \in R E \longrightarrow R E$ as:

$$
\operatorname{marker}_{e}(E)=E \cdot \$
$$

where $\$$ is assume to be a symbol in the alphabet.
Property 4.47 (marker $_{e}$): Function marker $_{e}$ is the dual of function marker ${ }_{b}$ (Definition 4.36):

$$
\operatorname{marker}_{b} \circ R(E)=R \circ \operatorname{marker}_{e}(E)
$$

With the above property, we can transform the above commuting diagram, by adding two new edges:

The composite $R \circ$ convert $\circ r f a \circ R \circ$ marker $_{e}$ is no more efficient even with the use of marker ${ }_{e}$. Fortunately, since $r f a$ is symmetrical, we can replace $r f a \circ R$ by $R \circ r f a$, giving:

The composite function R o convert $\circ R$ is particularly easy to present, using the definitions of R and convert (Definition 4.35):

$$
\begin{aligned}
R \circ \text { convert } \circ R\left([R]_{\cong}\right)= & \text { let } \quad(Q, V, \text { follow, first, last, null, Qmap })=R \\
& \text { in } \\
& \\
& \text { let } T=\left\{\left(q_{0}, \text { Qmap }\left(q_{0}\right), q_{1}\right):\left(q_{0}, q_{1}\right) \in \text { follow }\right\} \\
& \text { in }[(Q, V, T, \emptyset, \text { first, last })] \cong
\end{aligned} \quad \text { end } .
$$

This leads to the following construction.

Figure 7: A representative $D F A$ of the isomorphism class $A S U\left((a \cup \epsilon) b^{*}\right)$.

Construction 4.48 (The dual of the variation on the Berry-Sethi construction): The construction is:
$R \circ$ convert $\circ R \circ r f a \circ$ marker $_{e}(E)$
This construction is also presented very informally by Aho, Sethi, and Ullman [ASU86, Example 3.22 , pg. 140]. There appears to be an error in item two of the three steps describing the construction in [ASU86]. Instead of
2. label each directed edge (i, j) by the symbol at position j, and
the step should read
2. label each directed edge (i, j) by the symbol at position i, and

Example 4.49 (The dual of the variation on the Berry-Sethi construction): A representative $F A$ of the isomorphism class $R \circ$ convert $\circ R \circ r f a \circ \operatorname{marker}_{e}\left((a \cup \epsilon) b^{*}\right)$ is shown in Figure 6 on page 40. This is the same $F A$ as in Example 4.44.

4.3.1 The Aho-Sethi-Ullman $D F A$ construction

In order to obtain a (possibly non-Complete) $D F A$ we use the composite function useful $_{s}$ osubsetopt (given in Definition 2.44), extended to $[F A] \cong \longrightarrow[D F A]_{\cong}$.

We can immediately give the Aho-Sethi-Ullman $D F A$ construction using this composite function.

Construction 4.50 (Aho-Sethi-Ullman): The construction is $A S U \in R E \longrightarrow[D F A] \cong$ defined as:

Algorithm 4.52 (given below) is an imperative program implementing
useful $_{s} \circ$ subsetopt $\circ R \circ$ convert $\circ R$
Homomorphism rfa can be implemented using the techniques described in Section 4.5, and function marker $_{e}$ is trivial to implement. The Aho-Sethi-Ullman algorithm is given in [ASU86, Alg. 3.5, Fig. 3.44].

Example 4.51 (Aho-Sethi-Ullman): We give a representative $D F A$ of the isomorphism class $A S U\left((a \cup \epsilon) b^{*}\right)$. The state graph is shown in Figure 7 .

We compose useful l_{s} subsetopt (as implemented by Algorithm 2.46) with $R \circ$ convert $\circ R$. The resulting algorithm is simplified in a similar way to the McNaughton-Yamada-Glushkov algorithm (Algorithm 4.42).

Algorithm 4.52 (Aho-Sethi-Ullman):

```
\(\{(Q, V\), follow, first, last, null, \(Q m a p) \in R F A\}\)
\(S, T:=(\) if \((\) first \(\neq \emptyset)\) then \(\{\) first \(\}\) else \(\emptyset \mathbf{f}), \emptyset\);
\(D, U:=\emptyset, S ;\)
do \(U \neq \emptyset \longrightarrow\)
    let \(u: u \in U\);
    \(D, U:=D \cup\{u\}, U \backslash\{u\} ;\)
    for \(a: a \in V \wedge(\exists q: q \in u: Q \operatorname{map}(q)=a \wedge\) follow \((q) \neq \emptyset)\) do
        \(d:=(\cup q: q \in u \wedge Q \operatorname{map}(q)=a:\) follow \((q)) ;\)
        if \(d \notin D \longrightarrow U:=U \cup\{d\}\)
        \(\| d \in D \longrightarrow\) skip
        fi;
        \(T:=T \cup\{(u, a, d)\}\)
    rof
od;
\(F:=\{d: d \in D \wedge d \cap\) last \(\neq \emptyset\}\)
\(\left\{[(D, V, T, \emptyset, S, F)] \cong=u\right.\) seful \(l_{s} \circ\) subsetopt \(\circ\)
    \(R \circ\) convert \(\circ R\left([(Q, V\right.\), follow, first, last, null, \(Q\) map \(\left.\left.)] \_\right)\right\}\)
```


4.4 Extending regular expressions

For some regular languages, the regular expressions denoting the language can be can be considerably more succinct when operators such as intersection (\cap) and complement (\neg) are available in $R E^{\prime}$ s. Without formally adding them to the signature Σ, we briefly consider how to implement operator \cap in the left-biased Σ-algebra of $F A$'s.

Definition 4.53 (Extended regular expressions and their languages): The set of extended regular expressions (over alphabet V),$E R E$, and the languages they denote, are exactly as $R E$, with the addition of the operators $\cap \in E R E \times E R E \longrightarrow E R E$ (an infix operator) and $\neg \epsilon$ $E R E \longrightarrow E R E$ (a prefix operator). Operator \cap has the same precedence as U, while \neg has higher precedence than $*$. The language of an $E R E$ is defined using the function $\mathcal{L}_{E R E} \in E R E \longrightarrow \mathcal{L}_{\text {reg }}$ which is as function $\mathcal{L}_{R E}$, with the extensions

$$
\begin{aligned}
\mathcal{L}_{E R E}\left(E_{0} \cap E_{1}\right) & =\mathcal{L}_{E R E}\left(E_{0}\right) \cap \mathcal{L}_{E R E}\left(E_{1}\right) \\
\mathcal{L}_{E R E}\left(\neg E_{0}\right) & =V^{*} \backslash \mathcal{L}_{E R E}\left(E_{0}\right)
\end{aligned}
$$

Remark 4.54: The Σ-algebra definition of regular expressions are not used in this section as the algebraic structure is not needed.

Definition 4.55 (Intersection of $L B F A$'s): In defining intersection, we assume that the two arguments have been constructed in the Σ-algebra of $L B F A$. In particular, we require that for each state, all in-transitions are on the same symbol. Assuming the argument representatives
have disjoint state sets, one possible implementation of the operator is ${ }^{10}$:

$$
\begin{aligned}
& C_{\cap, L B F A}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right)=\text { let }\left(Q_{0}, V, T_{0}, \emptyset,\left\{s_{0}\right\}, F_{0}\right)=M_{0} \\
& \left(Q_{1}, V, T_{1}, \emptyset,\left\{s_{1}\right\}, F_{1}\right)=M_{1} \\
& q_{0} \text { be a new state } \\
& N=\epsilon \in\left(\mathcal{L}_{F A}\left(M_{0}\right) \cap \mathcal{L}_{F A}\left(M_{1}\right)\right) \\
& \text { in } \\
& \text { let } \quad Q^{\prime}=\left\{q_{0}\right\} \cup\left(\cup b: b \in V: \pi_{2}\left(T_{0}(b)\right) \times \pi_{2}\left(T_{1}(b)\right)\right) \\
& T^{\prime}(a)=\left\{q_{0}\right\} \times\left(T_{0}\left(s_{0}, a\right) \times T_{1}\left(s_{1}, a\right)\right) \\
& \cup\left\{\left((p, q),\left(p^{\prime}, q^{\prime}\right)\right):\left(p, p^{\prime}\right) \in T_{0}(a) \wedge p \neq s_{0}\right. \\
& \wedge\left(q, q^{\prime}\right) \in T_{1}(a) \wedge q \neq s_{1} \\
& \left.\wedge\left(\exists b: b \in V: p \in \pi_{2}\left(T_{0}(b)\right) \wedge q \in \pi_{2}\left(T_{1}(b)\right)\right)\right\} \\
& \text { in } \\
& {\left[\left(Q^{\prime}, V, T^{\prime}, \emptyset,\left\{q_{0}\right\},\left(F_{0} \times F_{1}\right) \cap Q^{\prime}\right.\right.} \\
& \left.\cup \text { if }(N) \text { then }\left\{q_{0}\right\} \text { else } \emptyset \text { fi) }\right]_{\underline{\simeq}} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

The expression

$$
Q^{\prime}=\left\{q_{0}\right\} \cup\left(\cup b: b \in V: \pi_{2}\left(T_{0}(b)\right) \times \pi_{2}\left(T_{1}(b)\right)\right)
$$

in the let clause deserves some explanation. A state in the constructed $L B F A$ is either the new state q_{0}, or a pair of states (p, q) where p and $q\left(p \neq s_{0}, q \neq s_{1}\right)$ are from M_{0} and M_{1} respectively. If p and q do not have an in-transition on the same symbol, the state (p, q) will be start-unreachable in the constructed $L B F A$. For this reason, it is omitted. The definition of the transition relation is similar. The constructed $L B F A$ is sometimes called the cross-product $L B F A$. Although the operator removes most start-unreachable states, some may still remain.

We can now present an intersection operator for $R F A$'s.
Definition 4.56 (Intersection of $R F A ' s$): We define intersection of $R F A$'s as:

$$
C_{\cap, R F A}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right] \cong \simeq\right)=\text { encode } \circ C_{\cap, L B F A}\left(\operatorname{decode}\left(\left[M_{0}\right]_{\cong}\right), \operatorname{decode}\left(\left[M_{1}\right] \cong\right)\right)
$$

In full:

$$
\begin{aligned}
\left.C_{\cap, R F A}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right)=\text { let } \quad \begin{array}{l}
\left(Q_{0}, \text { V, } \text { follow }_{0}, \text { first }_{0}, \text { last }_{0}, \text { null }_{0}, \text { Qmap }_{0}\right)=M_{0} \\
\\
\left(Q_{1},\right. \text { V, follow }
\end{array}, \text { first }_{1}, \text { last }_{1}, \text { null }_{1}, \text { Qmap }_{1}\right)=M_{1}
\end{aligned}
$$

in
let $\quad Q^{\prime}=\left(\cup b: b \in V: Q m a p_{0}^{-1}(b) \times Q m a p_{1}^{-1}(b)\right)$
follow ${ }^{\prime}=\left\{\left((p, q),\left(p^{\prime}, q^{\prime}\right)\right):\left(p, p^{\prime}\right) \in\right.$ follow $_{0}$ $\wedge\left(q, q^{\prime}\right) \in$ follow $_{1}$
$\wedge Q m a p_{0}(p)=Q \operatorname{map}_{1}(q)$
$\left.\wedge Q m a p_{0}\left(p^{\prime}\right)=\operatorname{Qmap}_{1}\left(q^{\prime}\right)\right\}$
first $t^{\prime}=\left\{(p, q): p \in\right.$ first $_{0} \wedge q \in$ first $_{1}$
$\left.\wedge Q \operatorname{map}_{0}(p)=Q \operatorname{map}_{0}(q)\right\}$
$Q m a p^{\prime-1}(a)=Q m a p_{0}^{-1}(a) \times Q m a p_{1}^{-1}(a)$
in
$\left[\left(Q^{\prime}, V\right.\right.$, follow $^{\prime}$, first $^{\prime},\left(\right.$ last $_{0} \times$ last $\left._{1}\right) \cap Q^{\prime}$, $\left.\left.n u l l_{0} \wedge n u l l_{1}, Q m a p^{\prime}\right)\right]_{\cong}$
end
end
Note that this operator is symmetrical.

[^9]In their original paper [MY60, Section IV], McNaughton and Yamada attempt to define intersection. Unfortunately, their informal presentation is difficult to understand. Subsequent presentations of the RFA operators have all omitted intersection. For example, Berry and Sethi note (in [BS86, Remark 3.1]):
"The approach ... does not extend to regular expressions with intersection and complementation operators."

We can construct an RFA operator for any regular operator (an operator on languages that preserves the regularity property) for which we can construct an LBFA operator. Examples of such operators are intersection, symmetrical difference, complement, asymmetrical difference, and prefix closure.

4.5 Efficiently computing with $R F A$'s

In this section, we consider some practical methods for constructing RFA's. The first subsection considers a practical implementation of the (Σ-algebra of) $R F A$ operators, while the second subsection introduces some improvements (due to Chang, Paige, and Brüggemann-Klein) to the RFA operators.

4.5.1 A practical implementation of the $R F A$ operators

In an RFA, the states are mapped to their corresponding symbol (of V) by the seventh component (usually called Qmap) of the RFA. This seventh component would be redundant if the states and symbols were in a one-to-one correspondence. Furthermore, the symbols could then be used as the states. In this subsection, we explore this encoding method, and the requirements on the $R E^{\text {s }}$ s for this method to work. We will also be defining a new, restricted, mapping $r f a^{\prime} \in R E \nrightarrow R F A$. We will be able to use this mapping for regular expressions in which each alphabet symbol occurs no more than once.

We first define an important auxiliary function.
Definition 4.57 (Occurrences of symbols in $R E$'s): We define function $O c c \in R E \longrightarrow \mathcal{P}(V)$ such that $O c c(E)$ is the set of symbols (of V) occurring in E. We can also define $O c c$ recursively as follows:

$O c c(\epsilon)$	$=\emptyset$
$O c c(\emptyset)$	$=\emptyset$
$O c c(a)$	$=\{a\}$
$O c c(E \cdot F)$	$=O c c(E) \cup O c c(F)$
$O c c(E \cup F)$	$=O c c(E) \cup O c c(F)$
$O c c\left(E^{*}\right)$	$=O c c(E)$
$O c\left(E^{+}\right)$	$=O c(E)$
$O c c\left(E^{?}\right)$	$=O c(E)$

Definition 4.58 ($R R E$): We define $R R E \subset R E$ as the smallest set satisfying:

- $\epsilon \in R R E$,
- $\emptyset \in R R E$,
- $a \in R R E \quad$ (for $a \in V$),
- if $E, F \in R R E$, and $O c c(E) \cap O c c(F)=\emptyset$ then $E \cdot F \in R R E$ and $E \cup F \in R R E$, and
- if $E \in R R E$ then $E^{*} \in R R E, E^{+} \in R R E$, and $E^{?} \in R R E$.

Intuitively, $R R E$ (for restricted regular expressions) denotes the set of all $E \in R E$ such that each symbol (of V) occurs no more than once in E.

Example $4.59(R R E)$: A $R R E$ is $(a \cup \epsilon) b^{*}$.
In order to give our alternative $R E$ to $R F A$ mapping, $r f a^{\prime} \in R R E \longrightarrow R F A$, we first define some more auxiliary functions. The definitions of these functions also follow directly from the $R F A$ operators.

Definition 4.60 (First): We define First $\in R E \longrightarrow \mathcal{P}(V)$ recursively (recall from Example 3.20 that $\left.N u l l(E) \equiv\left(\epsilon \in \mathcal{L}_{R E}(E)\right)\right)$:

```
First \((\epsilon)=\emptyset\)
First \((\emptyset)=\emptyset\)
First \((a) \quad=\{a\} \quad\) (for \(a \in V)\)
\(\operatorname{First}(E \cdot F)=\operatorname{First}(E) \cup\) if \((\operatorname{Null}(E))\) then \(\operatorname{First}(F)\) else \(\emptyset \mathbf{f i}\)
\(\operatorname{First}(E \cup F)=\operatorname{First}(E) \cup \operatorname{First}(F)\)
\(\operatorname{First}\left(E^{*}\right)=\operatorname{First}(E)\)
\(\operatorname{First}\left(E^{+}\right)=\operatorname{First}(E)\)
\(\operatorname{First}\left(E^{?}\right) \quad=\operatorname{First}(E)\)
```

This definition follows directly from the first tuple element of the $R F A$ operator definitions.
Remark 4.61: It is useful to have an intuitive understanding of function First. First (E) is the set of all symbols that can occur as the first symbol of a string in $\mathcal{L}_{R E}(E)$.

Definition 4.62 (Last): Function Last is defined to be the dual of First.
Remark 4.63: Last (E) is the set of all symbols that can occur as the last symbol of a string in $\mathcal{L}_{R E}(E)$.

Definition 4.64 (Follow): We define Follow $\in R E \longrightarrow \mathcal{P}(V \times V)$ recursively:

$$
\begin{array}{ll}
\text { Follow }(\epsilon) & =\emptyset \\
\text { Follow }(\emptyset) & =\emptyset \\
\text { Follow }(a) & =\emptyset \quad(\text { for } a \in V) \\
\text { Follow }(E \cdot F) & =\text { Follow }(E) \cup \operatorname{Follow}(F) \cup(\operatorname{Last}(E) \times \operatorname{First}(F)) \\
\text { Follow }(E \cup F) & =\operatorname{Follow}(E) \cup \operatorname{Follow}(F) \\
\text { Follow }\left(E^{*}\right) & =\operatorname{Follow}(E) \cup(\operatorname{Last}(E) \times \operatorname{First}(E)) \\
\text { Follow }\left(E^{+}\right) & =\operatorname{Follow}(E) \cup(\operatorname{Last}(E) \times \operatorname{First}(E)) \\
\text { Follow }\left(E^{?}\right) & =\operatorname{Follow}(E)
\end{array}
$$

This definition follows directly from the follow tuple element of the RFA operator definitions.
Remark 4.65: For $a, b \in V,(a, b) \in \operatorname{Follow}(E)$ is equivalent to $a b$ being a substring of some string in $\mathcal{L}_{R E}(E)$.

Example 4.66 (First, Last, Null, Follow): We use the regular expression $(a \cup \epsilon) b^{*}$ (from Example 3.15):

$$
\left.\begin{array}{l}
\text { First }\left((a \cup \epsilon) b^{*}\right)=\{a, b\} \\
\operatorname{Last}\left((a \cup \epsilon) b^{*}\right)=\{a, b\} \\
\text { Null }\left((a \cup \epsilon) b^{*}\right) \\
\text { Follow }\left((a \cup \epsilon) b^{*}\right)
\end{array}=\left\{\begin{array}{l}
\text { true }
\end{array}\right\}(a, b),(b, b)\right\} \text {, }
$$

We now have the auxiliary functions required for the definition of $r f a^{\prime}$.

Definition 4.67 (Function $r f a^{\prime} \in R R E \longrightarrow R F A$): The definition of $r f a^{\prime}$ is straightforward:

$$
r f a^{\prime}(E)=\left(\operatorname{Occ}(E), V, \operatorname{Follow}(E), \operatorname{First}(E), \operatorname{Last}(E), \operatorname{Null}(E), I_{V}\right)
$$

where I_{V} is the identity function on alphabet symbols.
Example 4.68 ($r f a^{\prime}$): Using the results of the above example, we have:

$$
r f a^{\prime}\left((a \cup \epsilon) b^{*}\right)=(\{a, b\},\{a, b\},\{(a, b),(b, b)\},\{a, b\},\{a, b\}, \text { true },\{(a, a),(b, b)\})
$$

Property $4.69\left(r f a^{\prime}\right)$: Given $E \in R R E$ then $r f a(E)=\left[r f a^{\prime}(E)\right]_{\cong}$. \square
Function $r f a^{\prime}$ is convenient, as all of the auxiliary functions can easily be computed bottom-up on the structure of E.

Construction 4.70 (An encoding of $B S$): The method of constructing an $R F A$ (using rfa') leads to a particularly concise definition of $B S$. For example, we define BSenc $\in R R E \longrightarrow F A$:

```
BSenc(E) = let s be a new state
    in
    let T={(a,b,b):(a,b)\inFollow (E)}
    T}={(s,a,a):a\in\operatorname{First}(E)
    F=Last(E)\cup if (Null(E)) then {s} else \emptysetfi
    in
    (Occ(E)\cup{s},V,T\cupT', \emptyset,{s},F)
    end
        end
```

Remark 4.71: Compare the definition of BSenc to the definition of decode (Definition 4.28).
Property 4.72 (Construction $B S e n c$): For $E \in R R E$:

$$
[B S e n c(E)]_{\cong}=B S(E)
$$

Remark 4.73: By inspection, we see that (for $E \in R R E$) the $F A B S e n c(E)$ (equivalently $B S(E)$) is deterministic. This implies that:

$$
M Y G(E)=\text { complete } \circ B S(E)
$$

Remark 4.74: In Section 5.4 we will show that Brzozowski's construction (with an appropriate encoding) produces a $D F A$ (from an $E \in R R E$) that is isomorphic to the one produced by BSenc (and therefore $B S$).

Similarly, the Aho-Sethi-Ullman algorithm becomes quite concise (from Algorithm 4.52):

```
\(\{E \in R R E\}\)
\(E^{\prime}:=\) marker \(_{e}(E)\);
\(S, T:=\left(\right.\) if \(\left(\operatorname{First}\left(E^{\prime}\right) \neq \emptyset\right)\) then \(\left\{\operatorname{First}\left(E^{\prime}\right)\right\}\) else \(\left.\emptyset \mathbf{f i}\right), \emptyset ;\)
\(D, U:=\emptyset, S\);
do \(U \neq \emptyset \longrightarrow\)
    let \(u: u \in U\);
    \(D, U:=D \cup\{u\}, U \backslash\{u\}\);
    for \(a: a \in u \wedge\) Follow \(\left(E^{\prime}\right)(a) \neq \emptyset\) do
            \(d:=\left(\right.\) Follow \(\left.\left(E^{\prime}\right)\right)(a)\);
            if \(d \notin D \longrightarrow U:=U \cup\{d\}\)
            \(\| d \in D \longrightarrow\) skip
            fi;
            \(T:=T \cup\{(u, a, d)\}\)
    rof
od;
\(F:=\{d: d \in D \wedge \$ \in d\}\)
\(\left\{\mathcal{L}_{F A}(D, V, T, \emptyset, S, F)=\mathcal{L}_{R E}(E)\right\}\)
```

This algorithm is very similar to the one given in [ASU86].
The only problem remaining is how to deal with an $E \in R E$ when $E \notin R R E$. The method usually used is to "mark" the symbols of E (perhaps with an integer subscript), making each symbol unique. For example, $\left(a^{+} \cup a b\right) \notin R R E$ but after marking we get $\left(a_{1}^{+} \cup a_{2} b_{3}\right) \in R R E$. Once the corresponding $F A$ is constructed from the marked regular expression, the marks are removed (the $F A$ is "unmarked") and the $F A$ accepts $\mathcal{L}_{R E}(E)$. There are a few different styles of marking. For example, consider $a^{+} \cup a b$: McNaughton-Yamada mark this as $a_{1}^{+} \cup a_{2} b_{1}$, Berry-Sethi use $a_{1}^{+} \cup a_{2} b_{3}$, and Aho-Sethi-Ullman use $1^{+} \cup 23$.

The only disadvantage to the use of marking to encode RFA computation is that marking is unable to deal with some of the other regular operators, such as intersection, and complementation. For all $E, F \in R R E$ we have the property that $\mathcal{L}_{R E}(E \cap F)=\mathcal{L}_{R E}(E) \cap \mathcal{L}_{R E}(F)=\emptyset$. For example, given ${ }^{11} a a \cap a^{*}$ (with language $\mathcal{L}_{R E}\left(a a \cap a^{*}\right)=\mathcal{L}_{R E}(a a) \cap \mathcal{L}_{R E}\left(a^{*}\right)=\{a a\}$). After marking we get $a_{1} a_{2} \cap a_{3}^{*}$ after marking (with $\mathcal{L}_{R E}\left(a_{1} a_{2} \cap a_{3}^{*}\right)=\emptyset$). In Section 4.4 we saw how these operators can be readily implemented with $R F A$'s (without the encoding scheme of this section).

The approach presented in this subsection is essentially due to McNaughton and Yamada [MY60], Glushkov [Glus61], and Berry and Sethi [BS86]. The presentations in [B-K93a, Section 2], [BS86], [tEvG93], and [ASU86, Fig. 3.40, pp. 134-141] are particularly clear. Those interested in a rigorous treatment of this approach to RFA's can refer to the paper of ten Eikelder and van Geldrop [tEvG93].

4.5.2 More efficient RFA operators

The definition of the $R F A$ operators may still result in inefficient implementation. In particular, Brüggemann-Klein and Chang and Paige found that the implementation of the (U) in the RFA operators may require more than constant time [B-K93a, Chan92, CP92]. In most cases the arguments (of U) are disjoint; the only possible exception is the union follow \cup (last \times first), appearing in the $C_{*, R F A}$ and $C_{+, R F A}$ operators. Two solutions to this problem will be presented here.

Convention 4.75 (Constant time union): We use the symbol \uplus to denote union where the arguments to \uplus are assumed to be disjoint.

[^10]The first solution was proposed by Chang and Paige [Chan92, CP92].
Definition 4.76 (Chang-Paige $R F A$): We add an eighth component W to each $R F A$
(Q, V, follow, first, last, null, Qmap, W)
such that

$$
W=(\text { last } \times \text { first }) \backslash \text { follow }
$$

These modified $R F A$'s will be called Chang-Paige $R F A ' s$, and are denoted by $R F A^{\prime}$.
We only give the new operators, instead of the Σ-algebra. The operators follow directly from the above definition.

Construction 4.77 (Operators of the Σ-algebra of Chang-Paige RFA's): As usual, the operator requirement is:

- For binary operators, the representatives have disjoint state sets.

$$
\begin{aligned}
& C_{\epsilon, R F A^{\prime}}=\{(\emptyset, V, \emptyset, \emptyset, \emptyset, \text { true }, \emptyset, \emptyset)] \cong \\
& C_{\emptyset, R F A^{\prime}}=[(\emptyset, V, \emptyset, \emptyset, \emptyset, \text { false, } \emptyset, \emptyset)] \cong \\
& C_{a \in V, R F A^{\prime}}=\text { let } q_{0} \text { be a new state } \\
& \text { in } \\
& \text { end }\left[\left(\left\{q_{0}\right\}, V, \emptyset,\left\{q_{0}\right\},\left\{q_{0}\right\}, \text { false, }\left\{\left(q_{0}, a\right)\right\},\left\{\left(q_{0}, q_{0}\right)\right\}\right)\right] \cong \\
& C_{\cdot, R F A^{\prime}}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right)=\text { let }\left(Q_{0}, V, \text { follow }_{0}, \text { first }_{0}, \text { last }_{0}, \text { null }_{0}, \text { Qmap }_{0}, W_{0}\right)=M_{0} \\
& \left(Q_{1}, V, \text { follow }_{1}, \text { first }_{1}, \text { last }_{1}, \text { null }_{1}, \text { Qmap }_{1}, W_{1}\right)=M_{1} \\
& \text { in } \\
& \text { let } \quad \text { first }{ }^{\prime}=\text { first } t_{0} \uplus \text { if }\left(\text { null }_{0}\right) \text { then } \text { first }_{1} \text { else } \emptyset \mathbf{f} \\
& \text { last }^{\prime}=\text { last }_{1} \uplus \text { if }\left(\text { null }_{1}\right) \text { then last }{ }_{0} \text { else } \emptyset \mathbf{f i} \\
& W^{\prime}=\text { if }\left(\text { null }_{1}\right) \text { then } W_{0} \text { else } \emptyset \mathrm{fi} \\
& W^{\prime \prime}=\text { if (} n u l l_{0} \text {) then } W_{1} \text { else } \emptyset \mathrm{fi} \\
& \text { in } \\
& {\left[\left(Q_{0} \uplus Q_{1}, V, \text { follow }_{0} \uplus \text { follow }_{1} \uplus\left(\text { last }_{0} \times \text { first }_{1}\right),\right.\right.} \\
& \text { first }{ }^{\prime}, \text { last }^{\prime}, \text { null }_{0} \wedge \text { null }_{1}, Q m a p_{0} \uplus \text { Qmap }_{1} \text {, } \\
& \left.\left.\left(\text { last }_{1} \times \text { first } t_{0}\right) \uplus W^{\prime} \uplus W^{\prime \prime}\right)\right]_{\cong} \\
& \text { end } \\
& \text { end } \\
& C_{\mathrm{U}, R F A^{\prime}}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\underline{\cong}}\right)=\text { let }\left(Q_{0}, V, \text { follow }_{0}, \text { first }_{0}, \text { last }_{0}, \text { null }_{0}, \text { Qmap }_{0}, W_{0}\right)=M_{0} \\
& \text { in } \\
& {\left[\left(Q_{0} \uplus Q_{1}, V, \text { follow }_{0} \uplus \text { follow }_{1}, \text { first }_{0} \uplus \text { first }_{1},\right.\right.} \\
& \text { last }_{0} \uplus \text { last }_{1}, \text { null }_{0} \vee \text { null }_{1}, \text { Qmap }_{0} \uplus \text { Qmap }_{1} \text {, } \\
& \left.\left.\left(\text { last }_{0} \times \text { first }_{1}\right) \uplus\left(\text { last }_{1} \times \text { first } t_{0}\right) \uplus W_{0} \uplus W_{1}\right)\right]_{\cong} \\
& \text { end } \\
& C_{*, R F A^{\prime}}\left([M]_{\cong}\right)=\underset{\text { in }}{\text { let }}(Q, V, \text { follow, first, last, null, Qmap }, W)=M \\
& {[(Q, V, \text { follow } \uplus W, \text { first, last }, \text { true }, \text { Qmap }, \emptyset)] \cong} \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
& C_{+, R F A^{\prime}}\left([M]_{\cong}\right)=\underset{\text { in }}{\text { let }}(Q, V, \text { follow, first, last, null, Qmap }, W)=M \\
& {[(Q, V, \text { follow } \uplus W, \text { first, last, null, Qmap, } \emptyset)] \cong} \\
& \text { end } \\
& C_{?, R F A^{\prime}}\left([M]_{\cong}\right)=\text { let }(Q, V, \text { follow, first, last, null, Qmap }, W)=M \\
& \text { in }[(Q, V, \text { follow, first, last, true, } Q \text { map }, W)] \cong \\
& \text { end }
\end{aligned}
$$

These operators are symmetrical. The correctness of these operators is shown in Theorem B.3.
Chang and Paige make additional running-time savings by computing the components of a $R F A^{\prime}$ only as needed in the operators $C_{*, R F A^{\prime}}$ and $C_{+, R F A^{\prime}}$. The running-time and space savings, along with implementation details are given in [Chan92, CP92].

The second solution also involves adding an eighth tuple element to $R F A$'s, giving $R F A^{\prime \prime}$.
Definition 4.78 ($R F A^{\prime \prime}$): We add an eighth component W to each $R F A$

$$
(Q, V, \text { follow, first, last, null, Qmap }, W)
$$

such that

$$
W=\text { follow } \backslash(\text { last } \times \text { first })
$$

These modified RFA's are denoted by $R F A^{\prime \prime}$.
As before, the new operators follow directly from the above definition.
Construction 4.79 (Operators of the Σ-algebra of $R F A^{\prime \prime}$): As usual, the requirement for binary operators is that the representatives of the arguments are chosen such that they have disjoint state sets.

$$
\begin{aligned}
& C_{\epsilon, R F A^{\prime \prime}}=[(\emptyset, V, \emptyset, \emptyset, \emptyset, \text { true } \emptyset, \emptyset)] \underline{\cong} \\
& C_{\emptyset, R F A^{\prime \prime}}=[(\emptyset, V, \emptyset, \emptyset, \emptyset, \text { false }, \emptyset, \emptyset)] \underline{\simeq} \\
& C_{a \in V, R F A^{\prime \prime}}=\text { let } q_{0} \text { be a new state } \\
& \text { in } \\
& {\left[\left(\left\{q_{0}\right\}, V, \emptyset,\left\{q_{0}\right\},\left\{q_{0}\right\}, \text { false },\left\{\left(q_{0}, a\right)\right\}, \emptyset\right)\right] \cong} \\
& \text { end } \\
& C \cdot, \text { RFA }^{\prime \prime}\left(\left[M_{0}\right]_{\propto},\left[M_{1}\right]_{\cong}\right)=\text { let }\left(Q_{0}, V, \text { follow }_{0}, \text { frst }_{0}, \text { last }_{0}, \text { null }_{0}, \text { Qmap }_{0}, W_{0}\right)=M_{0} \\
& \left(Q_{1}, V, \text { follow }_{1}, \text { first }_{1}, \text { last }_{1}, \text { null }_{1}, \text { Qmap }_{1}, W_{1}\right)=M_{1} \\
& \text { in } \\
& \text { let } \quad \text { frrst }=\text { first }_{0} \uplus \mathbf{i f}\left(\text { null }_{0}\right) \text { then } \text { first }_{1} \text { else } \emptyset \mathbf{f i} \\
& \text { last }^{\prime}=\text { last }_{1} \uplus \text { if }\left(n u l l_{1}\right) \text { then last }{ }_{0} \text { else } \emptyset \mathrm{fi} \\
& W^{\prime}=\text { if (} \text { null }_{1} \text {) then } W_{0} \text { else follow } \mathbf{o}_{0} \mathbf{i} \\
& W^{\prime \prime}=\text { if }\left(\text { null }_{0}\right) \text { then } W_{1} \text { else follow }{ }_{1} \text { fi } \\
& W^{\prime \prime}=\text { if }\left(\text { null }_{0} \wedge \text { null } l_{1}\right) \text { then } \emptyset \text { else }\left(\text { last }_{0} \times \text { first }_{1}\right) \text { fi } \\
& \text { in } \\
& {\left[\left(Q_{0} \uplus Q_{1}, V, \text { follow }_{0} \uplus \text { follow }_{1} \uplus\left(\text { last }_{0} \times \text { first }_{1}\right),\right.\right.} \\
& \text { first }^{\prime}, \text { last }^{\prime}, \text { null }_{0} \wedge \text { null }_{1}, \text { Qmap }_{0} \uplus \text { Qmap }_{1} \text {, } \\
& \left.\left.W^{\prime} \uplus W^{\prime \prime} \uplus W^{\prime \prime \prime}\right)\right] \cong \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
& C_{\cup, R F A^{\prime \prime}}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right)=\text { let } \quad\left(Q_{0}, V, \text { follow }_{0}, \text { first }_{0}, \text { last }_{0}, \text { null }_{0}, \text { Qmap }_{0}, W_{0}\right)=M_{0} \\
& \left(Q_{1}, V, \text { follow }_{1}, \text { first }_{1}, \text { last }_{1}, \text { null }_{1}, \text { Qmap }_{1}, W_{1}\right)=M_{1} \\
& \text { in } \\
& {\left[\left(Q_{0} \uplus Q_{1}, V, \text { follow }_{0} \uplus \text { follow }_{1}, \text { first }_{0} \uplus \text { first }_{1},\right.\right.} \\
& \text { last }_{0} \uplus \text { last }_{1}, \text { null }_{0} \vee \text { null }_{1}, \text { Qmap }_{0} \uplus \text { Qmap }_{1} \text {, } \\
& \left.\left.W_{0} \uplus W_{1}\right)\right] \cong \\
& \text { end } \\
& C_{*, R F A^{\prime \prime}}\left([M]_{\underline{\cong}}\right)=\text { let }(Q, V, \text { follow, first, last, null, Qmap }, W)=M \\
& \text { in } \\
& {[(Q, V, W \uplus(\text { last } \times \text { first }), \text { first }, \text { last }, \text { true }, Q m a p, W)] \cong} \\
& \text { end } \\
& C_{+, R F A^{\prime \prime}}\left([M]_{\cong}\right)=\text { let } \quad(Q, V, \text { follow, first, last, null, Qmap }, W)=M \\
& \text { in } \\
& {[(Q, V, W \uplus(\text { last } \times \text { first }), \text { first }, \text { last }, \text { null }, Q m a p, W)] \cong} \\
& \text { end } \\
& C_{?, R F A^{\prime \prime}}\left([M]_{\cong}\right)=\text { let }(Q, V, \text { follow, first, last, null, } Q \text { map }, W)=M \\
& \text { in } \\
& {[(Q, V, \text { follow, first, last , true, Qmap }, W)] \simeq} \\
& \text { end }
\end{aligned}
$$

These operators are symmetrical. Their correctness is shown in Theorem B.4.
Definition 4.80 (Mapping $\left[R F A^{\prime}\right]_{\cong}$ and $\left[R F A^{\prime \prime}\right]_{\cong}$ to $[R F A]_{\cong}$): The mapping is $\bar{\pi}_{8}$.
Remark 4.81: Although this construction does not appear in the literature, a related one does: Brüggemann-Klein describes a transformation on regular expressions which closely parallels the $R F A^{\prime \prime}$ operators. A regular expression E is first transformed into a star normal-form expression, denoted by E^{\bullet}; the $R F A$ image of E^{\bullet} has similar properties to the $R F A^{\prime \prime}$ image of E. The details of the star normal-form transformations (and the running time improvements resulting from them) are described in [B-K93a].

5 The Myhill-Nerode, Brzozowski and DeRemer constructions

In this section, we explore a $D F A$ construction method - due to Myhill and Nerode - from which we derive Brzozowski's construction. First, we make some observations about determinism in finite automata.

Recall a property of weakly deterministic automata - Property 2.28. Given that the set of left languages (of the states) in a $D F A$ are disjoint, we will be exploring methods of computing a set of left languages to construct an automaton.

Definition 5.1 (Left languages of a $D F A$): Define the left languages of a $D F A$ as:

$$
\overleftarrow{\mathcal{L}}(Q, V, T, E, S, F)=\{\overleftarrow{\mathcal{L}}(q): q \in Q\}
$$

Since the elements of this set are pairwise disjoint (by Property 2.28), we can also view it as the (finite) set of equivalence classes of some equivalence relation on V^{*}. There are two potential problems with this:

- In the case that an $M \in D F A$ is not Complete then $\overleftarrow{\mathcal{L}}(M)$ is a partial partition of V^{*}. (This follows from Property 2.16.) To make the definitions in this section easier to present, we restrict ourselves to Complete DFA's.
- It may be that is a left language of some state - corresponding to a start-unreachable state. In this section, we will not be interested in DFA's with start-unreachable states.

Since $\mathcal{L}_{F A}(Q, V, T, E, S, F)=(\cup f: f \in F: \stackrel{\leftarrow}{\mathcal{L}}(f))$ (see Definition 2.12) we also note that the language of an automaton M is the union of some of the equivalence classes in $\overleftarrow{\mathcal{L}}(M)$.

Definition 5.2 (Right invariance of an equivalence relation): An equivalence relation E on V^{*} is right-invariant if and only if

$$
\left(\forall u, a: u \in V^{*} \wedge a \in V:\left(\exists v: v \in V^{*}:[u]_{E} \cdot\{a\} \subseteq[v]_{E}\right)\right)
$$

Property 5.3 (Right invariance of an equivalence relation): Sometimes right invariance of equivalence relation E on V^{*} is given as

$$
\left(\forall u, z: u \in V^{*} \wedge z \in V^{*}:\left(\exists v: v \in V^{*}:[u]_{E} \cdot\{z\} \subseteq[v]_{E}\right)\right)
$$

This is equivalent to the definition given above (by induction on the length of $z \in V^{*}$).
We can now formulate an important property of $\overleftarrow{\mathcal{L}}(M)$, the partition of V^{*}.
Property 5.4 (Right invariance of a partition of V^{*}): Partition $\overleftarrow{\mathcal{L}}(Q, V, T, E, S, F)$ is rightinvariant if and only if

$$
(\forall p, a: p \in Q \wedge a \in V:(\exists q: q \in Q: \overleftarrow{\mathcal{L}}(p) \cdot\{a\} \subseteq \overleftarrow{\mathcal{L}}(q)))
$$

Remark 5.5: It should be clear that for all $M \in D F A$ such that Complete $(M), \overleftarrow{\mathcal{L}}(M)$ is rightinvariant; this follows since for all states p, (and transition relation $T \in Q \times V \longrightarrow Q$, since $M \in D F A$) (and $a \in V$):

$$
\overleftarrow{\mathcal{L}}(p) \cdot\{a\} \subseteq \overleftarrow{\mathcal{L}}(T(p, a))
$$

Remark 5.6: Had we been considering non-Complete DFA's, we would not have a partition on V^{*}; right invariance could still be defined (for partial partition $\overleftarrow{\mathcal{L}}(Q, V, T, E, S, F)$) as:

$$
\left(\forall p, a: p \in Q \wedge a \in V \wedge T^{*}(p, a) \neq \emptyset:(\exists q: q \in Q: \overleftarrow{\mathcal{L}}(p) \cdot\{a\} \subseteq \overleftarrow{\mathcal{L}}(q))\right)
$$

We will not be using this definition. We give it to point out that the techniques of this section are also usable in constructing non-Complete DFA's (as Brzozowski demonstrated in [Brzo64]).

5.1 The Myhill-Nerode construction

Before considering how to construct finite automata, we first present the Myhill-Nerode theorem. A good text book introduction to the theorem is [HU79].

Theorem 5.7 (Myhill-Nerode): The Myhill-Nerode theorem states that the following statements are equivalent [Myhi57, Nero58, RS59, HU79]:

1. L is a regular language.
2. L is the union of some of the equivalence classes of a right-invariant equivalence relation (on V^{*}) of finite index.
3. Let R_{L} be the right-invariant equivalence relation defined by

$$
(x, y) \in R_{L} \equiv\left(\forall z: z \in V^{*}:(x z \in L) \equiv(y z \in L)\right)
$$

Relation R_{L} is of finite index.

Proof:

A following proof is given in [HU79, Theorem 3.9].
$(1) \Rightarrow(2):$ Assume L is accepted by $M \in D F A$ such that $\operatorname{Complete}(M)$. Let E be the equivalence relation corresponding to $\overleftarrow{\mathcal{L}}(M)$. $\forall E$ is finite, and $L=(\cup f: f \in F: \overleftarrow{\mathcal{L}}(f))$. (See Definition A. 8 for the definition of \sharp.)
$(2) \Rightarrow(3)$: We show that for an equivalence relation E satisfying (2) that $E \subseteq R_{L}$. (Here \subseteq denotes equivalence relation refinement, see Definition A.10.) We start the derivation using the right invariance property of E (Property 5.4 , written slightly differently):

$$
\begin{aligned}
& \left(\forall u: u \in V^{*}:\left(\forall w: w \in V^{*}:\left(\exists v: v \in V^{*}:\left([u]_{E} \cdot\{w\}\right) \subseteq[v]_{E}\right)\right)\right) \\
\Rightarrow \quad & \quad\left\{\text { Assumption that } E \text { satisfies }(2), \text { for all } v \in V^{*}:\left([v]_{E} \subseteq L\right) \vee\left([v]_{E} \cap L=\emptyset\right)\right\} \\
& \left(\forall u: u \in V^{*}:\left(\forall w: w \in V^{*}:\left(\left([u]_{E} \cdot\{w\}\right) \subseteq L\right) \vee\left(\left([u]_{E} \cdot\{w\}\right) \cap L=\emptyset\right)\right)\right) \\
\Rightarrow \quad & \left\{\text { Definition of } R_{L}\right\} \\
& \left(\forall u: u \in V^{*}:\left(\exists v: v \in V^{*}:[u]_{E} \subseteq[v]_{R_{L}}\right)\right) \\
\equiv & \quad\{\text { Definition of refinement }(\subseteq)-\text { Definition A.11\}} \\
& {\left[V^{*}\right]_{E} \subseteq\left[V^{*}\right]_{R_{L}} } \\
\equiv & \quad\{\text { Definition of refinement }(\subseteq)-\text { Definition A. } 10\} \\
& E \subseteq R_{L} \\
\Rightarrow & \{\text { Property of refinement - Property A.12\}} \\
& \sharp E \geq \sharp R_{L}
\end{aligned}
$$

It follows that since $\sharp E$ is finite, so is $\sharp R_{L}$.
$(3) \Rightarrow(1)$: We can construct the following Complete $D F A$ (from R_{L}) accepting L :

$$
\begin{array}{ll}
\text { let } & T\left([w]_{R_{L}}, a\right)=\left\{[w a]_{R_{L}}\right\} \\
& F=\left\{[w]_{R_{L}}: w \in L\right\} \\
\text { in } & \left(\left[V^{*}\right]_{R_{L}}, V, T, \emptyset,\left\{[\epsilon]_{R_{L}}\right\}, F\right) \\
\text { end } &
\end{array}
$$

It follows that L is a regular language.

Property 5.8 (Index of equivalence relation E): Given $L \in \mathcal{L}_{\text {reg }}, M \in D F A$ accepting L, and E (satisfying statement 2 and constructed as in the proof of (1) $\Rightarrow(2)$ of the Myhill-Nerode theorem) then $\sharp E \leq|M|$ (since $\sharp E=\sharp \overleftarrow{\mathcal{L}}(M)$ by definition of E and $D e t^{\prime}$).
Property 5.9 (Uniqueness and minimality of equivalence relation R_{L}): Of all equivalence relations satisfying statement 2 of the Myhill-Nerode theorem, R_{L} is the unique minimal one. This follows from the fact that all others are refinements of R_{L} (see the proof of (2) $\Rightarrow(3)$).

The theorem does not say much about how to find equivalence relations satisfying statement 2 , other than providing a definition of the unique minimal one, R_{L}.

We can formalize statement 2 of the Myhill-Nerode theorem:
Definition 5.10 (Predicate $M N$): For regular language L and equivalence relation E (on V^{*}) $M N(L, E)$ is equivalent to

- $\sharp E$ is finite,
- $L=\left(\cup v: v \in L:[v]_{E}\right)$, and
- E is right-invariant.

Note that $M N\left(L, R_{L}\right)$.
The $D F A$ construction given in the (3) \Rightarrow (1) proof can be used with other right-invariant equivalence relations.
Construction 5.11 (Myhill-Nerode): Given a language L and right-invariant equivalence relation E such that $M N(L, E)$ we can construct an automaton accepting L using the function

$$
\begin{aligned}
M N \operatorname{constr}(L, E)= & \text { let } \quad \\
& \text { in } \quad F\left([w]_{E}, a\right)=\left\{[w a]_{E}\right\} \\
& \\
& \text { end } \quad\left(\left[V^{*}\right]_{E}, V, T, \emptyset,\left\{[\epsilon]_{E}\right\}, F\right)
\end{aligned}
$$

This construction has the following properties:

- The definition is independent of the choice of representatives of the equivalence classes of E.
- By inspection we can see that the FA constructed by MNconstr is a Complete DFA.
- For any state $U \in\left[V^{*}\right]_{E}$ we have $\overleftarrow{\mathcal{L}}(U)=U$.
- All states in the constructed automaton are start-reachable.
- The number of states is $\sharp E$.
- The construction satisfies the property

$$
\left(\forall L, E: M N(L, E): \mathcal{L}_{F A}(M N c o n s t r(L, E))=L\right)
$$

5.2 The minimal equivalence relation R_{L}

The only relation (corresponding to $L \in \mathcal{L}_{\text {reg }}$) that Myhill and Nerode actually defined was R_{L}. This relation is particularly important, being the unique one of minimal index.

Theorem 5.12 (Unique minimal $D F A$): Given $L \in \mathcal{L}_{\mathrm{reg}}, M=M N \operatorname{constr}\left(L, R_{L}\right)$ is the unique minimal Complete DFA accepting L; that is, $\operatorname{Min}_{C}(M)$.
Proof:
Assume there exists $M^{\prime} \in D F A$ such that Complete $\left(M^{\prime}\right), \mathcal{L}_{F A}\left(M^{\prime}\right)=L$ and $\left|M^{\prime}\right| \leq|M|$. From the proof of $(2) \Rightarrow(3)$ (and Property 5.8), $\sharp R_{L} \leq \sharp \overleftarrow{\mathcal{L}}\left(M^{\prime}\right)$. In summary, $\sharp R_{L} \leq \sharp \overleftarrow{\mathcal{L}}\left(M^{\prime}\right) \leq\left|M^{\prime}\right| \leq$ $|M|=\sharp R_{L}$, and so (by Property A.12) $\left|M^{\prime}\right|=|M|, E=R_{L}$ and $M^{\prime} \cong M$.

Property 5.13 (Reformulating R_{L}): We can rewrite the definition of R_{L} using derivatives (see Definition A.15) as follows:

$$
\begin{aligned}
& (x, y) \in R_{L} \\
\equiv & \left\{\text { Property of derivatives and definition of } R_{L}\right\} \\
& \left(\forall z: z \in V^{*}:\left(z \in x^{-1} L\right) \equiv\left(z \in y^{-1} L\right)\right) \\
\equiv & \{\text { Definition of }=\text { on languages }\} \\
& x^{-1} L=y^{-1} L
\end{aligned}
$$

We could combine this definition of R_{L} with $M N$ constr to get a minimal DFA construction. Such a function would have a clumsy definition, and therefore we explore some encoding tricks.

5.2.1 Encoding R_{L}

An encoding trick is hinted at by Property 5.13: every equivalence class $[w]_{R_{L}}$ of R_{L} can be characterized by the language $w^{-1} L$.

Definition 5.14 (Derivative set of a language): We define the set of derivatives of language L as

$$
\operatorname{deriv}(L)=\left\{v^{-1} L: v \in V^{*}\right\}
$$

We have the following theorem relating to deriv
Theorem 5.15 (Finiteness of derivatives): If $L \in \mathcal{L}_{\text {reg }}$ then $|\operatorname{deriv}(L)|$ is finite. Proof:
$\sharp R_{L}$ is finite (from the Myhill-Nerode theorem), and since $|\operatorname{deriv}(L)|=\sharp R_{L},|\operatorname{deriv}(L)|$ is also finite.

This theorem has also been given by Brzozowski [Brzo64]. His proof is, however, somewhat more complicated, and is by induction on the structure of language L.

Definition 5.16 (Encoding an equivalence class): We define a derivative encoding function (for a given $L \in \mathcal{L}_{\mathrm{reg}}$) encderiv $L_{L} \in\left[V^{*}\right]_{R_{L}} \longrightarrow \operatorname{deriv}(L)$ as

$$
\operatorname{encderiv}_{L}\left([w]_{R_{L}}\right)=w^{-1} L
$$

This function has inverse encderiv ${ }_{L}^{-1}\left(v^{-1} L\right)=[v]_{R_{L}}$. Both of these functions are independent of the choice of representative of equivalence class of R_{L}.

Remark 5.17: In Construction 5.11 (with R_{L} as the equivalence class parameter) the equivalence classes of R_{L} are the left languages of the states of a $D F A$ constructed from R_{L}. The function encderiv L_{L} maps these left languages (equivalence classes) to their corresponding right languages (the derivatives). The right language (encderiv $L_{L}(U)$) of a particular equivalence class $U \in\left[V^{*}\right]_{R_{L}}$ is called the continuation of U (in language L) by Berry and Sethi [BS86].

Property 5.18 (Derivatives and function encderiv $_{L}$): Note that (for $a \in V, w \in V^{*}$):

- $\operatorname{encderiv} L\left([\epsilon]_{R_{L}}\right)=\epsilon^{-1} L=L$,
- encderiv${ }_{L}\left([w a]_{R_{L}}\right)=(w a)^{-1} L=a^{-1}\left(w^{-1} L\right)$.

These properties follow from Property A.16, and the definition of encderiv ${ }_{L}$.
Noting the form of function $M N$ constr, we use the encoding (function encderiv ${ }_{L}$) to obtain construction $M N \min \in \mathcal{L}_{\text {reg }} \longrightarrow D F A$.
Construction 5.19 ($M N \min$): Combining MNconstr (Construction 5.11) with encderiv L_{L} (and its inverse) gives construction $M N \min \in \mathcal{L}_{\text {reg }} \longrightarrow D F A$:

$$
\left.\begin{array}{rl}
M N \min (L)= & \text { let } \quad T\left(w^{-1} L, a\right)=\left\{a^{-1}\left(w^{-1} L\right)\right\} \\
& \text { in } \quad F=\left\{w^{-1} L: \epsilon \in w^{-1} L\right\}
\end{array}\right)
$$

Since $M N \min$ is defined using $M N$ constr, the properties are similar:

- By inspection we can see that the FA constructed by MNmin is a Complete DFA.
- For any state $U \in \operatorname{deriv}(L)$ we have $\overrightarrow{\mathcal{L}}(U)=U$.
- All states in the constructed automaton are start-reachable.
- The only state that is not final-reachable is \emptyset. The state \emptyset exists in automaton $M N \min (L)$ if and only if $L \neq V^{*}$. It follows that we can remove the sink state \emptyset, to obtain a (possibly) non-Complete DFA with only useful states.
- The constructed $D F A$ is the unique (up to isomorphism) minimal Complete DFA accepting L (since R_{L} is implicit in the definition).
- The construction satisfies the property

$$
\left(\forall L: L \in \mathcal{L}_{\mathrm{reg}}: \mathcal{L}_{F A}(M N \min (L))=L\right)
$$

Example 5.20 ($M N \min$ construction): We construct the minimal Complete DFA corresponding to the regular language $\{\epsilon, a\}\{b\}^{*}$, denoted by regular expression $(a \cup \epsilon) b^{*}$ (the regular expression from Example 3.15).

After some calculation (using Property A.17):

$$
\begin{aligned}
a^{-1}\left(\{\epsilon, a\}\{b\}^{*}\right) & =\left(a^{-1}\{\epsilon, a\}\right)\{b\}^{*} \cup a^{-1}\{b\}^{*} \\
& =\{\epsilon\}\{b\}^{*} \cup\left(a^{-1}\{b\}\right)\{b\}^{*} \\
& =\{b\}^{*} \\
b^{-1}\left(\{\epsilon, a\}\{b\}^{*}\right) & =\left(b^{-1}\{\epsilon, a\}\right)\{b\}^{*} \cup b^{-1}\{b\}^{*} \\
& =\emptyset\{b\}^{*} \cup\left(b^{-1}\{b\}\right)\{b\}^{*} \\
& =\{b\}^{*}
\end{aligned}
$$

Figure 8: The DFA MNmin $\left(\{\epsilon, a\}\{b\}^{*}\right)$.

$$
\begin{aligned}
a^{-1}\left(\{b\}^{*}\right) & =\left(a^{-1}\{b\}\right)\{b\}^{*} \\
& =\emptyset\{b\}^{*} \\
& =\emptyset \\
b^{-1}\left(\{b\}^{*}\right) & =\left(b^{-1}\{b\}\right)\{b\}^{*} \\
& =\{b\}^{*} \\
a^{-1} \emptyset & =\emptyset \\
b^{-1} \emptyset & =\emptyset
\end{aligned}
$$

we determine that the three derivatives are: $L=\{\epsilon, a\}\{b\}^{*}, L_{1}=\{b\}^{*}$, and \emptyset. The state graph is shown in Figure 8.

5.3 The Brzozowski construction

We now concentrate on constructing DFA's from extended regular expressions, as opposed to constructing them from regular languages. In Property A.17, a method is given for computing a derivative of a regular language (based upon the structure of the language). Being able to compute derivatives in this way also provides us with a definition of derivatives of extended regular expressions ($E R E$ s's). Extended regular expressions were defined in Definition 4.53.

Remark 5.21: The Σ-algebra definition of regular expressions is not used in this section as the algebraic structure is not needed. Regular expressions are used only as syntactic objects, denoting regular languages.

Remark 5.22: The remaining constructions in this section do not necessarily depend on extended regular expressions (normal regular expressions can also be used). They are introduced because some regular languages have more succinct descriptions as $E R E$'s than as $R E^{\prime \prime}$ s.

Definition 5.23 (Derivatives of $E R E$'s): Assuming $a \in V$ and $E, E_{0}, E_{1} \in E R E$

$$
\begin{aligned}
a^{-1} \emptyset & =\emptyset \\
a^{-1} \epsilon & =\emptyset \\
a^{-1} b & =\text { if }(a=b) \text { then } \epsilon \text { else } \emptyset \mathbf{f i} \quad \text { (for all } b \in V \text {) } \\
a^{-1}\left(E_{0} E_{1}\right) & =\left(a^{-1} E_{0}\right) E_{1} \cup \text { if }\left(\epsilon \in \mathcal{L}_{E R E}\left(E_{0}\right)\right) \text { then } a^{-1} E_{1} \text { else } \emptyset \mathrm{fi} \\
a^{-1}\left(E_{0} \cup E_{1}\right) & =\left(a^{-1} E_{0}\right) \cup\left(a^{-1} E_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
a^{-1}\left(E^{*}\right) & =\left(a^{-1} E\right) E^{*} \\
a^{-1}\left(E^{+}\right) & =\left(a^{-1} E\right) E^{*} \\
a^{-1}\left(E^{?}\right) & =a^{-1} E \\
a^{-1}\left(E_{0} \cap E_{1}\right) & =\left(a^{-1} E_{0}\right) \cap\left(a^{-1} E_{1}\right) \\
a^{-1}(\neg E) & =\neg\left(a^{-1} E\right)
\end{aligned}
$$

Property 5.24 (Derivatives of $E R E$'s): By inspecting the definition of derivatives of $E R E$'s, we can verify that (for $a \in V, E \in E R E) a^{-1} \mathcal{L}_{E R E}(E)=\mathcal{L}_{E R E}\left(a^{-1} E\right)$.

Remark 5.25: Given equivalence relation \doteq (equivalence of regular expressions, extended to $E R E)$, an $E \in E R E$ will have a finite number of derivatives. More formally, $\left|\left\{\left[w^{-1} E\right]_{\doteq}: w \in V^{*}\right\}\right|$ is finite. Brzozowski gave the same result by induction on the structure of a $E R E$ in [Brzo64, Theorem 4.3a].

Definition 5.26 (Similarity (\sim) of regular expressions): Similarity (written \sim) is an equivalence relation on $E R E$'s. Two $E R E$'s are similar if and only if they are identical or one can be transformed into the other using the following rules:

1. $E_{0} \cup E_{1}=E_{1} \cup E_{0}$ (commutativity of \cup),
2. $E_{0} \cup\left(E_{1} \cup E_{2}\right)=\left(E_{0} \cup E_{1}\right) \cup E_{2}$ (associativity of \cup), and
3. $E \cup E=E$ (idempotence of \cup).

Property 5.27 (Similarity): $\sim \subseteq \doteq$; that is, \sim is a refinement of \doteq.
Definition 5.28 (The derivatives of an $E R E$): Function deriv ${ }_{E R E} \in E R E \longrightarrow \mathcal{P}\left([E R E]_{\sim}\right)$ is defined as

$$
\operatorname{deriv}_{E R E}(E)=\left[\left\{v^{-1} E: v \in V^{*}\right\}\right]_{\sim}=\left\{\left[v^{-1} E\right]_{\sim}: v \in V^{*}\right\}
$$

Before proving that $\operatorname{deriv}_{E R E}(E)$ is finite (for all $E \in E R E$), we need the following proposition.
Proposition 5.29 (Similarity equivalence class of a union $E R E$): Assume a finite set $H \subseteq$ $E R E$ and a fully parenthesized regular expression

$$
J=\left(\cdots\left(\left(\left(h_{1} \cup h_{2}\right) \cup h_{3}\right) \cup h_{4}\right) \cdots \cup h_{k}\right)
$$

where (for $1 \leq i \leq k$) $h_{i} \in H$; each h_{i} is called a term of J. Using \sim we can always find a similar (and, of course, equivalent) regular expression K, where K is the union of at most $|H|$ terms of J. This is because the rules defining \sim can be used to reassociate and commute the terms of J (to place identical terms adjacent to one another), while the idempotence rule of \sim can be used to remove identical terms.

Proposition 5.30 (Similarity): Given a finite set $H \subseteq E R E$, the set of all non-similar $E R E$'s that are unions of terms $h_{i} \in H$ is finite.

Theorem 5.31 (Finiteness of derivatives under similarity): For all $E \in E R E,\left|\operatorname{deriv}_{E R E}(E)\right|$ is finite.

Proof:

This proof is similar to the one given in Brzozowski's original paper [Brzo64, Theorem 5.2]. The proof is by induction on the number of operators in $E \in E R E$.

Basis: The theorem is true for each of the constants: $\operatorname{deriv}_{E R E}(\epsilon)=\left\{[\epsilon]_{\sim},[\emptyset]_{\sim}\right\}, \operatorname{deriv}_{E R E}(\emptyset)=$ $\left\{[\emptyset]_{\sim}\right\}$, and $\operatorname{deriv}_{E R E}(a)=\left\{[a]_{\sim},[\epsilon]_{\sim},[\emptyset]_{\sim}\right\}$ (for $a \in V$).

Induction hypothesis: Assume that $\left|\operatorname{deriv}_{E R E}(E)\right|$ is finite for all $E \in E R E$ where E has fewer than k operators.

Induction step: Assume $E \in E R E$ has k operators. We use case analysis to deal with the possible forms of E :
$E=E_{0} \cup E_{1}$: It is possible to show that

$$
\left\{\left[w^{-1}\left(E_{0} \cup E_{1}\right)\right]_{\sim}: w \in V^{*}\right\}=\left\{\left[w^{-1} E_{0} \cup w^{-1} E_{1}\right]_{\sim}: w \in V^{*}\right\}
$$

By the induction hypothesis, $\left|\operatorname{deriv}_{E R E}\left(E_{0}\right)\right|$ and $\left|\operatorname{deriv}_{E R E}\left(E_{1}\right)\right|$ are finite, and so is $\left|\operatorname{deriv}_{E R E}(E)\right|$.
$E=E_{0} \cap E_{1}$ or $E=E_{0}^{?}$ or $E=\neg E_{0}$: An argument similar to that for \cup applies to these cases.
$E=E_{0} \cdot E_{1}:$ In order to analyze $\left|\operatorname{deriv}_{E R E}\left(E_{0} \cdot E_{1}\right)\right|$, we consider a particular $w^{-1}\left(E_{0} \cdot E_{1}\right)$ (for $w \in V^{*}$). Let $w=a_{1} \cdots a_{n}$ where each $a_{i} \in V$. Writing out $w^{-1}\left(E_{0} \cdot E_{1}\right)$ we get

$$
\begin{aligned}
& w^{-1}\left(E_{0} \cdot E_{1}\right) \\
= & \left(a_{2} \cdots a_{n}\right)^{-1}\left(\left(a_{1}^{-1} E_{0}\right) E_{1} \cup \text { if }\left(\epsilon \in \mathcal{L}_{E R E}\left(E_{0}\right)\right) \text { then } a_{1}^{-1} E_{1} \text { else } \emptyset \mathrm{fi}\right)
\end{aligned}
$$

Had we been able to continue this rewriting, we would see that $\left[w^{-1}\left(E_{0} \cdot E_{1}\right)\right]_{\sim}$ is equal to

$$
\left[\left(w^{-1} E_{0}\right) \cdot E_{1} \cup\left(\cup u, v: u v=w: \text { if }\left(\epsilon \in \mathcal{L}_{E R E}\left(u^{-1} E_{0}\right)\right) \text { then } v^{-1} E_{1} \text { else } \emptyset \mathrm{fi}\right)\right]_{\sim}
$$

That is, $w^{-1}\left(E_{0} \cdot E_{1}\right)$ is the union of a set of terms, one of which is $\left(w^{-1} E_{0}\right) \cdot E_{1}$, and the remaining ones are either a derivative of E_{1}, or $\emptyset \in E R E$. By the induction hypothesis (the set of derivatives of E_{1} is finite) the set of possible terms is finite. It follows from Propositions 5.29 and 5.30 that $\left|\operatorname{deriv}_{E R E}(E)\right|$ is finite.
$E=E_{0}^{*}$ or $E=E_{0}^{+}$: As in the $E_{0} \cdot E_{1}$ case, we could write out $w^{-1}\left(E_{0}^{*}\right)$ for a particular $w \in V^{*}$. If we do this, we see that it is the union of terms, each of which is a derivative of E_{0} concatenated with E_{0}^{*}. The set of possible terms is finite - by the induction hypothesis. Again, it follows from Propositions 5.29 and 5.30 that $\left|\operatorname{deriv}_{E R E}(E)\right|$ is finite.

Remark 5.32: Unfortunately, using similarity (in computing derivatives) may yield more derivatives than recognizing equivalence ($\dot{=}$) of derivatives (as shown in Example 5.37). The rules defining similarity can be augmented with others to decrease the redundancy of the derivatives (and therefore the size of the constructed DFA). Any equivalence relation G such that $\sim \subseteq G \subseteq \doteq$ is usable for this. Examples of additional rules are (for $E_{0}, E_{1}, E_{2} \in E R E$):

1. $E_{0} \cdot \emptyset=\emptyset(\emptyset$ is the zero of concatenation $)$,
2. $E_{0} \cup \emptyset=E_{0}(\emptyset$ is the unit of $\cup)$,
3. $E_{0} \cdot \epsilon=E_{0}$ (ϵ is the unit of concatenation),
4. $\emptyset^{*}=\epsilon$ (a property of $*$),
5. $E_{0} \cdot\left(E_{1} \cup E_{2}\right)=E_{0} \cdot E_{1} \cup E_{0} \cdot E_{2}$ (. distributes over $\left.\cup\right)$,
6. $E_{0} \cap \emptyset=\emptyset(\emptyset$ is the zero of $\cap)$,
7. $E_{0} \cap E_{1}=E_{1} \cap E_{0}$ (commutativity of \cap),
8. $E_{0} \cap\left(E_{1} \cap E_{2}\right)=\left(E_{0} \cap E_{1}\right) \cap E_{2}$ (associativity of $\left.\cap\right)$.
9. $E \cap E=E$ (idempotence of \cap).

There is a property of similarity that will be needed to present the Brzozowski construction.
Definition 5.33 (Derivative of a similarity equivalence class): For $E \in E R E$ and $a \in V$ we have $a^{-1}[E]_{\sim}=\left[a^{-1} E\right]_{\sim}$. This definition does not depend on the choice of representative of the equivalence class (under \sim).

The Brzozowski construction is an encoding of $M N \min$ to use $E R E$'s and equivalence classes of \sim.

Construction 5.34 (Brzozowski): Function $B r z \in E R E \longrightarrow D F A$ is defined as:

$$
\begin{aligned}
\operatorname{Brz}(E)= & \text { let } \quad T\left(\left[v^{-1} E\right]_{\sim}, a\right)=\left\{a^{-1}\left[v^{-1} E\right]_{\sim}\right\} \\
& \text { in } \quad F=\left\{\left[w^{-1} E\right]_{\sim}: \epsilon \in \mathcal{L}_{E R E}\left(w^{-1} E\right)\right\} \\
& \text { end } \quad\left(\operatorname{deriv}_{E R E}(E), V, T, \emptyset,\left\{[E]_{\sim}\right\}, F\right)
\end{aligned}
$$

The properties of $B r z$ correspond to those of $M N \min$:

- The construction is independent of the representatives of equivalence classes.
- By inspection we can see that $B r z$ constructs Complete DFA's.
- For any state $E^{\prime} \in \operatorname{deriv}_{E R E}(E)$ we have $\overrightarrow{\mathcal{L}}\left(E^{\prime}\right)=\mathcal{L}_{E R E}\left(E^{\prime}\right)$.
- All states in the constructed automaton are start-reachable.
- There may be a state that is not final-reachable; this sink state will exists if and only if $\mathcal{L}_{E R E}(E) \neq V^{*}$. The sink state corresponds to the derivative $\emptyset \in E R E$.
- The construction satisfies the property

$$
\left(\forall E: E \in E R E: \mathcal{L}_{F A}(B r z(E))=\mathcal{L}_{E R E}(E)\right)
$$

Remark 5.35: Any equivalence relation G (on $E R E$ s) such that $\sim \subseteq G \subseteq \doteq$ can be used in place of \sim in Brzozowski's construction.

Remark 5.36: In Brzozowski's original paper [Brzo64], the sink state (corresponding to derivative $\emptyset \in E R E$) was always omitted from the constructed DFA, producing a possibly non-Complete DFA.

Example 5.37 (Brzozowski's construction): We construct a Complete DFA corresponding to regular expression $(a \cup \epsilon) b^{*}$ (the regular expression from Example 3.15). The derivatives are:

$$
\begin{aligned}
a^{-1}\left((a \cup \epsilon) b^{*}\right) & =\left(a^{-1}(a \cup \epsilon)\right) b^{*} \cup a^{-1}\left(b^{*}\right) \\
& =\left(a^{-1} a \cup a^{-1} \epsilon\right) b^{*} \cup\left(a^{-1} b\right) b^{*} \\
& =(\epsilon \cup \emptyset) b^{*} \cup \emptyset b^{*} \\
b^{-1}\left((a \cup \epsilon) b^{*}\right) & =\left(b^{-1}(a \cup \epsilon)\right) b^{*} \cup b^{-1}\left(b^{*}\right) \\
& =\left(b^{-1} a \cup b^{-1} \epsilon\right) b^{*} \cup\left(b^{-1} b\right) b^{*} \\
& =(\emptyset \cup \emptyset) b^{*} \cup \epsilon b^{*}
\end{aligned}
$$

Figure 9: The $D F A \operatorname{Brz}\left((a \cup \epsilon) b^{*}\right)$.

$$
\begin{aligned}
& \sim \emptyset b^{*} \cup \epsilon b^{*} \\
& a^{-1}\left((\epsilon \cup \emptyset) b^{*} \cup \emptyset b^{*}\right)=a^{-1}\left((\epsilon \cup \emptyset) b^{*}\right) \cup a^{-1}\left(\emptyset b^{*}\right) \\
&=\left(\left(a^{-1}(\epsilon \cup \emptyset)\right) b^{*} \cup a^{-1}\left(b^{*}\right)\right) \cup\left(a^{-1} \emptyset\right) b^{*} \\
&=\left(\left(\left(a^{-1} \epsilon \cup a^{-1} \emptyset\right) b^{*}\right) \cup\left(a^{-1} b\right) b^{*}\right) \cup \emptyset b^{*} \\
&=\left((\emptyset \cup \emptyset) b^{*} \cup(\emptyset) b^{*}\right) \cup \emptyset b^{*} \\
& \sim \emptyset b^{*} \\
& b^{-1}\left((\epsilon \cup \emptyset) b^{*} \cup \emptyset b^{*}\right)=b^{-1}\left((\epsilon \cup \emptyset) b^{*}\right) \cup b^{-1}\left(\emptyset b^{*}\right) \\
&=\left(\left(b^{-1}(\epsilon \cup \emptyset)\right) b^{*} \cup\left(b^{-1} b\right) b^{*}\right) \cup\left(b^{-1} \emptyset\right) b^{*} \\
&=\left(\left(b^{-1} \epsilon \cup b^{-1} \emptyset\right) b^{*} \cup(\epsilon) b^{*}\right) \cup \emptyset b^{*} \\
&=\left((\emptyset \cup \emptyset) b^{*} \cup \epsilon b^{*}\right) \cup \emptyset b^{*} \\
& \sim \emptyset b^{*} \cup \epsilon b^{*} \\
&=a^{-1}\left(\emptyset b^{*}\right) \cup a^{-1}\left(\epsilon b^{*}\right) \\
& \sim\left(a^{-1} \emptyset\right) b^{*} \cup\left(\left(a^{-1} \epsilon\right) b^{*} \cup\left(a^{-1} b\right) b^{*}\right) \\
& a^{-1}\left(\emptyset b^{*} \cup \epsilon b^{*}\right) \\
&=b^{*} \\
& b^{-1}\left(\emptyset b^{*} \cup \epsilon b^{*}\right)=\left(b^{-1} \emptyset\right) b^{*} \cup\left(\left(b^{-1} \epsilon\right) b^{*} \cup\left(b^{-1} b\right) b^{*}\right) \\
& \sim \emptyset b^{*} \cup \epsilon b^{*} \\
&=\left(a^{-1} \emptyset\right) b^{*} \\
&=\emptyset b^{*} \\
& a^{-1}\left(\emptyset b^{*}\right) \\
&=\left(b^{-1} \emptyset\right) b^{*} \\
& b^{-1}\left(\emptyset b^{*}\right)=\emptyset b^{*}
\end{aligned}
$$

The four derivatives (under ~) are: $d_{0}=(a \cup \epsilon) b^{*}, d_{1}=(\epsilon \cup \emptyset) b^{*} \cup \emptyset b^{*}, d_{2}=\emptyset b^{*} \cup \epsilon b^{*}$, and $d_{3}=\emptyset b^{*}$. The state graph is shown in Figure 9. Had we been able to recognize equivalence of $E R E$'s, we would have had a smaller $D F A$ since $(\epsilon \cup \emptyset) b^{*} \cup \emptyset b^{*} \doteq \emptyset b^{*} \cup \epsilon b^{*}$, and we could have identified states d_{1} and d_{2}.

5.3.1 Computing derivatives of an $E R E$

Brzozowski also shows [Brzo64] if $E \in E R E$ has n derivatives (including E, under any equivalence relation G such that $\sim \subseteq G \subseteq \doteq$) then they are all of the form $v^{-1} E$ where $|v|<n$ [Brzo64, Theorem 4.3b]. Also part of this theorem is if all derivatives (of E) with respect to strings of length not greater than n have been found, and no new ones are found with respect to strings of length $n+1$, then no new ones will be found with respect to strings of length greater than n. This useful property of derivatives (in fact a slightly stronger property) can be stated as follows:

Theorem 5.38 (Finding derivatives): For all $r \geq 0$

$$
\Rightarrow \quad \begin{aligned}
& \left\{\left[w^{-1} E\right]_{\sim}: w \in V^{*} \wedge|w|=r\right\} \subseteq\left\{\left[w^{-1} E\right]_{\sim}: w \in V^{*} \wedge|w|<r\right\} \\
& \\
& \left\{\left[w^{-1} E\right]_{\sim}: w \in V^{*} \wedge|w| \geq r\right\} \subseteq\left\{\left[w^{-1} E\right]_{\sim}: w \in V^{*} \wedge|w|<r\right\}
\end{aligned}
$$

This gives the following algorithm (in the guarded commands of [Dijk76]) which computes the derivatives of a regular expression $E\left(D \subseteq[E R E]_{\sim}\right.$ and next $\left.\subseteq[E R E]_{\sim}\right)$:
Algorithm 5.39:

```
\(\{E \in E R E\}\)
\(D, n e x t, k:=\emptyset,\left\{[E\}_{\sim}\right\}, 0 ;\)
\(\left\{\right.\) invariant: \(D=\left\{\left[w^{-1} E\right]_{\sim}: w \in V^{*} \wedge|w|<k\right\} \wedge\) next \(\left.=\left\{\left[w^{-1} E\right]_{\sim}: w \in V^{*} \wedge|w|=k\right\}\right\}\)
do next \(\mathbb{Z} D \longrightarrow\)
    \(D\), next \(, k:=D \cup\) next \(,\left\{a^{-1} F: a \in V \wedge F \in\right.\) next \(\}, k+1\)
\(\boldsymbol{\operatorname { o d }}\left\{D=\operatorname{deriv}_{E R E}(E)\right\}\)
```


5.3.2 Extending derivatives

It is sometimes useful to extend derivatives to deal with additional operators: prefix closure and certain functions on languages. We now briefly give the definition of derivatives of regular languages (and thus regular expressions) with these operators.

The prefix closure of a language is defined as:

$$
\operatorname{pref}(L)=\left\{u: u^{-1} L \neq \emptyset\right\}
$$

and the derivative of a prefix closed language is:

$$
a^{-1}(\operatorname{pref}(L))=\operatorname{pref}\left(a^{-1} L\right)
$$

For certain functions $f \in \mathcal{L}_{\text {reg }} \times \mathcal{L}_{\text {reg }} \longrightarrow \mathcal{L}_{\text {reg }}$, derivatives are defined as:

$$
a^{-1}\left(f\left(L_{0}, L_{1}\right)\right)=f\left(a^{-1} L_{0}, a^{-1} L_{1}\right)
$$

Some examples of such functions are \cap, U, asymmetrical difference, and symmetrical difference. For more on this see [Brzo64].

5.4 Relating the Brzozowski and Berry-Sethi constructions

It turns out that for $R R E$'s (recall from Definition 4.58 that an $E \in R R E$ is an $R E$ such that each symbol of V occurs at most once in E), the Brzozowski construction (with sink state removal as in Brzozowski's original paper - and a suitable encoding) and the Berry-Sethi construction produce isomorphic DFA's. In this section, we consider only RRE's. Berry and Sethi first presented this result in [BS86].

We will be using the following version of Brzozowski's construction (for $E \in R R E$), which does not introduce a sink state (the sink state is equivalent (\doteq) to $\emptyset \in R R E$ - its language under $\mathcal{L}_{R E}$ is \emptyset).
Construction 5.40 (Brzozowski - without sink state): Given $E \in R E$, the following constructs a $D F A$ accepting $\mathcal{L}_{R E}(E)$:
let $\quad Q=\left\{\left[w^{-1} E\right]_{\sim}: w \in V^{*} \wedge \mathcal{L}_{R E}\left(w^{-1} E\right) \neq \emptyset\right\}$
$T\left(\left[v^{-1} E\right]_{\sim}, a\right)=$ if $\left(\mathcal{L}_{R E}\left(a^{-1}\left(v^{-1} E\right)\right) \neq \emptyset\right)$ then $\left\{a^{-1}\left[v^{-1} E\right]_{\sim}\right\}$ else $\emptyset \mathrm{fi}$ $F=\left\{\left[w^{-1} E\right]_{\sim}: \operatorname{Null}\left(w^{-1} E\right)\right\}$
in
$\left(Q, V, T, \emptyset,\left\{[E]_{\sim}\right\}, F\right)$
end

In the let clause, the transition function has signature $T \in Q \times V \longrightarrow \mathcal{P}(Q)$. Recall from Definition 3.20 that $\operatorname{Null}(E) \equiv \epsilon \in \mathcal{L}_{R E}(E)$.

For any $E \in R R E$, the only way that $\mathcal{L}_{R E}\left(b^{-1}\left((w a)^{-1} E\right)\right) \neq \emptyset$ is if $\mathcal{L}_{R E}\left((w a)^{-1} E\right) \neq \emptyset$ and a b can follow a $w a$ in some string in $\mathcal{L}_{R E}(E)$.

In order to make the above construction practical, we explore the possibility of characterizing all of the derivatives of an $E \in R E$ (except for the derivative E itself) by the symbols occuring in E.

Definition 5.41 (Unambiguous regular expressions): An $E \in R E$ is said to be unambiguous if and only if, for all $a \in \operatorname{Occ}(E)$ (function $O c c$ is defined in Definition 4.57), the following set is a singleton set:

$$
\left\{\left[(w a)^{-1} E\right]_{\sim}: w \in V^{*} \wedge \mathcal{L}_{R E}\left((w a)^{-1} E\right) \neq \emptyset\right\}
$$

In other words, all derivatives of E by $w a$ (for $w \in V^{*}$ and $a \in V$) are either equivalent to $\emptyset \in R R E$, or are similar to one another.

Remark 5.42: If an $E \in R E$ is unambiguous, its derivatives are either E or \emptyset, or can be characterized by an element of $O c c(E)$.

Remark 5.43: The regular expression ($a \cup a$) is unambiguous, but is not an $R R E$.
Remark 5.44: Unambiguous regular expressions are also defined by Champarnaud [Cham93], although he characterizes them quite differently, and he does not make use of derivatives. Champarnaud calls such regular expressions local.

Theorem 5.45 (Characterizing derivatives of $R R E$'s): For any $E \in R R E, E$ is unambiguous. This theorem is also given by Berry and Sethi [BS86, Theorem 3.4].
Proof:
We proceed by induction on the number of operators in $E \in R R E$.
Basis: The theorem is trivially true for the $R R E$ base cases ϵ and \emptyset since $O c c(\epsilon)=O c c(\emptyset)=\emptyset$. It is also trivially true for the $R R E a \in V$.
Induction hypothesis: Assume that the theorem is true for any $E \in R R E$ with fewer than k operators.

Induction step: We now consider $E \in R R E$ with k operators. We now examine the possible structure of E (assuming $a \in \operatorname{Occ}(E)$).
$E=E_{0} \cup E_{1}:$ Given $w \in V^{*}$ such that $\mathcal{L}_{R E}\left((w a)^{-1} E\right) \neq \emptyset$

$$
(w a)^{-1}\left(E_{0} \cup E_{1}\right)=\left((w a)^{-1} E_{0}\right) \cup\left((w a)^{-1} E_{1}\right)
$$

Since $E \in R R E$, then either $a \in \operatorname{Occ}\left(E_{0}\right)$ or $a \in \operatorname{Occ}\left(E_{1}\right)$ (but not both). It follows that $(w a)^{-1}\left(E_{0} \cup E_{1}\right)$ is similar to $(w a)^{-1} E_{0} \cup \emptyset$ or similar to $(w a)^{-1} E_{1} \cup \emptyset$ (but not both). The theorem then follows from the induction hypothesis.
$E=E_{0} \cdot E_{1}$: From Theorem 5.31 we know that (for $\left.w \in V^{*}, a \in V\right)\left[(w a)^{-\mathbf{1}}\left(E_{0} \cdot E_{1}\right)\right]_{\sim}$ is equal to:

$$
\left[\left((w a)^{-1} E_{0}\right) E_{1} \cup\left(\cup u, v: u v a=w a: \text { if }\left(\epsilon \in \mathcal{L}_{E R E}\left(u^{-1} E_{0}\right)\right) \text { then }(v a)^{-1} E_{1} \text { else } \emptyset \mathbf{f i}\right)\right]
$$

Since $E \in R R E$, then either $a \in \operatorname{Occ}\left(E_{0}\right)$ or $a \in \operatorname{Occ}\left(E_{1}\right)$ (but not both). It follows, by an argument similar to the $E=E_{0} \cup E_{1}$ case (above), that the theorem holds from the induction hypothesis.
$E=E_{0}^{*}, E=E_{0}^{+}$or $E=E_{0}^{?}$: The argument for these cases proceeds similarly to the $E=$ $E_{0} \cdot E_{1}$ case. For more on this type of argument see Theorem 5.31.

Remark 5.46: The above theorem implies that each derivative of $E \in R R E$ (under similarity) is either \emptyset (which we ignore since it corresponds to the sink state) or E, or it can be characterized by an $a \in O c c(E)$.
Definition 5.47 (Encoding the derivatives of an $R R E$): Given the theorem above, $E \in R R E$, we can now give a partial encoding function $e n c_{E}$ (corresponding to the $E \in R R E$) from the derivatives of E to $O c c(E)$ such that (for $\left.w \in V^{*}, a \in V\right) e n c_{E}\left((w a)^{-1} E\right)=a$ when $\mathcal{L}_{R E}\left((w a)^{-1} E\right) \neq \emptyset$, and $e n c_{E}$ is undefined otherwise. Note that this function is not defined on E.

The following property makes use of the definitions of Null, Occ, First, Last, and Follow (Definitions 3.20, 4.57, 4.60-4.64 respectively).
Property 5.48 (Functions Follow, First, and Last): The following properties will be used:

- $(a, b) \in \operatorname{Follow}(E) \equiv\left(\exists w: w \in V^{*}: \mathcal{L}_{R E}\left(b^{-1}\left((w a)^{-1} E\right)\right) \neq \emptyset\right)$.
- $a \in \operatorname{First}(E) \equiv \mathcal{L}_{R E}\left(a^{-1} E\right) \neq \emptyset$.
- $a \in \operatorname{Last}(E) \equiv \mathcal{L}_{R E}\left(E a^{-1}\right) \neq \emptyset \equiv\left(\exists w: w \in V^{*}: \epsilon \in \mathcal{L}_{R E}\left((w a)^{-1} E\right)\right)$.

Derivatives on the right are mentioned in Definition A.15.
We can rewrite our sink stateless version of Brzozowski's construction, using the above properties, to obtain the construction now following.
Construction 5.49 (Encoding Brzozowski for $R R E$'s): We can now give our encoded version (using Occ, First, Last, Null, and Follow) of Construction 5.40, as Brzenc \in RRE \longrightarrow DFA:

```
\(\operatorname{Brzenc}(E)=\) let \(s\) be a new state (characterizing \(E \in R R E\) )
    in
    let \(\quad T=\{(a, b, b):(a, b) \in \operatorname{Follow}(E)\}\)
    \(T^{\prime}=\{(s, a, a): a \in \operatorname{First}(E)\}\)
    \(F=\operatorname{Last}(E) \cup\) if \((N u l l(E))\) then \(\{s\}\) else \(\emptyset\) fi
    in
        \(\left(O c c(E) \cup\{s\}, V, T \cup T^{\prime}, \emptyset,\{s\}, F\right)\)
            end
        end
```

Remark 5.50: Using the set $O c c(E)$ as the set of states can yield a $D F A$ with start-unreachable states. For example, in the DFA Brzenc $(\emptyset \cdot a)$, we have start-unreachable state a.

Remark 5.51: By inspection we see that, for all $E \in \operatorname{RRE}, \operatorname{Brzenc}(E) \cong \operatorname{BSenc}(E)$ (Construction 4.70). It follows from Remark 4.73, that for $E \in R R E,[\operatorname{Brz}(E)] \cong=M Y G(E)$.

Remark 5.52: Finally, we note that the construction Brzenc produces a correct DFA for any $E \in R E$ such that E is unambiguous. That is, $E \in R R E$ is not required. This property is not noted in the literature. This follows from Definition 5.41 and the definition of Brzenc.

5.5 Towards DeRemer's construction

In this subsection, we consider several more constructions based upon the MNconstr and MNmin constructions (Constructions 5.11 and 5.19). The idea is to characterize the derivatives of a regular expression by so-called dotted regular expressions. We only consider constructing a DFA from an $R E$, as opposed to an $E R E$. Since some of the proofs are tedious to present, we give this construction in an informal manner.

We begin by introducing dotted regular expressions, which are essentially regular expressions with a dot (\bullet) appearing in each of them.

Remark 5.53: We will be characterizing derivatives, not equivalence classes (as is required for $M N c o n s t r)$. Using dotted $R E$'s, it is considerably easier to characterize the derivatives than the equivalence classes.

The dot should not be confused with the concatenation dot, the star normal-form dot of Brüggemann-Klein (presented in Section 4.5), or the bullet used in typesetting lists.

Definition 5.54 (Dotted regular expressions, their languages, and undot): We recursively define dotted regular expressions ($D R E^{\prime \prime}$ s), function $\mathcal{R} \in D R E \longrightarrow \mathcal{P}\left(V^{*}\right)$, and function undot \in $D R E \longrightarrow R E$. Function \mathcal{R} maps $D R E$'s to the (regular) language to the right of the dot, and function undot removes the dot in a $D R E$.

1. If $E \in R E$ then
(a) $\bullet E \in D R E, \mathcal{R}(\bullet E)=\mathcal{L}_{R E}(E)$, and $u n d o t(\cdot E)=E$;
(b) $E \bullet \in D R E, \mathcal{R}(E \bullet)=\{\epsilon\}$, and $u n \operatorname{dot}(E \bullet)=E$.
2. If $E \in R E$ and $D \in D R E$ then
(a) $E \cup D \in D R E, D \cup E \in D R E, \mathcal{R}(E \cup D)=\mathcal{R}(D \cup E)=\mathcal{R}(D)$, undot $(E \cup D)=$ $E \cup u n d o t(D)$, and $u n d o t(D \cup E)=u n d o t(D) \cup E$;
(b) $E \cdot D \in D R E, D \cdot E \in D R E, \mathcal{R}(E \cdot D)=\mathcal{R}(D), \mathcal{R}(D \cdot E)=\mathcal{R}(D) \cdot \mathcal{L}_{R E}(E)$, undot $(E$. $D)=E \cdot \operatorname{undot}(D)$, and undot $(D \cdot E)=u n d o t(D) \cdot E$;
(c) $D^{*} \in \operatorname{DRE}, \mathcal{R}\left(D^{*}\right)=\mathcal{R}(D) \cdot \mathcal{L}_{R E}(\operatorname{undot}(D))^{*}$, and $\operatorname{undot}\left(D^{*}\right)=u n \operatorname{dot}(D)^{*}$;
(d) $D^{+} \in D R E, \mathcal{R}\left(D^{+}\right)=\mathcal{R}(D) \cdot \mathcal{L}_{R E}(u n d o t(D))^{*}$, and $u n \operatorname{dot}\left(D^{+}\right)=u n d o t(D)^{+}$;
(e) $D^{?} \in D R E, \mathcal{R}\left(D^{?}\right)=\mathcal{R}(D)$, and $u n d o t\left(D^{?}\right)=u n d o t(D)^{?}$.
3. Nothing else is a $D R E$.

A dotted regular expression is also known as an item, from LR parsing [Knut65]; we will frequently use this name.

We also require a function mapping a regular expression to all of its dottings.
Definition 5.55 (Function dots): We define function dots $\in R E \longrightarrow \mathcal{P}(D R E)$ as follows:

$$
\operatorname{dots}(E)=\{D: D \in D R E \wedge u n d o t(D)=E\}
$$

Remark 5.56: For a given $E \in R E$, we will be using sets of items (elements of $\mathcal{P}(\operatorname{dots}(E))$) to characterize the derivatives of $\mathcal{L}_{R E}(E)$ when constructing a DFA accepting $\mathcal{L}_{R E}(E)$.

Property 5.57 (dots): For all $E \in R E,|\operatorname{dots}(E)|$ is finite, and so is $|\mathcal{P}(\operatorname{dots}(E))|$.
We define an item set, and its language as follows:
Definition 5.58 (Item sets and their languages): An item set J is a subset of $D R E$ such that:
$(\exists E: E \in R E: J \subseteq \operatorname{dots}(E))$
$I S$ denotes the set of all item sets. Essentially, an $I S$ is a set of items, all of which are dottings of the same regular expression. We also extend undot to $I S$.

Definition 5.59 (Language of an $I S$): The language of a $J \in I S$ is given by function $\mathcal{L}_{I S} \in$ $I S \longrightarrow \mathcal{P}\left(V^{*}\right)$ defined as:

$$
\mathcal{L}_{I S}(J)=(\cup I: I \in J: \mathcal{R}(I))
$$

Remark 5.60: We will use item sets to characterize the derivatives of an $R E$.
We now define derivatives of item sets.
Definition 5.61 (Derivative of an item set): Given $J \in I S$ and $a \in V$ we define $a^{-1} J$ to be the following set:

1. If $I \in J$ has a subexpression $\bullet a$ then I^{\prime} is in $a^{-1} J$, where I^{\prime} is the same as I with the subexpression $\bullet a$ replaced by $a \bullet$.
2. Nothing else is in $a^{-1} J$.

We can now define a special type of function, which we call a closure function.
Definition 5.62 (Closure functions): Any function $\mathcal{E} \in I S \longrightarrow I S$ can be used as a closure function, provided that

$$
\left(\forall J: J \in I S: \mathcal{L}_{I S}(\mathcal{E}(J))=\mathcal{L}_{I S}(J) \wedge \mathcal{E} \circ \mathcal{E}(J)=\mathcal{E}(J)\right)
$$

and

$$
\left(\forall E, J: E \in R E \wedge J \subseteq \operatorname{dots}(E): \epsilon \in \mathcal{L}_{I S}(J) \equiv(E \bullet) \in \mathcal{E}(J)\right)
$$

and

$$
\left(\forall J, a: J \in I S \wedge a \in V: \mathcal{L}_{I S}\left(a^{-1} \mathcal{E}(J)\right)=a^{-1} \mathcal{L}_{I S}(J)\right)
$$

We are now in a position to define our first closure function, and an auxiliary relation.
Definition 5.63 (Dot closure relation \mathcal{D}): We define a binary relation \mathcal{D} on $D R E$. \mathcal{D} is the smallest relation such that:

1. If $E, F \in R E$, then (here we use infix notation for relation \mathcal{D}):

$\bullet \epsilon$	\mathcal{D}	$\epsilon \bullet$
$\bullet(E \cdot F)$	\mathcal{D}	$(\bullet E) \cdot F$
$(E \bullet) \cdot F$	\mathcal{D}	$E \cdot(\bullet F)$
$E \cdot(F \bullet)$	\mathcal{D}	$(E \cdot F) \bullet$
$\bullet(E \cup F)$	\mathcal{D}	$(\bullet E) \cup F$
$\bullet(E \cup F)$	\mathcal{D}	$E \cup(\bullet F)$
$(E \bullet) \cup F$	\mathcal{D}	$(E \cup F) \bullet$
$E \cup(F \bullet)$	\mathcal{D}	$(E \cup F) \bullet$
$\bullet\left(E^{*}\right)$	\mathcal{D}	$(\bullet E)^{*}$
$\bullet\left(E^{*}\right)$	\mathcal{D}	$\left(E^{*}\right) \bullet$
$(E \bullet)^{*}$	\mathcal{D}	$(\bullet E)^{*}$
$(E \bullet)^{*}$	\mathcal{D}	$\left(E^{*}\right) \bullet$
$\bullet\left(E^{+}\right)$	\mathcal{D}	$(\bullet E)^{+}$
$(E \bullet)^{+}$	\mathcal{D}	$(\bullet E)^{+}$
$(E \bullet)^{+}$	\mathcal{D}	$\left(E^{+}\right) \bullet$
$\bullet\left(E^{?}\right)$	\mathcal{D}	$(\bullet E)^{?}$
$\bullet\left(E^{?}\right)$	\mathcal{D}	$\left(E^{?}\right) \bullet$
$(E \bullet)^{?}$	\mathcal{D}	$\left(E^{?}\right) \bullet$

2. If $E \in R E$ and $D_{0}, D_{1} \in D R E$ such that $\left(D_{0}, D_{1}\right) \in \mathcal{D}$, then:
(a) $\left(E \cup D_{0}, E \cup D_{1}\right) \in \mathcal{D},\left(D_{0} \cup E, D_{1} \cup E\right) \in \mathcal{D},\left(E \cdot D_{0}, E \cdot D_{1}\right) \in \mathcal{D}$, and $\left(D_{0} \cdot E, D_{1} \cdot E\right) \in \mathcal{D}$.
(b) $\left(D_{0}^{*}, D_{1}^{*}\right) \in \mathcal{D},\left(D_{0}^{+}, D_{1}^{+}\right) \in \mathcal{D}$, and $\left(D_{0}^{?}, D_{1}^{?}\right) \in \mathcal{D}$.

Definition 5.64 (Closure function \mathcal{C}): We define function $\mathcal{C} \in I S \longrightarrow I S$ as:

$$
\mathcal{C}(J)=\mathcal{D}^{*}(J)
$$

Function \mathcal{C} satisfies the Definition 5.62, making it a closure function.
Remark 5.65: The closure function \mathcal{C} presented here is an extension (to deal with our definition of regular expressions) of the one usually given for LR parsing.
Example 5.66 (Function $\mathcal{C}): \mathcal{C}\left(\left\{\bullet\left((a \cup \epsilon) b^{*}\right)\right\}\right)$ is computed to be $\left\{\bullet\left((a \cup \epsilon) b^{*}\right),(\bullet(a \cup \epsilon)) b^{*},(\bullet a \cup\right.$ $\left.\epsilon) b^{*},(a \cup \bullet \epsilon) b^{*},(a \cup \epsilon \bullet) b^{*},((a \cup \epsilon) \bullet) b^{*},(a \cup \epsilon)\left(\bullet\left(b^{*}\right)\right),(a \cup \epsilon)(\bullet b)^{*},(a \cup \epsilon)\left(b^{*} \bullet\right),\left((a \cup \epsilon) b^{*}\right) \bullet\right\}$.

In order to construct a $D F A$ for an $R E$, we require a set of item sets which characterize the set of derivatives of a the regular expression. The following definition gives the necessary conditions.
Definition 5.67 (Derivative item set): Given $E \in R E$, the set $D \subseteq \mathcal{P}(\operatorname{dots}(E)$) (that is, $D \subseteq I S$ and for each $J \in D, E=u n d o t(J)$) characterizes (under some closure function \mathcal{E}) the derivatives of E if and only if:

$$
\left\{w^{-1} \mathcal{L}_{R E}(E): w \in V^{*}\right\}=\left\{\mathcal{L}_{I S}(J): J \in D\right\}
$$

and

$$
(\forall J: J \in D: J=\mathcal{E}(J))
$$

and

$$
\left(\forall J, a: J \in D \wedge a \in V: \mathcal{E}\left(a^{-1} J\right) \in D\right)
$$

We write this property $\operatorname{DIS}(E, D, \mathcal{E})$. The set D is called a derivative item set for E.
We are now in a position to modify Algorithm 5.39 to compute such a derivative item set (under some closure function \mathcal{E}), instead of a set of derivatives. In the following algorithm, D, next $\subseteq I S$.
Algorithm 5.68:

```
\(\{E \in R E\}\)
\(D\), next \(:=\emptyset,\{\mathcal{E}(\{\bullet E\})\} ;\)
do next \(\mathbb{D} \longrightarrow\)
    \(D\), next \(:=D \cup n e x t,\left\{\mathcal{E}\left(a^{-1} I\right): a \in V \wedge I \in n e x t\right\}\)
od
\(\{D I S(E, D, \mathcal{E})\}\)
```

This algorithm terminates since $|\mathcal{P}(\operatorname{dots}(E))|$ is finite (Property 5.57). With the set D computed above, we can now construct a $D F A$ accepting $\mathcal{L}_{R E}(E)$.
Construction 5.69 (Item set construction): Function Iconstr $\in R E \times \mathcal{P}(I S) \nrightarrow D F A$ takes a regular expression (E) and a derivative item set (D) for the $R E$ (such that $D I S(E, D, \mathcal{C})$), and constructs a $D F A$:

$$
\begin{array}{rll}
\text { Iconstr }(E, D)= & \text { let } & T(J, a)=\left\{\mathcal{C}\left(a^{-1} J\right)\right\} \\
& S=\{\mathcal{C}(\{\bullet E\})\} \\
& F=\{J: J \in D \wedge E \bullet \in J\}
\end{array}
$$

in

$$
(D, V, T, \emptyset, S, F)
$$

end
A $D F A$ constructed with Iconstr has the following property:

$$
\left(\forall E, D: \operatorname{DIS}(E, D, \mathcal{C}): \mathcal{L}_{F A}(\operatorname{Iconstr}(E, D))=\mathcal{L}_{R E}(E)\right)
$$

The DFA is also Complete.

Figure 10: The DFA Iconstr $\left((a \cup \epsilon) b^{*}\right)$.

Figure 11: The DFA Iconstr $\left(b^{*}\right)$.

Example 5.70 (Iconstr): We construct the DFA corresponding to $(a \cup \epsilon) b^{*}$. The derivative item set is (the individual item sets have been compressed, as a notational convenience, and each item set is given a label):

$$
\left\{I_{0}=\bullet(\bullet(\bullet a \cup \bullet \epsilon \bullet) \bullet)\left(\bullet(\bullet b)^{*} \bullet\right) \bullet, I_{2}=((a \bullet \cup \epsilon) \bullet)\left(\bullet(\bullet b)^{*} \bullet\right) \bullet, I_{1}=((a \cup \epsilon))\left((\bullet b \bullet)^{*} \bullet\right) \bullet, I_{3}=\emptyset\right\}
$$

The $D F A$ is shown in Figure 10

5.5.1 Making the construction more efficient

Because of the definition of \mathcal{C}, function Iconstr sometimes constructs a $D F A$ which is larger than necessary, as shown in the following example.

Example 5.71 (A $D F A$ that is not minimal): We use Iconstr to construct a $D F A$ for $b^{*} \in$ $R E$. The two item sets are $D=\left\{\left\{\bullet\left(b^{*}\right),(\bullet b)^{*},\left(b^{*}\right) \bullet\right\},\left\{(b \bullet)^{*},(\bullet b)^{*},\left(b^{*}\right) \bullet\right\}\right\}$. The DFA is shown in Figure 11. The problem is that the two item sets should have been recognized as denoting equivalent derivatives since:

$$
\mathcal{L}_{I S}\left(\left\{\bullet\left(b^{*}\right),(\bullet b)^{*},\left(b^{*}\right) \bullet\right\}\right)=\mathcal{L}_{I S}\left(\left\{(b \bullet)^{*},(\bullet b)^{*},\left(b^{*}\right) \bullet\right\}\right)
$$

They only differ in the items $\bullet\left(b^{*}\right)$ and $(b \bullet)^{*}$.
The problem is that for some $J \in I S$, there is much redundant information in $\mathcal{C}(J)$. In particular, there may be a $J^{\prime} \subset J$ such that $\mathcal{L}_{I S}\left(J^{\prime}\right)=\mathcal{L}_{I S}(J)$. We can introduce a function \mathcal{X} such that $\mathcal{X} \circ \mathcal{C}$ is a closure function. That is, \mathcal{X} is used as a filter.

Definition 5.72 (Item set optimization function \mathcal{X}): Given $J \in I S$ such that $J=\mathcal{C}(J)$, $\mathcal{X}(J)$ is the same as J, with the following removed: any item containing a subexpression of the form $\bullet(E \cup F), \bullet\left(E^{*}\right)$, or $(E \bullet)^{*}$.

Property 5.73 (Function $\mathcal{X} \circ \mathcal{C}$): Function $\mathcal{X} \circ \mathcal{C}$ satisfies Definition 5.62, and is a closure function.

Figure 12: The DFA DeRemer $\left(b^{*}\right)$.
Remark 5.74: The reason that such items are removed is that the definition of \mathcal{C} ensures that they are redundant; other items will have been added to the item set to ensure that these ones are not needed. For example, in the case of $\bullet(E \cup F)$ function \mathcal{C} will ensure that $\bullet E \cup F$ and $E \cup \bullet F$ are added to the item set. In this case $\mathcal{R}(\bullet(E \cup F))=\mathcal{R}(\bullet E \cup F) \cup \mathcal{R}(E \cup \bullet F)$.

Using composite function $\mathcal{X} \circ \mathcal{C}$, we can now present a revised version of the above construction.
Construction 5.75 (DeRemer's construction): DeRemer's construction is function DeRemer, which is exactly as Iconstr, except that the composite function $\mathcal{X} \circ \mathcal{C}$ is used as the closure function wherever \mathcal{C} was used in Iconstr. This construction is due to DeRemer [DeRe74], where he attributes the idea behind the definition of \mathcal{X} to Earley [Earl70].
Remark 5.76: DeRemer presented this construction in a slightly different context: he extended an LR parser to deal with grammar production rules with regular expression as right hand sides [DeRe74]. Remark 5.78 points out a slight problem with the original presentation by DeRemer.

Example 5.77 (DeRemer): We use DeRemer to construct a DFA for $b^{*} \in R E$. The only item set is $\left\{(\bullet b)^{*},\left(b^{*}\right) \bullet\right\}$ and the DFA is shown in Figure 12. With alphabet $V=\{b\}$, this is the minimal Complete DFA accepting $\mathcal{L}_{R E}\left(b^{*}\right)$.

Remark 5.78: DeRemer and Earley specify that both the closure (function \mathcal{C}) and the optimization (function \mathcal{X}) operations are to be performed simultaneously. Unfortunately, when ϵ is permitted as an $R E$ (as we have done) it is possible that the process never terminates. For example, consider the closure (with optimization) of $\left\{\bullet(a \cup \epsilon)^{*}\right\}$, in the style of DeRemer and Earley. After the first step we have $\left\{\bullet(a \cup \epsilon)^{*},(\bullet(a \cup \epsilon))^{*}\right\}$. After an optimization step, and a few more steps we have $\left\{(\bullet a \cup \epsilon)^{*},((a \cup \epsilon) \bullet)^{*}\right\}$, after which we add $(\bullet(a \cup \epsilon))^{*}$ which we had originally removed. The rewriting process begins again. In this paper, we avoid this problem by defining the closure and optimization steps separately.

We can devise an even more effective optimization function than \mathcal{X}.
Definition 5.79 (Function \mathcal{Y}): Given $J \in I S$ corresponding to $E \in R E$ such that $J=\mathcal{C}(J)$, $\mathcal{Y}(J)$ is a subset of J, keeping only the following items:

1. Any item containing a subexpression of the form $\bullet a$ (for some regular expression $a \in V$).
2. The item $E \bullet$ (if present in J).

Property 5.80 (Function $\mathcal{Y} \circ \mathcal{C}$): Composite function $\mathcal{Y} \circ \mathcal{C}$ satisfies Definition 5.62, and is a closure function.

Remark 5.81: The function \mathcal{Y} makes the computation of derivatives (of a $J \in I S$ such that $J=\mathcal{C}(J)$) particularly easy, as the items in $\mathcal{Y}(J)$ are precisely those required in the computation of derivatives and for determining if $\epsilon \in \mathcal{L}_{I S}(J)$.

Construction 5.82 (Improved item sets): Our optimized construction, called Oconstr, is as Iconstr, except that the composite function $\mathcal{Y} \circ \mathcal{C}$ is used wherever \mathcal{C} was used in Iconstr. This construction does not appear in the literature.

Figure 13: The DFA Oconstr $\left((a \cup \epsilon) b^{*}\right)$.

Figure 14: The $D F A$'s $B r z(a c \cup b c)$ and $\operatorname{Oconstr}(a c \cup b c)$.

Example 5.83 (Oconstr): Using Oconstr, we construct a $D F A$ for $(a \cup \epsilon) b^{*}$. The derivative item sets are (each item set is given a label for use in the state graph): $\left\{I_{0}=\left\{(\bullet a \cup \epsilon) b^{*},(a \cup\right.\right.$ $\left.\left.\epsilon)(\bullet b)^{*},(a \cup \epsilon) b^{*} \bullet\right\}, I_{1}=\left\{(a \cup \epsilon)(\bullet b)^{*},(a \cup \epsilon) b^{*} \bullet\right\}, I_{2}=\emptyset\right\}$. The $D F A$ is shown in Figure 13. This is the minimal Complete $D F A$ for the given regular expression.

As seen in the above example, function Oconstr constructs a smaller DFA than $B r z$ did in Example 5.37. The two constructions seem difficult to compare, as the following example shows:

Example 5.84 (Comparing $B r z$ to Oconstr): We use Brz and Oconstr to construct DFA's for $a c \cup b c$. The derivatives (under extended similarity - see Remark 5.32, each given a label) are: $\left\{d_{0}=a c \cup b c, d_{1}=c, d_{2}=\epsilon, d_{3}=\emptyset\right\}$. The derivative item sets (using $\mathcal{Y} \circ \mathcal{C}$, each given a label) are: $\left\{I_{0}=\{\bullet a c \cup b c, a c \cup \bullet b c\}, I_{1}=\{a \bullet c \cup b c\}, I_{2}=\{a c \cup b \bullet c\}, I_{3}=\{(a c \cup b c) \bullet\}, I_{4}=\emptyset\right\}$ The results are shown in Figure 14. Construction Oconstr is unable to recognize that states I_{1} and I_{2} are equivalent. (An equivalence relation on $I S$ - much like \sim on $E R E$'s - could be defined in order to identify such equivalent states.)

We can make a more practical implementation by concatenating an end-marker $\$$ onto $E \in R E$ (using function marker ${ }_{e}$ - see Definition 4.46). The second rule defining \mathcal{Y} (Definition 5.79) is then no longer required.

Construction 5.85 (Oconstr with end-marker): Using the end-marker, the body of the Oconstr construction becomes (assuming that $\operatorname{DIS}(E \$, D, \mathcal{Y} \circ \mathcal{C})$):

$$
\begin{array}{ll}
\text { let } & T(J, a)=\left\{\mathcal{Y} \circ \mathcal{C}\left(a^{-1} J\right)\right\} \\
& S=\{\mathcal{Y} \circ \mathcal{C}(\{\bullet E\})\} \\
\text { in } & F=\left\{J: J \in D \wedge \$^{-1} J \neq \emptyset\right\} \\
\text { end } & (D, V, T, \emptyset, S, F)
\end{array}
$$

Remark 5.86: The Aho-Sethi-Ullman construction (Construction 4.50) can be viewed as a heavily encoded variation on the Oconstr construction. Each item in an item set of D is of the form $\ldots \cdot a \ldots$ (for $a \in V$) and corresponds to the basis RFA's that are used in the construction of the $R F A$ for E. The subset construction (with start-unreachable state removal) of the Aho-SethiUllman algorithm (Algorithm 4.52) is folded into the algorithm computing the derivative item set (using composite function $\mathcal{Y} \circ \mathcal{C}$) and the definition of a derivative of an item set. Compare the DFA produced in Example 4.51 to that produced in Example 5.83 ; the only difference is the sink state in the latter example.

6 Conclusions

The conclusions of this paper fall into two groups, depending on the section to which they relate: constructions based upon the structure of regular expressions (Section 4), or constructions based upon the Myhill-Nerode theorem (Section 5).

The conclusions about constructions based on regular expression structure are:

- Finite automaton constructions are frequently said to be "based upon the structure of regular expressions." The Σ-algebra framework (given in Sections 3 and 4) was useful in formalizing this notion. The Σ-algebras were particularly useful in the following ways:
- They placed Thompson's, the left-biased, the right-biased, and the reduced finite automata ($R F A$) constructions in a common framework.
- They highlighted the fact that the type of object produced by the Thompson's, the left-biased and the right-biased constructions is actually the isomorphism class of a finite automaton, as opposed to a finite automaton.
- The concept of duality (that one construction can be the mirror image of another) played a central part in finding common parts in constructions. Duality was made more obvious through the use of Σ-algebras. The following constructions were found to be related by duality:
- The Berry-Sethi nondeterministic finite automaton construction (also known in the literature as the McNaughton-Yamada or the Glushkov nondeterministic finite automata construction) and the dual of the Berry-Sethi construction (a variant of which is also known as the Aho-Sethi-Ullman nondeterministic finite automata contruction [ASU86, Example 3.22, pg. 140]).
- The McNaughton-Yamada-Glushkov deterministic finite automaton (DFA) construction and the Aho-Sethi-Ullman DFA construction ${ }^{12}$.
- The use of end-markers (concatenated to either the left or the right of a regular expression) was found to be a simple coding trick, which may be useful in practice. End markers do not play a central role in any of the constructions, although they have previously been portrayed as important.
- The concept of marking a regular expression (each alphabet symbol occuring in the regular expression is given a unique mark, making all of the symbols unique - see Section 4.5) is an encoding trick. Marking is not central to the correctness of any of the constructions, although it is a useful technique in the practical implementation of some of the constructions.
- Marking was found to cause problems in some of the constructions. In particular, intersection, complementation, and language difference cannot be dealt with using marking ${ }^{13}$. In the Σ-algebra framework, intersection, complementation, and language difference can easily be implemented for the Berry-Sethi, McNaughton-Yamada-Glushkov, and Aho-Sethi-Ullman constructions - constructions that are all traditionally defined using marking.
- Two interpretations of marking appear in the literature. In the first one, being "at a mark" (Aho, Sethi, and Ullman use the phrase "at a position" [ASU86]) means to be in the state resulting from making a transition on the alphabet symbol associated with the particular mark ${ }^{14}$. The second interpretation equates being "at a mark" with being in the state which

[^11]has an out-transition on the alphabet symbol associated with the particular mark (that is, the marked symbol is valid as the next input symbol) ${ }^{15}$. The two interpretations are duals of one another, and arise naturally from the duality of the left-biased and right-biased constructions. For example, the interpretations give rise to the duality between McNaughton , Yamada and Glushkov's DFA and Aho, Sethi, and Ullman's DFA constructions.

- The improvements to the Berry-Sethi construction ${ }^{16}$ due to Brüggemann-Klein [B-K93a] and Chang and Paige [Chan92, CP92] have been difficult to compare. This has been largely due to the fact that Chang and Paige's improvements are to the finite automaton construction itself, while Brüggemann-Klein's improvements involve transforming the regular expression. In Section 4.5, we presented an improvement to the construction (not found in the literature) that mirrors Brüggemann-Klein's improvements (not on regular expressions, but on finite automata), and is easy to compare to Chang and Paige's construction.
- Some relationships between the constructions were found that were not made obvious by the Σ-algebra derivations:
- For restricted regular expressions (where each alphabet symbol occurs at most once as in marked regular expressions) the Berry-Sethi construction produces a deterministic $F A$. As a consequence, the Berry-Sethi construction and the McNaughton-YamadaGlushkov DFA construction produce isomorphic finite automata (with the exception of the sink state present in a McNaughton-Yamada-Glushkov DFA).
- The Berry-Sethi construction (and therefore the McNaughton-Yamada-Glushkov DFA construction) and the Brzozowski construction (under an appropriate encoding) produce isomorphic finite automata for restricted regular expressions. This result was originally presented by Berry and Sethi [BS86].

The conclusions about the Myhill-Nerode, Brzozowski, and DeRemer constructions (Section 5) are:

- Deriving the second major family of constructions from the Myhill-Nerode theorem proved useful in a number of ways:
- The use of equivalence classes makes the correctness argument for the Myhill-Nerode construction particularly clear.
- The unique minimal $D F A$ (for a particular language) can be easily constructed using a particular equivalence class as the parameter to the Myhill-Nerode construction.
- Derivatives (of a language) are a useful encoding of the equivalence classes of Myhill and Nerode's unique minimal-index equivalence relation R_{L}.
- The definition of derivatives provides an efficient method to compute finite sets which encode the infinite sets that are used in the Myhill-Nerode construction.
- The Brzozowski construction can be viewed as an ingenious encoding of the Myhill-Nerode minimal DFA construction.
- Brzozowski's original paper provided a proof (a similar one is given in this paper) that his construction also works when only similarity of regular expressions is recognized. Similarity is defined in his paper using four rules, and is defined in this paper using only three rules. The missing fourth rule (that ϵ is the unit of concatenation) is not required in the definition of similarity for the correctness of our presentation of Brzozowski's construction.

[^12]- We defined the equivalence and the similarity of regular expressions as equivalence relations on regular expressions. We also demonstrated that any such equivalence relation E can be used in Brzozowski's construction, provided that E is a refinement of equivalence and similarity is a refinement of E.
- For restricted regular expressions, Brzozowski's construction (with an encoding), the BerrySethi construction, and the McNaughton-Yamada-Glushkov construction produce isomorphic DFA's.
- The use of dotted regular expressions (also known as items, from LR parsing) is a useful, if obscure, encoding of the derivatives of a regular expression. We obtained the following results on the use of dotted regular expressions:
- Computing the set of all dotted regular expressions (from a given regular expression) can be defined very simply. The derivatives of dotted regular expressions, and the construction of a DFA can be defined simply. This construction does not appear in the literature.
- The straightforward definition of dotted regular expressions is unable to deal with intersection and complementation. This is for the same reason that marking constructions are unable to deal with intersection and complementation.
- DeRemer specified a DFA construction that appears to be very easy to implement. It is an optimization over the straightforward dotted regular expression construction, and the constructed DFA is always smaller.
- The original specification of item closure, due to DeRemer and Earley, is incomplete. They attempted to define closure and optimization as a single step. This can lead to non-termination, as we have demonstrated. The problem can be easily solved by defining closure and optimization steps separately.
- We show that additional optimizations, added to DeRemer's construction, can reduce the size of the produced $D F A$. This construction is not given in the literature. Furthermore, the optimizations are arguably easier to understand than those of DeRemer, and likely easier to implement.
- It is possible to show that this improved construction is related to the Aho-Sethi-Ullman $D F A$ construction.

A Some basic definitions

Convention A. 1 (Powerset): For any set A we use $\mathcal{P}(A)$ to denote the set of all subsets of A. $\mathcal{P}(A)$ is called the powerset of A; it is sometimes written 2^{A}.

Convention A. 2 (Sets of functions): For sets A and $B, A \longrightarrow B$ denotes the set of all total functions from A to B, while $A \nrightarrow B$ denotes the set of all partial functions from A to B.

Remark A.3: For sets A, B and relation $C \subseteq A \times B$ we can interpret C as a function $C \in A \longrightarrow$ $\mathcal{P}(B)$.

Convention A. 4 (Tuple projection): For an n-tuple $t=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ we use the notation $\pi_{i}(t)(1 \leq i \leq n)$ to denote tuple element x_{i}; we use the notation $\bar{\pi}_{i}(t)(1 \leq i \leq n)$ to denote the $(n-1)$-tuple $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{n}\right)$. Both π and $\bar{\pi}$ extend naturally to sets of tuples.

Convention A.5 (Tuple arguments to functions): For functions (or predicates) taking a single tuple as an argument, we usually drop one set of parentheses in a function application.

Convention A. 6 (Relation composition): Given sets A, B, C (not necessarily different) and two relations, $E \subseteq A \times B$ and $F \subseteq B \times C$, we define relation composition (infix operator o) as:

$$
E \circ F=\{(a, c):(\exists b: b \in B:(a, b) \in E \wedge(b, c) \in F)\}
$$

Convention A. 7 (Equivalence classes of an equivalence relation): For any equivalence relation E on set A we denote the set of equivalence classes of E by $[A]_{E}$; that is

$$
[A]_{E}=\left\{[a]_{E}: a \in A\right\}
$$

Set $[A]_{E}$ is also called the partition of A induced by E. \square
Definition A. 8 (Index of an equivalence class): For equivalence relation E on set A, define $\sharp E=\left|[A]_{E}\right| . \sharp E$ is called the index of E.

Definition A. 9 (Alphabet): An alphabet is a non-empty set of finite size.
Definition A. 10 (Refinement of an equivalence relation): For equivalence relations E and $E^{\prime}($ on set $A), E$ is a refinement of E^{\prime} if and only if $E \subseteq E^{\prime}$.

Definition A. 11 (Refinement (\subseteq) relation on partitions): For equivalence relations E and E^{\prime} (on set A), $[A]_{E}$ is said to be a refinement of $[A]_{E^{\prime}}$ (written $[A]_{E} \sqsubseteq[A]_{E^{\prime}}$) if and only if $E \subseteq E^{\prime}$. An equivalent statement is that $[A]_{E} \sqsubseteq[A]_{E^{\prime}}$ if and only if every equivalence class (of A) under E is entirely contained in some equivalence class (of A) under E^{\prime}.

Property A. 12 (Equivalence relations): Given two equivalence relations E, F, we have the following property:

$$
(E \subseteq F) \wedge(\sharp E=\sharp F) \Rightarrow(E=F)
$$

Definition A. 13 (Regular languages): $\mathcal{L}_{\text {reg } V}$ denotes the set of all regular languages over alphabet V. That is, $\mathcal{L}_{\text {reg } V} \subseteq \mathcal{P}\left(V^{*}\right)$ is the smallest set containing V that is closed under U (language union), (a dot, language concatenation), and $*$ (Kleene closure). The subscript V is dropped when no ambiguity arises.

Definition A. 14 (Operator ? on languages): We define? as a postfix (superscript) operator on languages as $L^{?}=L \cup\{\epsilon\}$.

Definition A. 15 (Left derivatives): Given language $A \subseteq V^{*}$ and $w \in V^{*}$ we define the left derivative of A with respect to w as:

$$
w^{-1} A=\left\{x \in V^{*}: w x \in A\right\}
$$

Sometimes derivatives are written as $D_{w} A$ or as $\frac{d A}{d w}$. Right derivatives are analogously defined. Derivatives can also be extended to $B^{-1} A$ where B is also a language.
Property A. 16 (Left derivatives): The following two properties follow from Definition A. 15 (assuming L is a language):

- $w \in L \equiv \epsilon \in w^{-1} L$, and
- $(w a)^{-1} L=a^{-1}\left(w^{-1} L\right)$.

Property A. 17 (Derivatives of regular languages): Assuming $a \in V$ and $L, L_{0}, L_{1} \in \mathcal{L}_{\text {reg }}$, derivatives have the following properties (given with respect to the structure of regular languages):

$$
\begin{aligned}
a^{-1} \emptyset & =\emptyset \\
a^{-1}\{\epsilon\} & =\emptyset \\
a^{-1}\{b\} & =\text { if }(a=b) \text { then }\{\epsilon\} \text { else } \emptyset \mathbf{f i} \\
a^{-1}\left(L_{0} L_{1}\right) & =\left(a^{-1} L_{0}\right) L_{1} \cup \text { if }\left(\epsilon \in L_{0}\right) \text { then } a^{-1} L_{1} \text { else } \emptyset \mathbf{f i} \\
a^{-1}\left(L_{0} \cup L_{1}\right) & =\left(a^{-1} L_{0}\right) \cup\left(a^{-1} L_{1}\right) \\
a^{-1}\left(L^{*}\right) & =\left(a^{-1} L\right) L^{*} \\
a^{-1}\left(L^{+}\right) & =\left(a^{-1} L\right) L^{*} \\
a^{-1}\left(L^{?}\right) & =a^{-1} L \\
a^{-1}\left(L_{0} \cap L_{1}\right) & =\left(a^{-1} L_{0}\right) \cap\left(a^{-1} L_{1}\right) \\
a^{-1}(\neg L) & =\neg\left(a^{-1} L\right)
\end{aligned}
$$

The definition related to Kleene closure is shown as follows:

$$
\begin{aligned}
& \begin{array}{l}
a^{-1}\left(L^{*}\right) \\
= \\
= \\
\\
= \\
a^{-1}\left((L \backslash\{\epsilon\}) L^{*} \cup\{\epsilon\}\right) \\
=
\end{array} \quad\{\text { Definition of } *\} \\
& a^{-1}\left((L \backslash\{\epsilon\}) L^{*}\right) \cup a^{-1}\{\epsilon\} \\
= & \{\text { Definition of derivative of concatenation and }\{\epsilon\}\} \\
= & \left\{a^{-1}(L \backslash\{\epsilon\})\right) L^{*} \\
& \left(a^{-1} L\right) L^{*}
\end{aligned}
$$

The definition related to complementation \neg is as follows:

$$
\begin{aligned}
& a^{-1}(\neg L) \\
= & \{\text { Definition of derivative }\} \\
= & \{x: a x \in \neg L\} \\
= & \{\text { Definition of } \neg \text { operator }\} \\
= & \neg x: a x \in L\} \\
& \neg\left(a^{-1} L\right)
\end{aligned}
$$

Definition A. 18 (Preserving a predicate): A (partial) function $f \in B^{n} \nrightarrow B$ (for fixed $n \geq 0$) is said to preserve predicate (or property) P (on B) if and only if

$$
\left(\forall B^{\prime}: B^{\prime} \in B^{n} \cap(\operatorname{domain}(f)) \wedge\left(\forall k: 1 \leq k \leq n: P\left(\pi_{k}\left(B^{\prime}\right)\right)\right): P\left(f\left(B^{\prime}\right)\right)\right)
$$

The set domain (f) refers to those elements of B^{n} on which f is defined.
Intuitively, a function f preserves a property P if, when every argument of f satisfies P, the result of f applied to the arguments also satisfies P.

Definition A. 19 (Reversal operator): A reversal operator R (usually written postfix and superscript) for a set A is a function $R \in A \longrightarrow A$ such that $R \circ R$ (equivalently R^{2}) is the identity function on A. We sometimes write the reversal operator as a standard (prefix notation) function.

Definition A. 20 (Tuple and relation reversal): For an n-tuple ($x_{1}, x_{2}, \ldots, x_{n}$) define reversal as (postfix and superscript) function R :

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{R}=\left(x_{n}, \ldots, x_{2}, x_{1}\right)
$$

Given a set A of tuples, we define $A^{R}=\left\{x^{R}: x \in A\right\}$.
Definition A. 21 (Dual of a function): We assume two sets A and B whose reversal operators are R and R^{\prime} respectively. Two functions, $f \in A \longrightarrow B$ and $f_{d} \in A \longrightarrow B$ are one another's dual if and only if

$$
f(a)=\left(f_{d}\left(a^{R}\right)\right)^{R^{\prime}}
$$

In some cases we relax the equality to isomorphism (when isomorphism is defined on B).
Definition A. 22 (Symmetrical function): A symmetrical function is one that is its own dual.

Proposition A. 23 (Symmetrical functions): The composition of two symmetrical functions is again symmetrical.

B Proofs of some Σ-algebra operators

In this section, we sketch proofs of the correctness of the operators of Thompson's Σ-algebra (Definition 4.1), the left-biased Σ-algebra operators (Definition 4.20), the Chang-Paige $R F A^{\prime}$ operators (Construction 4.77), and the RFA" operators (Construction 4.79).

Theorem B. 1 (Correctness of Thompson's Σ-algebra of FA's): Recall the operator definitions of Definition 4.1. We only present a correctness proof for the operator $C_{\cup, T h}$. In the following derivation we assume the context of the innermost let clause of the operator definition.

$$
\begin{aligned}
& \mathcal{L}_{F A}\left(C_{\cup, T h}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right)\right) \\
= & \quad\left\{\text { Definition of } \mathcal{L}_{F A}\right\} \\
= & \left(T_{0} \cup T_{1}\right)^{*}\left(q_{0}, q_{1}\right) \\
= & \left\{\text { Definition of } E^{\prime}\right\} \\
= & \left(\cup s, f: s \in S_{0} \wedge f \in F_{0}: T_{0}^{*}(s, f)\right) \cup\left(\cup s, f: s \in S_{1} \wedge f \in F_{1}: T_{1}^{*}(s, f)\right) \\
& \quad\left\{\text { Definitions of } \mathcal{L}_{F A}\left(\left[M_{0}\right]_{\cong}\right), \mathcal{L}_{F A}\left(\left[M_{1}\right]_{\cong}\right)\right\}
\end{aligned}
$$

Theorem B. 2 (Correctness of the LBFA operators): Recall the operator definitions of Definition 4.20. We present a correctness proof of the operator $C_{\cup, L B F A}$. In the following derivation we assume the context of the innermost let clause of the operator definition.

$$
\left.\begin{array}{rl}
& \mathcal{L}_{F A}\left(C_{\cup, L B F A}\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right]_{\cong}\right)\right) \\
= & \left\{\text { Definitions of } \mathcal{L}_{F A} \text { and } F^{\prime}\right\} \\
& \left(\cup f: f \in F_{0} \cap Q^{\prime}: T^{\prime *}\left(q_{0}, f\right)\right) \cup\left(\cup f: f \in F_{1} \cap Q^{\prime}: T^{\prime *}\left(q_{0}, f\right)\right) \\
= & \cup \text { if }(N) \text { then } T^{\prime *}\left(q_{0}, q_{0}\right) \text { else } \emptyset \mathrm{fi}
\end{array} \quad\left\{\text { Definitions of } \mathcal{L}_{F A}\left(\left[M_{0}\right] \cong\right), \mathcal{L}_{F A}\left(\left[M_{1}\right]_{\cong}\right), N, T^{\prime}\right\}\right) .
$$

Theorem B. 3 (Correctness of the Chang-Paige RFA' operators): Recall Definition 4.76 and Construction 4.77. We only present the derivation of the eighth component (usually called W) for operators $C_{., R F A^{\prime}}$ and $C_{U, R F A^{\prime}}$ (the others are easy to prove). We assume the context of the innermost let clause for both operators.
$C_{\cdot, \text { RFA' }}: \quad$ last $^{\prime} \times$ first $^{\prime} \backslash\left(\right.$ follow $_{0} \uplus$ follow $_{1} \uplus$ last $_{0} \times$ first $\left._{1}\right)$
$=\quad\left\{\right.$ Definitions of first ${ }^{\prime}$ and last $\left.^{\prime}\right\}$
$\left(\right.$ last $_{1} \uplus$ if $\left(n u l l_{1}\right)$ then last ${ }_{0}$ else $\left.\emptyset \mathbf{f i}\right) \times\left(\right.$ first $_{0} \uplus$ if $\left(\right.$ null $\left._{0}\right)$ then first t_{1} else \emptyset fi)
$\backslash\left(\right.$ follow $_{0} \uplus$ follow $_{1} \uplus$ last $_{0} \times$ first $\left._{1}\right)$
$=\{$ Rewriting $\}$
(last $_{1} \times$ first $_{0} \uplus$ if $\left(\right.$ null $\left._{0}\right)$ then last ${ }_{1} \times$ first 1 else \emptyset fi
\uplus if $\left(n u l_{1}\right)$ then last $_{0} \times$ first $_{0}$ else $\emptyset \mathrm{fi}$
\uplus if $\left(\right.$ null $_{0} \wedge$ null $\left._{1}\right)$ then last $_{0} \times$ first $_{1}$ else $\emptyset \mathbf{f i}$
$\backslash\left(\right.$ follow $_{0} \uplus$ follow $_{1} \uplus$ last $_{0} \times$ first $\left._{1}\right)$
$=\quad\left\{\right.$ Assumption that $\left.Q_{0} \cap Q_{1}=\emptyset\right\}$
last $_{1} \times$ first $_{0} \uplus$ if $\left(\right.$ null $\left._{0}\right)$ then last $1_{1} \times$ first $_{1} \backslash$ follow $_{1}$ else $\emptyset \mathbf{f i}$

```
        |f(nul\mp@subsup{l}{1}{})\mathrm{ then last }\mp@subsup{|}{0}{}\times\mp@subsup{\mathrm{ first }}{0}{}\\mp@subsup{\mathrm{ follow }}{0}{}\mathrm{ else }\emptyset\textrm{fi}
    = {Definitions of Wo and W}\mp@subsup{W}{1}{}
    last }\times\mathrm{ first }\mp@subsup{0}{0}{}\uplus\mathrm{ if (null lo) then }\mp@subsup{W}{1}{}\mathrm{ else }\emptyset\mathrm{ fi }\uplus\mathrm{ if (null ) then }\mp@subsup{W}{0}{}\mathrm{ else }\emptyset\mathrm{ fi
    = {Definitions of W' and W''}
    last}\mp@subsup{t}{1}{}\times\mathrm{ firsto }\uplus\mp@subsup{W}{0}{\prime}\uplus\mp@subsup{W}{}{\prime}\uplus\mp@subsup{W}{}{\prime\prime
C \RFA':
    = {Rewriting }
```



```
    = {Assumption that Q0\capQQ =\emptyset}
    (last
    = {Definitions of W0 and W}\mp@subsup{W}{1}{}
```


Theorem B. 4 (Correctness of the RFA" operators): Recall Definition 4.78 and Construction 4.79. We only present the derivation of the eighth component (usually called W) for operators $C_{\cdot, R F A^{\prime \prime}}$ and $C_{U, R F A^{\prime \prime}}$ (the others are easy to prove). We assume the context of the innermost let clause for both operators.

```
C., RFA \(^{\prime \prime}: \quad\left(\right.\) follow \(_{0} \uplus\) follow \(_{1} \uplus\left(\right.\) last \(_{0} \times\) first \(\left.\left._{1}\right)\right) \backslash\left(\right.\) last \(^{\prime} \times\) first \(\left.^{\prime}\right)\)
    \(=\left\{\right.\) Definitions of first \({ }^{\prime}\) and last \(\left.{ }^{\prime}\right\}\)
        \(\left(\right.\) follow \(_{0} \uplus\) follow \(_{1} \uplus\left(\right.\) last \(_{0} \times\) first \(\left.\left._{1}\right)\right) \backslash\left(\left(\right.\right.\) last \(_{1} \uplus\) if \(\left(\right.\) null \(\left._{1}\right)\) then last \({ }_{0}\) else \(\emptyset\) fi)
        \(\times\left(\right.\) frst \(_{0} \uplus\) if \(\left(\right.\) null \(\left._{0}\right)\) then first \(_{1}\) else \(\emptyset\) fi) \()\)
    \(=\{\) Rewriting \(\}\)
        \(\left(\right.\) follow \(_{0} \uplus\) follow \(_{1} \uplus\left(\right.\) last \(_{0} \times\) first \(\left.\left._{1}\right)\right) \backslash\left(\right.\) last \(_{1} \times\) first \(_{0}\)
        \(\uplus\) if ( \(n\) ull \(l_{0}\) ) then last \(_{1} \times\) first \(_{1}\) else \(\emptyset\) fi
        \(\uplus\) if \(\left(n u l_{1}\right)\) then last \(_{0} \times\) irst \(_{0}\) else \(\emptyset\) fi
        \(\uplus\) if \(\left(\right.\) null \(_{0} \wedge\) null \(\left._{1}\right)\) then last \({ }_{0} \times\) firs \(_{1}\) else \(\emptyset\) fi)
    \(=\quad\left\{\right.\) Assumption that \(\left.Q_{0} \cap Q_{1}=\emptyset\right\}\)
        if ( null \(_{0}\) ) then follow \(_{1} \backslash\) last \(_{1} \times\) first \(_{1}\) else follow \({ }_{1}\) fi
            \(\uplus\) if \(\left(\right.\) null \(\left._{1}\right)\) then follow \(_{0} \backslash\) last \(_{0} \times\) first \(_{0}\) else follow \(w_{0}\) fi
            \(\uplus\) if \(\left(\right.\) null \(_{0} \wedge\) null \(\left._{1}\right)\) then last \(_{0} \times\) first \(_{1} \backslash\) last \(_{0} \times\) first \(_{1}\) else last \({ }_{0} \times\) first \(_{1}\) fi
    \(=\quad\left\{\right.\) Definitions of \(W_{0}\) and \(W_{1} ;\) rewriting \(\}\)
        if ( null \(_{0}\) ) then \(W_{1}\) else follow \({ }_{1} \mathbf{f} \uplus\) if \(\left(\right.\) null \(\left._{1}\right)\) then \(W_{0}\) else follow \(w_{0}\) fi
            \(\uplus\) if \(\left(\right.\) null \(_{0} \wedge\) null \(\left._{1}\right)\) then \(\emptyset\) else last \({ }_{0} \times\) frrst \(_{1} \mathrm{fi}\)
        \(=\left\{\right.\) Definitions of \(W^{\prime}, W^{\prime \prime}\), and \(\left.W^{\prime \prime \prime}\right\}\)
        \(W^{\prime} \uplus W^{\prime \prime} \uplus W^{\prime \prime \prime}\)
\(C_{\cup, R F A^{\prime \prime}}: \quad\left(\right.\) follow \(_{0} \uplus\) follow \(\left._{1}\right) \backslash\left(\left(\right.\right.\) last \(_{0} \uplus\) last \(\left._{1}\right) \times\left(\right.\) first \(_{0} \uplus\) first \(\left.\left._{1}\right)\right)\)
        \(=\{\) Rewriting \(\}\)
        \(\left(\right.\) follow \(_{0} \uplus\) follow \(\left._{1}\right) \backslash\left(\right.\) last \(_{0} \times\) first \(_{0} \uplus\) last \(_{0} \times\) first \(_{1} \uplus\) last \(_{1} \times\) first \(_{0} \uplus\) last \(_{1} \times\) first \(\left._{1}\right)\)
    \(=\left\{\right.\) Assumption that \(\left.Q_{0} \cap Q_{1}=\emptyset\right\}\)
    follow \(_{0} \backslash\left(\right.\) last \(_{0} \times\) first \(\left._{0}\right) \uplus\) follow \(_{1} \backslash\left(\right.\) last \(_{1} \times\) first \(\left._{1}\right)\)
    \(=\quad\left\{\right.\) Definitions of \(W_{0}\) and \(\left.W_{1}\right\}\)
    \(W_{0} \uplus W_{1}\)
```


References

[ASU86] Aho, A.V., R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools, Addison-Wesley Publishing Co., Reading, M.A., 1988.
[AU92] Aho, A.V. and J.D. Ullman. Foundations of Computer Science, Computer Science Press, New York, N.Y. 1992.
[BL77] Backhouse, R.C. and R.K. Lutz. "Factor graphs, failure functions and bi-trees," in Fourth Colloquium on Automata, Languages and Programming, (G. Goos and J. Hartmanis, eds.), pp. 61-75, Lecture Notes in Computer Science 52, Springer-Verlag, Berlin, 1977.
[BS86] Berry, G. AND R. Sethi. "From regular expressions to deterministic automata," Theoretical Computer Science, 48: 117-126, 1986.
[B-K93a] BRÜGgEmann-Klein, A. "Regular expressions into finite automata," to appear in Theoretical Computer Science.
[B-K93b] BrÜggemann-Klein, A. Private communication, July 1993.
[Brzo64] Brzozowski, J.A. "Derivatives of regular expressions," J. ACM 11(4): 481-494, 1964.
[Cham93] Champarnaud, J.M. "From a regular expression to an automaton," Technical report, IBP, LITP, Université Paris 7, Paris, France, Working document 23 September 1993.
[Chan92] Chang, C.-H. "From regular expressions to DFAs using compressed NFAs," PhD thesis, Computer Science Department, Courant Institute of Mathematical Sciences, New York University, N.Y., Oct. 1992.
[CP92] Chang, C.-H. and R. Paige. "From regular expressions to DFAs using compressed NFAs," Computer Science Department, Courant Institute of Mathematical Sciences, New York University, N.Y., 1992.
[DeRe74] Deremer, F.L. "Lexical analysis," in Compiler Construction: an Advanced Course, (F.L. Bauer and J. Eickel, eds.), pp. 109-120, Lecture Notes in Computer Science 21, Springer-Verlag, Berlin, 1974.
[Dijk76] DiJkstra, E.W. A discipline of programming, Prentice-Hall Inc., N.J., 1976.
[Earl70] Earley, J. "An efficient context-free parsing algorithm," C. ACM 13(2): 94-102, Feb. 1970.
[EM85] Ehrig, E. and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial Semantics, Springer, Berlin, 1985.
[tEvG93] TEn Eikelder, H.M.M. and H.P.J. van Geldrop. "On the correctness of some algorithms to generate finite automata for regular expressions," Computing Science Note 93/32, Eindhoven University of Technology, The Netherlands, 1993.
[Glus61] Glushkov, V.M. "The abstract theory of automata," Russian Mathematical Surveys 16: 1-53, 1961.
[GJ90] Grune, D. and C.J.H. Jacobs. Parsing Techniques: A Practical Guide, Ellis Horwood Ltd., West Sussex, England, 1990.
[HU79] Hopcroft, J.E. and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation, Addison-Wesley Publishing Co., Reading, M.A., 1979.
[Knut65] Knuth, D.E. "On the translation of languages from left to right," Inform. Control 8: 607-639, 1965.
[MY60] McNaughton, R. and H. Yamada. "Regular expressions and state graphs for automata," IEEE Trans. on Electronic Computers 9(1): 39-47, 1960.
[Myhi57] MyHill, J. "Finite automata and the representation of events," WADD TR-57-624, pp. 112-137, Wright Patterson AFB, Ohio, 1957.
[Nero58] Nerode, A. "Linear automaton transformations," Proc. AMS 9: 541-544, 1958.
[RS59] Rabin, M.O and D. Scott. "Finite automata and their decision problems," IBM J. Res. 3(2): 115-125, 1959.
[SS-S88] Sippu, S. and E. Soisalon-Soininen. Parsing Theory: Languages and Parsing, Vol. 1, Springer-Verlag, Berlin, 1988.
[Thom68] Thompson, K. "Regular expression search algorithms," C. ACM 11(6): 419-422, 1968.
[Wats93] Watson, B.W. "A taxonomy of finite automata minimization algorithms," Computing Science Note 93/44, Eindhoven University of Technology, The Netherlands, 1993.
[Wood87] Wood, D. Theory of Computation, Harper \& Row, Publishers, New York, N.Y., 1987.

Index

- see composition
\doteq, see regular expressions, equivalence of
\longrightarrow, see function, total
\nrightarrow, see function, partial
\cong, see isomorphism
π, see tuple, projection
$\bar{\pi}$, see tuple, projection
\sim, see regular expressions, similarity of
Aho, Sethi, and Ullman's construction, see finite automata, construction, Aho, Sethi, and Ullman's
algebras, see Σ-algebras
algorithms
subset construction, 12
alphabet, $6,15,16$
$A S U$, see finite automata, construction, Aho, Sethi, and Ullman's
automata, see finite automata
Berry and Sethi's construction, see finite automata, construction, Berry and Sethi's
bias
left-to-right, 6
Brüggemann-Klein's construction, see finite automata, construction, BrüggemannKlein
Br , see finite automata, construction, Brzozowski
Brzenc, see finite automata, construction, $\mathrm{Br}-$ zozowski (encoded)
Brzozowski's construction, see finite automata, construction, Brzozowski
$B S$, see finite automata, construction, Berry and Sethi's
BSenc, see finite automata, construction, Berry and Sethi's (encoded)
\mathcal{C}, see item set, closure of
carrier set, 14, 16
Chang and Paige's construction, see finite automata, construction, Chang-Paige
closure
Kleene, 16
of an item set, 67-72
Complete, see finite automata, complete
complete, see finite automata, transformations on, complete
composition, $7,11-13,27,33,35-45,48,67$, 69-72, 76, 78
constants, 14,17
construction, see finite automata, construction
Aho-Sethi-Ullman, 13
powerset, see finite automata, subset construction
subset, see finite automata, subset construction
convert, 36, 37, 41-44
\mathcal{D}, see item set, relation on
decode, 33, 35-41, 45, 48
DeRemer, see finite automata, construction, DeRemer
DeRemer's construction, see finite automata, construction, DeRemer
deriv, 56, 57
derivative
left, $36,56-65,67,68,72,77$
derivative item set, 68,72
$\operatorname{deriv}_{E R E}, 59-61$
Det, see finite automata, deterministic
deterministic finite automata, see finite automata, deterministic
Det', see finite automata, deterministic, weak $D F A$, see finite automata, deterministic
Dijkstra, E.W., 12
DIS, see derivative item set
dots, 66-68
dotted regular expressions, 66,67
$D R E$, see dotted regular expressions
dual, 11
\mathcal{E}, see item set, closure of edge
labeled directed, 6
Ehrig, E., 14
encderiv, 56,57
ence, 65
encode, 33, 45
ϵ-free, see finite automata, ϵ-free
ϵ-lookahead finite automata, 23-27
ϵ-transition
relation, 6
removal of, see finite automata (transf. on), ϵ removal
equivalence
of regular expressions, see regular expressions, equivalence of equivalence relation, see relation, equivalence $E R E$, see regular expressions, extended expression tree height, 15
extended regular expressions, see regular expressions, extended
language of, 44,58-61,64

FA, see finite automata
false, 16, 17, 32, 34, 50, 51
final states, see states, final
final-reachable states, see states, final-reachable
finite automata, $6-14,16,18,21-23,25,27$, $28,31,32,35-37,39-44,48,49,55$, 57, 74, 79
complete, 8-13, 37-39, 43, 53-57, 61, 68, 70, 71
construction
Aho, Sethi, and Ullman's, 43
Berry and Sethi's, 35, 37, 48
Berry and Sethi's (encoded), 48, 65
Brüggemann-Klein, 52
Brzozowski, 61, 62, 65, 71
Brzozowski (encoded), 65
Chang-Paige, 50
DeRemer, 70
guarded commands, 26,27
item set, 68-70
lookahead automata, 24-26
McNaughton, Yamada, and Glushkov's, 37, 38, 48, 65
Myhill and Nerode's, 55-57, 65, 66
Myhill and Nerode's minimal, 57, 58, 61, 65
optimized item set, 70-72
Thompson, 18, 21-23
Thompson top-down, 22, 23
definition of, 6
deterministic, $9-13,25,35,37,38,43$, $48,53-58,60-63,65,66,68-75$
definition of, 9
minimality of, 10-12,56
weak, 9,55
ϵ-free, 3, 8-12, 27, 28, 31, 32, 35, 37, 40
isomorphism of, $7,8,11$
language of, $7,8,10-12,18,23,29-31$, $36,40-42,45,49,53,55-57,61,68$, 79
extension, 8
property of, 8
left-biased, 28-33, 35, 37, 44-46, 79
powerset construction, see finite automata, subset construction
properties of, 7-10
reduced, see reduced finite automata
reverse of, 9,10
extension of, 11
size of, 7
subset construction, 12, 13, 37-39
implementation of, 12
optimized, $12,13,43,44$
transformations on, 10-13
complete, 11, 48
ϵ-transition removal, 11,27
final-unreach. removal, 11-13, 37-39, 43, 44
start-unreach. removal, 11
useless state removal, 11
useful, 9-11
final, 9
start, 9-11
First, 24-26, 47-49, 65
first, 32-34, 36, 38, 39, 41, 42, 44, 45, 47, 49-52, 79, 80
Follow, 47-49, 65
follow, 32-34, 36, 38, 39, 41, 42, 44, 45, 47, 49-52, 79, 80
FReachable, see states, final-reachable
function
partial, $9,32,46,68,76,78$
total, 6, 7, 9-12, 14-17, 22, 24, 26, 27, $31-33,35-37,42-44,46-48,53,56$, $57,59,61,63-68,76,78$
$G C L$, see guarded command language
guarded command language, 12, 26
Iconstr, see finite automata, construction, item set
identity relation, see relation, identity
initial Σ-algebra, see Sigma-algebra, initial $I S$, see item sets
isomorphism, $7,8,10,11,17-21,23,27-45$, $48,50-52,56,65,79$
classes, $8,11,18-21,23,27-45,48,50-$ $52,65,79$
of finite automata, see finite automata, isomorphism of
item, see dotted regular expression
language of, 66, 70
item set
closure of, 67-72
optimization of, 4, 69-72
construction, see finite automata, construction, item set
DeRemer's, see finite automata, construction, DeRemer's
improved, see finite automata, construction, item set (high quality)
derivative, see derivative item set
language of, 66-70
relation on, 67,68
item sets, 66-71
K, see finite automata, construction, lookahead automata
$L A F A$, see ϵ-lookahead finite automata
language
of an item, 66, 70
of extended regular expressions, 44, 5861, 64
of finite automata, $7,8,10-12,18,23$, 29-31, 36, 40-42, 45, 49, 53, 55-57, $61,68,79$
extension of, 8
of item sets, 66-70
of regular expressions, $16-18,22,24,25$, $27,36,39,44,47,49,63-66,68,70$
regular, 18, 39-42, 44,55-57, 63, 76, 77
Σ-algebra of, 16
Last, 47, 48, 65
last, 32-34, 36, 38, 39, 41, 42, 44, 45, 49-52, 79, 80
$L B F A$, see finite automata, left-biased
lbfa, 31-33, 35-37, 39, 40
left derivative, $36,56-65,67,68,72,77$
left-biased finite automata, see finite automata, left-biased
$\mathcal{L}_{E R E}$, see extended regular expressions, language denoted by
$\mathcal{L}_{\text {FA }}$, see finite automata, language of
$\mathcal{L}_{\text {IS }}$, see item set, language of
look, 24-26
lookahead finite automata, see ϵ-lookahead finite automata
$\mathcal{L}_{R E}$, see regular expressions, language denoted by
$\mathcal{L}_{\text {reg }}$, see language, regular
$\mathcal{L}_{\text {RFA }}$, see reduced finite automata, language of

Mahr, B., 14
convert $, 36,37,41,42$
convert $_{e}, 42,43,49,71$
$\max , 15$
McNaughton, Yamada and Glushkov's construction, see finite automata, construction, McNaughton, Yamada and Glushkov's
merge, see finite automata, transformations on, merge
Min, see finite automata, deterministic, minimality of
$M i n_{C}$, see finite automata, deterministic, minimality of

Minimal, see finite automata, deterministic, minimality of
Minimal $_{C}$, see finite automata, deterministic, minimality of
$M N, 55$
$M N c o n s t r$, see finite automata, construction, Myhill and Nerode's
MNmin, see finite automata, construction, Myhill and Nerode's minimal
$M Y G$, see finite automata, construction, McNaughton, Yamada, and Glushkov's
Myhill and Nerode's construction, see finite automata, construction, Myhill and Nerode's
minimal, see finite automata, construction, Myhill and Nerode's minimal
Myhill-Nerode theorem, 10
N, see finite automata, construction, guarded commands
nondeterministic finite automata, see finite automata, nondeterministic
Null, 17, 24, 47, 48, 63-65
null, 32-34, 36, 38, 39, 41, 42, 44, 45, 50-52, 79, 80

Occ, 46, 48, 64, 65
Oconstr, see finite automata, construction, optimized item set
operator set, 14
operators, 14,15
arity of, 14
constant, see constants
optimization
of closure of an item set, 4, 69-72
\mathcal{P}, see powerset
powerset, $6,7,9,12,16,23,24,26,32,46$, $47,59,64,66,68,76$
powerset construction, see finite automata, subset construction
preservation, 10
projection, $8,33,45,52,76,78$
properties
of finite automata, $7-10$
Qmap, 32-34, 36, 38, 39, 41, 42, 44-46, 50-52
\mathcal{R}, see item, language of
RBFA, see finite automata, right-biased
$R E$, see regular expressions
Reach, see states, reachability relation on
reachability relation
on states, see states, reachability relation on

Reachable, see states, reachable
reachable states, see state, reachability relation on
reduced finite automata, 4, 32-42, 44-52, 72, $73,79,80$
Reg, 15
regular expressions, 15-18, 21-26, 28, 31, 33-$37,39-44,46,47,49,58,63-71$
constants, 15
definition of, 15
dotted, see dotted regular expressions
equivalence of, 16, 59-63
extended, 44, 58-63, 65, 71
language denoted by, 44, 58-61, 64
language denoted by, $16-18,22,24,25$, $27,36,39,44,47,49,63-66,68,70$
operators, 15
abbreviations, 16
restricted, 46-49, 63-65
reverse of, 17
similarity, 59-61, 63, 64
similarity of, 59-64, 71
regular languages, see language, regular
relation
ϵ-transition, see ϵ-transition relation
equivalence, 7
identity, 7
reachability, of states, see states, reachability relation on
transition, see transition, relation
remove $_{\epsilon}$, see finite automata (transf. on), ϵ removal
remove $e_{\epsilon, s y m}$, see finite automata (transf. on), ϵ removal
restricted regular expressions, see regular expressions, restricted
reversal
of finite automata, see finite automata, reverse of
of regular expressions, see regular expressions, reverse of
RFA, see reduced finite automata
rfa, 33, 35-37, 40-43, 46-48
right-biased finite automata, see finite automata, right-biased
$R R E$, see regular expressions, restricted
Σ-algebras, 14
basic definitions, 14-15
definition of, 14
example of, 15
initial, 15
Σ-homomorphism, 15, 16
example of, 15

Null, 17
Σ-term algebra, 15
signature, 14,15
sink state, see states, sink
size of finite automata, see finite automata, size of
sort, 14
SReachable, see states, start-reachable
start states, see states, start
start-reachable states, see states, start-reachable
state graphs, 6
states, 6
final, 6
final-reachable, 8,9
final-unreachable, removal, see finite automata (transf. on), final-unreach. removal
language between, 7
left language of, 7, 8
right language of, 7,8
sink, 11-13
start, 6, 9
start-reachable, 8, 9, 11
start-unreachable, removal, see finite automata (transf. on), start-unreach. removal
useless, removal, see finite automata, transformations on, useless state removal
subset, see finite automata, subset construction
subset construction, see finite automata, subset construction
implementation of, 12
subsetopt, see finite automata, subset construction, optimized
symmetrical, see dual
function, 11,17
transformation, 11
$t d$, see finite automata, construction, Thompson top-down
Term $_{\Sigma}, 14$
Th, see finite automata, construction, Thompson
Thompson's construction, see finite automata, construction, Thompson top-down
top-down, see finite automata, construction, Thompson
transformations
on finite automata, 10-13
transition
function, 9
relation, 6 extension of, 7
true, 16, 17, 32, 34, 47, 48, 50-52
tuple, 6 projection, $8,33,45,52,76,78$
undot, 66, 68
Useful, see finite automata, useful
useful, see finite automata, transformations on, useless state removal
useful states, see states, useful
Useful $_{f}$, see finite automata, useful, final
${u s e f u l_{f}}$, see finite automata (transf. on), finalunreach. removal
Useful $_{s}$, see finite automata, useful, start
useful $_{s}$, see finite automata (transf. on), startunreach. removal
vertices, 6
\mathcal{X}, see item set, optimization of closure of
\mathcal{Y}, see item set, optimization of closure of

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus
91/06 K.M. van Hee
91/07 E.Poll

91/08 H. Schepers
91/09 W.M.P.v.d.Aalst
91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman
91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

Dynamic Reconfiguration in Distributed Hard Real-Time Systems, p. 14.

Implication. A survey of the different logical analyses "if...,then...", p. 26.

Parallel Programs for the Recognition of P-invariant Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.
SPECIFICATIEMETHODEN, een overzicht, p. 20.
CPO-models for second order lambda calculus with recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.
Interval Timed Petri Nets and their analysis, p. 53.
POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling salesman problem, p. 12.

A note on Extensionality, p. 21.
The PDB Hypermedia Package. Why and how it was built, p. 63.

Eldorado: Architecture of a Functional Database Management System, p. 19.

An example of proving attribute grammars correct: the representation of arithmetical expressions by DAGs, p. 25.

91/17	A.T.M. Aerts P.M.E. de Bra K.M. van Hee	Transforming Functional Database Schemes to Relational Representations, p. 21.		
$91 / 18$	Rik van Geldrop		\quad	Transformational Query Solving, p. 35.
:---				

91/35	F.S. de Boer J.W. Klop C. Palamidessi	Asynchronous communication in process algebra, p. 20.
92/01	J. Coenen J. Zwiers W.-P. de Roever	A note on compositional refinement, p. 27.
92/02	J. Coenen J. Hooman	A compositional semantics for fault tolerant real-time systems, p. 18.
92/03	J.C.M. Baeten J.A. Bergstra	Real space process algebra, p. 42.
92/04	J.P.H.W.v.d.Eijnde	Program derivation in acyclic graphs and related problems, p. 90.
92/05	J.P.H.W.v.d.Eijnde	Conservative fixpoint functions on a graph, p. 25.
92/06	J.C.M. Baeten J.A. Bergstra	Discrete time process algebra, p. 45 .
92/07	R.P. Nederpelt	The fine-structure of lambda calculus, p. 110.
92/08	R.P. Nederpelt F. Kamareddine	On stepwise explicit substitution, p. 30.
92/09	R.C. Backhouse	Calculating the Warshall/Floyd path algorithm, p. 14.
92/10	P.M.P. Rambags	Composition and decomposition in a CPN model, p. 55.
92/11	R.C. Backhouse J.S.C.P.v.d.Woude	Demonic operators and monotype factors, p. 29.
92/12	F. Kamareddine	Set theory and nominalisation, Part I, p. 26.
92/13	F. Kamareddine	Set theory and nominalisation, Part II, p. 22.
92/14	J.C.M. Baeten	The total order assumption, p. 10.
92/15	F. Kamareddine	A system at the cross-roads of functional and logic programming, p. 36 .
92/16	R.R. Seljée	Integrity checking in deductive databases; an exposition, p. 32 .
92/17	W.M.P. van der Aalst	Interval timed coloured Petri nets and their analysis, \mathbf{p}. 20.
92/18	R.Nederpelt F. Kamareddine	A unified approach to Type Theory through a refined lambda-calculus, p. 30.
92/19	J.C.M.Baeten J.A.Bergstra S.A.Smolka	Axiomatizing Probabilistic Processes: ACP with Generative Probabilities, p. 36.
92/20	F.Kamareddine	Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs, p. 33.

A Programming Logic for $\mathrm{F} \omega$, p. 15.
A modelling method using MOVIE and SimCon/ExSpect, p. 15.

A taxonomy of keyword pattern matching algorithms, p. 50.

Deriving the Aho-Corasick algorithms: a case study into the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17
Quicksort for linked lists, p. 8.
Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29
Exercises in Multiprogramming, p. 97
A Formal Deterministic Scheduling Model for Hard RealTime Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach Part V: Specification Language, p. 89.

$93 / 14$	J.C.M. Baeten J.A. Bergstra	On Sequential Composition, Action Prefixes and Process Prefix, p. 21.
$93 / 15$	J.C.M. Baeten J.A. Bergstra	A Real-Time Process Logic, p. 31.

$93 / 34$	J.C.M. Baeten and J.A. Bergstra	Real Time Process Algebra with Infinitesimals, p.39.
$93 / 35$	W. Ferrer and P. Severi	Abstract Reduction and Topology, p. 28.

[^0]: *Third printing.

[^1]: ${ }^{1}$ An extended regular expression is one that includes either the intersection or complementation operator.

[^2]: ${ }^{2}$ Square brackets ([and]) are used syntactically here.

[^3]: ${ }^{3} \Sigma$-algebras presented in this section may have a list of items such as this, stating the requirements on the arguments for the correctness of the operators.
 ${ }^{4}$ For example, the concatenation operator is correct when (for all M_{0}, M_{1} in Thompson's Σ-algebra) $\mathcal{L}_{F A}\left(C \cdot, T h\left(\left[M_{0}\right]_{\cong},\left[M_{1}\right] \cong\right)\right)=\mathcal{L}_{F A}\left(\left[M_{0}\right] \cong\right) \mathcal{L}_{F A}\left(\left[M_{1}\right]_{\cong}\right)$.

[^4]: ${ }^{5}$ Obviously, constructing the entire equivalence class of isomorphic $F A$'s is not possible

[^5]: ${ }^{6}$ The graphic representations of the operators depict only the simplest cases of each operator. Thick arrowed lines are intended to depict multiple transitions, while dotted arrowed lines are transitions that are removed from the constructed FA. In the case of the non-constant operators, the start states (of the arguments) is struck out indicating that it is removed.

[^6]: ${ }^{7}$ The images are really elements of $[L B F A] \cong$. We consider a particular representative of the image.

[^7]: ${ }^{8}$ The underlying construction may actually produce a nondeterministic finite automata.

[^8]: ${ }^{9}$ The only difference is that the unrolled first iteration step is not presented explicitly in McNaughton and Yamada's paragraph describing their algorithm.

[^9]: ${ }^{10}$ The definition presented here is intentionally clumsy, making it easier to present intersection of RFA's

[^10]: ${ }^{11}$ Here we assume, for the moment, that $\mathcal{L}_{R E}$ can deal with the intersection operator.

[^11]: ${ }^{12}$ Here we assume that the sink state (if it exists) is removed from a $D F A$ produced by the McNaughton-YamadaGlushkov construction.
 ${ }^{13}$ Actually, McNaughton and Yamada [MY60] attempted to define intersection and complementation. Their informal descriptions are difficult to understand, and more recent papers use marking and have abandoned trying to define intersection or complementation. See Section 4.4.
 ${ }^{14}$ This is the interpretation taken by Glushkov, McNaughton and Yamada, and Berry and Sethi [Glus61, MY60, BS86].

[^12]: ${ }^{15}$ This is the interpretation taken by Aho, Sethi, and Ullman [ASU86].
 ${ }^{16}$ Which is therefore an improvement to the McNaughton-Yamada-Glushkov and the Aho-Sethi-Ullman nondeterministic finite automaton constructions.

