

A taxonomy of finite automata construction algorithms

Citation for published version (APA):
Watson, B. W. (1993). A taxonomy of finite automata construction algorithms. (Computing science notes; Vol.
9343). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/5a2d0582-867a-4bb1-a933-84ed56f49cfb

••

Eindhoven University of Technology

Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. M. Rem

A taxonomy of finite automata
construction algorithms

by

Bruce W. Watson
93/43

Computing Science Report 93/43
Eindhoven, January 1995

A taxonomy of finite automata

construction algorithms*

Bruce W. Watson

Faculty of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven

The Netherlands
e-mail: watson@win.tue.nl

Tel: +31 40474319

January 24, 1995

Abstract

This paper presents a taxonomy of finite automata construction algorithms. Each algorithm

is classified into ODe of two families: those based upon the structure of regular expressions,

and those based upon the automata-theoretic work of Myhill and Nerode.

Many of the algorithms appearing in the literature are based upon the structure of regular

expressions. In this paper, we make this term precise by defining regular expressions as

a ~>term algebra, and automata constructions as various E-algebras of automata. Each

construction algorithm is then presented as the unique natural homomorphism from the E

term algebra of regular expressions to the appropriate E-algebra of automata. The concept

of duality is introduced and used to derive more practical construction algorithms. In this

way, we successfully present (and relate) algorithms given by Thompson, Berry and Sethi,

McNaughton and Yamada, Glushkov, and Aho, Sethi, and Ullman. Efficient implementations

(including those due to Chang and Paige, and Briiggemann-Klein) are also treated. As a

side-effect we derive several new algorithms.

A pair of impractical, but theoretically interesting, construction algorithms were presented

by Myhill and Nerode. Some encoding techniques are used to make the algorithms practical

- giving Brzozowski's algorithm based upon derivatives. DeRemer's algorithm is derived

as an encoding of Brzozowski's algorithm. Two new algorithms, related to DeRemer's, are

derived. Lastly, this family of algorithms is related to the first family.

In addition to classifying the algorithms, we identify (and abstract from) the coding tricks

and implementation details present in many of the published algorithms. This paper also

presents an introduction to finite automata, E-algebras, and their properties.

"Third printing.

CONTENTS

Contents

1 Introduction

2 Finite automata

2.1 Properties of finite automata

2.2 Transformations on finite automata

2.2.1 Algorithms implementing the subset construction.

3 E-algebras and regular expressions

3.1 Some basic definitions

3.2 Regular expressions as a E-term algebra

4 Constructions based on regular expression structure

4.1 Thompson's construction

4.1.1 A top-down version of Thompson's construction

4.1.2 Constructing €-lookahead automata

4.2 Towards the Berry-Sethi construction

4.2.1 Reduced FA's

4.2.2 The Berry-Sethi construction .

4.2.3 The McNaughton-Yamada-Glushkov construction.

4.3 The dual of the Berry-Sethi construction

4.3.1 The Aho-Sethi-Ullman DFA construction

4.4 Extending regular expressions

4.5 Efficiently computing with RFA's
4.5.1 A practical implementation of the RFA operators.

4.5.2 More efficient RFA operators.

5 The Myhill-Nerode, Brzozowski and DeRemer constructions

5.1 The Myhill-Nerode construction ...

5.2 The minimal equivalence relation RL

5.2.1 Encoding RL
5.3 The Brzozowski construction

5.3.1 Computing derivatives of an ERE
5.3.2 Extending derivatives

5.4 Relating the Brzozowski and Berry-Sethi constructions.

5.5 Towards DeRemer's construction

5.5.1 Making the construction more efficient

6 Conclusions

A Some basic definitions

B Proofs of some E-algebra operators

References

3

6

7

10

12

14

14

15

18

18

22

23

27

32

35

37

39
43

44

46
46
49

53

54

56

56

58

62

63
63
65

69

73

76

79

81

2 LIST OF FIGURES

List of Figures

1 The family tree of finite automata constructions

2 A representative FA of the isomorphism class Th((a U f)b').

3 The LAFA K((a U f)b')

4 A representative LBFA of the isomorphism class lbfa((a U f)b').

5 A representative DFA of the isomorphism class MYG((a U f)b').

6 A representative FA of the isomorphism class R 0 lbfa 0 R((a U f)b').

4

22
26

32
38
40

43

58
62
69
69
70
71
71

7 A representative DFA of the isomorphism class ASU((a U f)b') ..

8 The DFA MNmin({f,a}{b}') ..

9 The DFA Brz((a U f)b') . ..

10 The DFA Ieonstr((a U f)b').

11 The DFA Ieonstr(b'). . ..

12 The DFA DeRemer(b') . ..

13 The DFA Oeonstr((a U f)b').

14 The DFA's Brz(ae U be) and Oeonstr(ae U be) ..

3

1 Introduction

The construction of finite automata (from regular expressions) is one of the oldest and most

extensively developed areas of computing science. Just as the variety of applications has grown,

so has the diversity of solutions. Some of the solutions were devised to deal with an extension of

the problem, such as constructing a finite automaton from an extended regular expression!, while

others were devised with efficiency in mind. Such a myriad of objectives in the algorithm design

has lead to solutions that are difficult to compare. Frequently, people that study the algorithms

(or constructions as they are called in this paper) marvel that two seemingly different algorithms

construct isomorphic finite automata from the same regular expression. In order to differentiate

these algorithms, a taxonomy of construction algorithms would be useful. This report presents
such a taxonomy. A related taxonomy of finite automata minimization algorithms appears in

[Wats93].

In developing a taxonomy, we have the luxury of rearranging the relationships between the

algorithms, possibly introducing relationships that are not present in the history of an algorithm's

development. In this paper, for example, we derive DeRemer's construction from Myhill and

Nerode's construction. Historically, the theory of LR parsing had a much greater influence on

DeRemer's construction.

Section 2 gives definitions of finite automata and some transformations on them. Section 3

introduces E-algebras, the foundations for the first family of finite automata constructions. Sec

tions 4 and 5 include the two families of finite automata constructions. Appendix A gives the basic

definitions required for reading this paper, while Appendix B presents some proofs related to Sec

tion 4. The construction relationships are summarized in the "family tree" shown in Figure 1.

The main results of the taxonomy are summarized in the conclusions - Section 6.

In this taxonomy, the finite automata constructions are arranged into two families: those

constructions that are based upon the structure of regular expressions, and those based upon the

automata-theoretic results of Myhill and Nerode.

The first family of constructions is presented in Section 4:

• Thompson's construction as presented in [Thom68]. This algorithm constructs a (possibly

nondeterministic) finite automaton (possibly with E-transitions). The description in this

paper (Construction 4.3) is based upon those given in [AU92, HU79, Wood87, ASU86] as they

are usually considered more readable than Thompson's original paper. Additionally, a more

practical (top-down) version of Thompson's construction is presented (Construction 4.5).

• The E-lookahead finite automaton construction. This algorithm (Construction 4.11) con
structs finite automata that are similar to those constructed by Thompson's construction.

They may include so-called E-lookahead transitions.

• The guarded commands program construction. This algorithm (Construction 4.17) con

structs a guarded commands program from a regular expression. The program is an acceptor

for the regular language denoted by the regular expression. It is presented in this paper as

a refinement (using hard-coded guarded commands) of the E-lookahead construction.

• The left-biased and right-biased constructions. These two constructions (Constructions 4.22

and 4.43 respectively) are related by being the mirror images (or duals) of one another. They
both construct an f.-free (possibly nondeterministic) finite automaton.

• Berry and Sethi's construction as presented in [BS86, Glus61, MY60]. This construction

(Construction 4.32) uses some precomputation of sets to construct the same finite automa

ton as the left-biased construction. This construction is implicitly given by Glushkov [Glus61]

and McNaughton and Yamada [MY60], where it is used as the nondeterministic finite au

tomaton construction underlying a deterministic finite automaton construction. Berry and

Sethi [BS86] explicitly present this algorithm, and they relate it to Brzozowski's construction

1 An extended regular expression is one that includes either the intersection or complementation operator.

4 1 INTRODUCTION

"" E-.Jgebr"-' (§ 4) Myhill-Nerode (5.11)

RL relation
Thompson left-biased "'", right-biased

-- - - "

(4.3) (4.22) - ~ (443)
Myhill-Nerode minimal (5.19)

top-down :RFA's derivatives item sets

(4.5)

-----.... .

.,ji:ny-Sethi (4;2) ~ (445) Item sets (5.69) Brzozowski (5.34)

---_. - -~ .. --
€-lookahead subset constr. : sobset constr. X filter

---- ----------".

(4.11)

-.
Aho-Sethi-Ullman (4.50)

DeRemer (5.75)

guarded commands
McNaughton- Yamada-Glushkov (4.39)

Y filter

(4.17) Improved item sets (5.82)

Figure 1: The family trees of finite automata constructions. The constructions fall into two broad

categories: those based on the structure of regular expressions (descended from E-algebras), and

those based on the Myhill-Nerode theorem. Each construction presented in this paper appears

as a vertex in this tree, along with the name that it is given in this paper. If the construction is

presented explicitly (in this paper), the construction number appears in parentheses (indicating

where it appears in this paper). Solid edges denote refinements of the solution (and therefore

explicit relationships between constructions). They are labeled with the name of the refinement.

Dotted edges denote relationships (between algorithms) that are not elaborated upon in this paper.
Some of the dotted edges are labeled with the name of the relationship or refinement. Vertices

that are connected by a dashed edge are related by duality (they are the "mirror images" of one

another).

5

[Brzo64). We also present (in Construction 4.38) a variant of the Berry-Sethi construction

that is more easily implemented in practice.

• McNaughton, Yamada and Glushkov's construction as presented in [MY60, Glus61). This

construction (Construction 4.39) produces a deterministic finite automaton.

• The dual of the Berry-Sethi construction. This construction (Construction 4.45) is the
"mirror image" of Berry and Sethi's construction. A variant of this construction was also

mentioned in passing by Aho, Sethi, and Ullman [ASU86, Example 3.22, pg. 140); it appears

in this paper as Construction 4.48. In OUf presentation of this construction, we correct an

error appearing in Aho, Sethi, and Ullman's version (see Construction 4.48 of this paper).

• Aho, Sethi, and Ullman's construction as presented in [ASU86, Alg. 3.5, Fig. 3.44). This

construction (Construction 4.50) produces a deterministic finite automaton. It is the "mirror
image" of the McNaughton-Yamada construction.

The second family of constructions (from regular expressions) are those based upon the automata

theoretic results of Myhill and Nerode [RS59). They are presented in Section 5:

• Myhill and Nerode's construction as presented in [RS59). This construction (Construc

tion 5.11, which is given as part of the proof of the Myhill-Nerode theorem) uses some

language theoretical results to construct a deterministic finite automaton. A version of

this construction (Construction 5.19) gives the unique (up to isomorphism) minimal finite

automaton. It is not a very practical construction (and usually is not even given as a con

struction), as it relies on the computation of possibly infinite sets. Certain encoding schemes

can be used to represent these infinite sets, making the construction practical. Brzozowski '8

and DeRemer's constructions are two such encoding schemes.

• Brzozowski's construction as presented in [Brz064). This construction (Construction 5.34)

gives a deterministic finite automaton. We derive it as an encoding of the Myhill-Nerode

construction, although Brzozowski's derivation was entirely independent.

• The item set construction. This construction (Construction 5.69, not appearing in the

literature) produces a deterministic finite automaton, and is based upon the concept of

"items" which is borrowed from LR parsing [Knut65). In this paper, we present it as an

encoding of the Myhill and Nerode construction.

• DeRemer's construction as presented in [DeRe74). This construction (Construction 5.75)

produces a deterministic finite automaton. In this paper, it is derived from the item set

construction, although DeRemer made use of LR parsing in his derivation.

• An improvement of the item set construction. This construction (Construction 5.82, not

appearing in the literature) produces a deterministic finite automaton, and is also hased upon

the item set construction. Furthermore, it is an improvement of DeRemer's construction.

A variant (Construction 5.85) is also related to the Aho-Sethi-Ullman deterministic finite

automaton construction.

6 2 FINITE AUTOMATA

2 Finite automata

In this section we define finite automata, some of their properties, and some transformations on

finite automata.

Definition 2.1 (Finite automaton): A finite automaton (an FA) is a 6-tuple (Q, V,T,E,S,F)

where

• Q is a finite set of states,

• V is an alphabet,

• T E P(Q x V x Q) is a transition relation,

• E E P(Q x Q) is an <-transition relation

• S <:;; Q is a set of start states, and

• F <:;; Q is a set of final states.

The definitions of an alphabet and function P are in Definition A.9 and Convention A.I respec

tively. D

Remark 2.2: We will take some liberty in our interpretation of the signatures of the transition

relations. For example, we also uSe the signatures T E V -.., P(Q x Q), T E Q x Q -.., P(V),

T E Q x V -.., P(Q), T E Q -.., P(V x Q), and E E Q -.., P(Q). In each case, the order of the

Q's from left to right will be preserved; for example, the function T E Q -.., P(V x Q) is defined

as T(p) = {(a,q): (p,a,q) E T}. The signature that is used will be clear from the context. See

Remark A.3. The definition of -.., appears in Convention A.2. D

Remark 2.3: Our definition of finite automata differs from the traditional approach in three
ways:

D

• multiple start states are permitted;

• the transition relations are presented in a symmetrical way (without any inherent left-to-right

bias); and

• the €-transitions (relation E) are separate from transitions on alphabet symbols (relation

T).

Since we only consider finite automata in this paper, we will frequently simply use the term

automata.

Convention 2.4 (Finite automaton state graphs): When drawing the state graph corre

sponding to a finite automaton, we adopt the following conventions:

• All states are drawn as circles (vertices).

• Transitions are drawn as labeled (with < or alphabet symbol a E V) directed edges between
states.

• Start states have an in-transition with no source (the transition does not come from another

state).

• Final states are drawn as two concentric circles.

For example, the FA below has two states, one is the start state, and other is the final state, with

a transition on a:

D

2.1 Properties of finite automata 7

2.1 Properties of finite automata

In this subsection we define some properties of finite automata. To make these definitions more con

cise, we introduce particular finite automata M = (Q, V, T, E, 5, F), M o = (Qo, Va, To, Eo, So, Fo),

and M, = (Q" Vl ,T"El ,5"F,).

Definition 2.5 (Size of an FA): Define the size of an FA as IMI = IQI. 0

Definition 2.6 (Isomorphism (~) of FA's): We define isomorphism (~) as an equivalence

relation on FA's. Mo and Ml are isomorphic (written Mo ~ M,) if and only if Vo = VI and there

exists a bijection 9 E Qo --+ Ql such that

• Tl = {(g(p),a,g(q)): (p,a,q) E To},

• El = {(g(p),g(q)): (p,q) E Eo},

• 51 = {g(s) : S E 50}, and

• Fl = {g(f) : f E Fo}.

o

Definition 2.7 (Extending the transition relation T): We extend transition relation T E

V --+ P(Q x Q) to rEV' --+ P(Q x Q) as follows:

T'(€) = E'

and (for a E V,w E V')

T'(aw) = E' 0 T(a) 0 r(w)

Operator 0 (composition) is defined in Convention A.6. This definition could also have been

presented symmetrically. 0

Remark 2.8: We also sometimes use the signature T' E Q x Q --+ pry'). 0

Remark 2.9: If E = 0 then E' = 0' = 1Q where 1Q is the identity relation on the states of M.
o

Definition 2.10 (The language between states): The language between any two states

qo, ql E Q is T'(qo, q,). 0

Definition 2.11 (Left and right languages): The left language of a state (in M) is given by
;-

function L M E Q --+ PlY'), where

;-

L M(q) = (u s: s E 5: r(s,q))

~

The right language of a state (in M) is given by function L M E Q --+ pry'), where

~

L M(q) = (u f: f E F: T'(q,J))

The subscript M is usually dropped when no ambiguity can arise. 0

Definition 2.12 (Language of an FA): The language of a finite automaton (with alphabet V)

is given by the function LPA E FA --+ P(V') defined as:

LPA(M) = (U s,f: s E 5 II f E F: T'(s, J))

o

8 2 FINITE AUTOMATA

Property 2.13 (Language of an FA): From the definitions of left and right languages (of a

state), we can also write:

.....
CFA(M) = (U f : f E F: C (f))

and

.....
CFA(M) = (U s: s E S: C (s))

o

Definition 2.14 (Extension of CFA): Function CFA is extended to [FA]", as CFA([M]",) =

CFA(M). This use of brackets ([,l) is defined in Convention A.7. The choice of representative is

irrelevant, as isomorphic FA's accept the same language. 0

Definition 2.15 (Complete): A Complete finite automaton is one satisfying the following:

Complete(M) == (1/ q, a: q E Q 1\ a E V : T(q, a) # 0)

o

Property 2.16 (Complete): For all Complete FA's (Q, V,T,E,S,F):

.....
(U q : q E Q: C (q)) = V'

o

Definition 2.17 (e-free): Automaton M is e-free if and only if E = 0. 0

Remark 2.18: Even if Mis e-free it is still possible that e E CFA(M): in this case S n F # 0. 0

Definition 2.19 (Reachable states): For M we can define a reach ability relation Reach(M) c;:
(Q x Q) defined as

Reach(M) = (if2(T) U E)'

Functions 1f and if are defined in Convention A.4. Similarly the set of start-reachable states is
defined to be:

SReachable(M) = Reach(M)(S)

and the set of final-reachable states is defined to be:

FReachable(M) = (Reach(M))R(F)

Reversal of a relation is defined in Definition A.20. The set of useful states is:

Reachable(M) = SReachable(M) n FReachable(M)

o

Remark 2.20: For FA M = (Q, V,T,E,S,F), function SReachable satisfies the following inter
esting property:

.....
q E SReachable(M) == C M(q) # 0

FReachable satisfies a similar property:

.....
q E FReachable(M) == C M(q) # 0

o

2.1 Properties of finite automata 9

Definition 2.21 (Useful automaton): A Useful finite automaton is one with only reachable
states:

Useful(M) == (Q = Reachable(M))

o

Definition 2.22 (Start-useful automaton): A Useful, finite automaton is one with only start
reachable states:

Useful,(M) == (Q = SReachable(M»

o

Definition 2.23 (Final-useful automaton): A Useful, finite automaton is one with only final

reachable states

Useful,(M) == (Q = FReachable(M))

o

Remark 2.24: Useful, and Useful, are closely related by FA reversal (to be presented in Trans

formation 2.34). For all M E FA we have Useful,(M) == Useful,(M R
). 0

Property 2.25 (Deterministic finite automaton): A finite automaton M is deterministic if

and only if

• it does not have multiple start states,

• it is f.-free, and

• transition function T E Q x V ----> P(Q) does not map pairs in Q x V to multiple states.

Formally,

Det(M) == (lSI:S 1AE-free(E)A(lfq,a: q E QAaE V: IT(q,a)l:S 1»

o

Definition 2.26 (Deterministic FA's): DFA denotes the set of all deterministic finite automata.

We call FA \ DFA the set of nondeterministic finite automata. 0

Convention 2.27 (Thansition function of a DFA): For (Q, V, T, 0, S, F) E DFA we can consider

the transition function to have signature T E Q x V + Q. (A definition of + appears in

Convention A.2.) The transition function is total if and only if the DFA is Complete. 0

Property 2.28 (Weakly deterministic automaton): Some authors use a definition of a
deterministic automaton that is weaker than Det; it uses left languages and is defined as follows:

, <- <-
Det (M) == (If qo,q, :qo E QAq, E QAqo #q,: £(qo)n Ltg,) = 0)

o

Remark 2.29: Det(M) => Det'(M) is easily proved. We can also demonstrate that there exists

an M E FA such that Det'(M) A ,Det(M):

({ qo, q,}, {b}, {(qo, b, qo), (qO, b, q,)}, 0, 0, 0)

<- <-
In this FA, £ (qo) = £ (q,) = 0, but state qO has two out-transitions on symbol alphabet b. 0

10 2 FINITE AUTOMATA

Definition 2.30 (Minimality of a DFA): An M E DFA is minimal as follows:

Min(M) == (V M' : M' E DFA II LFA(M) = LFA{M') : IMI :<; IM'I)

Predicate Min is defined only on DFA's. Some definitions are simpler if we define a minimal, but

still Complete, DFA as follows:

Minc(M) == (V M' : M' E DFA II Complete{M') II LFA(M) = LFA(M') : IMI :<; IM'I)

Predicate Mine is defined only on Complete DFA's. 0

Property 2.31 (Minimality of a DFA): An M, such that Min(M), is the unique (modulo

~) minimal DFA, as will be shown in Section 5. There is no similar uniqueness property for

nondeterministic finite automata. 0

Property 2.32 (An alternate definition of minimality of a DFA): For the purposes of

minimizing a DFA, we use the definition (defined only on DFA's):

Minimal(Q, V,T,0,S,F) ==
---4 ---4

(VqO,ql :qo E Qllql E Qllqo #ql: L(qo) # L(qd)

II Useful(Q,v,T,0,S,F)

We have the property that (for all M E DFA) Minimal(M) == Min(M). It is easy to prove

that Min(M) =? Minimal(M). The reverse direction follows from the Myhill-Nerode theorem

(Theorem 5.7).

A similar definition that relates to Mine is (also defined only on DFA's):

---4 ---4

MinimalC(Q, V,T,0,S,F) == (V qO,ql :qo E Qllql E Qllqo # ql: L(qo) # L(ql))

II Useful,(Q, V, T, 0, S, F)

We have the property that (for all M E DFA such that Complete(M)) Minimalc(M) == Minc(M).

The contrapositive of Minc(M) ~ Minirnalc{M) is easily proved, and the reverse direction also
follows from Theorem 5.7. 0

Remark 2.33: In the literature the second conjunct in the definition of predicate Minimale is

sometimes erroneously omitted. The necessity of the conjunct can be seen by considering the DFA

({p, q}, {a}, {(p, a,p), (q, a, q)}, 0, 0, {p})

f-- f-- ~--+

Here L (p) = L (q) = 0 (which is also the language of the DFA), t:. (p) = {a}', and t:. (q) = 0.
Without the second conjunct, this DFA would be considered Minimale; clearly this is not the

case, as the minimal Complete DFA accepting 0 is (0, {a}, 0, 0, 0, 0). 0

2.2 Transformations on finite automata

Transformation 2.34 (FA reversal): FA reversal is given by postfix (superscript) function

R E FA --4 FA, defined as:

(Q, V,T,E,S,F)R = (Q, V,TR,ER,F,S)

Fnnction R satisfies

and preserves E-free and Useful.

Reversal functions are defined in Definition A.19, and preservation is defined in Definition A.IS.
o

2.2 Transformations on finite automata 11

Remark 2.35: The property (CFA(MR))R = CFA(M) means that function CFA is its own dual,

and is therefore symmetrical (see Definitions A.21 and A.22). 0

Definition 2.36 (Extending reversal to [FA]",): We extend reversal to R E [FAle< ---> [FA]",

defined as ([M],,)R = [MR]". The definition is independent of the choice of representative (of an

equivalence class of "') since R and isomorphism commute. 0

Transformation 2.37 (Useless state removal): There exists a function useful E FA ---> FA

that removes states that are not reachable. A definition of this function is not given here, as it is

not needed. Function useful satisfies

(\I M: M E FA: Useful(useful(M)) II CFA(useful(M)) = CFA(M))

and can be defined so as to preserve ~-free, Useful, Det, and Min. 0

Transformation 2.38 (Removing start state unreachable states): Transformation useful, E

FA ---> FA removes those states that are not start-reachable:

useful,(Q, V,T,E,S,F) = let U = SReachable(Q, V,T,E,S,F)

in

(U,V,Tn(U x V x U),En(U x U),SnU,FnU)

end

Function useful s satisfies

(\I M: M E FA: Useful, (useful,(M)) II CFA(useful,(M)) = CFA(M))

and preserves Complete, <-free, Useful, Det, and (trivially) Mine and Min. 0

Remark 2.39: A function useful, E FA ---> FA could also be defined, removing states that are

not final-reachable. Such a function is not needed in this paper. 0

Transformation 2.40 (Completing an FA): Function complete E FA ---> FA is defined as:

complete(Q, V,T,E,S,F) = let s be a new (sink) state

in

end

It satisfies the requirement that:

let T' = {(p,a,s): ,(3 q: q E Q: (p,a,q) E Tn

T" = if (T' i' 0) tben {s} x V x {s} else 0 fi
in

end

(Q U if (T' i' 0) then {s} else 0 fi, V,
T U T' u T", E, S,F)

(\I M: M E FA : Complete(complete(M)) 1\ LFA(complete(M)) = LFA(M))

In general, this transformation adds a sink state to the FA. This transformation preserves ~-free,

(trivially) Complete, Det, and Mine. 0

Transformation 2.41 (~ removal): An ~ removal transformation remove(E FA ----10 FA is one

that satisfies

(\I M: M E FA: <-free(remove,(M)) II CFA(remove,(M)) = CFA(M))

There are several possible implementations of remove(. One implementation is:

remove",ym(Q,V,T,E,S,F) = let T'(a)=E'oT(a)oE'

in

(Q, V, T', 0, E'(S), (E·)R(F))

end

This implementation preserves Complete and Useful and is symmetrical. 0

12 2 FINITE AUTOMATA

Transformation 2.42 (Subset construction): The function subset transforms an E-free FA
into a DFA (in the let clause T' E P(Q) x V -----> P(P(Q)))

subset(Q, V, T, 0, S, F) let T'(U,a) = {(U q: q E U: T(q,a))}
F' = {U: U E P(Q) /I U n F i- 0}

in

(P(Q), V, T', 0, {S}, F')

end

In addition to the obvious property that (for all M E FA) LFA(subset(M)) = LFA(M), function

subset satisfies

(V M: M E FA /I E-free(M) : Det(subset(M)) /I Complete(subset(M)))

and preserves Complete, f.-free, Det, and Mine_ It is also known as the "powerset" construction.

D

Property 2.43 (Subset construction): Let Mo = (Qo, V,To,0,So,Fo) and M, = subset(Mo)
be finite automata. By the subset construction, the state set of M, is P(Qo). We have the

following property:

-> ->
(Vp:PEP(Qo): LM,(p)=(Uq:qEp: LMo(q)))

D

Definition 2.44 (Optimized subset construction): The function subsetopt transforms an

E-free FA into a DFA. This function is an optimized version of subset.

sUbsetopt(Q, V,T,0,S,F) = let T'(U,a) = {(U q: q E U: T(q,a))}

Q' = P(Q) \ {0}
F' = {U: U E P(Q) /I U n F i- 0}

in
(Q',v, T' n (Q' x V x Q'), 0, {s},F')

end

In addition to the property that (for all M E FA) LFA(subsetopt(M)) = LFA(M), function

sUbsetopt satisfies

(V M : M E FA /I E-free(M) : Det(subsetopt(M)))

and preserves f.-free, Det. 0

2.2.1 Algorithms implementing the subset construction

Since many of the states in a subset-constructed DFA may be unreachable, we consider an algo

rithm implementing the composition useful s 0 subset.

In this algorithm, D (for done) is the set of states (of the DFA being constructed) already

considered, and U (for un-done) is the set of states to be considered. The type of S', D, and U
is P(P(Q)) (in particular, S' is a set of states in the constructed DFA). This algorithm will yield

a Complete DFA. In the case that the language of the automaton (being subset constructed) is

not V', then there will be a state 0 E D which is the sink state. The algorithm is implemented in

Dijkstra's guarded command language [Dijk76].

2.2 Transformations on finite automata

Algorithm 2.45:

{(Q,v,T,0,S,F) E FA}

S',T':= {S},0;
D,U:=: 0,8';

do U # 0-+

od;

let u: u E U;

D,U:= D u {u},U\ {u};
for a: a E V do

rof

d := (U q : q E u : T(q, a));
if d <t D -+ U:= U U {d}

~ dE D -+ skip
ft· ,
T':= T' U {(u,a,d)}

F' := {d: d E DAd n F # 0}
{(D, V,T',0,S',F') = useful, 0 subset(Q, V,T,0,S,F)}
{Complete(D, V,T',0,S',F')}

13

An algorithm implementing useful, 0 subsetopt, yielding a (possibly non-Complete) DFA with
no sink state is:

Algorithm 2.46:

{(Q, V,T,0,S,F) E FA}

S',T':= (if (S # 0) then {S} else 0 ft),0;

D,U:=:0,S';

do U#0-+
let u : U E U;

D,U:=DU{u},U\{u};
for a : a E V A (3 q : q E u : T(q, a) # 0) do

d := (U q : q E u : T(q, a));

if d <t D -+ U:= U U {d}
! dE D -+ skip
ft· ,
T':= T' U {(u,a,d)}

rof

od;

F':={d:dEDAdnF#0}

{(D, V, T', 0, S', F') = useful, 0 sUbsetopt(Q, V, T, 0, S, F)}

Remark 2.47: The algorithm given above can be made more efficient by removing the 3 quan

tification from the for guard, and implementing it in an if-ft structure within the for statement.

The algorithm is left in this form since it is used in Construction 4.50 to present the Aho-Sethi
Ullman algorithm. 0

14 3 L:-ALGEBRAS AND REGULAR EXPRESSIONS

3 ~-algebras and regular expressions

Many of the known FA constructions have definitions that follow the syntactic structure of regular
expressions. The best known (and perhaps the easiest to understand) is Thompson's construction

[Thom68[. We would like to formalize the notion of "following the syntactic structure." This is

done by introducing L:-algebras in this section. Regular expressions are then defined as a L:-algebra.

3.1 Some basic definitions

This subsection provides the basic definitions required for L:-algebras. Most of these definitions

are taken, with slight modification, from [EM85].

Definition 3.1 (Sorts): Given set S (the elements of which are called sorts), a set of sets X is

called S-sorted if the elements of X correspond one-te-one with S. The element of X corresponding
to s E S is written X,. 0

Definition 3.2 (Signature L:): A signature L: is a pair (S, r) where

• S is a finite set, and

• r is an (S' x S)-sorted set called the operators.

We write elements of S· x S as « 81)"" Sk >, S >. We can make a couple of notational
simplifications:

o

• Given 'Y E r «51, .. ,8",>,8> we write.,: 81 x ... X Sk -----j. s. Constant k is known as the arity

of operator 'Y.

• For, E r «>,8> we write 'Y : 5, and call 'Y a constant; that is, constants are operators of
arity zero.

Remark 3.3: Although the set S' x S is infinite (for S # 0), this does not imply that there are in-

finitely many operators. There may be « s" .. . , Sm >, s >E S' x S such that r «" ... ,',..>,'> =

0; in that case, there is no operator f : 81 x ... X 8 m ----+ s. 0

Several of the following definitions are with respect to signature L: = (S, r).

Definition 3.4 (Term,,): The S-sorted set Term,; is the smallest S-sorted set such that2

o

• if'Y : s, x ... X Sk -----> s (for some k ~ 0) (s, 8" ... , Sk E S) and (for all 1 ::; i ::; k)

ti E Term>:.; then 'Y[t" ... , tk] E Term>: •. We adopt the convention that 'Y[] is simply
written 'Y-

Definition 3.5 (L:-algebra): A L:-algebra is a pair (V, F) such that

• V is an S-sorted set, and

• F is a set of functions to (with 'Y E r) such that

Set V is called the carrier set of the L:-algebra. Set F is called the operator set of the L:-algebra.
o

2 Square brackets ([and]) are used syntactically here.

3.2 Regular expressions as a E-Ierm algebra 15

Definition 3.6 (E-term algebra): The E-term algebra is the E-a1gebra (TermE, F) such that

F = {Jo : (-y : s, x ... X Sk ----> s)}

where (for all fo E F) fo E TermE .• , x ... x TermE .• , ----> TermE. is defined as fo(I" ... , tk) =

'"I[t" ... , tkJ. 0

Definition 3.7 (E-homomorphism): Given E-a1gebras (V,F) and (W,G), a E-homomorphism

from (V, F) to (W, G) is an 5-indexed set of functions h such that

• for all s E 5 we have h, E V, ----> W" and

• for all f : 81 X ... X Sk -----I- S, j, E F, g-y E G, and el E VS1, • •• 1 ek E Vs /.,

o

Remark 3.8: In the case that there is only one sort, a E-homomorphism is a singleton set and

we speak of the homomorphic function. 0

Definition 3.9 (Initial E-algebra): A E-algebra is initial if there is a unique E-homomorphism

from it to all other E-algebras. 0

Proposition 3.10 (E-term algebras): E-term algebras are initial. 0

Example 3.11 (E-algebras): Consider signature E = (5, r) where 5 consists only of sort expr,

and r consists of constant a : expr and operator plus: expr x expr ~ expr. Some examples of

terms in the E-term algebra are plus[a,aJ and plus[plus[a,plus[a,aJ],aJ.

We define another E-a1gebra X with the natural numbers as the carrier set, 0 (the natural

number) as the constant, and fplu,(X,y) = (xmaxy) + 1 as the operator.
As an example of a L:-homomorphism, we define the "expression tree height" function as a

homomorphism from the E-term algebra to algebra X. With only one sort, we define function hexpr

as hexpr(a) = 0 and h<xpr(plus[e, fll = fplu,(hexpr(e), hexpr(J» = (hexpr(e) max hexpr(J» + 1. 0

3.2 Regular expressions as a ~>term algebra

Definition 3.12 (Regular expressions): We define regular expressions (over alphabet V) as

the E-term algebra over signature E = (S, 0) where

• S consists of a single sort Reg (for regular expression), and

.0 is a set of several constants: €,0,al1 ... ,an : Reg (where V = {al, ... ,an }) and five

operators· : Reg x Reg ----> Reg (the dot operator), U : Reg x Reg ----> Reg, * : Reg ----> Reg,
+ : Reg ----> Reg, and ? : Reg ----> Reg.

Signature E will be used throughout the remainder of this paper. We make the following notational

simplification when writing terms in the E-term algebra:

• operators' (the dot) and U are written as infix operators;

• operator' is usually not written , juxtaposition is used instead;

• operators *, +, and ? are written as postfix (superscript) operator.

The following will also be used for conciseness:

• a term in the ~-term algebra is called a regular expression;

16

o

3 ~-ALGEBRAS AND REGULAR EXPRESSIONS

• the set TermE is denoted by RE;

• the operators have (ascending) precedence: u, " * and + and ?; f, 0, and al, . .. , an E V are
constants;

• regular expressions are usually fully parenthesized; parentheses can be omitted where the

operator precedence allows.

Remark 3_13: The? operator is non-standard. It will be used to denote union with the language

containing the empty string Eo See Definition 3.17. 0

Remark 3.14: Some authors write U as (infix) + or as I. 0

Example 3.15 (A regular expression): Given alphabet V = {a,b} the regular expression

·IUla, fJ, .[b)) is usually written as (a U f)b'. This particular regular expression will be used in

running examples of FA construction. 0

Remark 3.16: Some authors leave 0, ?, or + out of the definition of regular expressions. Strictly

speaking, operators f, +, and? are not needed in the signature, since they can be constructed

from the other operators. There are some FA constructions (from REs) that have running time

dependent on the size of the regular expression. In these cases, treating the extra operators fully

(instead of as abbreviations) becomes advantageous. 0

Definition 3.17 (The ~-algebra of regular languages): We define a ~-algebra of regular

languages (over alphabet V), with carrier P{V') and constants:

• {f} E P(V') (the language containing only the empty string);

• 0 E P{V') (the empty language);

• {a} E P{V') (for all a E V).

and operators:

• U E P(V') x P{V') ---; P(V') (language union);

• . E P{V') x P{V') ---; P{V') (language concatenation);

• * E P(V') ---; P{V') (Kleene closure);

• + E P{V') ---; P{V') (+ closure), and

• ? E P{V') ---; P{V') (union with {f}, see Definition A.14).

Each of these operators corresponds (in the obvious way) to the operators of signature ~. 0

Definition 3.18 {Language denoted by an RE}: The function CRE is the (unique) homomor

phism from the ~-term algebra of REs to the ~-algebra of regular languages. Function CRE maps

regular expressions to the languages they denote. 0

Definition 3.19 (Equivalence (==) of REs): Two regular expressions, Eo and E" are said to

be equivalent (written Eo == E" note the dot above the =) if and only if they denote the same

language. 0

Definition 3.20 (The nullable ~-algebra): We define the nullable ~-algebra as follows:

• The carrier set is {true,jalse}.

3.2 Regular expressions as a ~>term algebra 17

• The constants are: true, false, and false (corresponding respectively to E, 0, and a: a E V).

Here the constant false corresponds to 0 and to all a E V. The operators are: V (disjunction),

1\ (conjunction), the constant function true, the identity function, and (again) the constant

function true (corresponding respectively to U, " *, +, and ?). The operators corresponding

to * and to ? are interesting because they map their argument to the constant true.

We denote the (unique) homomorphism from RE to this ~-algebra as Null. 0

Property 3.21 (The nullable ~-algebra):The homomorphism Null has the property that for

allEERE

E E L.RE(E) == Null(E)

o

Definition 3.22 (RE reversal): Regular expression reversal is given by the postfix (superscript)
isomorphism R E RE --; RE

ER E

0R 0

aR a (foraEV)

(Eo UEdR (Ef)) U (E[')

(Eo· E,)R (E[') . (Ef))

(E')R (ER)'

(E+)R (ER)+

(E')R (ER)'

Function R satisfies the obvious property that

o

Remark 3.23: The property satisfied by regular expression reversal implies that L.RE is an

example of a symmetrical function (according to Definition A.22). 0

18 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

4 Constructions based on regular expression structure

A finite automaton construction is any function f) such that the following diagram commutes:

RE f FA

~
CPA

Creg

In this section, we will be defining some I;-algebras with [FA]", as the carrier set; the idea

behind the above commuting diagram still holds in this case, as all isomorphic FA's accept the

same language. The isomorphism class of an FA corresponding to a given regular expression is

the image of the regular expression under the (unique) homomorphism from RE to the other

E-algebras. Such a homomorphism is a FA construction. Thompson's construction is considered

first, followed by a derivation of Berry and Sethi's, McNaughton, Yamada and Glushkov's, and

Aho, Sethi, and Ullman's constructions. We also consider methods of efficiently implementing

some of the constructions, and methods of constructing FA '8 from extended regular expressions

(see Definition 4.53).

4.1 Thompson's construction

One I;-algebra is based upon an RE to FA construction given by Thompson in [Thom68]. The

explanations given in textbooks such as [HU79, Wood87, AU92, ASU86] are generally considered

more readable than Thompson's original paper. None of those presentations made use of ~
algebras.

Definition 4.1 (Thompson's ~>algebra of FA's): The carrier set is [FA]=:!. The operator

requirement3 is:

• For the binary operators, the representatives of the arguments must have disjoint state sets.

For any two equivalence classes (under =:::) we can always choose a representative of each

such that they satisfy this requirement.

The correctness of the operators4 is not included here, but is discussed in Theorem B.l. Along with

each operator we present a graphic representation of the operator. The operators are separated

by horizontal lines for clarity. The operators (with subscript Th, for Thompson) are:

let qo, q1 be new states

in

end

let
in

end

go, gl be new states

[({qo, q.}, V, 0, 0, {qo}, {q.})]'"

3~-algebras presented in this section may have a list of items such as this, stating the requirements on the

arguments for the correctness of the operators.

4For example, the concatenation operator is correct when (for all Mo, Ml in Thompson's ~-algebra)

.cpA (C.,Th([Moj", [MIl,,)) = .cPA ([Moj,,).c FA ([MIl,,)·

4.1 Thompson's construction

Cu,Th let qo, ql be new states

in

end

for all a E V.

C.,Th([Mo]", [Md,,) = let (Qo, V,To,Eo, So, Fo) = Mo

(Q" V,T"E
"

S"F,) = M,
in

let E' = Eo UE, u (Fo X S,)
in

[(Qo UQ" V,To UT
"

E',So,F,)]"
end

end

Cu,Th([Mo]"" [Md",) = let (Qo, V, To, Eo, So, Fo) = Mo

(Q" V,T
"

E
"

S"F,) = M,

qo, ql be new states

in

end

let Q' = Qo UQ, U {qo,q,}

in

end

E' = Eo U E, u ({qo} x (So U S,))

U ((Fo U F,) X {q,})

[(Q', V, To UT" E', {qo}, {q,})]'"

Mo

19

20 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

C.,Th([M)",,) = let (Q,v,T,E,S,F)=M

qo, ql be new states

in
let Q' = Q u {qo,q,}

E' = Eu ({qo} x S) u (F x S) U (F x {q,}) U {(qo,qIl}

in
[(Q', V, T,E', {qo}, {q'})b

end

end

€

M

€

C+,Th([Mje,) = let (Q,v,T,E,S,F) = M

qo, ql be new states

in
let Q'=QU{qo,q,}

E' = E U ({qo} x S) U (F x S) U (F x {q,})

in
[(Q', V,T,E', {qo}, {q,}))""

end

end

€

M

C',Th([M)",,) = let (Q,V,T,E,S,F)=M

qo, ql be new states

in
let Q' = Q u {qo,q,}

E' = E U ({qo} x S) U (F x {q,}) U {(qo, ql)}

in
[(Q', V,T,E', {qo}, {q,}))""

end

end

4.1 Thompson's construction 21

M

These operators are symmetrical (see Definition A.22 for a definition of symmetrical operators

and functions). Furthermore, they do not depend upon the choice of representative of the equiva

lence classes (under "'). An automaton in Thompson's I:-algebra (here we speak of a representative

FA, instead of the isomorphism class) has the following properties:

• It has a single start state with no in-transitions.

• It has a single final state with no out-transitions.

• Every state has either a single in-transition on a symbol (in V), or at most two € in

transitions.

• Every state has either a single out-transition on a symbol (in V), or at most two € out

transitions.

These properties are symmetrical because the operators are symmetricaL Hopcroft and Ullman

have shown [HU79] that in practice these properties facilitate the quick simulation of M. For the

remainder of this paper we will not duplicate properties such as these, but rather state whether

the operator is symmetricaL 0

Remark 4.2: In the literature, these operators are usually presented as having arguments and

results of type FA instead of [FA]". Such a presentation is given in terms of particular represen

tatives, and ignores the nondeterminism in choosing new states. D

Construction 4.3 (Thompson): Thompson's construction is the (unique) homomorphism Th
from RE to Thompson's I:-algebra of FA's. 0

Example 4.4 (Thompson's construction): We construct a particular representative5 of

Th((a U t)b') C.,Th(Th(a U t), Th(b'))

C.,Th (CU,Th(Th(a), Th(t», C"Th(b»

C.,Th(CU,Th(Ca,Th, C"Th), C"Th(Cb,Th»

(The regular expression is taken from Example 3.15.) The representative is shown in Figure 2. 0

In the next two subsections, we consider two algorithms that construct an FA (from a regular

expression) based on the top-down syntactic structure of the regular expression. In these two

constructions, we use regular expressions as syntactic objects denoting regular languages.

The first construction is a top-down version of Thompson's construction. The second one is

also top-down, but constructs a so-called t-lookahead automaton. Such an automaton can be

efficiently simulated or it can be converted to an efficient program, accepting the language of the

automaton.

50bviollsly, constructing the entire equivalence class of isomorphic FA's is not possible

22 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

E

E

E

Figure 2: A representative FA of the isomorphism class Th((a U E)b').

4.1.1 A top-down version of Thompson's construction

The top-down version of Thompson's construction is a practical implementation of homomorphism

Th. It is a function of three parameters: a start state s, a regular expression E, and a final state

j. It produces an FA, with start state s and final state j, accepting the language CRE(E).

Construction 4.5 (Top-down Thompson's): We assume a universe of available states U, to

define function

td E U x HE x U --> FA

The function is defined recursively on the structure of regular expressions:

td(s,E,J)

td(s,0,J)

td(s, a, J)

({s, f}, V, 0, {(s, j)}, {s}, {f})

({s, f}, V, 0, 0, {s}, {f})

({s, n, V, {(s, a, j)}, 0, {s}, {f}) (for all a E V)

td(s, Eo· E 1 , J) = let p, q be new states
in

end

let (Qo,v, To, Eo, {s}, {p}) = td(s,Eo,p)

(Ql, V, T1 , E!,{q} , {f}) = td(q, E
"

J)

in

(Qo U Ql, V, To U Tl,Eo U El U {(p,q)}, {s}, {f})

end

td(s, Eo U E
"

J) = let p, q, r, t be new states

td(s, E', J)

in

end

let (Qo,v, To, Eo, {p},{q}) = td(p,Eo,q)

(Ql,V,T1 ,E1 ,{r},{t}) = td(r,El,t)

in

(Qo l.I Ql U {s, n, V, To U Tl,Eo U El

U({s} x {p,r})U({q,t} x {f}),{s},{f})

end

let p, q be new states

in
let (Q,v,T,E,{p}, {q}) = td(p,E,q)

in
(Q U {s, n, V, T, E U {(s,p), (q,p), (q, J), (s, j)}, {s}, {f})

end
end

4.1 ThompsonJs construction 23

td(s, E+, J) let p, q be new states
in

let (Q,V,T,E,{p},{q}) = td(p,E,q)

in

(Q U {s, J}, V, T, E U {(s,p), (q,p), (q, J)}, {s}, {i})
end

end

td(s, E" J) let p, q be new states

in

let (Q,V,T,E, {p}, {q}) = td(p,E,q)

in

(Q U {s, J), V, T, E U {(s,p), (q, J), (s, J)}, {s}, {i})
end

end

Function td satsifies the property that, for all E ERE:

Th(E) let s, f be new states
in

[td(s,E,J)]"
end

o

The advantage offunction td over homomorphism Th (Construction 4.3) is one of implementation.

In Thompson's construction, the subparts of the final FA are constructed in isolation; when two
subparts are combined some states may have to be renamed to ensure that the subparts have

disjoint state sets. In the top-down construction, more global knowledge is available concerning

the final FA and this type of problem is avoided. (In practice, function td would make use of a

global variable: the set of remaining available states.)
We do not prove the correctness of construction td in this paper.

4.1.2 Constructing E-Iookahead automata

In this subsection, we extend the top-down Thompson construction (function td) to construct

E-lookahead finite automata (LAFA). In an LAFA, every E-transition is qualified by a symbol of

V (known as the lookahead symbol). When simulating an LAFA, an E-transition can be taken if

the next symbol of the input string matches the lookahead symbol of the E-transition. Naturally,

for any given state, it is desirable that there only be one f-transition from the state on any given

symbol. The following definitions formalize this.

Definition 4.6 (E-Iookahead automata): An E-lookahead finite automaton (LAFA) is a 6-tuple

(Q, V,T,E,S,F) which is a normal FA with one exception:

• E-transition relation is now E E P(Q x V x Q) instead of E E P(Q x Q).

o

Remark 4.7: A more commonly presented definition of LAFA's involves both E-Iookahead and

normal E-transitions (also called don't-care transitions). Since we have combined the two, we

implement normal E-transitions as lookahead transitions, where the lookahead set is V (the entire
alphabet). 0

~ ~

Remark 4.8: Naturally, we extend such functions as L, L, and LFA to use the definition of

a LAFA. As a result, the language accepted by an LAFA is in accordance with the intuitive
interpretation of an LAFA. 0

24 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

Remark 4.9: In order to present the following definition, we require the definition of function

First E RE -----> P(V). Function First is defined in Definition 4.60. Informally, First(E) is the

set of all alphabet symbols that can occur as the first symbol of a word in C. RE (E). 0

Definition 4.10 (Lookahead function): In order to make the definition of the LAFA construc

tion readable, we introduce function look E RE x P(V) -----> P(V), defined as:

look(E,L) = First(E) U if (Null(E» then Leise 0 fi

Argument L is called the set of lollow symbols. 0

We now define an LAFA construction, based on the top-down version of Thompson '8 construc
tion.

Construction 4.11 (E-lookahead finite automaton): We define function K which takes four

parameters: a start state s, a regular expression, final state I, and a lookahead set L E P(V).

As with the top-down version of Thompson's construction, we assume a universe of states U.
Function K E U x RE x U x P(V) -----> LAFA is defined recursively on the structure of regular

expressions:

K(s, E,f, L)

K(s,0,I,L)

K(s,a,I,L)

= ({s,f},v,0,{s) x L x {f},{s},{f})

({s,1}, V,0,0,{s},{f})

({s, I}, V, {(s, a,f)},0, {s), {f}) (for all a E V)

K(s,Eo ·E1 ,f,L) = let p,q be new states

K(s,Eo UE1 ,I,L)

K(s,E',f,L)

in

end

let (Qo, V, To, Eo, {s), {p}) = K(s, Eo, p, look(E1 , L»

(Ql, V,T1 ,E1 , {q}, {!}) = K(q,E1o/,L)

in

(Qo U Ql, V, To UT" Eo u El

U({p) x look(E1 ,L) x {q}),{s},{f})

end

let p, q, T, t be new states
in

end

let (Qo,v, To, Eo, {p}, {q}) = K(p,Eo,q,L)

(Ql, V, T1 , Edr}, {t}) = K(r, E
"

t, L)

in

end

(Qo U Q, u {s,!}, V, To U T"Eo U E,

U ({s) x look(Eo,L) x {p})

U ({s) x look(E"L) x {r})

u({q,t} xLx {f}),{s},{f})

let p, q be new states

in

end

let (Q, V, T,E, {p}, {q}) = K(p, E, q, L U First(E»

in

end

(QU {s,I},V,T,EU ({s,q) x First(E) x {p})

U({s,q} x L x {f}), {s}, {f})

4.1 Thompson's construction

K(s,E+,j,L)

K(s,E',j,L)

D

let p, q be new states

in

end

let (Q, V, T, E, {p}, {q}) = K(p, E, q, L U First(E))

in

end

(QU{s,f}, V,T,EU({s,q} x First(E) x {p})

U({q}xLx{J}),{s},{J})

let p, q be new states

in

end

let (Q, V,T,E,{p},{q}) = K(p,E,q,L)

in

end

(Q U is, f}, V, T,Eu ({s} x First(E) x {p})
U ({ s, q} x L x {J}), {s}, {f})

25

Remark 4.12: Since we make use of a single symbol of lookahead, we assume that the input

string always has an end-marker $ concatenated on its right. We assume that $ E V and that $

does not appear elsewhere in the regular expression. This means that, for E ERE:

let s, j be new states

in

K(s, E, j, {$})
end

is a LAFA accepting CRE(E). D

Definition 4.13 (Deterministic LAFA's): A LAFA is deterministic if and only if it has at most

one start state and no state has more than one out-transition (either an €-lookahead or a normal
transition) on any given alphabet symbol. D

We present some determinism conditions that ensure that Construction 4.11 produces deter

ministic LAFA's.

Definition 4.14 (Determinism conditions): In order for function K to produce a deterministic

LAFA we impose the following requirements for particular cases of K:

• For K(s,Eo UE1,j,L) we require that look(Eo,L) n look(El,L) = 0 .

• For K(s, E', j, L), K(s, E+, j, L), and K(s, E?, j, L) we require that First(E) n L = 0.

D

Remark 4.15: The lookahead transitions in LA FA 's make them are more efficient to simulate
than an equivalent FA constructed with Thompson's construction. Simulation of a deterministic

LAFA is as efficient as the simulation of a DFA. D

Example 4.16 (LAFA): Given new states s, j, we construct the deterministic LAFA K(s, (a U

€)b', j, {$}). The €-lookahead transitions are labeled with both € and the lookahead symbols. The

state graph is given in Figure 3. 0

26 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

<, b

<,a

€,b,$

<, $

Figure 3: The LAFA K((a U <)b').

Construction 4.17 (Creating a program from a LAFA): A deterministic LAFA can also

be converted into a program which is a hard-coded simulation of the LAFA. We now describe

a mapping N E RE x P(V) --> GCL, where GCL denotes the set of all guarded commands

programs [Dijk76J. This construction is based upon the LAFA construction. The created programs

are correct when the determinism conditions of Definition 4.14 hold. In the generated program,

we assume that variable w E V' is the input string (with an end-marker $ concatenated on its

right), and that hd(w) refers to the first symbol of wand tl(w) refers to the remainder of w. We

annotate the program fragments (in the definition of N) with the state names (in braces) in the

corresponding definition of Construction 4.11. (The semantics of the guarded commands specify

that if none of the guards in an if-fi statement are true, the statement is equivalent to abort.)

N«,L)

N(0,L)

N(a,L)

N(Eo ·E1,L)

N(EoUE1,L)

N(E',L)

N(E+ ,L)

N(E',L)

= {s}
if hd(w) E L --> skip

Ii

{f}
{s} abort{f}

{s} (forallaEV)

if hd(w) = a ---+ w:= tl(w)
Ii

{f}

{s} N(Eo, look(E1, L)){p};

{q}N(E" L){f}
{s}
if hd(w) E look(Eo,L) ---+ {p}N(Eo,L){q}

~ hd(w) E look(E1,L) ---+ {r}N(El,L){t}
Ii

{f}

{s}
do hd(w) E First(E) ---+ {p}N(E, First(E) U L){q}

od

{f}
{s}
repeat {p}N(E, First (E) U L){q}

until hd(w) '/. First(E)

{f}

{s}
if hd(w) E First(E) ---+ {p}N(E,L){q}

~ hd(w) E L ---+ skip
Ii

{f}

As with Construction 4.11 we concatenate an end-marker $ on the right of the input string w.
The entire program of the acceptor (for E ERE) is:

4.2 Towards the Berry-Sethi construction

{w E V'{$}}
N(E, {$});

if w = $ ---> skip

fi

{w E .cRE(E)}

Termination of the program is equivalent to w E .cRE(E). 0

27

Example 4.18 (Programs from LAFA's): We construct the program corresponding to (aUE)b'.

o

{w E V'{$}}
if hd(w) E {a} --->

if hd(w) = a ---> w := tl(w)

fi

~ hd(w) E {b, $} --->

fi· ,

if hd(w) E {b, $} ---> skip

fi

do hd(w) E {b} --->

od

if hd(w) = b ---> w:= tl(w)

fi

if w = $ ---> skip

fi

{w E {a, E}{b}'}

4.2 Towards the Berry-Sethi construction

We now consider E-algebras of E-free FA's. One such E-algebra can be given with symmetrical

operators.

Definition 4.19 (Symmetrical E-free E-algebra operators): The carrier set is [FA]",. The

operator requirement is (as with Thompson's E-algebra):

• For the binary operators, the representatives of the arguments must have disjoint state sets.

The symmetrical E-free preserving operators of the E-algebra are defined using Thompson's E

algebra operators and symmetrical function remove",y= (which is extended to [FA]" ---> [FA],,):

Cf;,Sym

C0,sym

Ca,sym

C.,syrn

CU,sym

remove€,sym 0 C€,Th

removeE,sym 0 C0,Th

remove£,sym 0 Ca,Th

remove€,sym 0 C.,Th

remove€,sym 0 CU,Th

remove€,sym a C*,Th

remove€,sym 0 C+,Th

removet,sym 0 C? ,Tk

(for all a E V)

These operators are symmetrical since they are compositions of symmetrical operators (see Propo

sition A.23). An FA in this E-algebra has the property that it is E-free. 0

28 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

These operators are cumbersome to present fully. Furthermore, they are not particularly useful

in practice. For this reason, we now consider asymmetrically defined c-free preserving operators.

The first asymmetrical <-free preserving ~-algebra operators that we consider are the left-biased

ones. The image of a RE in this ~-algebra is easier to compute than its image in the ~-algebra
given in Definition 4.19).

Definition 4.20 (~-algebra of left-biased <-free operators): The carrier set is [FAJ"". The

operator requirements are:

• For binary operators, the representatives of the arguments must have disjoint state sets .

• The following is required of the representatives of each argument:

it is €-free,

it has a single start state, and

the single start state has no in-transitions.

A proof of the correctness of these operators is outlined in Theorem B.2. As in Thompson's

E-algebra, each operator is presented here with a graphic representation of the operator6. Parts

of the operator definitions are intentionally clumsy or verbose. This is done to facilitate the

derivation of a ~-algebra of reduced FA's (in Definition 4.29). The operators are:

C0,LBFA

Ca,LBFA

for all a E V.

let

in

end

let

in

end

let

in

end

qo be a new state

[({qo}, V, 0, 0, {qo}, {qo})J"

-0
qo be a new state

[({qo}, V, 0, 0, {qo}, 0)J"

qo, ql be new states

6The graphic representations of the operators depict only the simplest cases of each operator. Thick arrowed

lines are intended to depict multiple transitions, while dotted arrowed lines are transitions that are removed from

the constructed FA. In the case of the non-constant operators, the start states (of the arguments) is struck out

indicating that it is removed.

4.2 Towards the Berry-Sethi construction

C.,LBPA([Mo);",[M,j",j = let (Qo,V,To,0,{so},Fo)=Mo

(Q" V, T
"

0, {sd,F,) = M,
No = E E LPA(Mo)

in

end

N, = E E LFA(M,)
N = E E (LPA(Mo)LPA(M,»)
qo be a new state

let Q' = Qo \ {so} U Q, \ {sd U {qo}
T' = To U T, U (Fo x T,(S,))

in

end

Mo

u ({qo} x (To(so)

U if (No) then T,(S,) else 0 Ii))
F' = F, U if (N,) then Fo else 0 Ii

U if (N) then {qo} else 0 Ii

[(Q', V,T' n (Q' x V x Q'),

0,{qo},F'nQ')b

CU,LBFA([Mo]""[M,j,,,) = let (Qo,V,To,0,{so},Fo)=Mo
(Q" V, T" 0, {sd,F,) = M,

in

end

N = E E (LPA(Mo) U LPA(M,))
qo be a new state

let Q' = Qo \ {so} U Q, \ {sd U {qo}

in

end

T' = To UT, U ({qo} x (To(so) UT,(s,»))
F' = Fo U F, U if (N) then {qo} else 0 Ii

[(Q', V, T' n (Q' x V x Q'),
0,{qo},F'nQ')]",

Mo 0

29

30 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

C.,LBFA([M]",) = let (Q, V,T,0, {s},F) = M
N = f E LFA(M)' (see Remark 4.21)

in

end

qo be a new state

let Q'=Q\{s}U{qo}

in

end

T' = Tu (FU {qo}) x T(s)
F' = F U if (N) then {qo} else 0 fi

[(Q', V,T' n (Q' x V x Q'),
0, {qo}, F' n Q')]",

M

C+,LBFA([M]"d = let (Q,v,T,0, {s},F) = M
N = f E LFA(M)+

in

end

qo be a new state

let Q'=Q\{s}U{qo}

in

end

T' = Tu (FU {qo}) x T(s)
F' = F U if (N) then {qo} else 0 fi

[(Q', V, T' n (Q' x V x Q'),

0, {qo},F' n Q')]",

4.2 Towards the Berry-Sethi construction

let (Q,v,T,0,{s},F) = M
N = € E CPA(M)'

in
qo be a new state

let Q' = Q \ {s } U {qo}

T'=TU({qo}xT(s))

(see Remark 4.21)

F' = F U if (N) then {qo} else 0 fi
in

end
end

[(Q', V,T' n (Q' x V x Q'),

0, {qo}, F' n Q')]"

M OJ

31

The choice of representatives in these operators is irrelevant. For construction purposes, we

note that € E CPA (M) '" s E F.
Let LBFA (where LBFA C FA) denote the set of all finite automata that are images7 in this

~;'algebra of some E ERE. (That is, LBFA is the smallest set that contains the LBFA constants
aud is closed under the LBFA operators.) An LBFA has the following properties:

• It is f.-free.

• It has a single start state.

• The single start state has no in-transitions.

• All in-transitions to a state are on the same symbol (in V). This can be seen by consid

ering the constants Ca,LBFA (for all a E V), which are the only operators introducing new

transitions on an alphabet symbol.

Only the constants are symmetrical. 0

Remark 4.21: Parts of the operator definitions of Definition 4.20 are intentionally clumsy; they

are presented this way to facilitate the derivation of a ~-a1gebra of reduced FA's (Definition 4.29).
o

Construction 4.22 (Left-biased finite automata): Define construction lbfa E RE ---->

[LBFA]", to be the unique homomorphism from REs to [LBFA]",. 0

Example 4.23 (~-algebra of LBFA's): We construct a representative of the isomorphism class

lbfa((a U <)b') (the regular expression is from Example 3.15). The representative is shown in
Figure 4. 0

Computing within the ~-algebra of LBFA's is inefficient. Each operator defined above does

much redundant work. For example, the start states of the arguments to the operators are always

removed, with only the out-transitions from the argument's start state being used. Additionally,

the if-fi structures within the final states definition are of the same structure in each operator.

We wish to introduce an encoding of LBFA's that will allow us to find cheap constructions that

are equivalent to lbfa. We now describe such an encoding.

A method of encoding an LBFA (Q, V, T, 0, {s}, F) is:

7The images are really elements of [LBFAl~. We consider a particular representative of the image.

32 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

a
a

a b

b

b

Figure 4: A representative LBFA of the isomorphism class Ibfa«a u ,)b').

• The ,-transitions are not needed (since LBFA's are ,-free).

• State s has no in-transitions; only T(s) (the out-transitions from the start state) and s E F
are needed.

• All in-transitions to a state are on the same symbol (in V). Therefore, a state-ta-symbol

map can be used, and the symbol components of T and T(s) can be removed.

In the following subsection, we introduce reduced FA '8 as an encoding of LBFA's.

4.2.1 Reduced FA's

Definition 4.24 (RFA): A reduced FA (RFA) is a 7-tuple (Q, V,!ollow,first, last, null, Qmap)
where

o

• Q is a finite set of states,

• V is a alphabet,

• follow E P(Q x Q) is a follow relation (replacing the transition relation),

• first <; Q is a set of initial states (replacing T(s) in an LBFA) ,

• last <; Q is a set of final states,

• null E {true,!alse} is a Boolean value (encoding s E F in an LBFA), and

• Qmap E P(Q x V) maps each state to exactly one symbol (it is also viewed as Qmap E

Q --> V, and its inverse as Qmap-l E V+ P(Q)).

Definition 4.25 (Isomorphism of RFA's): We extend isomorphism ("') to RFA's. 0

Definition 4.26 (Reversal of RFA's): Reversal of RFA's is given by postfix (superscript)

function R E RFA --> RFA defined as:

(Q, V,!ollow,first, last, null, Qmap)R = (Q, V,!ollow R, last,first, null, Qmap)

o

Definition 4.27 (Extending reversal to [RFAh'): We extend reversal to [RFA]", --> [RFA]",

as ([M].,jR = [M R]". 0

We can now give isomorphisms between [LBFA]", and [RFA]". These isomorphisms will be
used to present a ~-algebra of RFA's.

4.2 Towards the Berry-Sethi construction 33

Definition 4.28 (An isomorphism between [LBFAJ", and [RFAjo-): We define isomorphism

encode E [LBFAj", --> [RFAj",

encode([(Q, V,T, 0, {s},F)]",) = let Q'=Q\{s}
in

end

[(Q', V, 1r2(T) n (Q' X Q'), 7r2(T(s»,
F n Q', s E F, (1r1 (T»R)j",

and its inverse decode E [RFAj", --> [LBFAj", as

decode([Mj",) = let (Q, V,follow,first, last, null, Qmap) = M
s be a new state

in

end

let T= {(qo,Qmap(ql),q,): (qo,qJ) Efollow}
T' = {(s, Qmap(q),q): q E first}
F = last U if (null) then {s} else 0 fi

in
[(Q U {s}, V, Tu T', 0, {s},F)j",

end

It is easy to verify that both of these functions are isomorphisms, and that decode is the inverse

of encode. 0

Given function encode and decode, we would like to obtain a E-algebra with [RFAj", as carrier

(and a corresponding unique homomorphism rfa E RE --> [RFAj",) such that the following

diagram commutes·.

RE _",lbf,,,,a_[LBFAJ,,,

rfa /
/decode

[RFAj",

We can now define a E-algebra of RFA '5; it will be cheaper to compute the RFA image of

a regular expression and map the RFA to an LBFA, than to compute the LBFA directly. The

operators of the E-algebra of RFA's are defined using the LBFA operators and the isomorphisms

encode and decode.

Definition 4.29 (E-algebra of RFA's): The carrier is [RFAj",. Given the operator requirement

in the E-algebra of LBFA's, the operator requirement in this E-algebra is:

• For binary operators, the argument representatives must have disjoint state sets.

The operators of the E-algebra of RFA's are defined in terms of the operators of LBFA's:

Cf,RFA

C0,RFA
Ca,RFA

C.,RFA([Mo]"" [MI]",)

Cu,RFA([Mo]"" [MI],,)

C"RFA([Mj",)
C+,RFA([M]",)
C',RFA ([Mj",)

encode (C"LBFA)
= encode (C0,LBFA)

encode(Ca,LBFA) (for all a E V)
encode 0 C.,LBFA (decode ([Mo]",), decode([MJ],,)

encode 0 Cu,LBFA(decode([Mo],,), decode([MJ]",))

= encode 0 C"LBFA (decode ([MJ",))
encode 0 C+,LBFA(decode([M]",)
encode 0 C"LBFA(decode([Mj",))

34 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

In full:

C~,RFA

For all a E V:

Ca,RFA

[(0, v, 0, 0, 0, true, 0)J",

[(0, v, 0, 0, 0,!alse, 0)J",

let qo be a new state

in

end

[({qo}, V, 0, {qo}, {qo},false, {(qo, a)})],.,

let (Qo, V,followo,firsto, lasto, nullo, Qmapo) = Mo

(Q" V,Joliow " first" last" null" Qmap,) = M,
in

end

let first' = firsto U if (nullo) then first, else 0 Ii
last' = last, U if (null,) then lasto else 0 Ii

in

end

[(Qo U Q" V,followo Ufollow, U (lasto x first,),

first', last', nullo A null" Qmapo U Qmap,)J",

CU,RFA([Mo],." [M,J",) = let (Qo, V,followo,firsto, lasto, nUllo, Qmapo) = Mo

(Q" V,Jollow"first, , last"null" Qmap,) = M,
in

[(Qo U Q" V,!ollowo U follow" firsto U first"

lasto U last" nullo V null" Qmapo U Qmap,)J",
end

let (Q, V,follow,first, last, null, Qmap) = M

in

[(Q, V,jollow U (last x first), first, last, true, Qmap)J",

end

C+,RFA([MJ",) = let (Q, V,follow,first, last, null, Qmap) = M

in

[(Q, V,follow U (last x first),first, last, null, Qmap)J",

end

let (Q, V,Jollow,first, last, null, Qmap) = M

in

[(Q, V,follow, first, last, true, Qmap) J '"

end

An ME RFA (the image of some E ERE) in this ~:-algebra has the following interesting property:

• The number of states in M equals the number of (not necessarily distinct) symbols (of V)

occuring in E. This follows from the fact that the operators Ca,RFA (for all a E V) are the

only RFA operators that introduce new states. This property will be used in Section 4.5 to

derive a practical implementation of the RFA operators.

We can also note the following about the operators:

• The operators do not depend on the choice of representatives of the equivalence classes.

4.2 Towards the Berry-Sethi construction 35

• An important fact is that the operators of this ~;'a1gebra are symmetrical. That is, each

operator is its own dual.

o

Definition 4.30 (Homomorphism from RE to [RFAJ",): We define rfa E RE ---> [RFAJ", to
be the unique homomorphism from REs to [RFAJ",. 0

Property 4.31 (Homomorphism rfa): Since the operators of the E-algebra of RFA's are

symmetrical (symmetrical functions are defined in Definition A.22), so is rfa. That is, rfaoR(E) =

Ro rfa(E). 0

In Section 4.5 practical implementations of the E-a1gebra of RFA's (in particular, of homomor

phism rfa) are discussed.

4.2.2 The Berry-Sethi construction

Given the E-a1gebra of RFA's, we have the desired property that (for E ERE):

Ibfa(E) = decode 0 rfa(E)

We now present Berry and Sethi's FA construction.

Construction 4.32 (Berry-Sethi): Construction BS E RE ---> [FAJ", is defined as:

BS(E) = decode 0 rfa(E)

An automaton constructed using this function has the same properties as one constructed with

function lbfa, namely:

• It is t-free.

• It has a single start state.

• The single start state has no in-transitions.

• All in-transitions to a state are on the same symbol (of V).

In practice, function BS is cheaper to compute than lbfa. 0

Remark 4.33: The history of this algorithm is somewhat complicated. The following account is

given by Briiggemann-Klein [B-K93bJ. GJushkov and McNaughton and Yamada simultaneously

(and independently) discovered the same DFA construction [Glus61, MY60J. These papers use

the same underlying t-free FA construction to which they apply the subset construction'- Un

fortunately, neither of them present the f.-free FA construction (without the subset construction)

explicitly. The underlying t-free FA construction was presented in some depth (with correctness

arguments) by Berry and Sethi in [BS86, Alg. 4.4J. In their paper, Berry and Sethi also relate

the construction to the Brzozowski construction (Brzozowski '8 construction appears as Construc

tion 5.34 in this paper).

In this paper, we adopt the convention that the t-free FA construction (without subset con

struction) is named after Berry and Sethi, while the construction with the subset construction is

named after McNaughton, Yamada, and Glushkov. 0

Example 4.34 (Berry-Sethi): A representative of the equivalence class BS((a U t)b') is shown

in Figure 4 appearing on page 32. This is the same FA as in Example 4.23. (This follows from the

fact that the Berry-Sethi construction and the LBFA E-algebra are commuting ways of arriving

at the same FA isomorphism class). 0

8The underlying construction may actually produce a nondeterministic finite automata.

36 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

It is possible to find a composition offunctions that commutes with Ibfa (and therefore decode 0

ria) and is cheaper to compute in practice. We first give some required definitions.

Definition 4.35 (Non-isomorphic mapping from [HFA]" to [FA],,): Function convert E

[HFA]" --> [FA]" is defined as:

convert([M],,) let (Q, V,follow,first, last, null, Qmap) = M
in

let T = {(qO, Qmap(qIl,qIl: (qo,qIl E follow}
in [(Q,v,T,0,first, last)]"
end

end

An important property of this function is that:

(V E : E E HE : CFA 0 convert 0 rfa(E) = V-I CRE(E»

This follows from the fact that convert simply discards the transitions that would be out of the

start state. Function convert does not add any new states, unlike function decode which adds a

new start state. 0

Definition 4.36 (Adding a begin-marker): Define function markerb E HE --> HE as:

markerb(E) = $. E

Where $ is an alphabet symbol, called a begin-marker. (In the literature, it is usually assumed -

for no particular reason - that symbol $ does not occur in regular expression E.) This function
satisfies the obvious property that:

(V E: E E HE : CRE(markerb(E» = {$}CRE(E»

o

Given functions markerbl ria, convert, and the following important property, we can construct an
efficient alternative to homomorphism lbfa.

Property 4.37 (Functions markerb, rfa, and convert): Because of the properties of convert
and markerbl we can show that:

convert 0 rfa 0 markerb(E)

= {Definition of markerb }

convert 0 rfa($. E)

{Definitions of rfa, C.,RFA }

convert 0 C,RFA(rfa($), rfa(E»

= {Definitions of rfa, CI,RFA }

convert 0 C.,RFA(CI,RFA, rfa(E»

{Definitions of convert, C,RFA, C1,RFA, rfa, and decode}

decode 0 rfa(E)

= { Commutativity}

Ibfa(E)

The composite convert 0 rfa 0 markerb is an alternative (and in practice, cheaper) implementation

of Ibfa. 0

4.2 Towards the Berry-Sethi construction 37

The fact that convert 0 rfa 0 markerb is a construction is depicted in the following commuting

diagram:

RE _",lbjc::a~. [LBFA]",

markerb convert

RE _-"r!c::.a_. [RFA]",

Construction 4.38 (A variation on the Berry-Sethi construction): Instead of constructing

an FA using the functions lbfa or BS, it is cheaper in practice to use the composite function

convert a rfa a markerb (E)

o

4.2.3 The McNaughton-Yamada-Glushkov construction

Since the Berry-Sethi construction produces an <-free (possibly nondeterministic) FA, we now

consider making the resulting FA deterministic.

Construction 4.39 (McNaughton-Yamada-Glushkov): (We assume that the composite
function useful, a subset is extended to [FA)", ---+ [DFA]",.) The McNaughton-Yamada-Glushkov

DFA construction is MYG E RE ---+ [DFA]"" defined as:

MYG(E) = useful, a subset a decode a rfa(E)

A DFA produced by MYG is Complete (by a property of useful, a subset). A practical imple

mentation is given in Algorithm 4.42 (given below), which implements useful, a subset a decode.

Homomorphism rfa can be implemented using the techniques described in Section 4.5. This algo

rithm is the same9 as that given by McNaughton and Yamada [MY60, Construction method on

pg. 44]. 0

Example 4.40 (McNaughton-Yamada-Glushkov): In the case of (a u <)b' ERE, the Berry

Sethi construction produces a deterministic FA. Function MYG produces a similar DFA, with a

sink state added to make it Complete. The state graph of a representative DFA of isomorphism

class MYG«a U <)b') is shown in Figure 5. 0

Remark 4.41: The variation on the Berry-Sethi construction (Construction 4.38) can be used

for a practical implementation of the McNaughton-Yamada-Glushkov construction. This would

yield a construction not appearing in the literature. 0

9The only difference is that the unrolled first iteration step is not presented explicitly in McNaughton and

Yamada's paragraph describing their algorithm.

38 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

a
a

a
b

a a,b
b

b

Figure 5: A representative DFA of the isomorphism class MYG((a U <)b').

Composite function useful, 0 subset 0 decode can be implemented using Algorithm 2.45 (which

implements useful, 0 subset). Here, the first iteration is unrolled to accommodate the definition

of function decode, and some obvious improvements have not yet been made).

{(Q, V,Jollow,first, last, null, Qmap) E RFA}
let S = {{ s}} : S is a new state, s rt Q;
T :=0;
D,U:= 0,S;
let u: u E U;

D,U:= D U {u},U\ {u};
fora:aEVdo

rof;

d:= (U p:pE u: {q: qEfirstA Qmap(q) =a});

if d rt D ~ U := U U {d}

idE D ~ skip
fi· ,
T:= Tu {(u,a,d)}

do U#0~

ad;

let u: u E U;

D,U:= D U {u},U\ {u};
for a: a E V do

rof

d:= (u p: p E u: {q: (p,q) E follow A Qmap(q) = a});

if d rt D ~ U:= U U {d}
~ dE D ~ skip

fi;

T:= T U {(u,a, d)}

F:= {d: d E DAd n last # 0} U if (null) then S else 0 fi
{[(D, V, T, 0, S, F)]" = useful, 0 subset 0

decode ([(Q, V,Jollow,first, last, null, Qmap)],,)}

{Complete(D, V, T, 0, S, F)}

4.3 The dual of the Berry-Sethi construction

Some simplification gives the algorithm:

Algorithm 4.42 (McNaughton-Yamada-Glushkov):

{(Q, V,Jollow,first, last, null, Qmap) E RFA}

let S = {{ s}} : s is a new state, s rt Q;

T:=0;

D,U:=S,0;

for a: a E V do

d:= {q: q E first II Qmap(q) = a}

U:=UU{d};

T:= TU {({s},a,d)}
roC;

doU#0--->

ad;

let u: u E U;

D,U:= D U {u},U \ {u};
for a: a E V do

rof

d:= (U p: p E u: {q: (p,q) E follow II Qmap(q) = a});

if d rt D ---> U:= U U {d}
~ d E D ---> skip

ft· ,
T:= Tu {(u,a, d)}

F := {d : d E D II d n last # 0} U if (null) then S else 0 ft
{[(D, V, T, 0, S, F)b = useful, 0 subset 0

decode([(Q, V,Jollow,first, last, null, Qmap)],,)}

{Complete(D, V, T, 0, S, F)}

This algorithm is used in the McNaughton-Yamada construction [MY60].

4.3 The dual of the Berry-Sethi construction

39

The following commuting diagram gives a property of regular expressions and regular languages

that will prove to be useful:

RE _-,C",R",E,--_ Creg

R R

RE _-,C",R",E,--_, Creg

In this diagram, the two reversal operators are different: one is reversal of REs, while the other

is reversal of languages.

Given the definition of an FA construction f and the above diagram, we have the property

that the dual of a construction is again a construction. That is, R 0 foR is also a construction.

Such a dual construction is less efficient than f (since it involves two reversal functions), and we

explore ways to efficiently implement the dual constructions.

Construction 4.43 (Right-biased): We can use R 0 lbfa 0 R as a construction. For any given

E ERE, a representative of R 0 lbfa 0 R(E) has the following properties (the properties are based

upon those of the left-biased E-algebra):

40 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

b

a

a

Figure 6: A representative FA of the isomorphism class R 0 lbfa 0 R((a U <)b').

• It is f.-free.

• It has a single final state.

• The single final state has no out-transitions.

• All out-transitions from a state are on the same symbol (in V).

D

Example 4.44 (Right-biased construction): We construct a representative FA of the isomor

phism class R 0 lbfa 0 R((a U <W) The representative is shown in Figure 6. D

To consider the dual of the Berry-Sethi construction, we combine the commuting diagrams of
duals of a construction (above) and construction decode 0 rfa, giving:

RE [FA]", _.:;::L-"FA,,-~. Lreg

R R R

RE __ r~fa,--~. [RFA]=----,d",ec""o"dee.....- [FA]", _.:;::L""FA"----~. Lreg

The source is the upper-left vertex, and the sink is the upper FA vertex.

The construction RodecodeorfaoR (in this diagram) is still inefficient, requiring two redundant

reversal operations. We can make it more efficient, by finding functions that form new paths in

the commuting diagram.

From the definitions of the E-algebra of RFA's (Definition 4.29) and homomorphism rfa (Def

inition 4.30) we know that the RFA operators are symmetrical, and so is ria. In other words

rfa 0 R(E) = R 0 rfa(E). This allows us to add two new edges to the above commuting diagram;
the resulting diagram is:

4.3 The dual of the Berry-Sethi construction

RE
rfa , [RFA]", [FA]", CFA Creg

R R R R

RE
rfa

, [RFA]~ decode [FA]", CFA Creg

Construction 4.45 (The dual of Berry-Sethi): The construction is:

R 0 decode 0 R 0 rfa(E)

This construction is the dual of the Berry-Sethi construction (Construction 4.32). 0

We give R 0 decode 0 R in full:

Ro decode oR([M]",) let (Q, V,follow,first, last, null, Qmap) = M

f be a new state

in

end

let T = {(qQ, Qmap(qQ), q.) : (qQ, q.) E follow}

T' = {(q, Qmap(q),J) : q E last}
5 = first U if (null) then {f} else 0 Ii

in

[(Q U {f}, V, T U T', 0, 5, {f})]'"
end

The FA resulting from this construction is the same a.'l given in Example 4.44

41

We can also consider improving the dual of the variation on the Berry-Sethi construction

(Construction 4.38). We combine the commuting diagram showing the dual of a construction,
with construction convert 0 rIa 0 markerb, giving:

RE [FA]", _-=C,-"F,,-A~ Creg

R R R

RE
markerb

RE _-,-,rf,.::a_~. [RFA]", convert, [FA]", _-"C~F,-"A,--~, Creg

Again, the source is the upper-left RE vertex, while the sink is the upper-right FA vertex.

Consider the composite function RoconvertorfaomarkerboR. We begin with the two rightmost

functions:

markerb 0 R(E)

{Writing R as postfix and superscript}

markerb(ER
)

{Definition of marker, (Definition 4.36) }

$. (ER)

{Function R 0 R is the identity (see Definition A.19) }

R 0 R($· (ER))

{ Definition of R on . regular expressions}

42 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

R((ER)R . ($)R)

{Definition of Rand R 0 R}

R(E· $)

To make this definition more concise, we define an end-marker function.

Definition 4.46 (Adding an end-marker): Define function marker, E RE --t RE as:

marker,(E) = E· $

where $ is assume to be a symbol in the alphabet. 0

Property 4.47 (marker,): Function marker, is the dual of function markerb (Definition 4.36):

markerb 0 R(E) = R 0 marker,(E)

o

With the above property, we can transform the above commuting diagram, by adding two new

edges:

RE markere RE [FA] '" _.=L-"FA"----_. Lreg

R R R R

RE markerb
RE rfa • [RFA]~ convert [FA]", _..::L:LFA"---_ Lreg

The composite Ro convert 0 ria 0 Ro marker e is no more efficient even with the use of marker e.

Fortunately, since ria is symmetrical, we can replace ria 0 R by R 0 rfa, giving:

RE
marker e RE

rfa
• [RFA]", [FA]", LFA Lreg

R R R] R R

RE
markerb.

RE
rfa

• [RFA]", convert [FA]", LFA • Lreg

The composite function R 0 convert 0 R is particularly easy to present, using the definitions of

R and convert (Definition 4.35):

R 0 convert 0 R([R]",) let (Q, V,Jol/ow,jirst, last, null, Qmap) = R

in

let T = {(qO, Qmap(qo),q,): (qO,q,) E follow}

in [(Q, V, T, 0,jirst, last)]",

end

end

This leads to the following construction.

4.3 Tbe dual of tbe Berry-Sethi construction 43

Figure 7: A representative DFA of the isomorphism class ASU((a u <)b').

Construction 4.48 (The dual of the variation on the Berry-Sethi construction): The

construction is:

R 0 convert 0 R 0 rfa 0 marker, (E)

This construction is also presented very informally by Aho, Sethi, and Ullman [ASU86, Exam

ple 3.22, pg. 140[. There appears to be an error in item two of the three steps describing the
construction in [ASU86[. Instead of

2. label each directed edge (i,j) by the symbol at position j, and

the step should read

2. label each directed edge (i,j) by the symbol at position i, and

o

Example 4.49 (The dual of the variation on the Berry-Sethi construction): A represen

tative FA of the isomorphism class R 0 convert 0 R 0 rfa 0 marker,((a U <)b') is shown in Figure 6

on page 40. This is the same FA as in Example 4.44. 0

4.3.1 The Aho-Sethi-Ullman DFA construction

In order to obtain a (possibly non-Complete) DFA we use the composite function useful,osubsetopt

(given in Definition 2.44), extended to [FA)", ----> [DFA)".

We can immediately give the Aho-Sethi-Ullman DFA construction using this composite func
tion.

Construction 4.50 (Aho-Sethi-Ullman): The construction is ASU ERE ----> [DFA)" defined
as:

ASU(E) = useful, 0 subsetopt 0 R 0 convert 0 R 0 rfa 0 marker,(E)

Algorithm 4.52 (given below) is an imperative program implementing

use/ul
oS

0 subsetopt 0 R 0 convert a R

Homomorphism rfa can be implemented using the techniques described in Section 4.5, and function
marker, is trivial to implement. The Aho-Sethi-Ullman algorithm is given in [ASU86, Alg. 3.5,
Fig. 3.44). 0

Example 4.51 (Aho-Sethi-Ullman): We give a representative DFA of the isomorphism class

ASU((a U <)b'). The state graph is shown in Figure 7. 0

We compose useful, 0 subsetopt (as implemented by Algorithm 2.46) with Ro convert oR. The

resulting algorithm is simplified in a similar way to the McNaughton-Yamada-Glushkov algorithm
(Algorithm 4.42).

44 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

Algorithm 4.52 (Aho-Sethi-Ullman):

{(Q, V,Jollow,first, last, null, Qmap) E RFA}

S,T:= (if (first # 0) then {first) else 0 fi),0;

D,U:= 0,8;
do U # 0---.

ad;

let u: u E U;

D,U:=DU{u},U\{u};
for a: a E V II (3 q: q E u: Qmap(q) = allfoUow(q) # 0) do

d := (U q : q E u II Qmap(q) = a : follow(q));

if d \l D ---. U:= U U {d)
~ d E D ---. skip
fi· ,
T:= T U {(u,a,d))

rof

F:= {d: d E D II d n last # 0}
{[(D, V, T, 0, S, F)]" = useful, 0 subsetopt 0

R 0 convert 0 R([(Q, V,Jollow,first, last, null, Qmap)]e,)}

4.4 Extending regular expressions

For some regular languages, the regular expressions denoting the language can be can be consid
erably more succinct when operators such as intersection en) and complement (--,) are available

in REs. Without formally adding them to the signature L:, we briefly consider how to implement

operator n in the left-biased L:-algebra of FA's.

Definition 4.53 (Extended regular expressions and their languages): The set of extended

regular expressions (over alphabet V), ERE, and the languages they denote, are exactly as RE,

with the addition of the operators n E ERE x ERE ---. ERE (an infix operator) and ' E

ERE ---. ERE (a prefix operator). Operator n has the same precedence as U, while, has higher

precedence than *. The language of an ERE is defined using the function LERE E ERE ---. Lreg

which is as function LRE, with the extensions

LERE(Eo n E ,) LER£tEo) n LERE(E,)

LERE(,Eo) = V' \ LERE(Eo)

o

Remark 4.54: The L:-algebra definition of regular expressions are not used in this section as the

algebraic structure is not needed. 0

Definition 4.55 (Intersection of LBFA's): In defining intersection, we assume that the two

arguments have been constructed in the L:-algebra of LBFA. In particular, we require that for

each state, all in-transitions are on the same symbol. Assuming the argument representatives

4.4 Extending regular expressions

have disjoint state sets, one possible implementation of the operator is lO
:

Cn,LBFA([Ma]"" [M,J",) = let (Qa, V, Ta, 0, {sa}, Fa) = Ma
(Ql, V, T 1 , 0, {sd,Fd = Ml
qO be a new state

N =, E (,cFA(Ma) n ,cFA(M1))

in

45

let Q' = {ga} U (U b: b E V : 7r2(Ta(b)) x 7r2(T1(b)))

in

end

end

The expression

T'(a) = {ga} x (Ta(sa,a) x T1(sl,a))
U {((p,g),(p',g')): (p,p') E Ta(a) /lp# Sa

/I (g,g') E T1(a) /I g # Sl

/I (3 b: b E V : p E 7r2(Ta(b)) /I g E 7r2(T1(b)))}

[(Q',v,T',0,{ga},(Fax F1)nQ'
u if (N) then {ga} else 0 fi)]",

Q' = {ga} U (u b: b E V: 7r2(Ta(b)) x 7r2(T1(b)))

in the let clause deserves some explanation. A state in the constructed LBFA is either the new

state ga, or a pair of states (p, g) where p and g (p # Sa, g # S1) are from Ma and Ml respectively. If
p and g do not have an in-transition on the same symbol, the state (p, g) will be start-unreachable

in the constructed LBFA. For this reason, it is omitted. The definition of the transition relation

is similar. The constructed LBFA is sometimes called the cross-product LBFA. Although the

operator removes most start-unreachable states, some may still remain. 0

We can now present an intersection operator for RFA's.

Definition 4.56 (Intersection of RFA's): We define intersection of RFA's as:

Cn,RFA([Ma]"" [M1]",) = encode 0 Cn,LBFA(decode([Ma]",), decode ([M,]",))

In full:

let (Qa, V,followa, firsta, lasta, nulla, Qmapa) = Ma
(Ql, V,followl,firstl,last1,nulll, Qmapd = Ml

in

end

Note that this operator is symmetrical. 0

let Q' = (U b: b E V : Qmapi]l(b) x Qmapl1(b))

in

end

follow' = {((p,g),(p',g')): (p,p') E followa
/I (g, g') E follow 1

/I Qmapa(p) = Qmapl (g)
/I Qmapa(p') = Qmapl(g')}

first' = {(p, g) : p E firsta /I g E first 1
/I Qmapa(p) = Qmapa(g)}

Qmap,-l(a) = Qmapi]l(a) x Qmapjl(a)

[(Q', V,follow',first', (last a x lastd n Q',
nulla /I nulll, Qmap')]",

lOThe definition presented here is intentionally clumsy, making it easier to present intersection of RFA's

46 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

In their original paper [MY60, Section lVI, McNaughton and Yamada attempt to define intersec

tion. Unfortunately, their informal presentation is difficult to understand. Subsequent presenta

tions of the RFA operators have all omitted intersection. For example, Berry and Sethi note (in

[BS86, Remark 3.1]):

"The approach ... does not extend to regular expressions with intersection and com

plementation operators."

We can construct an RFA operator for any regular operator (an operator on languages that

preserves the regularity property) for which we can construct an LBFA operator. Examples of

such operators are intersection, symmetrical difference, complement, asymmetrical difference, and
prefix closure.

4.5 Efficiently computing with RFA's

In this section, we consider some practical methods for constructing RFA's. The first subsection

considers a practical implementation of the (E-algebra of) RFA operators, while the second sub

section introduces some improvements (due to Chang, Paige, and Briiggemann-Klein) to the RFA
operators.

4.5.1 A practical implementation of the RFA operators

In an RFA, the states are mapped to their corresponding symbol (of V) by the seventh component

(usually called Qmap) of the RFA. This seventh component would be redundant if the states and

symbols were in a one-to-one correspondence. Furthermore, the symbols could then be used as

the states. In this .subsection, we explore this encoding method, and the requirements on the REs
for this method to work. We will also be defining a new, restricted, mapping ria' E RE+ RFA.
We will be able to use this mapping for regular expressions in which each alphabet symbol occurs

no more than once.

We first define an important auxiliary function.

Definition 4.57 (Occurrences of symbols in REs): We define function Oce E RE -----> P(V)
such that Oee(E) is the set of symbols (of V) occurring in E. We can also define Oec recursively

as follows:

o

Oce«)
Oce(0)

Dec (a)
Oee(E. F)

Oee(E U F)

Oec(E*)
Oee(E+)

Oce(E')

o
o
{a} (for a E V)

Oee(E) U Oec(F)
Oce(E) U Dec (F)

Dec (E)
Dec (E)
Oee(E)

Definition 4.58 (RRE): We define RRE C RE as the smallest set satisfying:

• < E RRE,

.0 E RRE,

• a E RRE (for a E V),

• if E, FERRE, and Oce(E) n Oee(F) = 0 then E· FERRE and E U FERRE, and

• if E E RRE then E* E RRE, E+ E RRE, and E' E RRE.

4.5 Efficiently computing with RFA's 47

Intuitively, RRE (for restricted regular expressions) denotes the set of all E E RE such that each

symbol (of V) occurs no more than once in E. 0

Example 4.59 (RRE): A RRE is (a U ,)b'. 0

In order to give our alternative RE to RFA mapping, rfa' E RRE ~ RFA, we first define

some more auxiliary functions. The definitions of these functions also follow directly from the

RFA operators.

Definition 4.60 (First): We define First E RE ~ P(V) recursively (recall from Example 3.20

that Null(E) == « E LRE(E))):

First«)

First(0)

First(a)

First(E . F)

First(E U F)

First(E')

First(E+)

First(E?)

o
o
{a} (for a E V)

First(E) U if (Null(E)) then First(F) else 0 fi
First(E) U First(F)

First(E)

= First(E)

First (E)

This definition follows directly from the first tuple element of the RFA operator definitions. 0

Remark 4.61: It is useful to have an intuitive understanding of function First. First(E) is the

set of all symbols that can occur as the first symbol of a string in LRE(E). 0

Definition 4.62 (Last): Function Last is defined to be the dual of First. 0

Remark 4.63: Last(E) is the set of all symbols that can occur as the last symbol of a string in

LRE(E). 0

Definition 4.64 (Follow): We define Follow E RE ~ P(V x V) recursively:

Follow«)

Follow (0)

Follow (a)

Follow(E· F)

Follow (E U F)

Follow (E')

Follow(E+)

Follow (E?)

= 0
o
o (for a E V)

Follow(E) U Follow(F) U (Last(E) x First(F))

Follow(E) U Follow (F)

Follow(E) U (Last(E) x First(E))

= Follow(E) U (Last(E) x First(E))

Follow(E)

This definition follows directly from the follow tuple element of the RFA operator definitions. 0

Remark 4.65: For a, b E V, (a, b) E Follow(E) is equivalent to ab being a substring of some

string in LRE(E). 0

Example 4.66 (First, Last, Null, Follow): We use the regular expression (a U ,)b' (from Exam

ple 3.15):

First((a U <)b') = {a, b}

Last«a U <)b') {a,b}

Null((a U <)b') = true

Follow«aU <)b') = {(a, b), (b, b)}

0

We now have the auxiliary functions required for the definition of ria'.

48 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

Definition 4.67 (Function rfa' E RRE ---> RFA): The definition of rfa' is straightforward:

rfa' (E) = (Occ(E), V, Follow(E), First(E), Last(E), Null (E) , Iv)

where Iv is the identity function on alphabet symbols. 0

Example 4.68 (rfa'): Using the results of the above example, we have:

rfa' «a U E)b') = ({a, b}, {a, b}, {(a, b), (b, b)}, {a, b}, {a, b}, true, {(a, a), (b, b)})

o

Property 4.69 (rfa'): Given E E RRE then rfa(E) = [rfa'(E»).,. 0

Function rfa' is convenient, as all of the auxiliary functions can easily be computed bottom-up

on the structure of E.

Construction 4.70 (An encoding of BS): The method of constructing an RFA (using rfa')

leads to a particularly concise definition of BS. For example, we define BSenc E RRE ---> FA:

o

BSenc(E) = let s be a new state

in

end

let T = ((a,b,b): (a,b) E Follow(E)}

T' = {(s,a,a): a E First(E)}
F = Last(E) U if (Null(E» then {s} else 0 fi

in
(Occ(E) U {s}, V, T U T', 0, {s}, F)

end

Remark 4.71: Compare the definition of BSenc to the definition of decode (Definition 4.28). 0

Property 4.72 (Construction BSenc): For E E RRE:

[BSenc(E)]", = BS(E)

o

Remark 4.73: By inspection, we see that (for E E RRE) the FA BSenc(E) (equivalently BS(E»

is deterministic. This implies that:

MYG(E) = complete 0 BS(E)

o

Remark 4.74: In Section 5.4 we will show that Brzozowski's construction (with an appropriate

encoding) produces a DFA (from an E E RRE) that is isomorphic to the one produced by BSenc

(and therefore BS). 0

4.5 Eflicientiy computing with RFA's

Similarly, the Aho-Sethi-Ullman algorithm becomes quite concise (from Algorithm 4.52):

{E E RRE}

E' := marker,(E);

S, T:= (if (First(E') 0; 0) then {First(E')} else 0 fi), 0;
D,U:= 0,S;

do U 0; 0--+
let u: u E U;

D,U:= D U {u},U\ {u};

for a : a E u A Follow(E')(a) 0; 0 do

d := (Follow(E'))(a);

rof

if d It' D --+ U:= U U {d}

~ d E D --+ skip
fi· ,
T:= TU {(u,a,d)}

odj

F:={d:dEDA$Ed}

{.cFA(D, V,T,0,S,F) = .cRE(E)}

This algorithm is very similar to the one given in [ASU86J.

49

The only problem remaining is how to deal with an E E RE when E It' RRE. The method

usually used is to "mark" the symbols of E (perhaps with an integer subscript), making each

symbol unique. For example, (a+ U ab) It' RRE but after marking we get (at U a2b3) E RRE.

Once the corresponding FA is constructed from the marked regular expression, the marks are

removed (the FA is "unmarked") and the FA accepts .cRE(E). There are a few different styles of
marking. For example, consider a+ Uab: McNaughton-Yamada mark this as ai Ua2b1 , Berry-Sethi

use at U a2b3 , and Aho-Sethi-Ullman use 1 + U 23.
The only disadvantage to the use of marking to encode RFA computation is that marking is

unable to deal with some of the other regular operators, such as intersection, and complementation.

For all E, FERRE we have the property that .cRE(EnF) = .cRE(E)n.cRE(F) = 0. For example,
given" aa n a' (with language .cRE(aa n a') = .cRE(aa) n .cRE(a') = {aa}). After marking we

get ala2 n a3 after marking (with .cRE(ala2 n a3) = 0). In Section 4.4 we saw how these operators

can be readily implemented with RFA's (without the encoding scheme of this section).

The approach presented in this subsection is essentially due to McNaughton and Yamada

[MY60], Glushkov [Glus61]' and Berry and Sethi [BS86J. The presentations in [B-K93a, Section 2],

[BS86], [tEvG93J, and [ASU86, Fig. 3.40, pp. 134-141J are particularly clear. Those interested

in a rigorous treatment of this approach to RFA's can refer to the paper of ten Eikelder and van

Geldrop [tEvG93].

4.5.2 More efficient RFA operators

The definition of the RFA operators may still result in inefficient implementation. In particular,

Briiggemann-Klein and Chang and Paige found that the implementation of the (u) in the RFA

operators may require more than constant time [B-K93a, Chan92, CP92]. In most cases the

arguments (of u) are disjoint; the only possible exception is the union follow U (last x first),

appearing in the C'.RF A and C+,RF A operators. Two solutions to this problem will be presented

here.

Convention 4.75 (Constant time union): We use the symbol I±J to denote union where the

arguments to !±I are assumed to be disjoint. 0

11 Here we assume, for the moment, that .c RE can deal with the intersection operator.

50 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

The first solution was proposed by Chang aud Paige [Chan92, CP92).

Definition 4.76 (Chang-Paige RFA): We add an eighth component W to each RFA

(Q, V,follow,first, last, null, Qmap, W)

such that

W = (last x first) \ follow

These modified RFA's will be called Chang-Paige RFA's, and are denoted by RFA'. 0

We only give the new operators, instead of the ~-algebra. The operators follow directly from

the above definition.

Construction 4.77 (Operators of the ~-algebra of Chang-Paige RFA's): As usual, the

operator requirement is:

• For binary operators, the representatives have disjoint state sets.

CaEV,RFA'

[(0, v, 0, 0, 0, true, 0, 0))",

[(0, v, 0, 0, 0,false, 0, 0))",

let qo be a new state

in

[({qo}, V, 0, {qo}, {qo},false, {(qo, a)}, {(qo, qo)}))'"
end

C,RFA' ([Mo)"" [M,)",) let (Qo, V,followo, firsto, lasto, nullo, Qmapo, Wo) = Mo
(Q1, V,/olloWI,jirstl, last l , null!, Qmapl, Wd = MI

CU,RFA' ([Mo)"" [M,l<><)

in

end

let first' = firsto l!! if (nUllo) then first, else 0 Ii
last' = last, l!! if (null,) then lasto else 0 Ii
W' = if (null,) then Wo else 0 Ii

in

end

W" = if (nullo) then W, else 0 fi

[(Qo l!! Q" V,followo l!!foliowll!! (lasto x first,),

first' , last', nullo /\ nulh, Qmapo ltJ Qmapl,

(last, x firsto) l!! W' l!! W"))",

let (Qo, V,Jollowo,firsto, lasto, nullo, Qmapo, Wo) = Mo

(Q" V,fOliOWI, first I , last" null" QmapI, W,) = M,

in

end

[(Qo l!! Q" V,followo l!! followl,firsto l!!first
" lasto l!! last" nullo V null" Qmapo l!! QmapI,

(lasto x first,) l!! (last I x firsto) l!! Wo l!! W,))",

let (Q, V,follow,first, last, null, Qmap, W) = M

in

[(Q, V,follow l!! W,first, last, true, Qmap,0))",

end

4.5 Efficiently computing with RFA's 51

let (Q, V,/ollow,first, last, null, Qmap, W) = M

in
[(Q, V,follow I±J W,first, last, null, Qmap,0)J",

end

C?,RFA'([MJ",) = let (Q, V,follow,first, last, null, Qmap, W) = M

in

[(Q, V,/ollow,first, last, true, Qmap, W)J",

end

These operators are symmetrical. The correctness of these operators is shown in Theorem B.3. 0

Chang and Paige make additional running-time savings by computing the components of a RFA'
only as needed in the operators C*,RFAI and C+,RFAI. The running-time and space savings, along

with implementation details are given in [Chan92, CP92J.

The second solution also involves adding an eighth tuple element to RFA's, giving RFA".

Definition 4.78 (RFA"): We add an eighth component W to each RFA

(Q, V,follow,first, last, null, Qmap, W)

such that

W = follow \ (last x first)

These modified RFA's are denoted by RFA". 0

As before, the new operators follow directly from the above definition.

Construction 4.79 (Operators of the E-algebra of RFA"): As usual, the requirement for

binary operators is that the representatives of the arguments are chosen such that they have
disjoint state sets.

C(,RFA"

C0 ,RFA"

Ca,EV,RFA"

[(0, v, 0, 0, 0, true, 0, 0)J",

[(0, v, 0, 0, 0, false, 0, 0)J",

let qo be a new state

in

[({qo}, V, 0, {qo}, {qo},Jalse, {(qO, a)}, 0)J"
end

C.,RFA" ([MoJ"" [M,]",) = let (Qo, V,Jollowo,firsto, lasto, nullo, Qmapo, Wo) = Mo

(Q" V,fOlloWl ,first 1 ,last
"

null 1 , Qmapl, WI) = M,

in

end

let first' = first o bJ if (nullo) then first, else 0 fi
last' = last , I±J if (nullI) then lasto else 0 fi
W' = if (null I) then Wo else followo fi

in

end

W" = if (nullo) then W, else follow 1 fi

W" = if (nullo II null I) then 0 else (lasto x firstI) fi

[(Qo I±J Q" V, followo I±J follow 1 bJ (last o x first 1),

first', last', nullo A nullt, Qmapo I:!:J Qmapl,

W' l±J W" l±J W'fI)J£!<,

52 4 CONSTRUCTIONS BASED ON REGULAR EXPRESSION STRUCTURE

CU,RFA" ([Mo]", , [M,J",) let (Qo, V,followo , firsto, lasto, nullo, Qmapo, Wo) = Mo

(Q., V,follow., first., last., null., Qmap., Wd = M.

in

end

[(Qo OJ Q., V,followo eJ follow., firsto eJ first.,

lasto eJ last., nullo V null., Qmapo eJ Qmap.,

Wo eJ Wd]",

C.,RFA" ([M]",) = let (Q, V,follow,first, last, null, Qmap, W) = M

in
[(Q, V, W eJ (last x first), first, last, true, Qmap, W)]",

end

let (Q, V,follow,first, last, null, Qmap, W) = M

in
[(Q, V, W eJ (last x first), first, last, null, Qmap, W)j.,

end

let (Q, V,follow,first, last, null, Qmap, W) = M

in

[(Q, V,follow,first, last, true, Qmap, W)j.,

end

These operators are symmetrical. Their correctness is shown in Theorem B.4. 0

Definition 4.80 (Mapping [RFA']", and [RFA"]", to [RFA]",): The mapping is 7rs. 0

Remark 4.81: Although this construction does not appear in the literature, a related one does:

Briiggemann-Klein describes a transformation on regular expressions which closely parallels the

RFA" operators. A regular expression E is first transformed into a star normal-form expression,

denoted by E-j the RFA image of E· has similar properties to the RFA" image of E. The details

of the star normal-form transformations (and the running time improvements resulting from them)
are described in [B-K93a]. 0

53

5 The Myhill-Nerode, Brzozowski and DeRemer construc

tions

In this section, we explore a DFA construction method - due to Myhill and Nerode - from

which we derive Brzozowski's construction. First, we make some observations about determinism

in finite automata.

Recall a property of weakly deterministic automata - Property 2.28. Given that the set of

left languages (of the states) in a DFA are disjoint, we will be exploring methods of computing a

set of left languages to construct an automaton.

Definition 5.1 (Left languages of a DFA): Define the left languages of a DFA as:

<- <-
C (Q, V,T,E,S,F) = {C (q): q E Q}

o

Since the elements of this set are pairwise disjoint (by Property 2.28), we can also view it as the

(finite) set of equivalence classes of some equivalence relation on V'. There are two potential

problems with this:

<-
• In the case that an ME DFA is not Comptete then C (M) is a partial partition of V'. (This

follows from Property 2.16.) To make the definitions in this section easier to present, we

restrict ourselves to Complete DFA's .

• It may be that 0 is a left language of some state - corresponding to a start-unreachable

state. In this section, we will not be interested in DFA's with start-unreachable states.

<-
Since CPA (Q, V, T, E, S, F) = (u f : f E F : C U)) (see Definition 2.12) we also note that the

<-
language of an automaton M is the union of some of the equivalence classes in C (M).

Definition 5.2 (Right invariance of an equivalence relation): An equivalence relation E
on V* is right-invariant if and only if

(lIu,a:uE V'l\aE V: (3 v: v E V': [U]E' {a} <;; [V]E»

o

Property 5.3 (Right invariance of an equivalence relation): Sometimes right invariance of
equivalence relation E on V* is given as

(II u, z : u E V' 1\ z E V' : (3 v : v E V' : rUlE ' {z } <;; [v] E»

This is equivalent to the definition given above (by induction on the length of Z E V'). 0

<-
We can now formulate an important property of C (M), the partition of V',

<-
Property 5.4 (Right invariance of a partition of V'): Partition C (Q, V, T, E, S, F) is right-

invariant if and only if

<- <-
(lIp,a:PE Ql\aE V: (3 q: qE Q: C(p). {a} <;; C(q»)

o

<-
Remark 5.5: It should be clear that for all M E DFA such that Comptete(M), C (M) is right-

invariant; this follows since for all states p, (and transition relation T E Q x V --> Q, since

ME DFA) (and a E V):

<- <-
C(p)' {a}<;; C(T(p,a))

o

54 5 THE MYHILL-NERODE, BRZOZOWSKI AND DEREMER CONSTRUCTIONS

Remark 5.6: Had we been considering non-Complete DFA's, we would not have a partition on
<-

V'; right invariance could still be defined (for partial partition L (Q, V, T, E, S, F)) as:

<- <-
(Vp,a:PE QAaE V AT'(p,a) #0: (3 q: qE Q: L(p). {a} ~ L(q)))

We will not be using this definition. We give it to point out that the techniques of this section are

also usable in constructing non-Complete DFA's (as Brzozowski demonstrated in [Brz064]). 0

5.1 The Myhill-Nerode construction

Before considering how to construct finite automata, we first present the Myhill-Nerode theorem.

A good text book introduction to the theorem is [HU79l.

Theorem 5.7 (Myhill-Nerode): The Myhill-Nerode theorem states that the following state

ments are equivalent [Myhi57, Nero58, RS59, HU79l:

1. L is a regular language.

2. L is the union of some of the equivalence classes of a right-invariant equivalence relation (on

V') of finite index.

3. Let RL be the right-invariant equivalence relation defined by

(x,y) E RL == (V z: Z E V' : (xz E L) == (yz E L))

Relation RL is of finite index.

Proof:

A following proof is given in [HU79, Theorem 3.9l.

(1) =? (2): Assume L is accepted by M E DFA such that Camplete(M). Let E be the equivalence
<- <-

relation corresponding to L (M). UE is finite, and L = (U f : f E F : L (I)). (See

Definition A.8 for the definition of n
(2) =? (3): We show that for an equivalence relation E satisfying (2) that E ~ RL . (Here ~

denotes equivalence relation refinement, see Definition A.IO.) We start the derivation using

the right invariance property of E (Property 5.4, written slightly differently):

(V u: u E V' : (V w: w E V' : (3 v: v E V' : ([UlE' {w}) ~ [VlE)))

=? {Assumption that E satisfies (2), for all v E V': ([VlE ~ L) V ([VlE n L = 0)}

(V u: u E V' : (V w: wE V' : «[UlE' {w}) ~ L) V «[UlE' {w}) n L = 0)))

=? {Definition of RL }

(V u: u E V' : (3 v : v E V' : [UlE ~ [VlRL))

= {Definition of refinement (~) - Definition A.ll}

[v'lE ~ [V'lRL

{Definition of refinement (~) - Definition A.lO}

E~ RL

=? {Property of refinement - Property A.12}

UE 2 URL

It follows that since UE is finite, so is URL.

5.1 The Myhill-Nerode construction

(3) =? (1): We can construct the following Complete DFA (from RL) accepting L:

let T([wIRL' a) = {[waIRL}
F = {[wIRL : w E L}

in

end

It follows that L is a regular language.

o

55

Property 5.8 (Index of equivalence relation E): Given L E .creg, M E DFA accepting L,

and E (satisfying statement 2 and constructed as in the proof of (1) =? (2) of the Myhill-Nerode
<-

theorem) then ~E ::; IMI (since ~E = ~.c (M) by definition of E and Det'). 0

Property 5.9 (Uniqueness and minimality of equivalence relation RL): Of all equivalence

relations satisfying statement 2 of the Myhill-Nerode theorem, RL is the unique minimal one. This

follows from the fact that all others are refinements of RL (see the proof of (2) =? (3)). 0

The theorem does not say much about how to find equivalence relations satisfying statement 2,

other than providing a definition of the unique minimal one, RL .

We can formalize statement 2 of the Myhill-Nerode theorem:

Definition 5.10 (Predicate MN): For regular language L and equivalence relation E (on V')

MN(L, E) is equivalent to

• ~E is finite,

• L = (u v : vEL: [vIE)' and

• E is right-invariant.

o

Note that MN(L,RL).

The DFA construction given in the (3) =? (1) proof can be used with other right-invariant
equivalence relations.

Construction 5.11 (Myhill-Nerode): Given a language L and right-invariant equivalence

relation E such that MN(L, E) we can construct an automaton accepting L using the function

MNconstr(L, E) let T([wIE, a) = {[walE}
F = {[wIE : w E L}

in

([V'IE, V, T, 0, {[fIE}, F)
end

This construction has the following properties:

• The definition is independent of the choice of representatives of the equivalence classes of E.

• By inspection we can see that the FA constructed by MNconstr is a Complete DFA.

<-
• For any state U E [V'IE we have .c (U) = U.

• All states in the constructed automaton are start-reachable.

• The number of states is tiE.

• The construction satisfies the property

(Ii L,E: MN(L,E): .cFA(MNconstr(L,E)) = L)

o

56 5 THE MYHILL-NERODE, BRZOZOWSKI AND DEREMER CONSTRUCTIONS

5.2 The minimal equivalence relation RL

The only relation (corresponding to L E 'creg) that Myhill and Nerode actually defined was R L .

This relation is particularly important, being the unique one of minimal index.

Theorem 5.12 (Unique minimal DFA): Given L E 'creg, M = MNconstr(L, RL) is the unique

minimal Complete DFA accepting L; that is, Minc(M).

Proof:

Assume there exists M' E DFA such that Complete(M'), 'cFA(M') = Land IM'I :<: IMI. From
<- <-

the proof of (2) '* (3) (and Property 5.8), ~RL :<: ~,c (M'). In summary, ~RL :<: ~,c (M') :<: IM'I :<:
IMI = ~RL, and so (by Property A.12) IM'I = IMI, E = RL and M' "" M. 0

Property 5.13 (Reformulating RL): We can rewrite the definition of RL using derivatives (see
Definition A.15) as follows:

o

(x,y) E RL

{Property of derivatives and definition of RL }

(V z: z E V': (z E x-IL) == (z E y-IL»

{Definition of = on languages}

x-IL = y-1L

We could combine this definition of RL with MNconstr to get a minimal DFA construction.

Such a function would have a clumsy definition, and therefore we explore some encoding tricks.

5.2.1 Encoding RL

An encoding trick is hinted at by Property 5.13: every equivalence class [WJRL of RL can be
characterized by the language w- 1 L.

Definition 5.14 (Derivative set of a language): We define the set of derivatives of language

Las

deriv(L) = {v- I L: v E V'}

o

We have the following theorem relating to deriv

Theorem 5.15 (Finiteness of derivatives): If L E 'creg then Ideriv(L)1 is finite.
Proof:

~RL is finite (from the Myhill-Nerode theorem), and since I deriv(L) I = ~RL, Ideriv(L)1 is also
finite. 0

This theorem has also been given by Brzozowski [Brz064J. His proof is, however, somewhat more

complicated, and is by induction on the structure of language L.

Definition 5.16 (Encoding an equivalence class): We define a derivative encoding function

(for a given L E 'creg) encderivL E [V'JRL --> deriv(L) as

encderiv£l[wJRL) = w-I L

This function has inverse encderivr;'(v-' L) = [VJRL' Both of these functions are independent of
the choice of representative of equivalence class of RL. 0

5.2 The minimal equivalence relation RL 57

Remark 5.17: In Construction 5.11 (with RL as the equivalence class parameter) the equivalence

classes of RL are the left languages of the states of a DFA constructed from RL. The function

encderiv L maps these left languages (equivalence classes) to their corresponding right languages

(the derivatives). The right language (encderivdU)) of a particular equivalence class U E [V']RL
is called the continuation of U (in language L) by Berry and Sethi [BS86]. 0

Property 5.18 (Derivatives and function encderivLJ: Note that (for a E V, w E V'):

• encderivL([<]RL) = <-'L = L,

• encderivd[wa]RL) = (wa)-'L = a-'(w-'L).

These properties follow from Property A.16, and the definition of encderivL' 0

Noting the form of function MNconstr, we use the encoding (function encderivLJ to obtain

construction MNmin E Lreg ----> DFA.

Construction 5.19 (MNmin): Combining MNconstr (Construction 5.11) with encderivL (and

its inverse) gives construction MNmin E Creg ~ DFA:

MNmin(L) = let T(w-'L,a) = {a-'(w-'Ll}

F = {w-'L: < E w-IL}

in

(deriv(L), V, T, 0, {L}, F)
end

Since MNmin is defined using MNconstr, the properties are similar:

o

• By inspection we can see that the FA constructed by MNmin is a Complete DFA.

-;

• For any state U E deriv(L) we have L (U) = U.

• All states in the constructed automaton are start-reachable.

• The only state that is not final-reachable is 0. The state 0 exists in automaton MNmin(L)

if and only if L f V'. It follows that we can remove the sink state 0, to obtain a (possibly)

non- Complete DFA with only useful states.

• The constructed DFA is the unique (up to isomorphism) minimal Complete DFA accepting
L (since RL is implicit in the definition).

• The construction satisfies the property

(V L: L E Lreg: LFACMNmin(L)) = L)

Example 5.20 (MNmin construction): We construct the minimal Complete DFA corresponding

to the regular language {<, a}{b}', denoted by regular expression (a U <)b' (the regular expression
from Example 3.15).

After some calculation (using Property A.17):

a-l({<, a}{b} ') (a- l { <, a}){b}' U a-l{b}'

{<}{b}' U (a- l {b}){b}'

{b}'

b- l ({ <, a }{b}') (b- l {<, a}){b}' U b- l {b}'

0{b}' U (b-l{b}){b}'

= {b}'

58 5 THE MYHILL-NERODE, BRZOZOWSKI AND DEREMER CONSTRUCTIONS

b

a

a,b

Figure 8: The DFA MNmin({E,a}{b}').

(a- 1 {b}){b}'

0{b}'

o
= W'{b}){b}'

{b}'

o
o

we determine that the three derivatives are: L = {E,a}{b}', L, = {b}', and 0. The state graph is

shown in Figure 8. 0

5.3 The Brzozowski construction

We now concentrate on constructing DFA's from extended regular expressions, as opposed to

constructing them from regular languages. In Property A.17, a method is given for computing

a derivative of a regular language (based upon the structure of the language). Being able to

compute derivatives in this way also provides us with a definition of derivatives of extended

regular expressions (EREs). Extended regular expressions were defined in Definition 4.53.

Remark 5.21: The E-algebra definition of regular expressions is not used in this section as the

algebraic structure is not needed. Regular expressions are used only as syntactic objects, denoting

regular languages. 0

Remark 5.22: The remaining constructions in this section do not necessarily depend on extended

regular expressions (normal regular expressions can also be used). They are introduced because

some regular languages have more succinct descriptions as EREs than as REs. 0

Definition 5.23 (Derivatives of EREs): Assuming a E V and E, Eo, E, E ERE

a- 10 0

a-IE = 0

a- 1b

a-1(EoEd =

a-1 (EoU Ed

if (a = b) then E else 0 fi (for all bE V)

(a- 1 Eo)E, U if (E E L.ERE(Eo)) then a-'E, else 0 fi

(a- 1 Eo) U (a- 1 E,)

5.3 The Brzozowski construction

o

a-liE') =
a-l(E+)

a-liE?)

a-l(Eo nEd
a-l(,E)

(a- l E)E'

(a- l E)E'

a-lE

(a- l Eo) n (a- l Ed
,(a- l E)

59

Property 5.24 (Derivatives of ERE's): By inspecting the definition of derivatives of EREs,

we can verify that (for a E V, E E ERE) a- l CERE(E) = CERE(a- l E). 0

Remark 5.25: Given equivalence relation == (equivalence of regular expressions, extended to

ERE), an E E ERE will have a finite number of derivatives. More formally, [{[w- l Ej.:. : w E V'}[

is finite. Brzozowski gave the same result by induction on the structure of a ERE in [Brz064,

Theorem 4.30.]. 0

Definition 5.26 (Similarity (~) of regular expressions): Similarity (written ~) is an equiv

alence relation on EREs. Two EREs are similar if and only if they are identical or one can be

transformed into the other using the following rules:

I. Eo U E, = E, U Eo (commutativity of U),

2. Eo U (E, U E,) = (Eo U E ,) U E, (associativity of u), and

3. E U E = E (idempotence of u).

o

Property 5.27 (Similarity): ~C;;=; that is, ~ is a refinement of =. 0

Definition 5.28 (The derivatives of an ERE): Function derivERE E ERE ~ P([EREl_) is
defined as

o

Before proving that deriv ERE (E) is finite (for all E E ERE), we need the following proposition.

Proposition 5.29 (Similarity equivalence class of a union ERE): Assume a finite set H C;;

ERE and a fully parenthesized regular expression

where (for 1 :s i :s k) hi E H; each hi is called a term of J. Using ~ we can always find a similar

(and, of course, equivalent) regular expression K, where K is the union of at most jHj terms of

1. This is because the rules defining ~ can be used to reassociate and commute the terms of J

(to place identical terms adjacent to one another), while the idem potence rule of ~ can be used

to remove identical terms. 0

Proposition 5.30 (Similarity): Given a finite set H C;; ERE, the set of all non-similar EREs

that are unions of terms hi E H is finite. 0

Theorem 5.31 (Finiteness of derivatives under similarity): For all E E ERE, [derivERE{E)[

is finite.

Proof:

This proof is similar to the one given in Brzozowski's original paper [Brz064, Theorem 5.2]. The

proof is by induction on the number of operators in E E ERE.

60 5 THE MYHILL-NERODE, BRZOZOWSKI AND DEREMER CONSTRUCTIONS

Basis: The theorem is true for each of the constants: derivERE(t) = {[t1-, [0J-}, derivERE(0) =

{[01-}' and derivERE(a) = {[aJ-, 1t1-, [0J-} (for a E V).

Induction hypothesis: Assume that IderivERE(E)1 is finite for all E E ERE where E has fewer

than k operators.

Induction step: Assume E E ERE has k operators. We use case analysis to deal with the

possible forms of E:

o

E = Eo u E,: It is possible to show that

{[w-' (Eo U E,)I_ : w E V'} = {[w-' Eo U w-' E,J- : w E V'}

By the induction hypothesis, IderivERE(Eo)1 and IderivERE(E')1 are finite, and so is

Ideriv ERE(E)I.

E = Eo n E, or E = E~ or E = ,Eo: An argument similar to that for U applies to these

cases.

E = Eo· E,: In order to analyze I deriv ERE (Eo ·E,)!, we consider a particular w-'(Eo ·E,)

(for w E V'). Let w = a, ... an where each ai E V. Writing out w-, (Eo· E,) we get

w-'(Eo . E,)

= (a, ... an)-'((a,'Eo)E, uif (t E CERE(Eo)) then a,'E, else 0 fi)

Had we been able to continue this rewriting, we would see that [w-' (Eo ·E,)J_ is equal

to

[(w-' Eo) . E, U (U u,v : uv = w : if (t E CERE(U-' Eo)) then v-' E, else 0 fi)J_

That is, w-'(Eo . Etl is the union of a set of terms, one of which is (w-'Eo) . E"

and the remaining ones are either a derivative of E" or 0 E ERE. By the induction

hypothesis (the set of derivatives of E, is finite) the set of possible terms is finite. It

follows from Propositions 5.29 and 5.30 that I deriv ERE(E)I is finite.

E = Eo or E = Et: As in the Eo . E, case, we could write out w-'(Eo) for a particular

w E V*. If we do this, we see that it is the union of terms, each of which is a derivative

of Eo concatenated with Eo. The set of possible terms is finite - by the induction

hypothesis. Again, it follows from Propositions 5.29 and 5.30 that IderivERE(E)1 is
finite.

Remark 5.32: Unfortunately, using similarity (in computing derivatives) may yield more deriva

tives than recognizing equivalence (=) of derivatives (as shown in Example 5.37). The rules

defining similarity can be augmented with others to decrease the redundancy of the derivatives

(and therefore the size of the constructed DFA). Any equivalence relation G such that -<;; G <;;=
is usable for this. Examples of additional rules are (for Eo, E" E, E ERE):

1. Eo· 0 = 0 (0 is the zero of concatenation),

2. Eo u 0 = Eo (0 is the unit of U),

3. Eo· t = Eo (t is the unit of concatenation),

4. 0' = E (a property of *),

5. Eo . (E, U E,) = Eo . E, U Eo . E, (- distributes over U),

6. Eo n0 = 0 (0 is the zero of n),

7. Eo n E, = E, n Eo (commutativity of n),

5.3 The Brzozowski construction 61

8. Eo n (EI n E 2) = (Eo n EI) n E2 (associativity of n).

9. EnE = E (idempotence of n).

o

There is a property of similarity that will be needed to present the Brzozowski construction.

Definition 5.33 (Derivative of a similarity equivalence class): For E E ERE and a E V
we have a-I[EI_ = [a-IEI_. This definition does not depend on the choice of representative of

the equivalence class (under ~). 0

The Brzozowski construction is an encoding of MNmin to use EREs and equivalence classes

of "-'.

Construction 5.34 (Brzozowski): Function Brz E ERE ---> DFA is defined as:

Brz(E) = let T([v-IEI_,a) = {a-l[v-IEI_}

F = {[w- l El_ : < E L.ERE(W- l En
in

(deriv ERE(E), V, T, 0, {[El_}, F)
end

The properties of Brz correspond to those of MNmin:

o

• The construction is independent of the representatives of equivalence classes.

• By inspection we can see that Brz constructs Complete DFA's.

~

• For any state E' E derivERE(E) we have L. (E') = L.ERE(E').

• All states in the constructed automaton are start-reachable.

• There may be a state that is not final-reachable; this sink state will exists if and only if

L.ERE(E) # V'. The sink state corresponds to the derivative 0 E ERE.

• The construction satisfies the property

(\I E : E E ERE: L.PA (Brz(E)) = L.ERE(E))

Remark 5.35: Any equivalence relation G (on EREs) such that ~<; G <;= can be used in place
of,,-, in Brzozowski's construction. 0

Remark 5.36: In Brzozowski's original paper [Brz0641, the sink state (corresponding to derivative

o E ERE) was always omitted from the constructed DFA, producing a possibly non- Complete DFA.
o

Example 5.37 (Brzozowski's construction): We construct a Complete DFA corresponding

to regular expression (a U <)b' (the regular expression from Example 3.15). The derivatives are:

a-l«aU<)b') (a-l(aU<))b' Ua-l(b')

(a-Ia U a-leW U (a-Ib)b'

« U 0)b' U 0b'

b-l«a U <)b') (b-l(a U <))b' U b-l(b')

= (b-Ia U b-l<)b' U (b-Ib)b'

= (0 U 0)b' U eb'

62 5 THE MYHILL-NERODE, BRZOZOWSKI AND DEREMER CONSTRUCTIONS

a
a

b
a

b

b

Figure 9: The DFA Brz((a U f)b').

0b' U fb'

a-I((f U 0)b' U 0b') a-I((f U 0)b') U a-I (0b')

= ((a-I(f U 0»b' U a-'(b'» U (a- 10)b'

(((a-I, U a- 10)b') U (a-Ib)b') U 0b'

((0 U 0)b' U (0)b') U 0b'

0b'

b-I ((fU0)b' u0b') b- l ((fU0)b')Ub- I (0b')

((b-I(f U 0»b' U (b-Ib)b') U W '0)b'

= ((b-If U b-' 0)b' U (f)b') U 0b'

= ((0 U 0)b' U fb') U 0b'

0b' U fb'

a-I (0b' U fb') = a-I (0b') U a-I(fb')

(a- 1 0)b' U ((a-If)b' U (a-Ib)b')

0b'

b- I (0b' U fb') b- I (0b') U b-l(fb')

W ' 0)b' U (W1f)b' U W1b)b')

0b' U fb*

a- I (0b') (a-10)b'

0b'

b- I (0b') (b-10)b'

0b'

The four derivatives (under -) are: do = (a U ,)b', d, = (f U 0)b' U 0b', d, = 0b' U tb', and

d3 = 0b'. The state graph is shown in Figure 9. Had we been able to recognize equivalence of
EREs, we would have had a smaller DFA since (f U 0)b' U 0b' = 0b' U fb', and we could have

identified states dl and d2 . 0

5.3.1 Computing derivatives of an ERE

Brzozowski also shows [Brzo64) if E E ERE has n derivatives (including E, under any equivalence

relation G such that -C; G C;=) then they are all of the form V-I E where Ivl < n [Brz064,

Theorem 4.3b). Also part of this theorem is if all derivatives (of E) with respect to strings of

length not greater than n have been found, and no new ones are found with respect to strings of

length n + 1, then no new ones will be found with respect to strings of length greater than n. This

useful property of derivatives (in fact a slightly stronger property) can be stated as follows:

5.4 Relating the Brzozowski and Berry-Sethi constructions 63

Theorem 5.38 (Finding derivatives): For all r 2: 0

{tw- 1 E]_ : w E V' 1\ Iwl = r} <; {[w- 1 E]_ : w E V' 1\ Iwl < r}

o

This gives the following algorithm (in the guarded commands of [Dijk76]) which computes the

derivatives of a regular expression E (D <; [ERE]_ and next <; [ERE]_):

Algorithm 5.39:

{E E ERE}

D,next,k:= 0, {[E)_},O;

{invariant: D = {[w-1 E]_ : w E V' 1\ Iwl < k} 1\ next = {[w-1 E]_ : w E V' 1\ Iwl = k}}

do next \l: D ---->

D,next,k:= D U next, {a-IF : a E V 1\ F E next},k + 1

od{D = derivERE(E)}

5.3.2 Extending derivatives

It is sometimes useful to extend derivatives to deal with additional operators: prefix closure

and certain functions on languages. We now briefly give the definition of derivatives of regular

languages (and thus regular expressions) with these operators.

The prefix closure of a language is defined as:

pref(L) = {u: u-1 L oF 0}

and the derivative of a prefix closed language is:

a-1(pref(L» = pref(a-1 L)

For certain functions f E Lreg x Lreg ------+ Lreg, derivatives are defined as:

Some examples of such functions are n, U, asymmetrical difference, and symmetrical difference.

For more on this see [Brz064).

5.4 Relating the Brzozowski and Berry-Sethi constructions

It turns out that for RREs (recall from Definition 4.58 that an E E RRE is an RE such that each

symbol of V Occurs at most once in E), the Brzozowski construction (with sink state removal -

as in Brzozowski's original paper - and a suitable encoding) and the Berry-Sethi construction

produce isomorphic DFA's. In this section, we consider only RREs. Berry and Sethi first presented

this result in [BS86].

We will be using the following version of Brzozowski's construction (for E E RRE), which does

not introduce a sink state (the sink state is equivalent ("') to 0 E RRE - its language under CRE
is 0).

Construction 5.40 (Brzozowski - without sink state): Given E ERE, the following

constructs a DFA accepting CRE(E):

let Q = ([w-' E]_ : w E V' 1\ CRe(w-' E) oF 0}

in

end

T([v- 1 E)_,a) = if (CRE(a-1(v- 1 E» oF 0) then {a-1[v- 1 E)_} else 0 Ii
F = {[w-1 E]_ : Null(w- 1 E)}

(Q,v, T, 0, {[E)_}, F)

64 5 THE MYHILL-NERODE, BRZOZOWSKI AND DEREMER CONSTRUCTIONS

In the let clause, the transition function has signature T E Q x V ----> P(Q). Recall from

Definition 3.20 that Nul/(E) ~ < E L.RdE). 0

For any E E RRE, the only way that L.RE(b-l«wa)-l E)) '" 0 is if L.RE«wa)-l E) '" 0 and a

b can follow a wa in some string in L. RE (E).

In order to make the above construction practical, we explore the possibility of characterizing

all of the derivatives of an E E RE (except for the derivative E itself) by the symbols occuring in

E.

Definition 5.41 (Unambiguous regular expressions): An E ERE is said to be unambiguous

if and only if, for all a E Oee(E) (function Oee is defined in Definition 4.57), the following set is

a singleton set:

In other words, all derivatives of E by wa (for w E V' and a E V) are either equivalent to

o E RRE, or are similar to one another. 0

Remark 5.42: If an E E RE is unambiguous, its derivatives are either E or 0, or can be

characterized by an element of Oce(E). 0

Remark 5.43: The regular expression (a U a) is unambiguous, but is not an RRE. 0

Remark 5.44: Unambiguous regular expressions are also defined by Champarnaud [Cham93],

although he characterizes them quite differently, and he does not make use of derivatives. Cham

parnaud calls such regular expressions local. 0

Theorem 5.45 (Characterizing derivatives of RRE's): For any E E RRE, E is unambiguous.

This theorem is also given by Berry and Sethi [BS86, Theorem 3.4J.

Proof:

We proceed by induction on the number of operators in E E RRE.

Basis: The theorem is trivially true for the RRE base cases < and 0 since Oee«) = Oee(0) = 0.
It is also trivially true for the RRE a E V.

Induction hypothesis: Assume that the theorem is true for any E E RRE with fewer than k

operators.

Induction step: We now consider E E RRE with k operators. We noW examine the possible

structure of E (assuming a E Oee(E)).

E = Eo U E , : Given w E V' such that L.RE«wa)-l E) '" 0

(wa)-l(Eo U Ed = «wa)-l Eo) U ((wa)-l Ed

Since E E RRE, then either a E Oee(Eo) or a E Oee(E,) (but not both). It follows
that (wa)-l(Eo U E ,) is similar to (wa)-l Eo U 0 or similar to (wa)-l E, U 0 (but not

both). The theorem then follows from the induction hypothesis.

E = Eo· E , : From Theorem 5.31 we know that (for wE V',a E V) [(wa)-l(Eo · E,)]_ is

equal to:

[((wa)-l Eo)E, U (U U, v :uva = wa: if « E L.ERE(U- l Eo)) then (va)-l E, else 0 fi)J_

Since E E RRE, then either a E Oee(Eo) or a E Oee(E,) (but not both). It follows,

by an argument similar to the E = Eo U E, case (above), that the theorem holds from

the induction hypothesis.

E = Eo, E = Et or E = EJ: The argument for these cases proceeds similarly to the E =

Eo . El case. For more on this type of argument see Theorem 5.31.

5.5 Towards DeRemer's construction 65

o

Remark 5.46: The above theorem implies that each derivative of E E RRE (under similarity) is

either 0 (which we ignore since it corresponds to the sink state) or E, or it can be characterized
by an a E Oee(E). 0

Definition 5.47 (Encoding the derivatives of an RRE): Given the theorem above, E E RRE,

we can now give a partial encoding function eneE (corresponding to the E E RRE) from the deriva·

tivesofEto Oee(E) such that (forw E V',aE V) enee«wa)-IE) = a when LRE«wa)-IE) oJ 0,
and eneE is undefined otherwise. Note that this function is not defined on E. 0

The following property makes use of the definitions of Null, Oee, First, Last, and Follow

(Definitions 3.20, 4.57, 4.60-4.64 respectively).

Property 5.48 (Functions Follow, First, and Last): The following properties will be used:

• (a,b) E Follow(E) = (3 w: w E V': LRE(b-1«wa)-IE» oJ 0).

• a E First(E) = LRE(a-1 E) oJ 0.

• a E Last(E) = LRE(Ea-1) oJ 0 = (3 w : w E V' : € E LRE«wa)-1 E».

Derivatives on the right are mentioned in Definition A.l5. 0

We can rewrite our sink stateless version of Brzozowski's construction, using the above prop

erties, to obtain the construction now following.

Construction 5.49 (Encoding Brzozowski for RRE's): We can now give our encoded version

(using Oee, First, Last, Null, and Follow) of Construction 5.40, as Brzene E RRE ----> DFA:

Brzene(E)

o

let s be a new state (characterizing E E RRE)

in

end

let T = {(a,b,b): (a,b) E Follow(El}

T' = {(s,a,a): a E First(El}
F = Last(E) uif (Null(E» then {B} else 0 Ii

in

(Oee(E) U is}, V,T UT',0, is}, F)
end

Remark 5.50: Using the set Oee(E) as the set of states can yield a DFA with start-unreachable

states. For example, in the DFA Brzene(0 . a), we have start-unreachable state a. 0

Remark 5.51: By inspection we see that, for all E E RRE, Brzene(E) ~ BSene(E) (Construc

tion 4.70). It follows from Remark 4.73, that for E E RRE, [Brz(E)J .. = MYG(E). 0

Remark 5.52: Finally, we note that the construction Brzene produces a correct DFA for any

E E RE such that E is unambiguous. That is, E E RRE is not required. This property is not

noted in the literature. This follows from Definition 5.41 and the definition of Brzene. 0

5.5 Towards DeRemer's construction

In this subsection, we consider several more constructions based upon the MNconstr and MNmin

constructions (Constructions 5.11 and 5.19). The idea is to characterize the derivatives of a

regular expression by so-called dotted regular expressions. We only consider constructing a DFA

from an RE, as opposed to an ERE. Since some of the proofs are tedious to present, we give this

construction in an informal manner.

We begin by introducing dotted regular expressions, which are essentially regular expressions

with a dot (.) appearing in each of them.

•

66 5 THE MYHILL-NERODE, BRZOZOWSKI AND DEREMER CONSTRUCTIONS

Remark 5.53: We will be characterizing derivatives, not equivalence classes (as is required for

MNconstr). Using dotted REs, it is considerably easier to characterize the derivatives than the
equivalence classes. 0

The dot should not be confused with the concatenation dot, the star normal-form dot of

Briiggemann-Klein (presented in Section 4.5), or the bullet used in typesetting lists.

Definition 5.54 (Dotted regular expressions, their languages, and undot): We recursively

define dotted regular expressions (DREs) , function R. E DRE ----> P{V'), and function undot E

DRE ----> RE. Function R. maps DREs to the (regular) language to the right of the dot, and

function undot removes the dot in a DRE.

1. If E E RE then

(a) oE E DRE, R.{oE) = CRE{E), and undot{oE) = E;

(b) Eo E DRE, R.{Eo) = {f}, and undot{Eo) = E.

2. If E E RE and D E DRE then

(a) E u D E DRE, DuE E DRE, R.{E U D) = R.{D U E) = R.{D), undot{E U D) =

E U undot{D), and undot{D U E) = undot{D) U E;

(b) E· DE DRE, D· E E DRE, R.{E. D) = R.{D), R.{D· E) = R.{D)· CRE{E), undot{E·
D) = E . undot{D), and undot{D . E) = undot{D) . E;

(c) D' E DRE, R.{D') = R.{D)· CRE{undot{D))', and undot{D') = undot{D)';

(d) D+ E DRE, R.{D+) = R.{D)· CRE{undot{D))', and undot{D+) = undot{D)+;

(e) D' E DRE, R.{D') = R.{D), and undot{D') = undot{D)' .

3. Nothing else is a DRE.

A dotted regular expression is also known as an item, from LR parsing [Knut65]; we will frequently

use this name. 0

We also require a function mapping a regular expression to all of its dottings.

Definition 5.55 (Function dots): We define function dots E RE ----> P{DRE) as follows:

dots{E) = {D : D E DRE f\ undot{D) = E}

D

Remark 5.56: For a given E ERE, we will be using sets of items (elements of P(dots{E))) to

characterize the derivatives of CRE{E) when constructing a DFA accepting CRE{E). D

Property 5.57 (dots): For all E ERE, Idots{E)1 is finite, and so is IP{dots{E))I. D

We define an item set, and its language as follows:

Definition 5.58 (Item sets and their languages): An item set J is a subset of DRE such

that:

(3 E : E E RE : J ~ dots{E))

IS denotes the set of all item sets. Essentially, an IS is a set of items, all of which are dottings of

the same regular expression. We also extend undot to IS. D

Definition 5.59 (Language of an IS): The language of a J E IS is given by function CIS E

IS ----> P(V') defined as:

CIS{]) = (U I: I E J: R.{I))

D

5.5 Towards DeRemer's construction 67

Remark 5.60: We.!Vill use item sets to characterize the derivatives of an RE. 0

We now define derivatives of item sets.

Definition 5.61 (Derivative of an item set): Given J E IS and a E V we define a-IJ to be

the following set:

o

1. If [E J has a subexpression .a then [' is in a-I J, where [' is the same as I with the

subexpression .a replaced by a •.

2. Nothing else is in a-IJ.

We can now define a special type of function, which we call a closure function.

Definition 5.62 (Closure functions): Any function £ E IS ---., IS can be used a.s a closure

function, provided that

(V J: J E IS : CIS(£(J)) = C1S(J) II £ 0 £(J) = £(J))

and

(V E, J: E E RE II J <; dots(E) : E E C1S(J) == (Eo) E £(J))

and

o

We are now in a position to define our first closure function, and an auxiliary relation.

Definition 5.63 (Dot closure relation D): We define a binary relation D on DRE. D is the

smallest relation such that:

l. If E, FE RE, then (here we use infix notation for relation D):

OE D EO

o(E. F) D (oE)· F
(Eo). F D E· (oF)
E· (Fo) D (E· F)o
o(E U F) D (oE) U F
o(E U F) D E U (oF)

(Eo) U F D (E U F)o

E U (Fo) D (EU F)o
o(E') D (oE)'
o(E') D (E')o
(Eo)' D (oE)'

(Eo)' D (E')o
o(E+) D (oE)+
(Eo)+ D (oE)+
(Eo)+ D (E+)o

orE') D (oEl'
o(E') D (E')o
(Eo)' D (E')o

2. If E E RE and Do, D, E DRE such that (Do, D,) E D, then:

(a) (EUDo,EUD,) E D, (DoUE,D,UE) ED, (E-Do,E-D,) E D, and (Do·E,D,·E) E D.

68 5 THE MYHILL-NERODE, BRZOZOWSKI AND DEREMER CONSTRUCTIONS

(b) (Dij,Di) E D, (Dt,DtJ E D, and (D~,DiJ E D.

o

Definition 5.64 (Closure function C): We define function C E IS --> IS as:

C(J) = D'(J)

Function C satisfies the Definition 5.62, making it a closure function. 0

Remark 5.65: The closure function C presented here is an extension (to deal with our definition

of regular expressions) of the one usually given for LR parsing. 0

Example 5.66 (Function C): C({.«aU€)b')}) is computed to be {.«aU€)b'), (.(aU€»b', (.aU
€)b', (a U Of)b', (a U €O)b', «a U €).)b', (a U €)(.(b'», (a U €)(.W, (a U €)(b'.), «a U €)b')'}. 0

In order to construct a DFA for an RE, we require a set of item sets which characterize the set

of derivatives of a the regular expression. The following definition gives the necessary conditions.

Definition 5.67 (Derivative item set): Given E ERE, the set D ~ P(dots(E» (that is,

D ~ IS and for each JED, E = undot(J» characterizes (under some closure function £) the
derivatives of E if and only if:

{W-'£RE(E) : wE V'} = {£/s(J): JED}

and

(\I J: JE D: J=£(J»

and

(\I J, a: JED II a E V : £(a-1 J) ED)

We write this property DIS(E, D, E). The set D is called a derivative item set for E. 0

We are now in a position to modify Algorithm 5.39 to compute such a derivative item set (under

some closure function E), instead of a set of derivatives. In the following algorithm, D, next ~ IS.

Algorithm 5.68:

{E ERE}

D, next := 0, {£({.Em;
do next !t: D -->

D,next :=DUnext,{£(a-1I): aE V III E next}
od

{DIS(E, D,£)}

This algorithm terminates since IP(dots(E»1 is finite (Property 5.57). With the set D computed

above, we can now construct a DFA accepting £RE(E).

Construction 5.69 (Item set construction): Function Iconstr E RE x P(IS)+ DFA takes

a regular expression (E) and a derivative item set (D) for the RE (such that DIS(E,D,C», and
constructs a DFA:

Iconstr(E,D) = let T(J,a) = {C(a-1J)}

S = {C({.Em
F = {J : JED II E. E J}

in

(D,v,T,0,S,F)
end

A DFA constructed with Iconstr has the following property:

(\I E,D: DIS(E,D,C): £FA(Iconstr(E,D» = £RE(E»

The DFA is also Complete. 0

5.5 Towards DeRemer's construction 69

b

a a

Figure 10: The DFA Iconstr«au f)b').

Figure 11: The DFA Iconstr(b').

Example 5.70 (Iconstr): We construct the DFA corresponding to (auf)b'. The derivative item

set is (the individual item sets have been compressed, as a notational convenience, and each item

set is given a label):

{Io = o(o(oa U OfO)O)(O(ob)'o)o, I, = «a 0 Uf)O)(O(Ob)'o)o,J. = ((a U f))«obo),o)o,I3 = 0}

The DFA is shown in Figure 10 0

5.5.1 Making the construction more efficient

Because of the definition of C, function Iconstr sometimes constructs a DFA which is larger than
necessary, as shown in the following example.

Example 5.71 (A DFA that is not minimal): We use lconstr to construct a DFA for b' E

RE. The two item sets are D = {{o(b'), (ob)', (b')o},{(bo)', (ob)',(b')o}}. The DFA is shown

in Figure 11. The problem is that the two item sets should have been recognized as denoting
equivalent derivatives since:

.c/s ({o(b'), (ob)', (b')o}) = .c/s({(bo)', (ob)', (b')o})

They only differ in the items orb') and (bo)'. 0

The problem is that for some J E IS, there is much redundant information in C(J). In

particular, there may be a J' C J such that .c/s(J') = .c/s(J). We can introduce a function X

such that X 0 C is a closure function. That is, X is used as a filter.

Definition 5.72 (Item set optimization function X): Given J E IS such that J = C(J),

X(J) is the same as J, with the following removed: any item containing a subexpression of the

form o(E U F), orE'), or (Eo)'. 0

Property 5.73 (Function X 0 C): Function X 0 C satisfies Definition 5.62, and is a closure
function. 0

70 5 THE MYHILL-NERODE, BRZOZOWSKI AND DEREMER CONSTRUCTIONS

Figure 12: The DFA DeRemer(b').

Remark 5.74: The reason that such items are removed is that the definition of C ensures that

they are redundant; other items will have been added to the item set to ensure that these ones are

not needed. For example, in the case of o(E U F) function C will ensure that oE U F and E U of

are added to the item set. In this case R(o(E U F)) = R(oE U F) U R(E U of). 0

Using composite function X oe, we can now present a revised version of the above construction.

Construction 5.75 (DeRemer's construction): DeRemer's construction is function DeRemer,

which is exactly as Iconstr, except that the composite function XoC is used as the closure function

wherever C was used in Iconstr. This construction is due to DeRemer [DeRe74J, where he attributes

the idea behind the definition of X to Earley [Earl70J. 0

Remark 5.76: DeRemer presented this construction in a slightly different context: he extended

an LR parser to deal with grammar production rules with regular expression as right haud sides

[DeRe74J. Remark 5.78 points out a slight problem with the original presentation by DeRemer. 0

Example 5.77 (DeRemer): We use DeRemer to construct a DFA for b' ERE. The only item set

is {(ob)', (b')o} and the DFA is shown in Figure 12. With alphabet V = {b}, this is the minimal

Complete DFA accepting LRE(b'). 0

Remark 5.78: DeRemer and Earley specify that both the closure (function C) and the opti

mization (function X) operations are to be performed simultaneously. Unfortunately, when < is
permitted as an RE (as we have done) it is possible that the process never terminates. For exam

ple, consider the closure (with optimization) of {o(a U E)'}, in the style of DeRemer and Earley.
After the first step we have {o(a U E)' , (o(a U E))' }. After an optimization step, and a few more

steps we have {(oa U <)',((a U flo),}, after which we add (o(a U <))' which we had originally
removed. The rewriting process begins again. In this paper, we avoid this problem by defining

the closure and optimization steps separately. 0

We can devise an even more effective optimization function than X.

Definition 5.79 (Function Y): Given lEIS corresponding to E E RE such that 1 = C(l),

Y(l) is a subset of l, keeping only the following items:

1. Any item containing a subexpression of the form ea (for some regular expression a E V).

2. The item Eo (if present in l).

o

Property 5.80 (Function yo C): Composite function Y 0 C satisfies Definition 5.62, and is a

closure function. 0

Remark 5.81: The function Y makes the computation of derivatives (of alE IS such that

1 = C(J)) particularly easy, as the items in Y(l) are precisely those required in the computation

of derivatives and for determining if < E LIS(l). 0

Construction 5.82 (Improved item sets): Our optimized construction, called Oeonstr, is as

Iconstr, except that the composite function Y 0 C is used wherever C was used in Iconstr. This
construction does not appear in the literature. 0

5.5 Towards DeRemer's construction 71

a

Figure 13: The DFA Geonstr((a U <)b').

a

a,b,c

Figure 14: The DFA's Brz(ae U be) and Geonstr(ae U be).

Example 5.83 (Geonstr): Using Geonstr, we construct a DFA for (a U <)b'. The derivative

item sets are (each item set is given a label for use in the state graph): {Io = {(oa U <)b' , (a U

<)(ob)',(aU<)b'o}'!l = {(aU<)(ob)',(aU<)b'o},h = 0}. The DFA is shown in Figure 13. This
is the minimal Complete DFA for the given regular expression. 0

As seen in the above example, function Geonstr constructs a smaller DFA than Brz did in

Example 5.37. The two constructions seem difficult to compare, as the following example shows:

Example 5.84 (Comparing BTZ to Geonstr): We use Brz and Geonstr to construct DFA's for

ae U be. The derivatives (under extended similarity - see Remark 5.32, each given a label) are:

{do = aeU be,d, = e,d2 = <,d3 = 0}. The derivative item sets (using yoC, each given a label)

are: {Io = {oaeU be, aeU obe},!, = {a 0 e U be}, 12 = {ae U b 0 e}'!3 = {rae U be)o},!, = 0} The
results are shown in Figure 14. Construction Geonstr is unable to recognize that states!, and h
are equivalent. (An equivalence relation on IS - much like ~ on EREs - could be defined in

order to identify such equivalent states.) 0

We can make a more practical implementation by concatenating an end-marker $ onto E E RE

(using function marker, - see Definition 4.46). The second rule defining Y (Definition 5.79) is
then no longer required.

72 5 THE MYHILL-NERODE, BRZOZOWSKI AND DEREMER CONSTRUCTIONS

Construction 5.85 (OeonstT with end-marker): Using the end-marker, the body of the

DeonstT construction becomes (assuming that DIS(E$, D, Yo C)):

let T(J, a) = {Y 0 C(a- 1 J)}
S = {YoC({oE})}

F = {J: JED 1\ $-lJ '" 0)
in

(D,v,T,0,S,F)
end

o

Remark 5.86: The Aho-Sethi-Ullman construction (Construction 4.50) can be viewed as a heavily

encoded variation on the Oconstr construction. Each item in an item set of D is of the form

... 0 a ... (for a E V) and corresponds to the basis RFA's that are used in the construction of
the RFA for E. The subset construction (with start-unreachable state removal) of the Aho-Sethi

Ullman algorithm (Algorithm 4.52) is folded into the algorithm computing the derivative item set
(using composite function yo C) and the definition of a derivative of an item set. Compare the

DFA produced in Example 4.51 to that produced in Example 5.83; the only difference is the sink

state in the latter example. 0

73

6 Conclusions

The conclusions of this paper fall into two groups, depending on the section to which they relate:

constructions based upon the structure of regular expressions (Section 4), or constructions based

upon the Myhill-Nerode theorem (Section 5).

The conclusions about constructions based on regular expression structure are:

• Finite automaton constructions are frequently said to be "based upon the structure of regular

expressions." The ~>algebra framework (given in Sections 3 and 4) was useful in formalizing

this notion. The ~>algebras were particularly useful in the following ways:

They placed Thompson's, the left-biased, the right-biased, and the reduced finite au

tomata (RFA) constructions in a common framework.

They highlighted the fact that the type of object produced by the Thompson's, the

left-biased and the right-biased constructions is actually the isomorphism class of a

finite automaton, as opposed to a finite automaton.

• The concept of duality (that one construction can be the mirror image of another) played

a central part in finding common parts in constructions. Duality was made more obvious

through the use of ~>algebras. The following constructions were found to be related by

duality:

The Berry-Sethi nondeterministic finite automaton construction (also known in the lit

erature as the McNaughton-Yamada or the Glushkov nondeterministic finite automata

construction) and the dual of the Berry-Sethi construction (a variant of which is also

known as the Aho-Sethi-Ullman nondeterministic finite automata contruction [ASU86,

Example 3.22, pg. 140)).

The McNaughton-Yamada-Glushkov deterministic finite automaton (DFA) construc

tion and the Aho-Sethi-Ullman DFA construction12
.

• The use of end-markers (concatenated to either the left or the right of a regular expression)

was found to be a simple coding trick, which may be useful in practice. End markers do not

playa central role in any of the constructions, although they have previously been portrayed

as important.

• The concept of marking a regular expression (each alphabet symbol occuring in the regular
expression is given a unique mark, making all of the symbols unique - see Section 4.5)

is an encoding trick. Marking is not central to the correctness of any of the constructions,

although it is a useful technique in the practical implementation of some of the constructions.

• Marking was found to cause problems in some of the constructions. In particular, intersec

tion, complementation, and language difference cannot be dealt with using marking13. In

the E-algebra framework, intersection, complementation, and language difference can easily

be implemented for the Berry-Sethi, McNaughton-Yamada-Glushkov, and Aho-Sethi-Ullman

constructions - constructions that are all traditionally defined using marking.

• Two interpretations of marking appear in the literature. In the first one, being "at a mark"

(Aho, Sethi, and Ullman use the phrase "at a position" [ASU86]) means to be in the state

resulting from making a transition on the alphabet symbol associated with the particular

mark14
. The second interpretation equates being "at a mark" with being in the state which

12Here we assume that the sink state (if it exists) is removed from a DFA produced by the McNaughton-Ya.mada

Glushkov construction.

13 Actually, McNaughton and Yamada (MY60] attempted to define intersection and complementation. Their

informal descriptions are difficult to understand, a.nd more recent papers use marking a.nd have abandoned trying

to define intersection or complementation. See Section 4.4.

14This is the interpreta.tion taken by Glushkov, McNaughton and Yamada, and Berry and Sethi (Glus61, MY60,

BS86J.

74 6 CONCLUSIONS

has an out-transition on the alphabet symbol associated with the particular mark (that

is, the marked symbol is valid as the next input symbol)". The two interpretations are

duals of one another, and arise naturally from the duality of the left-biased and right-biased

constructions. For example, the interpretations give rise to the duality between McNaughton,

Yamada and Glushkov's DFA and Aho, Sethi, and Ullman's DFA constructions.

• The improvements to the Berry-Sethi construction'6 due to Briiggemann-Klein [B-K93a] and

Chang and Paige [Chan92, CP92] have been difficult to compare. This has been largely due

to the fact that Chang and Paige's improvements are to the finite automaton construction

itself, while Briiggemann-Klein's improvements involve transforming the regular expression.

In Section 4.5, we presented an improvement to the construction (not found in the literature)

that mirrors Briiggemann-Klein's improvements (not on regular expressions, but on finite

automata), and is easy to compare to Chang and Paige's construction.

• Some relationships between the constructions were found that were not made obvious by the

E-algebra derivations:

- For restricted regular expressions (where each alphabet symbol occurs at most once

as in marked regular expressions) the Berry-Sethi construction produces a deterministic

FA. As a consequence, the Berry-Sethi construction and the McNaughton-Yamada
Glushkov DFA construction produce isomorphic finite automata (with the exception of

the sink state present in a McNaughton-Yamada-Glushkov DFA).

The Berry-Sethi construction (and therefore the McNaughton-Yamada-Glushkov DFA

construction) and the Brzozowski construction (under an appropriate encoding) pro

duce isomorphic finite automata for restricted regular expressions. This result was

originally presented by Berry and Sethi [BS86].

The conclusions about the Myhill-Nerode, Brzozowski, and DeRemer constructions (Section 5)

are:

• Deriving the second major family of constructions from the Myhill-Nerode theorem proved

useful in a number of ways:

The use of equivalence classes makes the correctness argument for the Myhill-Nerode

construction particularly clear.

The unique minimal DFA (for a particular language) can be easily constructed using a

particular equivalence class as the parameter to the Myhill-Nerode construction.

- Derivatives (of a language) are a useful encoding of the equivalence classes of Myhill

and Nerode's unique minimal-index equivalence relation RL.

The definition of derivatives provides an efficient method to compute finite sets which

encode the infinite sets that are used in the Myhill-Nerode construction.

• The Brzozowski construction can be viewed as an ingenious encoding of the Myhill-Nerode

minimal DFA construction.

• Brzozowski's original paper provided a proof (a similar one is given in this paper) that his

construction also works when only similarity of regular expressions is recognized. Similarity

is defined in his paper using four rules} and is defined in this paper using only three rules.

The missing fourth rule (that E is the unit of concatenation) is not required in the definition

of similarity for the correctness of our presentation of Brzozowski's construction.

15This is the interpretation taken by Aho, Sethi, and Ullman [ASU86J.

16Which is therefore an improvement to the McNaughton-Yamada-Glushkov and the Aho-Sethi-Ullman nonde

terministic finite automaton constructions.

75

• We defined the equivalence and the similarity of regular expressions as equivalence relations

on regular expressions. We also demonstrated that any such equivalence relation E can

be used in Brzozowski's construction, provided that E is a refinement of equivalence and

similarity is a refinement of E.

• For restricted regular expressions, Brzozowski's construction (with an encoding), the Berry

Sethi construction, and the McNaughton-Yamada-Glushkov construction produce isomor

phic DFA's.

• The use of dotted regular expressions (also known as items, from LR parsing) is a useful,

if obscure, encoding of the derivatives of a regular expression. We obtained the following

results on the use of dotted regular expressions:

Computing the set of all dotted regular expressions (from a given regular expression)

can be defined very simply. The derivatives of dotted regular expressions, and the

construction of a DFA can be defined simply. This construction does not appear in the

literature.

- The straightforward definition of dotted regular expressions is unable to deal with inter

section and complementation. This is for the same reason that marking constructions

are unable to deal with intersection and complementation.

- DeRemer specified a DFA construction that appears to be very easy to implement. It

is an optimization over the straightforward dotted regular expression construction, and

the constructed DFA is always smaller.

- The original specification of item closure, due to DeRemer and Earley, is incomplete.

They attempted to define closure and optimization as a single step. This can lead

to non-termination, as we have demonstrated. The problem can be easily solved by

defining closure and optimization steps separately.

We show that additional optimizations, added to DeRemer's construction, can reduce

the size of the produced DFA. This construction is not given in the literature. Further
more, the optimizations are arguably easier to understand than those of DeRemer, and

likely easier to implement.

It is possible to show that this improved construction is related to the Aho-Sethi-Ullman
DFA construction.

76 A SOME BASIC DEFINITIONS

A Some basic definitions

Convention A.I (Powerset): For any set A we use PtA) to denote the set of all subsets of A.
PtA) is called the powerset of A; it is sometimes written 2A D

Convention A.2 (Sets of functions): For sets A and B, A --> B denotes the set of all total

functions from A to B, while A + B denotes the set of all partial functions from A to B. D

Remark A.3: For sets A, B and relation C <;: A x B we can interpret C as a function C E A -->

PCB). D

Convention A.4 (Tuple projection): For an n-tuple t = (XI,X2, ... ,Xn) we use the notation

1I'i(t) (1 :S i :S n) to denote tuple element Xi; we use the notation ;ri(t) (1 :S i :S n) to denote the

(n - 1)-tuple (Xl, ... , Xi-I, Xi+ 1, ... xn). Both 11' and ;r extend naturally to sets of tuples. D

Convention A.5 (Tuple arguments to functions): For functions (or predicates) taking a

single tuple as an argument, we usually drop one set of parentheses in a function application. 0

Convention A.6 (Relation composition): Given sets A, B, C (not necessarily different) and

two relations, E <;: A x Band F <;: B x C, we define relation composition (infix operator 0) as:

Eo F = {(a, c) : (3 b: bE B : (a, b) E Ell (b, c) E F)}

D

Convention A.7 (Equivalence classes of an equivalence relation): For any equivalence

relation E on set A we denote the set of equivalence classes of E by [AlE; that is

[AlE = {[alE: a E A}

Set [AlE is also called the partition of A induced by E. D

Definition A.S (Index of an equivalence class): For equivalence relation E on set A, define

ijE = I[AlEI. ijE is called the index of E. D

Definition A.9 (Alphabet): An alphabet is a non-empty set of finite size. D

Definition A.IO (Refinement of an equivalence relation): For equivalence relations E and

E' (on set A), E is a refinement of E' if and only if E <;: E'. D

Definition A.l1 (Refinement ([;;) relation on partitions): For equivalence relations E and

E' (on set A), [AlE is said to be a refinement of [AlE' (written [AlE [;; [AlE') if and only if E <;: E'.
An equivalent statement is that [AlE [;; [AlE' if and only if every equivalence class (of A) under

E is entirely contained in some equivalence class (of A) under E'. 0

Property A.12 (Equivalence relations): Given two equivalence relations E,F, we have the
following property:

(E <;: F) II (UE = W) =? (E = F)

D

Definition A.13 (Regular languages): Cregv denotes the set of all regular languages over

alphahet V. That is, Cregv <;: P(V') is the smallest set containing V that is closed under u

(language union), . (a dot, language concatenation), and * (Kleene closure). The subscript V is

dropped when no ambiguity arises. D

Definition A.I4 (Operator? on languages): We define? as a postfix (superscript) operator

on languages as L' = L u {f}. D

77

Definition A.15 (Left derivatives): Given language A <; V' and w E V' we define the left

derivative of A with respect to w as:

w-'A = {x E V' :wx E A}

Sometimes derivatives are written as DwA or as ~~. Right derivatives are analogously defined.

Derivatives can also be extended to B-' A where B is also a language. 0

Property A.16 (Left derivatives): The following two properties follow from Definition A.15

(assuming L is a language):

• W E L == € E w- 1 L, and

o

Property A.17 (Derivatives of regular languages): Assuming a E V and L,Lo,L. E Creg ,
derivatives have the following properties (given with respect to the structure of regular languages):

a-'0 0

a-'{f} 0

a-'{b} = if (a = b) then {f} else 0 Ii

a-'(LoL,J = (a-' Lo)L. U if (E E Lo) then a-' L. else 0 Ii

a-'(Lo U L,J (a-' Lo) U (a-' L.)

a-'(U) (a-' L)U

a-'(L+) (a-' L)L'

a-'(L?) a-' L

a-'(Lo n L.) (a-' Lo) n (a-' L.)

a-'(,L) = ,(a-' L)

The definition related to Kleene closure is shown as follows:

a-'(£')

= { Definition of * }
a-'«L \ {E}W U {f})

{Definition of a-'(Lo U L,J}

a-'((L \ {E} W) U a-' {E}

{Definition of derivative of concatenation and {f} }

(a-'(L \ {E})W

{Definition of derivative of {<} }

(a-'L)£,

The definition related to complementation, is as follows:

a-'(,L)

{Definition of derivative}

{x: ax E ,L}

{ Definition of ' operator}

,{x:axEL}

{Definition of a-' L}

,(a-' L)

78 A SOME BASIC DEFINITIONS

o

Definition A.18 (Preserving a predicate): A (partial) function I E Bn + B (for fixed

n 2: 0) is said to preserve predicate (or property) P (on B) if and only if

(Ii B' : B' E B n n (domain(f)) /I (Ii k: 1 :s k :s n: P(7rk(B'») : PU(B'»)

The set domain(f) refers to those elements of B n on which I is defined. 0

Intuitively, a function I preserves a property P if, when every argument of I satisfies P, the result

of I applied to the arguments also satisfies P.

Definition A.19 (Reversal operator): A reversal operator R (usually written postfix and

superscript) for a set A is a function REA ----> A such that RoR (equivalently R2) is the identity

function on A. We sometimes write the reversal operator as a standard (prefix notation) function.
o

Definition A.20 (Tuple and relation reversal): For an n-tuple (Xl, Xz,' .. ,xn) define reversal

as (postfix and superscript) function R:

Given a set A of tuples, we define AR = {xR : X E A}. 0

Definitidn A.21 (Dual of a function): We assume two sets A and B whose reversal operators

are Rand R' respectively. Two functions, I E A ----> Band Id E A ----> B are one another's dual

if and only if

I(a) = (/d(aR))R'

In some cases we relax the equality to isomorphism (when isomorphism is defined on B). 0

Definition A.22 (Symmetrical function): A symmetrical function is one that is its own dual.

o

Proposition A.23 (Symmetrical functions): The composition of two symmetrical functions

is again symmetrical. 0

79

B Proofs of some L;-algebra operators

In this section, we sketch proofs of the correctness of the operators of Thompson's E-a1gebra (Defi

nition 4.1), the left-biased E-algebra operators (Definition 4.20), the Chang-Paige RFA' operators

(Construction 4.77), and the RFA" operators (Construction 4.79).

Theorem B.I (Correctness of Thompson's E-algebra of FA's): Recall the operator def

initions of Definition 4.1. We only present a correctness proof for the operator CU,Th. In the

following derivation we assume the context of the innermost let clause of the operator definition .

o

.cpA(Cu,Th([Mo]", [M,]",))

{Definition of .cPA}

(To UT,)'(qO,q,)

{Definition of E' }

(U s,f: s E SoAf E Fo: To'(s,J))U(U s,J: s E S, Af E F, : T,'(s, f))

{Definitions of .cFA([Mo]",), .cFA([M,]",)}

.cPA ([Mo],,) U .cPA ([M,]",)

Theorem B.2 (Correctness of the LBFA operators): Recall the operator definitions of

Definition 4.20. We present a correctness proof of the operator Cu ,LBPA. In the following derivation
we assume the context of the innermost let clause of the operator definition .

o

.cPA (Cu,LBPA([Mo]"" [M,],,))

{Definitions of .cPA and F'}

(U f: f E Fo n Q' : T"(qo,J)) U (U f: f E F, n Q' : T"(qo,J))

U if (N) then T"(qo, qo) else 0 Ii

{Definitions of LPA([Mo)",), LPA([M,J",), N, T'}

.cPA([Mo],,) U .cFA([M,],,) U if (f E (.cPA (Mo) U .cPA(M,»)) then {f} else 0 Ii

{Definition of .cPA ([Mo].,) U .cPA([M,].,)}

.cPA ([Mo],,) U .cPA ([M,],,)

Theorem B.3 (Correctness of the Chang-Paige RFA' operators): Recall Definition 4.76

and Construction 4.77. We only present the derivation of the eighth component (usually called

W) for operators C.,RPA' and CU,RFA' (the others are easy to prove). We assume the context of

the innermost let clause for both operators.

C.,RFA': last' x first' \ (followo!±l follow 1 !±Ilasto x first,)

{Definitions of first' and last' }

(last, !±I if (null,) then lasto else 0 Ii) x (firsto!±l if (nullo) then first , else 0 Ii)
\ (followo !±I follow 1 !±Ilasto x firstd

= { Rewriting}

(last, x firsto!±l if (nullo) then last, x firstl else 0 Ii
!±I if (null,) then lasto x firsto else 0 fi
!±I if (nullo A null,) then lasto x first 1 else 0 fi
\ (followo !±I follow 1 !±I lasto x first,)

{Assumption that Qo n Ql = 0 }

last , x first o !±I if (nullo) then last, x first, \ follow 1 else 0 Ii

80 B PROOFS OF SOME E-ALGEBRA OPERATORS

I±J if (null,) then lasto x firsto \ follow 0 else 0 fi

{Definitions of Wo and W, }

last, x firsto I±J if (nullo) then W, else 0 fi I±J if (null,) then Wo else 0 fi

= {Definitions of W' and W" }

last, x firsto I±J W' I±J W"

CU,RFA': (lasto I±J last,) x (first o I±J first,) \ (followo I±J follow,)

o

{ Rewriting}

(lasto x firsto I±J lasto x first, I±J last, x firsto I±J last, x first,) \ (followo I±J follow,)

{Assumption that Qo n Q, = 0}

(lasto x firsto \ followo) I±J lasto x first, I±J last, x firsto I±J (last, x first, \ follow,)

{Definitions of Wo and W, }

lasto x first,l±J last, x firsto I±J Wo I±J W,

Theorem B,4 (Correctness of the RFA" operators): Recall Definition 4.78 and Construc

tion 4.79. We only present the derivation of the eighth component (usually called W) for operators

C.,RFA" and CU,RFA" (the others are easy to prove). We assume the context of the innermost
let clause for both operators.

C,RFA": (followo I±Jfollow,l±J (lasto x first,») \ (last' x first')

= {Definitions of first' and last' }

(follow a I±J follow, I±J (lasto x first d) \ ((last, I±J if (null,) then lasto else 0 fi)

x (firsto l±Jif (nullo) then first, else 0 fi))

{ Rewriting}

(followo I±J follow, I±J (lasto x first,») \ (last, x firsto

I±J if (nullo) then last I x first, else 0 Ii

I±J if (null,) then lasto x firsto else 0 fi

I±J if (nullo II null,) then lasto x first, else 0 Ii)

{ Assumption that Qo n Q, = 0 }

if (nUllo) then follow, \ last, x first, else follow, fi

I±J if (null,) then follow a \ lasto x first a else followo fi

I±J if (nUllo II null,) then lasto x first, \ lasto x first, else last a x first, fi

{Definitions of Wo and W,; rewriting}

if (nUllo) then W, else follow, fi I±J if (null,) then Wo else follow a fi

I±J if (nullo /I null,) then 0 else lasto x first, fi

{Definitions of W', W", and W"'}

W' I±J W" l±I W'"

CU,RFA": (follow a I±J follow,) \ ((lasto I±J lastd x (firsto I±J firstd)

{ Rewriting}

(followo I±J follow,) \ (lasto x firsto I±J lasto x first, I±J last, x first o I±J last, x firslJ)

= {Assumption that Qo n Q, = 0}

followo \ (lasto x firsto) I±Jfollow, \ (last, x firstd

= {Definitions of Wo and WI }

Wol±JW,

o

REFERENCES 81

References

[ASU86]

[AU92]

[BL77]

[BS86]

AHO, A.V., R. SETHI, AND J.D. ULLMAN. Compilers: Principles, Techniques, and

Tools, Addison-Wesley Publishing Co., Reading, M.A., 1988.

AHO, A.V. AND J.D. ULLMAN. Foundations of Computer Science, Computer Science

Press, New York, N.Y. 1992.

BACKHOUSE, R.C. AND R.K. LUTZ. "Factor graphs, failure functions and bi-trees,"

in Fourth Colloquium on Automata, Languages and Programming, (G. Goos and J.

Hartmanis, eds.), pp. 61-75, Lecture Notes in Computer Science 52, Springer-Verlag,

Berlin, 1977.

BERRY, G. AND R. SETHI. "From regular expressions to deterministic automata,"

Theoretical Computer Science, 48: 117-126,1986.

[B-K93a] BRUGGEMANN-KLEIN, A. "Regular expressions into finite automata," to appear in

Theoretical Computer Science.

[B-K93b] BRUGGEMANN-KLEIN, A. Private communication, July 1993.

[Brz064] BRZOZOWSKI, J.A. "Derivatives of regular expressions," J. ACM 11(4): 481-494,

1964.

[Cham93] CHAMPARNAUD, J.M. "From a regular expression to an automaton," Technical report,

IBP, LITP, Universite Paris 7, Paris, France, Working document 23 September 1993.

[Chan92] CHANG, C.-H. "From regular expressions to DFAs using compressed NFAs," PhD

thesis, Computer Science Department, Courant Institute of Mathematical Sciences,

New York University, N.Y., Oct. 1992.

[CP92] CHANG, C.-H. AND R. PAIGE. "From regular expressions to DFAs using compressed
NFAs," Computer Science Department, Courant Institute of Mathematical Sciences,

New York University, N.Y., 1992.

[DeRe74] DEREMER, F.L. "Lexical analysis," in Compiler Construction: an Advanced Course,
(F.L. Bauer and J. Eickel, eds.), pp. 109-120, Lecture Notes in Computer Science 21,

Springer-Verlag, Berlin, 1974.

[Dijk76] DIJKSTRA, E.W. A discipline of programming, Prentice-Hall Inc., N.J., 1976.

[Earl70] EARLEY, J. "An efficient context-free parsing algorithm," C. ACM 13(2): 94-102,

Feb. 1970.

[EM85] EHRIG, E. AND B. MAHR. Fundamentals of Algebraic Specification 1: Equations and

Initial Semantics, Springer, Berlin, 1985.

[tEvG93] TEN ElK ELDER, H.M.M. AND H.P.J. VAN GELDROP. "On the correctness of some

algorithms to generate finite automata for regular expressions," Computing Science

Note 93/32, Eindhoven University of Technology, The Netherlands, 1993.

[Glus61] GLUSHKOV, V.M. "The abstract theory of automata," Russian Mathematical Surveys

16: 1-53, 1961.

[GJ90] GRUNE, D. AND C.J.H. JACOBS. Parsing Techniques: A Practical Guide, Ellis Hor

wood Ltd., West Sussex, England, 1990.

[HU79] HOPCROFT, J.E. AND J.D. ULLMAN. Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley Publishing Co., Reading, M.A., 1979.

82 REFERENCES

[Knut65] KNUTH, D.E. "On the translation of languages from left to right," Inform. Control 8:

607-639, 1965.

[MY60] McNAUGHTON, R. AND H. YAMADA. "Regular expressions and state graphs for au

tomata," IEEE Trans. on Electronic Computers 9(1): 39-47, 1960.

[Myhi57] MYHILL, J. "Finite automata and the representation of events," WADD TR-57-624,

pp. 112-137, Wright Patterson AFB, Ohio, 1957.

[Nero58] NERODE, A. "Linear automaton transformations," Proc. AM8 9: 541-544,1958.

[R859] RABIN, M.O AND D. SCOTT. "Finite automata and their decision problems," IBM

J. Res. 3(2): 115-125, 1959.

[SS-888] SIPPU, S. AND E. SOISALON-SOININEN. Parsing Theory; Languages and Parsing, Vol.

1, Springer-Verlag, Berlin, 1988.

[Thom68] THOMPSON, K. "Regular expression search algorithms," C. ACM 11(6): 419-422,

1968.

[Wats93] WATSON, B.W. "A taxonomy of finite automata minimization algorithms," Comput

ing Science Note 93/44, Eindhoven University of Technology, The Netherlands, 1993.

[Wood87] WOOD, D. Theory of Computation, Harper & Row, Publishers, New York, N.Y., 1987.

Index

0, see composition

=, see regular expressions, equivalence of

-----+, see function, total

+, see function, partial

~, see isomorphism

7r, see tuple, projection

1T, see tuple, projection

"', see regular expressions, similarity of

Aho, Sethi, and Ullman '8 construction, see

finite automata, construction, Aho,

Sethi, and Ullman's

algebras, see ~>algebras

algorithms

subset construction, 12

alphabet, 6, 15, 16

ASU, see finite automata, construction, Aho,

Sethi, and Ullman's

automata, see finite automata

Berry and Sethi's construction, see finite au

tomata, construction, Berry and Sethi's

bias

left-ta-right, 6

Briiggemann-Klein's construction, see finite

automata, construction, Briiggemann

Klein

Brz, see finite automata, construction, Brzo
zowski

Erzene, see finite automata, construction, Br

zozowski (encoded)

Brzozowski's construction, see finite automata,

construction, Brzozowski

BS, see finite automata, construction, Berry

and Sethi's

BSenc, see finite automata, construction, Berry

and Sethi's (encoded)

C, see item set, closure of

carrier set, 14, 16

Chang and Paige's construction, see finite

automata, construction, Chang-Paige

closure

Kleene, 16

of an item set, 67-72

Complete, see finite automata, complete

complete, see finite automata, transformations

on, complete

composition, 7, 11-13, 27, 33, 35-45,48, 67,

69-72, 76, 78

constants, 14, 17

83

construction, see finite automata, construc

tion

Aha-Sethi-Ullman, 13

powerset, see finite automata, subset con

struction

subset, see finite automata, subset con

struction

convert, 36, 37, 41-44

1), see item set, relation on

decode, 33, 35-41, 45, 48

DeRemer, see finite automata, construction,

DeRemer

DeRemer's construction, see finite automata,

construction, DeRemer

deriv, 56, 57

derivative

left, 36, 56-65, 67, 68, 72, 77

derivative item set, 68, 72

derivERE,59-61
Det, see finite automata, deterministic

deterministic finite automata, see finite au-

tomata, deterministic

Det', see finite automata, deterministic, weak

DFA, see finite automata, deterministic

Dijkstra, E.W., 12

DIS, see derivative item set

dots, 66-68

dotted regular expressions, 66, 67

DRE, see dotted regular expressions

dual, 11

f, see item set, closure of

edge

labeled directed, 6

Ehrig, E., 14

enederiv, 56, 57

enCE, 65

encode, 33, 45

f-free, see finite automata, f-free

e-lookahead finite automata, 23-27

f-transition

relation, 6

removal of, see finite automata (transf.

on), f removal

equivalence

of regular expressions, see regular ex-

pressions, equivalence of

equivalence relation, see relation, equivalence

ERE, see regular expressions, extended

expression tree height, 15

84

extended regular expressions, see regular ex

pressions, extended

language of, 44, 58-61, 64

FA, see finite automata

false, 16, 17, 32, 34, 50, 51

final states, see states, final

final-reachable states, see states, final-reachable

finite automata, 6-14, 16, 18, 21-23, 25, 27,

28, 31, 32, 35-37, 39-44, 48, 49, 55,

57, 74, 79

complete, 8-13, 37-39, 43, 53-57, 61, 68,
70,71

construction

Aho, Sethi, and Ullman's, 43

Berry and Sethi's, 35, 37, 48

Berry and Sethi's (encoded), 48, 65
Briiggemann-Klein,52

Brzozowski, 61, 62, 65, 71

Brzozowski (encoded), 65

Chang-Paige, 50

DeRemer, 70

guarded commands, 26, 27

item set, 68-70

lookahead automata, 24-26

McNaughton, Yamada, and Glushkov's,

37, 38, 48, 65

Myhill and Nerode's, 55-57, 65, 66

Myhill and Nerode's minimal, 57, 58,
61,65

optimized item set, 70-72
Thompson, 18, 21-23

Thompson top-down, 22, 23
definition of, 6

deterministic, 9-13, 25, 35, 37, 38, 43,

48, 53-58, 60-63, 65, 66, 68-75

definition of, 9

minimality of, 10-12, 56

weak, 9, 55

<-free, 3, 8-12, 27, 28, 31, 32, 35, 37, 40
isomorphism of, 7, 8, 11

language of, 7, 8, 10-12, 18, 23, 29-31,

36,40-42,45,49,53,55-57,61,68,
79

extension, 8

property of, 8

left-biased, 28-33, 35, 37, 44-46, 79

powerset construction, see finite automata,

subset construction

properties of, 7-10

reduced, see reduced finite automata

reverse of, 9, 10

extension of, 11

size of, 7

INDEX

subset construction, 12, 13,37-39

implementation of, 12

optimized, 12, 13, 43, 44
transformations Oll, 10-13

complete, 11, 48

€-transition removal, 11, 27

final-unreach. removal, 11-13, 37-39,

43, 44

start-unreach. removal, 11

useless state removal, 11

useful, 9-11

final, 9
start, 9-11

First, 24-26,47-49,65

first, 32-34, 36, 38, 39, 41, 42, 44, 45, 47,

49-52, 79, 80

Follow, 47-49, 65

follow, 32-34, 36, 38, 39, 41, 42, 44, 45, 47,
49-52, 79, 80

FReachable, see states, final-reachable

function

partial, 9, 32, 46, 68, 76, 78

total, 6, 7, 9-12, 14-17,22,24,26,27,

31-33, 35-37, 42-44, 46-48, 53, 56,

57, 59, 61, 63-68, 76, 78

GeL, see guarded command language

guarded command language, 12, 26

/consir, see finite automata, construction, item

set
identity relation, see relation, identity

initial ~>algebra, see Sigma-algebra, initial

IS, see item sets

isomorphism, 7, 8,10,11,17-21,23,27-45,

48, 50-52, 56, 65, 79

classes, 8, 11, 18-21, 23, 27-45, 48, 50-

52,65,79

of finite automata, see finite automata,

isomorphism of

item, see dotted regular expression

language of, 66, 70
item set

closure of, 67-72

optimization of, 4, 69-72

construction, see finite automata, con

struction, item set

DeRemer's, see finite automata, con

struction, DeRemer's

improved, see finite automata, construc-

tion, item set (high quality)

derivative, see derivative item set

language of, 66-70

relation Oll, 67, 68

INDEX

item sets, 66-71

K, see finite automata, construction, looka

head automata

LAFA, see <-lookahead finite automata

language

of an item, 66, 70

of extended regular expressions, 44, 58-

61, 64

of finite automata, 7, 8, 10-12, 18, 23,

29-31, 36, 40-42, 45, 49, 53, 55-57,

61,68, 79

extension of, 8

of item sets, 66-70

of regular expressions, 16-18, 22, 24, 25,

27,36,39,44,47,49,63-66,68,70

regular, 18, 39-42,44,55-57,63, 76, 77

E-algebra of, 16

Last, 47, 48, 65

last, 32-34, 36, 38, 39, 41, 42, 44, 45, 49-52,

79, 80

LBFA, see finite automata, left-biased

lbfa, 31-33, 35-37, 39, 40

left derivative, 36, 56-65,67,68, 72, 77

left-biased finite automata, see finite automata,

left-biased

'cERE, see extended regular expressions, lan-

guage denoted by

CPA, see finite automata, language of

LJS, see item set, language of

look, 24-26

lookahead finite automata, see <-lookahead fi

nite automata

L RE, see regular expressions, language de

noted by

.creg , see language, regular

LRFAl see reduced finite automata, language

of

Mahr, B., 14

convertb, 36, 37, 41, 42

convertel 42, 43, 49, 71

max, 15

McNaughton, Yamada and Glushkov's con

struction, see finite automata, con

struction, McNaughton, Yamada and

Glushkov's

merge, see finite automata, transformations

on, merge

Min, see finite automata, deterministic, min

imality of

Minc! see finite automata, deterministic, min

imality of

85

Minimal, see finite automata, deterministic,

minimality of

Minimalc, see finite automata, determinis

tic, minimality of

MN,55

MNconstr, see finite automata, construction,

Myhill and Nerode's

MNmin, see finite automata, construction,

Myhill and Nerode's minimal

MYG, see finite automata, construction, Mc

Naughton, Yamada, and Glushkov's

Myhill and Nerode's construction, see finite

automata, construction, Myhill and

Nerode's

minimal, see finite automata, construc

tion, Myhill and Nerode's minimal

Myhill-Nerode theorem, 10

N, see finite automata, construction, guarded

commands

nondeterministic finite automata, see finite

automata, nondeterministic

Null, 17,24,47,48,63-65

null, 32-34, 36, 38, 39, 41, 42, 44, 45, 50-52,

79,80

Occ, 46, 48, 64, 65

Oconstr, see finite automata, construction,

optimized item set

operator set, 14

operators, 14, 15

arity of, 14

constant, see constants

optimization

of closure of an item set, 4, 69-72

P, see powerset

powerset, 6, 7, 9, 12, 16, 23, 24, 26, 32, 46,

47,59,64,66,68,76

powerset construction, see finite automata,

subset construction

preservation, 10

projection, 8, 33, 45, 52, 76, 78

properties

of finite automata, 7-10

Qrnap, 32-34,36, 38, 39,41,42, 44-46, 50-52

'R, see item, language of

RBFA, see finite automata, right-biased

RE, see regular expressions

Reach, see states, reachability relation on

reach ability relation

on states, see states, reachability rela

tion on

86

Reachable, see states, reachable

reachable states, see state, reachability rela

tion on

reduced finite automata, 4, 32--42, 44-52, 72,

73,79,80

Reg, 15

regular expressions, 15-18, 21-26, 28, 31, 33-

37, 39-44, 46, 47, 49, 58, 63-71

constants, 15

definition of, 15

dotted, see dotted regular expressions

equivalence of, 16, 59-63

extended, 44, 58-63, 65, 71

language denoted by, 44, 58-61, 64

language denoted by, 16-18, 22, 24, 25,

27,36,39,44,47,49,63-66,68,70

operators, 15

abbreviations, 16

restricted, 46-49, 63-65

reverse of, 17

similarity, 59-61, 63, 64

similarity of, 59-64, 71

regular languages, see language, regular

relation

€-transition, see €-transition relation

equivalence, 7

identity, 7

reachability, of states, see states, reach

ability relation on

transition, see transition, relation

remove(l see finite automata (transf. on), €

removal

removef,sym, see finite automata (transf. on),
€ removal

restricted regular expressions, see regular ex

pressions, restricted

reversal

of finite automata, see finite automata,

reverse of

of regular expressions, see regular ex-
pressions, reverse of

RFA, see reduced finite automata

rfa, 33, 35-37,40-43,46-48

right-biased finite automata, see finite au

tomata, right-biased

RRE, see regular expressions, restricted

~:-algebras, 14

basic definitions, 14-15

definition of, 14

exam pie of, 15

initial, 15

E-homomorphism, 15, 16

example of, 15

Null, 17

E-term algebra, 15

signature, 14, 15

sink state, see states, sink

INDEX

size of finite automata, see finite automata,

size of

sort, 14

SReachable, see states, start-reachable

start states, see states, start

start-reachable states, see states, start-reachable

state graphs, 6

states, 6

final, 6

final-reachable, 8, 9

final-unreachable, removal, see finite au

tomata (transf. on), final-unreach.

removal

language between, 7

left language of, 7, 8
right language of, 7, 8

sink, 11-13

start, 6, 9

start-reachable, 8, 9, 11

start-unreachable, removal, see finite au-

tomata (transf. on), start-unreach.

removal

useless, removal, see finite automata, trans

formations on, useless state removal

subset, see finite automata, subset construc

tion

subset construction, see finite automata, sub

set construction

implementation of, 12

subsetopt, see finite automata, subset con

struction, optimized

symmetrical, see dual

function, 11, 17

transformation, 11

td, see finite automata, construction, Thomp

son top-down

TermE,14

Th, see finite automata, construction, Thomp

son

Thompson's construction, see finite automata,

construction, Thompson top-down

top-down, see finite automata, construc

tion, Thompson

transformations

on finite automata, 10-13

transition

function, 9

relation, 6
extension of, 7

INDEX

true, 16, 17,32,34,47, 48, 5G-52

tuple, 6

projection, 8, 33, 45, 52, 76, 78

undot, 66, 68

Useful, see finite automata, useful

useful, see finite automata, transformations

on, useless state removal

useful states, see states, useful

Useful f, see finite automata, useful, final

useful f, see finite automata (transf. on), final-

unreach. removal

Use/uls, see finite automata, useful, start

useful" see finite automata (transf. on), start

unreach. removal

vertices, 6

X J see item set, optimization of closure of

y, see item set, optimization of closure of

87

Computing Science Reports

In this series appeared:

91/01 D. Alstein

91/02 RP. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 RC.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
J. v.d. Woude

91/11 RC. Backhouse
P.J. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rieunan

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J .M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
.. if....then p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Perfonnance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHODEN. een overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Tenninology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A paraliel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB Hypennedia Package. Why and how it was
built. p. 63.

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs.
p.25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eike1der
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transfonning Functional Database Schemes to Relational
Representations, p. 21.

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation," p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H. W. v .d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.SmoJka

92/20 F .Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pA5.

The fine-structure of lambda calculus, p. 11 O.

On stepwise explicit substitution, p. 30.

Calculating the WarshalllFloyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C. Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

111

93/14 J.C.M. Baeten
J.A. Bergstra

93/15 J.c.M. Baeten
J.A. Bergstra
R.N. Bo1

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-1. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poil

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

On Sequential Composition. Action Prefixes and
Process Prefix. p. 21.

A Real-Time Process Logic. p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system.
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Program
ming. p. 15.

Freeness Analysis for Logic Programs - And Correct
ness? p. 24.

A Typechecker for Bijective Pure Type Systems. p. 28.

Relational Algebra and Equational Proofs. p. 23.

Pure Type Systems with Definitions. p. 38.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph. p. 11.

A Semantics for a fine A.-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. 11.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions. p. 17.

ILIAS, a sequential language for parallel matrix
computations, p. 20.

'l" . ,'..,;

93/34 J.C.M. Baeten and
J.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
1.A. Bergstra

93/37 J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Stok
M.M.M.P.J. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra. p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. II.

Automatic Verification of Regular Protocols in P/T Nets,
p. 23.

	Abstract
	Contents
	List of Figures
	1. Introduction
	2. Finite automata
	2.1 Properties of finite automata
	2.2 Transformations on finite automata
	2.2.1 Algorithms implementing the subset construction
	3. Sigma-algebras and regular expressions
	3.1 Some basic definitions
	3.2 Regular expressions as a sigma-terms algebra
	4. Constructions based on regular expression structure
	4.1 Thompson's construction
	4.1.1 A top-down versions of Thompson's construction
	4.1.2 Construction e-lookahead automata
	4.2 Towards the Berry-Sethi construction
	4.2.1 Reduced FA's
	4.2.2 The Berry-Sethi construction
	4.2.3 The McNaughton-Yamada-Glushkov construction
	4.3 The dual of the Berry-Sethi construction
	4.3.1 The Aho-Sethi-Ullman DFA construction
	4.4 Extending regular expressions
	4.5 Efficiently computing with RFA's
	4.5.1 A practical implementation of the RFA operators
	4.5.2 More efficient RFA operators
	5. The MYhill-Nerode, Brzozowski and DeRemer constructions
	5.1 The Myhill-Nerode construction
	5.2 The minimal equivalence relation RL
	5.2.1 Encoding RL
	5.3 The Brzozowski construction
	5.3.1 Computing derivatives of an ERE
	5.3.2 Extendingderivatives
	5.4 Relating the Brzozowski and Berry-Sethi construction
	5.5 Towards De Remer's construction
	5.5.1 Making the construction more efficient
	6. Conclusions
	A: Some basic definitions
	B: Proofs of some sigma-algebra operators
	References
	Index

