EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A taxonomy of finite automata construction algorithms

Citation for published version (APA):
Watson, B. W. (1993). A taxonomy of finite automata construction algorithms. (Computing science notes; Vol.
9343). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022


https://research.tue.nl/en/publications/5a2d0582-867a-4bb1-a933-84ed56f49cfb

T

Eindhoven University of Technology

Department of Mathematics and Computing Science

A taxonomy of finite automata
construction algorithms

by

Bruce W. Watson
93/43

ISSN 0926-4515

Ali rights reserved
editors: prof.dr. J.C.M. Baeten
prof.dr. M. Rem

Computing Science Report 93/43
Eindhoven, January 1995



A taxonomy of finite automata
construction algorithms*

Bruce W. Watson
Faculty of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
e-mail: watson@win.tue.nl

Tel: +31 40 474319
January 24, 1995

Abstract

This paper presents a taxonomy of finite automata construction algorithms. Each algorithm
is classified into one of two families: those based upon the structure of regular expressions,
and those based upon the automata-theoretic work of Myhill and Nerode.

Many of the algorithms appearing in the literature are based upon the structure of regular
expressions. In this paper, we make this term precise by defining regular expressions as
a Z-term algebra, and automata constructions as various Z-algebras of automata. Each
construction algorithm is then presented as the unique natural homomorphism from the 3-
term algebra of regular expressions to the appropriate Z-algebra of automata. The concept
of duality is introduced and used to derive more practical construction algorithms. In this
way, we successfully present (and relate) algorithms given by Thompson, Berry and Sethi,
McNaughton and Yamada, Glushkov, and Aho, Sethi, and Ullman. Efficient implementations
(including those due to Chang and Paige, and Briggemann-Klein) are also treated. As a
side-effect we derive several new algorithms.

A pair of impractical, but theoretically interesting, construction algorithms were presented
by Myhill and Nerode. Some encoding techniques are used to make the algorithms practical
— giving Brzozowski’s algorithm based upon derivatives. DeRemer’s algorithm is derived
as an encoding of Brzozowski’s algorithm. Two new algorithms, related to DeRemer’s, are
derived. Lastly, this family of algorithms is related to the first family.

In addition to classifying the algorithms, we identify (and abstract from) the coding tricks
and implementation details present in many of the published algorithms. This paper also
presents an introduction to finite automata, X-algebras, and their properties.

*Third printing.
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1 Imtroduction

The construction of finite automata (from regular expressions) is one of the oldest and most
extensively developed areas of computing science. Just as the variety of applications has grown,
50 has the diversity of solutions. Some of the solutions were devised to deal with an extension of
the problem, such as constructing a finite automaton from an extended regular expression!, while
others were devised with efficiency in mind. Such a myriad of objectives in the algorithm design
has lead to solutions that are difficult to compare. Frequently, people that study the algorithms
{or constructions as they are called in this paper) marvel that two seemingly different algorithms
construct isomorphic finite antomata from the same regular expression. In order to differentiate
these algorithms, a taxonomy of construction algorithms would be useful. This report presents
such a taxonomy. A related taxonomy of finite automata minimization algorithms appears in
[Wats93).

In developing a taxonomy, we have the luxury of rearranging the relationships between the
algorithms, possibly introducing relationships that are not present in the history of an algorithm’s
development. In this paper, for example, we derive DeRemer’s construction from Myhill and
Nerode'’s construction. Historically, the theory of LR parsing had a much greater influence on
DeRemer’s construction.

Section 2 gives definitions of finite automata and some transformations on them. Section 3
introduces ¥-algebras, the foundations for the first family of finite automata constructions. Sec-
tions 4 and 5 include the two families of finite automata constructions. Appendix A gives the basic
definitions required for reading this paper, while Appendix B presents some proofs related to Sec-
tion 4. The construction relationships are summarized in the “family tree” shown in Figure 1.
The main results of the taxonomy are summarized in the conclusions — Section 6.

In this taxonomy, the finite automata constructions are arranged into two families: those
constructions that are based upon the structure of regular expressions, and those based upon the
automata-theoretic results of Myhill and Nerode.

The first family of constructions is presented in Section 4:

¢ Thompson’s construction as presented in [Thom68]. This algorithm constructs a (possibly
nondeterministic) finite automaton (possibly with e-transitions). The description in this
paper (Construction 4.3} is based upon those given in [AU92, HU79, Wood87, ASUS6| as they
are usually considered more readable than Thompson’s original paper. Additionally, a more
practical (top-down) version of Thompson’s construction is presented (Construction 4.5).

¢ The e-lookahead finite automaton construction. This algorithm (Construction 4.11) con-
structs finite automata that are similar to those constructed by Thompson’s construction.
They may include so-called ¢-lookahead transitions.

¢ The guarded commands program construction. This algorithm (Construction 4.17) con-
structs a guarded commands program from a regular expression. The program is an acceptor
for the regular language denoted by the regular expression. It is presented in this paper as
a refinement (using hard-coded guarded commands) of the ¢-lookahead construction.

¢ The left-biased and right-biased constructions. These two constructions (Constructions 4.22
and 4.43 respectively) are related by being the mirror images (or duals) of one another. They
both construct an e-free {possibly nondeterministic) finite antomaton.

e Berry and Sethi’s construction as presented in [BS86, Glus61, MY60]. This construction
(Construction 4.32) uses some precomputation of sets to construct the same finite automa-
ton as the left-biased construction. This construction is implicitly given by Glushkov [Glus61]
and McNaughton and Yamada [MY60], where it is used as the nondeterministic finite au-
tomaton construction underlying a deterministic finite automaton construction. Berry and
Sethi [BS86] explicitly present this algorithm, and they relate it to Brzozowski's construction

1 An extended regular expression is one that includes either the intersection or complementation operator.
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Figure 1: The family trees of finite automata constructions. The constructions fall into two broad
categories: those based on the structure of regular expressions (descended from Z-algebras), and
those based on the Myhill-Nerode theorem. Each construction presented in this paper appears
as a vertex in this tree, along with the name that it is given in this paper. If the construction is
presented explicitly (in this paper), the construction number appears in parentheses (indicating
where it appears in this paper). Solid edges denote refinements of the solution (and therefore
explicit relationships between constructions). They are labeled with the name of the refinement.
Dotted edges denote relationships (between algorithms) that are not elaborated upon in this paper.
Some of the dotted edges are labeled with the name of the relationship or refinement. Vertices
that are connected by a dashed edge are related by duality (they are the “mirror images” of one

another).



[Brzo64]. We also present (in Construction 4.38) a variant of the Berry-Sethi construction
that is more easily implemented in practice.

McNaughton, Yamada and Glushkov’s construction as presented in [MY60, Glus61]. This
construction (Construction 4.39) produces a deterministic finite automaton.

The dual of the Berry-Sethi construction. This construction {Construction 4.45) is the
“mirror image” of Berry and Sethi’s construction. A variant of this construction was also
mentioned in passing by Aho, Sethi, and Ullman [ASU86, Example 3.22, pg. 140]; it appears
in this paper as Construction 4.48. In our presentation of this construction, we correct an
errar appearing in Aho, Sethi, and Ullman’s version (see Construction 4.48 of this paper).

Aho, Sethi, and Ullman’s construction as presented in [ASUS86, Alg. 3.5, Fig. 3.44]. This
construction (Construction 4.50) produces a deterministic finite automaton. It is the “mirror
image” of the McNaughton-Yamada construction.

The second family of constructions (from regular expressions) are those based upon the automata-
theoretic results of Myhill and Nerode [RS59]. They are presented in Section 5:

Myhill and Nerode’s construction as presented in [RS59]. This construction (Construc-
tion 5.11, which is given as part of the proof of the Myhill-Nerode theorem} uses some
language theoretical results to construct a deterministic finite automaton. A version of
this construction (Construction 5.19) gives the unique (up to isomorphism) minimal finite
auntomaton. It is not a very practical construction (and usually is not even given as a con-
struction), as it relies on the computation of possibly infinite sets. Certain encoding schemes
can be used to represent these infinite sets, making the construction practical. Brzozowski’s
and DeRemer’s constructions are two such encoding schemes.

Brzozowski’s construction as presented in [Brzo64]. This construction (Construction 5.34)
gives a deterministic finite automaton. We derive it as an encoding of the Myhill-Nerode
construction, although Brzozowski’s derivation was entirely independent.

The item set construction. This construction (Construction 5.69, not appearing in the
literature) produces a deterministic finite automaton, and is based upon the concept of
“items” which is borrowed from LR parsing [Knut65]. In this paper, we present it as an
encoding of the Myhill and Nerode construction.

DeRemer’s construction as presented in [DeRe74]. This construction (Construction 5.75)
produces a deterministic finite automaton. In this paper, it is derived from the item set
canstruction, although DeRemer made use of LR parsing in his derivation.

An improvement of the item set construction. This construction (Construction 5.82; not
appearing in the literature} produces a deterministic finite automaton, and is also based upon
the item set comstruction. Furthermore, it is an improvement of DeRemer’s construction.
A variant (Construction 5.85) is also related to the Aho-Sethi-Ullman deterministic finite
automaton construction.
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2 Finite automata
In this section we define finite automata, some of their properties, and some transformations on
finite automata.

Definition 2.1 (Finite automaton): A finite automaton (an FA) is a 6-tuple (Q,V,T,E, S, F)
where

* () is a finite set of states,

V is an alphabet,

T e P( xV x () is a transition relation,

E € P(@ x Q) is an e-transition relation
e 5 C @ is a set of start states, and

o FFC Q@ is aset of final states.

The definitions of an alphabet and function P are in Definition A.9 and Convention A.l respec-
tively. O

Remark 2.2: We will take some liberty in our interpretation of the signatures of the transition
relations. For example, we also use the signatures T € V —s P(Q x @), T € @ x @ — PV},
Te@@xV —PQ),TeQ — PV xQ), and E € @ — P(Q). In each case, the order of the
@’s from left to right will be preserved; for example, the function 7' € Q — P(V x Q) is defined
as T(p) = {(a,q) : (p,a,q) € T}. The signature that is used will be clear from the context. See
Remark A.3. The definition of — appears in Convention A.2. O

Remark 2.3: Our definition of finite automata differs from the traditional approach in three
ways:

+ multiple start states are permitted;

s the transition relations are presented in a symmetrical way (without any inherent left-to-right
bias); and

¢ the e-transitions (relation E) are separate from transitions on alphabet symbols (relation
.

(]

Since we only consider finite automata in this paper, we will frequently simply use the term
automata.

Convention 2.4 (Finite automaton state graphs): When drawing the state graph corre-
sponding to a finite automaton, we adopt the following conventions:

s All states are drawn as circles (vertices).

o Transitions are drawn as labeled (with e or alphabet symbol @ € V'} directed edges between
states.

o Start states have an in-transition with no source {the transition does not come from another
state).

e Final states are drawn as two concentric circles.

For example, the FA below has two states, one is the start state, and other is the final state, with

a transition on a:
-0
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2.1 Properties of finite antomata

In this subsection we define some properties of finite automata. To make these definitions more con-
cise, we introduce particular finite automata M = (Q,V, T, E, S5, F), My = (&0, Vo, Ty, Ev, So, Fo),
and M_1 = (Ql: Vl,Tl, El, Sl, FI)

Definition 2.5 (Size of an FA): Define the size of an FA as |M| = |@Q]. O

Definition 2.6 (Isomorphism (=) of FA’s): We define isomorphism (=) as an equivalence
relation on FA’s. My and M are isomorphic {written My ¢ My ) if and only if V, = Vi and there
exists a bijection g € Qy — @ such that

* Ty ={(9(p).a,9(2)) : (p.a,q) € To},
o Er ={(g(p),9(9)) : (p,9) € En},

o 51 ={g(s):s € Sp}, and

o Fi={g9(f): fe R}

d

Definition 2.7 (Extending the transition relation T'): We extend transition relation 7' €
V—=PRxQ)toT" e V* — P(Q x Q) as follows:

T*(e) = E”
and (foro e V,w € V*)
T {aw) = E* o T{a) o T*(w)

Operator o (composition) is defined in Convention A.6. This definition could also have been
presented symmetrically. O

Remark 2.8: We also sometimes use the signature 7" € Q x @ — P(V*). O

Remark 2.9: If £ = @ then E* = 0* = Iy where Iy is the identity relation on the states of M.
a

Definition 2.10 (The language between states): The language between any two states
90,41 € Q is T*(go, q1). O

Definition 2.11 (Left and right languages): The left language of a state (in M) is given by
function ZM € Q — P(V*), where

o *
Lulg)=(Us:s€8:T*(s,q)
The right language of a state (in M) is given by function rd M € Q — P(V*), where
—
Lulg)=(U f:fEF T(qf))
The subscript M is usually dropped when no ambiguity can arise. O

Definition 2.12 (Language of an FA): The language of a finite automaton (with alphabet V')
is given by the function Lps € FA — P(V*) defined as:

LpalM)=(Us,f:s€eSAfeF:T*s,f)
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Property 2.13 (Language of an FA): From the definitions of left and right languages {(of a
state), we can also write:

Cra(My=(u f:f€F: CT(f)
and

Lra(M)=(Us:s€S: L(s)
(]

Definition 2.14 (Extension of Lr4): Function Lp4 is extended to [FA]x as Lra([M]x) =
Lra(M). This use of brackets ([,]) is defined in Convention A.7. The choice of representative is
trrelevant, as isomorphic FA’s accept the same language. O

Definition 2.15 (Complete): A Complete finite automaton is one satisfying the following:
Complete(M)=(Vq,a:qe QAa eV :T(q,a)#0)
a

Property 2.16 (Complete): For all Complete FA’'s (Q,V, T, E, S, F):

(UgiqeQ: Z(g)=V"
O
Definition 2.17 (e-free): Automaton M is e-free if and only if E=0. O
Remark 2.18: Even if M is e-free it is still possible that € € Lpa(M): in this case SNF £ 0. O

Definition 2,19 (Reachable states): For M we can define a reachability relation Reach(M) C
(Q x @) defined as

Reach(M) = (#5(TYU E)*

Functions 7 and 7 are defined in Convention A 4. Similarly the set of start-reachable states is
defined to be:

SReachable(M) = Reach(M)(S)

and the set of final-reachable states is defined to be:
FReachable(M) = (Reach(M))R(F)

Reversal of a relation is defined in Definition A.20. The set of useful states is:
Reachable(M) = SReachable(M) N FReachable(M)

O

Remark 2.20: For FA M = (Q,V,T, E, S, F), function SReachable satisfies the following inter-
esting property:

q € SReachable(M) = EM(Q) 0
FReachable satisfies a similar property:

g € FReachable(M) = £ 4(q) # 0



2.1 Properties of finite automata 9

Definition 2.21 (Useful automaton}): A Useful finite automaton is one with only reachable
states:

Useful{ M) = (Q = Reachable(M))
a

Definition 2.22 (Start-useful automaton): A Useful, finite automaton is one with only start-
reachable states:

Useful ,(M) = (Q = SReachable{M))

O

Definition 2.23 (Final-useful automaton): A Useful; finite automaton is one with only final-
reachable states

Useful ((M) = (Q = FReachable(M))
O

Remark 2.24: Useful, and Useful; are closely related by FA reversal (to be presented in Trans-
formation 2.34). For all M € FA we have Useful (M) = Useful ,(M®). O

Property 2.25 (Deterministic finite automaton): A finite automaton M is deterministic if
and only if

e it does not have multiple start states,
s it is e-free, and
¢ transition function T € Q x V — P(Q) does not map pairs in @ x V to multiple states.
Formally,
Det(M)=(|S| < 1Aefree(EYA(Vga:gEQAaeV :|T(g,a) <1))

O

Definition 2.26 (Deterministic FA’s): DFA denotes the set of all deterministic finite automata.
We call FA\ DFA the set of nondeterministic finite automata. O

Convention 2.27 (Transition function of a DFA): For (Q,V,T,0, 5, F) € DFA we can consider
the transition function to have signature T € @ x V -4 Q. (A definition of -/ appears in
Convention A.2.) The transition function is total if and only if the DFA is Complete. O

Property 2.28 (Weakly deterministic automaton): Some authors use a definition of a
deterministic antomaton that is weaker than Det; it uses left languages and is defined as follows:

Det!/(M)=(Vago,q1 @ EQAGEQNGQ #q1: 4f_:((li'o)ﬂ(z(f;h) =0)
O

Remark 2.29: Det(M) = Det’'(M) is easily proved. We can also demonstrate that there exists
an M € FA such that Det' (M) A ~Det(M):

({qﬂrth}! {b}? {(q(h b: qo): (QOs by‘h)}! Q?ﬂ’ @)

In this FA, (E(qo) = f(ql) =@, but state go has two out-transitions on symbol alphabet & O
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Definition 2.30 (Minimality of a DFA): An M € DFA is minimal as follows:
Min(MY=(V M': M’ € DFAA Lpa(M) = Lpa(M') : |M| < |M'|)

Predicate Min is defined only on DFA's. Some definitions are simpler if we define a minimal, but
still Complete, DFA as follows:

Ming(M)= (VY M': M’ € DFAA Complete(M') A Lpa(M) = Lpa(M") . |M| < {M'|)
Predicate Ming is defined only on Complete DFA’s. O

Property 2.31 (Minimality of a DFA): An M, such that Min{A), is the unique (modulo
=) minimal DFA, as will be shown in Section 5. There is no similar uniqueness property for
nondeterministic finite automata. O

Property 2.32 (An alternate definition of minimality of a DFA): For the purposes of
nminimizing a DFA, we use the definition (defined only on DFA’s):

Minimal(Q,V,T,0,5,F) = (V0,0 0 €EQAM EQAG#a: £ (a) # L (01))
A USEfUl(Qs V1 T}g? S’ F)

We have the property that (for all M € DFA} Minimal(M) = Min(M). It is easy to prove
that Min(M) = Minimal(M). The reverse direction follows from the Myhill-Nerode theorem
(Theorem 5.7).

A similar definition that relates to Minc is (also defined only on DFA’s):

Minimalc(Q,V,T,0,5,F) = (V0.1 G EQANG EQANG #q1: E)(q(}) £ L{m))
A Useful (Q,V,T,8, 5, F)

We have the property that (for all M € DFA such that Complete(M)) Minimalc{M) = Ming(M).
The contrapositive of Ming(M) = Minimalc(M) is easily proved, and the reverse direction also
follows from Theorem 5.7. O

Remark 2.33: In the literature the second conjunct in the definition of predicate Minimalc is
sometimes erroneously omitted. The necessity of the conjunct can be seen by considering the DFA

({p.q}. {a}, {(p,a,p), (¢, 2,¢)}, 0.0, {p})

Here (E(p) = (E(q) = 0 (which is also the language of the DFA), f)(p) = {a}*, and E(q) =49.
Without the second conjunct, this DFA would be considered Minimalc; clearly this is not the
case, as the minimal Complete DFA accepting 9 is (0, {a},9,9,0,0). O

2.2 Transformations on finite automata

Transformation 2.34 (FA reversal): FA reversal is given by postfix (superscript} function
R € FA — FA, defined as:

(Q,V,T,E, SaF)R = (Q: V’TRsERanS)
Function R satisfies
(VM:MeFA: (Lpa(M)E = Lo (MP)).

and preserves ¢-free and Useful.
Reversal functions are defined in Definition A.19, and preservation is defined in Definition A.18.
a
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Remark 2.35: The property (£pq(MB))® = Lpa(M) means that function £ g4 is its own dual,
and is therefore symmetrical (see Definitions A.21 and A.22). O

Definition 2.36 (Extending reversal to [FA]~): We extend reversal to R € [FA|s — [FA]x
defined as ([M]~)® = [M*®]~. The definition is independent of the choice of representative (of an
equivalence class of ) since R and isomorphism commute. O

Transformation 2.37 (Useless state removal): There exists a function useful € FA — FA
that removes states that are not reachable. A definition of this function is not given here, as it is
not needed. Function useful satisfies

(VM : M e FA: Useful(useful (M) A Lpa(useful(M)) = Lra(M))
and can be defined so as to preserve ¢-free, Useful, Det, and Min. O

Transformation 2.38 (Removing start state unreachable states): Transformation useful, €
FA — FA removes those states that are not start-reachable:

useful [ (Q,V,T,E, 5, F} = let U = SReachable(Q,V,T,E,S,F)
. (UV,TN(UxV xULENUxU),SNU,Fnl)
end
Function useful, satisfies
(V M : M e FA: Useful (useful [(M)) A Lpa(useful (M)) = Lra(M))
and preserves Complete, e-free, Useful, Det, and (trivially) Minc and Min. O

Remark 2.39: A function useful; € FA — FA could also be defined, removing states that are
not final-reachable. Such a function is not needed in this paper. O

Transformation 2.40 (Completing an FA): Function complete € FA — FA is defined as:
complete(Q,V,T,E,5, F}) = let s bea new (sink) state
in
let T'={(pa,s):~(3q:¢€Q:(pa,qecT)}
T" =1if (T' #0) then {s} x V x {s} else D fi
in
(QUIf (T" #0) then {s} else 8 fi,V,
TUT' UT" E,S,F)
end
end

It satisfies the requirement that;
(Y M : M € FA: Complete(complete(M)) A L pa{complete(M)) = L pa{M))

In general, this transformation adds a sink state to the FA. This transformation preserves e-free,
(trivially) Complete, Det, and Ming. O

Transformation 2.41 (¢ removal): An e removal transformation remove, € FA — FA is one
that satisfies

(V M : M € FA : c-free(remove (M) A Lra(remove (M)} = Lpa(M))
There are several possible implementations of remove.. One implementation is:

removee sm{Q,V,T,E,5, F) = let T'(a)=E*oT{a)oE*
in .
(Q,V.T",0, B*(S),(E*)*(F))

end

This implementation preserves Complete and Useful and is symmetrical. O
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Transformation 2,42 (Subset construction): The function subset transforms an e-free FA
into a DFA (in the let clause 77 € P(Q) x V — P(P(Q)))

subset(Q,V,T,0,5,F) = let T'(Ua)={Ug:qel:T(g0a))}
F={U:UeP@AUNF#8}
(P(Q),V,T,0,{S}, F")
end

In addition to the obvious property that (for all M € FA) Lpa(subset(M)) = Lpa(M}, function
subset satisfies

(VM : M€ FAAe-free( M) : Det(subset(M)) A Complete(subset(M)))

and preserves Complete, e-free, Det, and Mine. It is also known as the “powerset” construction.
O

Property 2.43 (Subset construction): Let My = (Qo, V., Ty, 8, So, Fy) and My = subset(M,)
be finite automata. By the subset construction, the state set of M) is P(Qy). We have the
following property:

Vp:p€PQo): Lan(p)=(Ua:q€p: L a(9)))
O

Definition 2.44 (Optimized subset construction): The function subsetopt transforms an
¢-free FA into a DFA. This function is an optimized version of subset.

subsetopt(Q,V,T,0,5,F) = let T'U,a)={(Vqg:qcl :T(q,a))}
Q' =P@Q)\ {0}
F=={U:UePQ)AUNF#0}
(QI,V, T’ n (Q’ x V X QJ)’Q, {S}’Fl’)

end

In addition to the property that (for all M € FA) Lrpa(subsetopt(M}) = Lpa(M), function
subsetopt satisfies

(VM : M e FANe-free(M) : Det(subsetopt(M)))

and preserves e-free, Det. O

2.2.1 Algorithms implementing the subset construction

Since many of the states in a subset-constructed DFA may be unreachable, we consider an algo-
rithm implementing the composition useful, ¢ subset.

In this algorithm, D (for done) is the set of states (of the DFA being constructed} already
considered, and U (for un-done) is the set of states to be considered. The type of S/, D, and U
is P(P(Q)) (in particular, §' is a set of states in the constructed DFA). This algorithm will yield
a Complete DFA. In the case that the language of the automaton (being subset constructed} is
not V*, then there will be a state # € D which is the sink state. The algorithm is implemented in
Dijkstra’s guarded command language [Dijk76].
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Algorithm 2.45:

{(Q,V,T,9,5,F) e FA}
9,7 = {5},
DU =085,
do U #£0—
let w:uec U,
DU :=Du{u},U\ {u};
fora:aeV do
di=(Ug:qcu:T(ga));
ifdg D — U :=Uu{d}
| de D — skip
fi;
T":=TU{(u,a,d)}
rof
od;
Fi={d:de DAANF # B}
{(D,V,T',0,8', F') = useful, o subset(Q,V,T,8,5,F)}
{Complete(D,V,T",0,5', F'}}

An algorithm implementing useful, o subsetopt, yielding a (possibly non-Complete) DFA with
no sink state is:

Algorithm 2.46:

{(Q,V,T,0,5,F) € FA}
ST = (if (S #0) then {5} else ¢ fi),0;
DU :=9,5,;
de U#0 —
let w:uelU;
DU :=Du{u}, U\ {u};
fora:aeVAa(3g:geu:T{g,a)#0)do
d:=(Uqg:q€u:T(ga))
ifdg D — U:=Uu{d}
ide D — skip
fi;
T =T"U {{v,0,d)}
rof
od,;
Fli={d:de DAdNF #£0}
{(D,V,T",0,5, F') = useful,, o subsetopt{Q,V,T,0, S, F}}

Remark 2.47: The algorithm given above can be made more efficient by removing the 3 quan-
tification from the for guard, and implementing it in an if-fi structure within the for statement.
The algorithm is left in this form since it is used in Construction 4.50 to present the Aho-Sethi-
Ullman algorithm. O
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3 X-algebras and regular expressions

Many of the known F4 constructions have definitions that follow the syntactic structure of regular
expressions. The best known (and perhaps the easiest to understand) is Thompson’s construction
[Thom68]. We would like to formalize the notion of “following the syntactic structure.” This is
done by introducing E-algebras in this section. Regular expressions are then defined as a Z-algebra.

3.1 Some basic definitions

This subsection provides the basic definitions required for L-algebras. Most of these definitions
are taken, with slight modification, from [EM85].

Definition 3.1 (Sorts): Given set S (the elements of which are called sorts), a set of sets X is
called S-sorted if the elements of X correspond one-to-one with 8. The element of X corresponding
to s € § is written X,. O

Definition 3.2 (Signature Z): A signature T is a pair (§,T") where
¢ S is a finite set, and
o T'is an (S* x §)-sorted set called the operators.

We write elements of 5* % § as << 81,...,8: >,s >. We can make a couple of notational
simplifications:

o Given v € Tccy), . o>, s> We write v 8; X ... x 8, — s. Constant % is known as the arity
of operator .

o For v € T'cen o» we write v @ 5, and call ¥ a constent; that is, constants are operators of
arity zero.

(]

Remark 3.3: Although the set $* % S is infinite (for 5 # ), this does not imply that there are in-
finitely many operators. There may be << s1,...,8m >,8 >€ S*x S such that I'c sy, 550> =
@:; in that case, there is no operator v: §; X ... X §m ~— 8. O

Several of the following definitions are with respect to signature & = (S, TI).
Definition 3.4 (T'ermz): The S-sorted set Termy is the smallest S-sorted set such that?

oif v: 8 x ... x s — s (for some k£ > 0) (s,81,...,8. € S)and (for all 1 < ¢ < k)
t; € Terms, then A[t;,... 1] € Terms,. We adopt the convention that 7[] is simply
written .

O
Definition 3.5 (Z-algebra): A Z-algebra is a pair (V, F') such that
e V is an S-sorted set, and
e Fis a set of functions f, (with v € T') such that
—ify:is; x...xsp — sthen fL €V, x... xV,, —V,.

Set V is called the carrier set of the X-algebra. Set F is called the operator set of the Z-algebra.
0

2Square brackets {[ and ]} are used syntactically here.
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Definition 3.6 {E-term algebra): The X-term algebra is the X-algebra (Termy, F') such that

F={f,:(v:5 %x...xs — 5)}

where (for all f, € F) f, € Termg, x...xTermz, — Termy, is defined as Tty te) =
’Y[tl,. A ,tk]. O

Definition 3.7 (E-homomorphism}: Given Z-algebras (V, F) and (W, (), a X-homomorphism
from (V, F) to (W, @) is an S-indexed set of functions A such that

s for all s € § we have h, € V, —» W, and

e forally:s; x...Xsp — s, fr€F, g,€G, ande; €Vy,,...,ex €V,

hs(f‘r(ela RN ek)) = g"y’(h'sl (61)5 v 7h‘5k(ek))
O

Remark 3.8: In the case that there is only one sort, a £-homomorphism is a singleton set and
we speak of the homomorphic function. O

Definition 3.9 (Initial Z-algebra): A Z-algebra is initial if there is a unique XZ-homomorphism
from it to all other T-algebras. O

Proposition 3.10 {Z-term algebras): Z-term algebras are initial. O

Example 3.11 (E-algebras): Consider signature £ = (5,T") where S consists only of sort expr,
and I" consists of constant a : expr and operator plus : expr X expr — expr. Some examples of
terms in the E-term algebra are plus(a, a] and plus[plus|a, plus(a, a]], al.

We define another Z-algebra X with the natural numbers as the carrier set, 0 (the natural
number) as the constant, and fu..(z,y) = (t maxy) + 1 as the operator.

As an example of a ¥-homomorphism, we define the “expression tree height” function as a
homomorphism from the E-term algebra to algebra X. With only one sort, we define function hespr

a8 hezpr(a) = 0 and hecpr(plusle, f]) = fpius(heapr(e); heapr(f)) = (Pezpr(€) max hezpr(f)) +1. O

3.2 Regular expressions as a ¥-term algebra

Definition 3.12 (Regular expressions): We define regular expressions {over alphabet V') as
the X-term algebra over signature T = (5, 0) where

* 5 consists of a single sort Reg {for regular expression}, and

e O is a set of several constants: ¢,8,a1,...,a, : Reg (where V = {ay,...,a,}) and five
operators - : Reg x Reg — Reg (the dot operator), U : Reg x Reg — Reg, = : Reg — Reg,
+ : Reg — Reg, and ? : Reg — Reg.

Signature X will be used throughout the remainder of this paper. We make the following notational
simplification when writing terms in the Z-term algebra:

o operators - {the dot) and U are written as infix operators;

e operator - is usually not written, juxtaposition is used instead;

e operators *, +, and 7 are written as postfix (superscript) operator.
The following will also be used for conciseness:

e a term in the E-term algebra is called a regular expression;
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¢ the set Termy is denoted by RE;

¢ the operators have (ascending) precedence: U, -, * and + and ?; ¢, 9, and aq,...,a, € V are
constants;

» regular expressions are usually fully parenthesized; parentheses can be omitted where the
operator precedence allows.

O

Remark 3.13: The ? operator is non-standard. It will be used to denote union with the language
containing the empty string e. See Definition 3.17. O

Remark 3.14: Some authors write U as (infix) + or as |. O

Example 3.15 (A regular expression): Given alphabet V = {a,b} the regular expression
[Ula, €], *[8]] is usually written as (@ U €)b*. This particular regular expression will be used in
running examples of FA4 construction. O

Remark 3.16: Some authors leave 8, 7, or + out of the definition of regular expressions. Strictly
speaking, operators €, +, and ? are not needed in the signature, since they can be constructed
from the other operators. There are some FA constructions (from RE’s) that have running time
dependent on the size of the regular expression. In these cases, treating the extra operators fully
(instead of as abbreviations) becomes advantageous. O

Definition 3.17 (The Z-algebra of regular languages): We define a T-algebra of regular
languages (over alphabet V), with carrier P{V*) and constants:

e {e} € P(V*) (the language containing only the empty string);
o B € P(V*) (the empty language);
o {a} € P(V*} (for all a € V).

and operators:

e Ue P(V*) x P(V*) — P(V*) (language union);

€ P(V*) x P(V*) — P(V*) (language concatenation);
*» x € P(V*} — P(V") {Kieene closure);
e +¢€ P(V*) — P(V*} (+ closure), and

7€ P(V*) — P(V*) (union with {e}, see Definition A.14).
Each of these operators corresponds (in the obvious way) to the operators of signature . O

Definition 3.18 {Language denoted by an RFE): The funciion £rg is the {unique) homomor-
phism from the E-term algebra of RE's to the X-algebra of regular languages. Function £gg maps
regular expressions to the languages they denote. O

Definition 3.19 (Equivalence (=) of RE’s): Two regular expressions, Fy and E;, are said to
be equivalent (written Fy = Ej, note the dot above the =) if and only if they denote the same
language. O

Definition 3.20 (The nullable T-algebra): We define the nullable X-algebra as follows:

o The carrier set is {true, false}.
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¢ The constants are: true, false, and false (corresponding respectively to ¢, §, and a: a € V).
Here the constant false corresponds to @ and to all @ € V. The operators are: V (disjunction},
A (conjunction), the constant function frue, the identity function, and (again) the constant
function true (corresponding respectively to U, -, %, +, and ?). The operators corresponding
to * and to 7 are interesting because they map their argument to the constant frue.

We denote the (unique) homomorphism from RE to this Z-algebra as Nulil. O

Property 3.21 (The nullable Z-algebra):The homomorphism Null has the property that for
all E € RE

€€ LRE(E) = Null(E)

|

Definition 3.22 ( RE reversal): Regular expression reversal is given by the postfix (superscript)
isomorphism R € RE — RE

CR = ¢
R = 9
o = a (for a € V)
(BouE)® = (Ef)U(Ef)
(Bo-B)® = (B (E])
(E*)R — (ER)*
(EHE = (BB
(E?)R — (ER)?

Function R satisfies the obvious property that
(VE:E e RE:(ER® = EA(Lrp(ER)E = Lpp(E))

O

Remark 3.23: The property satisfied by regular expression reversal implies that Lgp is an
example of a symmetrical function (according to Definition A.22). O
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4 Constructions based on regular expression structure

A finite automaton construction is any function f, such that the following diagram commutes:

RE f FA

Lra
LrE

Lreg

In this section, we will be defining some 3-algebras with [FA]|~ as the carrier set; the idea
behind the above commuting diagram still holds in this case, as all isomorphic FA’s accept the
same language. The isomorphism class of an FA corresponding to a given regular expression is
the image of the regular expression under the (unique) homomorphism from RE to the other
Y-algebras. Such a homomorphism is a FA construction. Thompson’s construction is considered
first, followed by a derivation of Berry and Sethi’s, McNaughton, Yamada and Glushkov’s, and
Aho, Sethi, and Ullman’s constructions. We also consider methods of efficiently implementing
some of the constructions, and methods of constructing FA’s from extended regular expressions
(see Definition 4.53).

4.1 Thompson’s construction

One Z-algebra is based upon an RE to FA construction given by Thompson in [Thom68]. The
explanations given in textbooks such as [HU79, Wood87, AU92, ASU86] are generally considered
more readable than Thompson’s original paper. None of those presentations made use of Z-
algebras.

Definition 4.1 (Thompson’s X-algebra of FA’s): The carrier set is [FA]~. The operator
requirement? is:

¢ For the binary operators, the representatives of the arguments must have disjoint state sets.
For any two equivalence classes (under =) we can always choose a representative of each
such that they satisfy this requirement.

The correctness of the operators* is not included here, but is discussed in Theorem B.1. Along with
each operator we present a graphic representation of the operator. The operators are separated
by horizontal lines for clarity. The operators (with subscript Th, for Thompson) are:

Cern = let  qo,q be new states

{({q0, 0.}, V. 8, {(g0,q1)}, {@o}, {: })]=

~O—0

Corn = let  go,q be new states

[({110, QI}? Vv @: @: {QO}: {QI})]E’

end

32-algebra.s presented in this section may have a list of items such as this, stating the requirements on the
arguments for the correctness of the operators.
1For example, the concatenation operator is correct when (for all Mg, M; in Thompson's Z-algebra)

Lpa(C. rn{[Mo]x, [M1])) = £ pa([Mo]e)L pa ([ Mi]e),
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Carn = let qo,q1 be new states

({90, a1}, Vi {{qo, 2, q1}}. 0, {0}, {q1})]=

m

end

forallae V.

~O——0

C.ru([Mo)x, [Mi]z) =

let

in

end

(Qo, V, Tv, Eo, So, Fo) = Mo
(Ql)vaTlaEhSlaFl) = Ml

let FE =EFE,UE U(F x5)
in

[(Qouh, V. To Ty, E', Sy, Fy)]
end

let

in

end

(QO: Va T03E01SD,FO) = MO
(Ql?vaTlﬁEhSlaFl) = Ml
go,q1 be new states

let Q' =QoU@1U{@, ¢}
E =EyUE U{g} x{S USi))
U((FRUF)x{a})
in
[(Q’! V, Ty u Tl: E’? {QO}, {ql})]c—"
end
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Crra([M]a) = let

in

end

(Q,V,T,E,S,F) =M
4o, 1 be new states

let Q' =QU{@,qn}
E =FEUu({g}xS)U(F x S)U(F x {g1}) U{{go,q)}

[(QI, ‘/) T: Ers {q0}1 {QI})]E

in

end

Cirn([M]x) = let

in

end

(Q,V,T,E,S,F) =M
go,q1 be new states

let Q" =QU{Q‘0,QI}
_ E'=EuU({g} x SYU(F x SYU(F x {n})
m

[(Q'vVaTa E’! {QO}a {ql})]E

end

Corn([M]e) = let

in

end

(Q1V3T;E1‘S,F) = M
g0, ¢1 be new states

let Q@ =QU{q,n}
E=FEu{{gp}xSYu{Fx{nHu{(gp.n)}

(@ V. T, E, {go}, {a1 D]~

in

end
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These operators are symmetrical (see Definition A.22 for a definition of symmetrical operators
and functions). Furthermore, they do not depend upon the choice of representative of the equiva-
lence classes (under =). An automaton in Thompson’s X-algebra (here we speak of a represeniative
F4, instead of the isomorphism class) has the following properties:

e It has a single start state with no in-transitions.
¢ It has a single final state with no out-transitions.

e Every state has either a single in-transition on a symbol (in V), or at most two ¢ in-
transitions.

e Every state has either a single out-transition on a symbol (in V), or at most two € out-
transitions.

These properties are symmetrical because the operators are symmetrical. Hopcroft and Ullman
have shown [HU79] that in practice these properties facilitate the quick simulaiion of M. For the
remainder of this paper we will not duplicate properties such as these, but rather state whether
the operator is symmetrical. O

Remark 4.2: In the literature, these operators are usually presented as having arguments and
results of type FA instead of [FA]~. Such a presentation is given in terms of particular represen-
tatives, and ignores the nondeterminism in choosing new states. O

Construction 4.3 (Thompson): Thompson’s construction is the (unique) homomorphism Th
from RFE to Thompson’s T-algebra of FA’s. O

Example 4.4 (Thompson’s construction): We construct a particular representative® of

Th({a Ue)b*) C.ra(Th{aUe), Th(b"))
C. rr(Cura( Th(a), Th(c}), Cu,7n(b))

= C.ru(Curn(Corn, Cern) Co,rn(Corn))

(The regular expression is taken from Example 3.15.) The representative is shown in Figure 2. O

In the next two subsections, we consider two algorithms that construct an FA (from a regular
expression) based on the top-down syntactic structure of the regular expression. In these two
constructions, we use regular expressions as syntactic objects denoting regular languages.

The first construction is a top-down version of Thompson’s construction. The second cne is
also top-down, but constructs a so-called e-lookahead automaton. Such an automaton can be
efficiently simulated or it can be converted to an eflicient program, accepting the language of the
automaton,

5QObviously, constructing the entire equivalence class of isomorphic FA's is not possible
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Figure 2: A representative FA of the isomorphism class Th{(a U €)b*).

4.1.1 A top-down version of Thompson’s construction

The top-down version of Thompson’s construction is a practical implementation of homomorphism
Th. It is a function of three parameters: a start state s, a regular expression E, and a final state
f. It produces an FA, with start state s and final state f, accepting the language Lrp(E).

Construction 4.5 {Top-down Thompson’s): We assume a universe of available states U, to
define function

tdeUx REx U — FA

The function is defined recursively on the structure of regular expressions:

td(saf?f) = ({Saf}:V:ﬂs{(57f)}7{5}v{f})
td(s,0,f) = ({s,f1V.0,0,{s},{f}
td(s,a,f) = (s, HLVi{{s,a, )10, {s} {f} {foralla e V)
td(s,Eo- Ev, f) = !et 7, ¢ be new states
let (QO,V,TO,EO,{S},{I’}) = td(S,EO,P)
‘ (@, V. T, B, {q}, {f}) = td(q, Ex, f)
in
(QUQ,VTouT, By UE U{(p,)} {s}, {f})
end
end
td(s,Eg UE,,f) = let p,q,rtbenew states
in
let (QOaMTDyEOa{p}){q}) = td(p,E{),Q)
) (Q1,V, 11, Ex, {r}, {t}) = td(r, E1, 1)
in
(@U@ U{s, f},V, LU, EqU By
U({s} x{mrhu({gt} x {1, {sh,{FH
end
end
td(s, E*, f) = let p,q be new states

let (QV,T,E {p}{q})=1td(p,E.q)

(QU{s, FLV.T.EU{(s.p), (g, ). (g, £, (5, O}, {s}, {fD)
end
end
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td(s,Et,f) = let p,q be new states
in

let (Q,V,T,E,{p},{q}) = td(p, E,q)

" (QU{s, f},V.T,EU {(s,p), (0:P), (g, )}, {s}, {f})
end end
td(s, E7,f) = let p,gbe new states
" let (Q.,V.T.E {p},{q}) = td(p, E,q)
" (Quis, fLV,T,Eu{(s,p).(a.f), (s, A1}, {s}. {f})
» end

Function td satsifies the property that, for all £ € RE:

Th(E)}) = let s, f be new states
in
[td(siEy.f)]&‘
end

O

The advantage of function ¢d over homomorphism Th (Consiruction 4.3) is one of implementation.
In Thompson’s construction, the subparts of the final FA are constructed in isolation; when two
subparts are combined some states may have to be renamed to ensure that the subparts have
disjoint state sets. In 'the top-down consiruction, more global knowledge is available concerning
the final FA and this type of problem is avoided. (In practice, function td would make use of a
global variable: the set of remaining available states.)

We do not prove the correctness of construction td in this paper.

4.1.2 Constructing c-lookahead automata

In this subsection, we extend the top-down Thompson construction (function ¢d) to construct
e-lookahead finite automata (LAFA). In an LAFA, every e-transition is qualified by a symbol of
V (known as the lookahead symbol). When simulating an LAFA, an e-transition can be taken if
the next symbol of the input string matches the lookahead symbol of the e-transition. Naturally,
for any given state, it is desirable that there only be one e-transition from the state on any given
symbol. The following definitions formalize this.

Definition 4.6 (e-lookahead automata): An e-lookahead finite automaton (LA FA) is a 6-tuple
(Q,V,T,E, S, F') which is a normal FA with one exception:

» c-transition relation is now £ € P(@ x V x @) instead of E € P(Q x Q).
a

Remark 4.7: A more commonly presented definition of LAFA’s involves both e-lookahead and
normal e-transitions (also called down’t-care transitions). Since we have combined the two, we
implement normal e-transitions as lookahead transitions, where the lookahead set is V' (the entire
alphabet). O

Remark 4.8: Naturally, we extend such functions as f, f, and Lp4 to use the definition of
a LAFA. As a result, the language accepted by an LAFA is in accordance with the intuitive
interpretation of an LAFA. O
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Remark 4.9: In order to present the following definition, we require the definition of function
First € RE — P(V). Function First is defined in Definition 4.60. Informally, First(E) is the
set of all alphabet symbols that can occur as the first symbol of a word in Lrg(E). O

Definition 4.10 {Lookahead function): In order to make the definition of the LAFA construc-
tion readable, we introduce function look € RE x P(V) — P(V), defined as:

look(E, L) = First(E) Uif (Null(E)} then L else § fi
Argument L is called the set of follow symbols. O

We now define an LAFA construction, based on the top-down version of Thompson’s construc-
tion.

Construction 4.11 (e-lookahead finite automaton): We define function X which takes four
parameters: a start state s, a regular expression, final state f, and a lookahead set L € P(V).
As with the top-down version of Thompson’s construction, we assume a universe of states U.
Function K € U x RE x U x P(V) — LAFA is defined recursively on the structure of regular
expressions:

K(s,e, f, L)
K(s.0,f,L)
K{(s,a,f,L)

({s, /3, V.0, {s} x L x {f},{s}, {f})
({s, 1, V,0,0,{s}, {f}
({s. /1 Vi A(s,0, 1)}, 0, {s}.{f}) (for all @ € V)

K(s,Ey-E,f,L}) = let p,q benew states
in
let (QO! I/a T01 EU’ {S}: {p}) = K(S, EU: D, IOOk(EI 3 L))
(levaTlaEla{Q}:{f}) = K(QaEI:faL)

(QD W] Ql,V,T() UTl,EQ 4 El
U ({p} x look{Ey, L) x {q}), {s}, {f})

in

end
end

K(s,EqUE), f,L} = let p,q,rtbe new states
in
let (QU,V,TU,EO,{p},{q}) = K(p1 EUJq!L)
. (QI,VaTl:EI){T}v{t})=K(T1E11tvL)
in
(QU UQI u {Sy.f})V:TO UT]JEU UE]
U ({s} x look(Eo, L) x {p})
U ({s} x look({E1,L) x {r})
U({a.t} x Lx {fh).{s}.{fD
end
end

K(s,E*,f,L) = let p,q be new states
let (Q.V.T.E,{p},{¢}) = K(p,E,q, LU First(E))
in
(QU{s, f},V.T,EU ({s,q} x First(E}) x {p})
U({s,qt x L x {f}),{sh{/})
end
end
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K(s,E* f,L) = let p,q be new states
in
let (Q,V,T,E {p}.{q})=K(p,E,q, LU First(E})
in
(QU{s, FL.V,T,EU ({s,q} x First(E) x {p})
U({g} x Lx{f}),{s},{FH
end
end
K(s,E' f,L) = let p,qbe new states
in
let (QV.T,E {ph{e})=K(p,E.q,L)
in
(QU {s, f},V,T,EU ({s} x First{E) x {p})
U({s, gt x Lx{f},{s}, {f})
end
end

O

Remark 4.12: Since we make use of a single symbol of lookahead, we assume that the input
string always has an end-marker $ concatenated on its right. We assume that § € V' and that $
does not appear elsewhere in the regular expression. This means that, for E € RE:

let s, f be new states
in
K(s, E, f,{8})

end

is a LAFA accepting Lgre(E). O

Definition 4.13 (Deterministic LAFA’s): A LAFA is deterministic if and only if it has at most
one start state and no state has more than one out-transition (either an e-lookahead or a normal
transition) on any given alphabet symbol. O

We present some determinism conditions that ensure that Construction 4.11 produces deter-
ministic LAFA’s.

Definition 4.14 (Determinism conditions): In order for function X to produce a deterministic
LAFA we impose the following requirements for particular cases of K:

e For K(s,Ey U Ey, f, L) we require that look(Ep, L) N look(Ey, L) = 0.
o For K(s,E*,f, L), K(s,E*, f, L), and K (s, E', f, L) we require that First{E)nL =.

O

Remark 4.15: The lookahead transitions in LAFA's make them are more efficient to simulate
than an equivalent FA constructed with Thompson’s construction. Simulation of a deterministic
LAFA is as efficient as the simulation of a DFA. O

Example 4.16 (LAFA): Given new states s, f, we construct the deterministic LAFA K(s,(a U
€)b*, f,{$}). The e-lookahead transitions are labeled with both e and the lookahead symbols. The
state graph is given in Figure 3. O
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Figure 3: The LAFA K ((a U €)b*).

Construction 4.17 (Creating a program from a LAFA): A deterministic LAFA can also
be converted into a program which is a hard-coded simulation of the LAFA. We now describe
a mapping N € RE x P(V) — GCL, where GCL denotes the set of all guarded commands
programs [Dijk76]. This construction is based upon the LAFA construction. The created programs
are correct when the determinism conditions of Definition 4.14 hold. In the generated program,
we assume that variable w € V* is the input string (with an end-marker $ concatenated on its
right), and that hd(w) refers to the first symbol of w and tl(w) refers to the remainder of w. We
annotate the program fragments (in the definition of N) with the state names (in braces) in the
corresponding definition of Construction 4.11. (The semantics of the guarded commands specify
that if none of the guards in an if-fi statement are true, the statement is equivalent to abort.)

N(e, L) = {s}
if hd(w) € L — skip
fi
{7}

{s} abort{f}
{s} (for alla € V)

if hd(w) = a — w = ti{w)
fi

{f}

N{Ey-Ey,L) = {s}N(Ep,look(Ey, L}{p};
{g}N(E, L){f}

N(E,UE,L) = {s)
if hd(w) € look(Fy, L) — {p}N(Eo, L){¢}
| hd(w) € look(Er, L) — {r}N(E, L){t}
i

{f}
N(E*, L) = {s}
do hd(w) € First(E) — {p}N(E, First(E) U L){¢}
od
{f}
N(E*,L) = {s}
repeat {p}N(E, First(E)U L){q}
until hd{w) ¢ First(E)
{7}
N(E*,L) = {s}
if hd(w) € First(E) — {p}N(E,L){q}
| hd(w) € L — skip
fi

{f}

As with Construction 4.11 we concatenate an end-marker § on the right of the input string w.
The entire program of the acceptor (for E € RE) is:

N(®, L)
N(a, L)
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{we V*{$}}

N(E, {8});

ifw=%— skip

fi

{w € Lre(E)}

Termination of the program is equivalent to w € Lgg(F). O

Example 4.18 (Programs from LAFA’s): We construct the program corresponding to (ele)b*.

{w e V*{$}}
if hd{w) € {a} —
if hd{w) = a —+ w = #l{w)

fi

| Ad(w) € {6,8} —
if hd(w) € {b,$} — skip
fi

ﬁ.

do hd(w) € {b) —
if hd(w) = b — w = tl(w)

fi
od

ifw=8% — skip

fi
{w € {a,e}{b}"}

O

4.2 Towards the Berry-Sethi construction

We now consider Z-algebras of e-free FA's. One such Z-algebra can be given with symmetrical

operators.

Definition 4.19 (Symmetrical e-free Z-algebra operators): The carrier set is {FA]~. The
operator requirement is (as with Thompson’s Z-algebra):

o For the binary operators, the representatives of the arguments must have disjoint state sets.

The symmetrical ¢-free preserving operators of the Z-algebra are defined using Thompson’s -
algebra operators and symmetrical function remove, oy (which is extended to [FA)~ — [FA]x):

Ct,sym
B,sym
@,sym

C-,sym
U,sym
C:t‘s-y'm.
Oy sym
C?,sym

TEMOVEe sym O Le,Th
TEMOVE sym © Cp Th
TEMOVE, sym © Lo, Th
remove, sym © C. Th
TEMOVE: sym © CU,Th
TEMOVE, sym © (oy Th
removee sym @ Cy 1n
TEMOve sym © C7 T8

(for all @ € V)

These operators are symmetrical since they are compositions of symmetrical operators (see Propo-
sition A.23). An FA in this Z-algebra has the property that it is e-free. O
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These operators are cumbersome to present fully. Furthermore, they are not particularly useful
in practice. For this reason, we now consider asymmetrically defined ¢-free preserving operators.

The first asymmetrical ¢-free preserving 3-algebra operators that we consider are the left-biased
ones. The image of a RE in this Z-algebra is easier to compute than its image in the Z-algebra
given in Definition 4.19).

Definition 4.20 (Z-algebra of left-biased e-free operators): The carrier set is [FA]~. The
operator requirements are:

s For binary operators, the representatives of the arguments must have disjoint state sets.
¢ The following is required of the representatives of each argument:

— it is €-free,
— it has a single start state, and

— the single start state has no in-transitions.
A proof of the correctness of these operators is outlined in Theorem B.2. As in Thompson's
T-algebra, each operator is presented here with a graphic representation of the operator®. Parts
of the operator definitions are intentionally clumsy or verbose. This is done to facilitate the
derivation of a X-algebra of reduced FA’s (in Definition 4.29). The operators are:

Cerpra = let gy be a new state

in
[({QD}: V: @a 0? {QO}s {QD})]E

end

Cornra = let g be a new state

in
[({QO}! Vv @J @? {q0}7 @)]E
end
Ca,zBra = let  qg,q be new states
in
[({QOa QI}V Vv {(QD; a, ql)}7 @, {QO}: {ql})]E
end

foralla € V.

SThe graphic representations of the operators depict only the simplest cases of each operator. Thick arrowed
lines are intended to depict multiple transitions, while dotted arrowed lines are transitions that are removed from

the constructed FA. In the case of the non-constant operators, the start states (of the arguments) is struck out
indicating that it is removed.
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C-,LBFA([MD]E, [M1]g) = let (QUa V, To, ﬂ’ {50}1 FU) = Mo
(Ql,KTh@: {81}’F1) = M
Ny = € € Lpa(Mp)
Nl =€ E EFA(M])
N=cc (CFA(MU)EFA(MI))
gy be a new state
in
let Q@ =Qo\{s0}UQi\{s1}U{q}
T’ = T() U T1 U (F(] X Tl(sl))
U ({go0} x (To(s0)
Uif (Np) then T1(s;) else @ fi))
F' = F1 uif (Nl) then F() else @ fi
Uif (N) then {g} else 0 fi
in
(Q VTN (Q x V x Q')
8, {00}, F' NQ")]~

end

Cu,LBra([Mo]s, [Mi]=) = let  (Qo,V,T0,8,{s0}, Fo) = Mo
(Q]_, V,T]_, 0, ’{31},F1) = M1
N =e€ (Lpa(Mo)U Lra(My))
¢o be a new state
in
let Q =Qo\{so}Ui\{s1}U{go}
T"=TouTiU({a} x (To(s0) U T1(s1)))
F'=FyuF Uif (N) then {g} else ¢ fi
in
(QV, T (@ x V x Q)
@1 {qo}a F'n Q’)]E

end
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Cirera((M]=) = let (Q,V.T,0.{s},F)=M
N=ce Lpas(M)* (see Remark 4.21)
go be a new state

let Q =Q\{s}V{g)}
T'=TU(FU{g}) x T(s)
F'=Fuif (N) then {g]} else § fi

in
(QV,T/ N (Q x V x @),

@, {q0}= F'n Q’)]E
end
end

Cyiara(M]e) = let (QV.T.0,{s},F)=M
N =¢€ Lpa(M)*t
go be a new state

let Q@ =Q\{s}U{a}
T'=TU(FU{g}) x T(s)
F'=FUif (N) then {g} else § i
in
(@ V,T'Nn(Q' xV xQ"),
ﬂw {Q0}1 F' n Q,)]E‘_‘

end

end
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Copra(iMlz) = let (QV,T.0,{s},F)=M
N =¢€ Lpa(M)* (see Remark 4.21)
go be a new state

in
let Q' =Q\{s}U{q}
T'"=TU({g)} xT(s))
F'=FuUif (N) then {g} else 0 fi
in
(QV,T'N{Q' xV =xQ"),
Q)’ {QO}a F'n Q’)]E
end
end

The choice of representatives in these operators is irrelevant. For construction purposes, we
note that e € Ly (M) =s € F.

Let LBFA (where LBFA C FA) denote the set of all finite automata that are images’ in this
T-algebra of some E € RE. (That is, LBFA is the smallest set that contains the LBFA constants
and is closed under the LBFA operators.}) An LBFA has the following properties:

It is e-free.

It has a single start state.

The single start state has no in-transitions.

All in-transitions to a state are on the same symbol {in V). This can be seen by consid-
ering the constants C, rgra (for all @ € V'), which are the only operators introducing new
transitions on an alphabet symbol.

Only the constants are symmetrical. O

Remark 4.21: Parts of the operator definitions of Definition 4.20 are intentionally clumsy; they
are presented this way to facilitate the derivation of a L-algebra of reduced FA’s {Definition 4.29).
a

Construction 4.22 (Left-biased finite automata): Define construction Ibfa € RE —
[LBFA]~ to be the unique homomorphism from RE's to {LBFA)~. O

Example 4.23 (Z-algebra of LBFA’s): We construct a representative of the isomorphism class
Ibfa((a U €)b*) (the regular expression is from Example 3.15). The representative is shown in
Figure 4. O

Computing within the Z-algebra of LBFA’s is inefficient. Each operator defined above does
much redundant work. For example, the start states of the arguments to the operators are always
removed, with only the out-transitions from the argument’s start state being nsed. Additionally,
the if-fi structures within the final states definition are of the same structure in each operator.
We wish to introduce an encoding of LBFA's that will allow us to find cheap constructions that
are equivalent to lbfa. We now describe such an encoding.

A method of encoding an LBFA (Q,V,T,9, {s}, F) is:

"The images are really elements of [LBFA]~. We consider a particular representative of the image.
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Figure 4: A representative LBFA of the isomorphism class lbfa((a U €)b*).

¢ The e-transitions are not needed (since LBFA’s are e-free).

e State s has no in-transitions; only T'(s} (the out-transitions from the start state) and s € F
are needed.

o All in-transitions to a state are on the same symbol (in V). Therefore, a state-to-symbol
map can be used, and the symbol components of T and T'(s) can be removed.

In the following subsection, we introduce reduced FA’s as an encoding of LBFA’s.

4.2.1 Reduced FA’s

Definition 4.24 (RFA): A reduced FA (RFA) is a 7-tuple (Q,V, follow, first, last, null, Qmap)
where

* () is a finite set of states,

e V' is a alphabet,

o follow € P(Q x Q) is a follow relation {replacing the tramsition relation),
e first C @ is a set of initial states (replacing T'(s) in an LBFA),

o last C () is a set of final states,

o null € {true, false} is a Boolean value {encoding s € F in an LBFA), and

o Qmap € P(Q x V) maps each state to exactly one symbol (it is also viewed as Qmap €
@ — V, and its inverse as Qmap~! € V4 P(Q)).

[}
Definition 4.25 (Isomorphism of RFA’s): We extend isomorphism (=)} to RFA’s. O

Definition 4.26 (Reversal of RFA’s): Reversal of RFA’s is given by postfix (superscript)
function R € RFA — RFA defined as:

(Q,V, follow, first, last, null, Qmap)® = (Q, V, follow®, last, first, null, Qmap)
a

Definition 4.27 (Extending reversal to [RFA]~): We extend reversal to [RFA)~ —— [RFA|~
as ([M])" = [MF)e. O

We can now give isomorphisms between [LBFA]~ and [RFA]~. These isomorphisms will be
used to present a T-algebra of RFA’s.
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Definition 4.28 (An isomorphism between [LBFA}~ and [RFA]~): We define isomorphism
encode € [LBFA]~x — [RFA]~

encode([(Q,V, T, 8, {s}, F)]~) = }et Q' =@\ {s}
[(Q’: V: 7—7'2(T) n (Q’ X Q’)rﬂ'2 T(S))a

FNQ',seF (7 (THH)
end

and its inverse decode € [RFA]x — [LBFA]x~ as

decode([M)=} = let (Q,V, follow, first, last, null, Qmap) = M
s be a new state

m
let T ={(q,Qmap(q1),q): (q0,q) € follow}
T' = {(s, @map(g),q) : q € first}
F = lgst Uif (null) then {s} else § fi
mn
[(Q U {3}= V’ TU Tl? @: {3}: F)]E
end
end

It is easy to verify that both of these functions are isomorphisms, and that decode is the inverse
of encode. O

Given function encode and decode, we would like to obtain a Z-algebra with [RFA]~ as carrier
(and a corresponding unique homomorphism rfa € RE — [RFA]x) such that the following
diagram commutes:

RE — B | (LBFA).

rfa

decode

[RFA)

We can now define a E-algebra of RFA’s; it will be cheaper to compute the RFA image of
a regular expression and map the RFA to an LBFA, than to compute the LBFA directly. The
operators of the X-algebra of RFA’s are defined using the LBFA operators and the isomorphisms
encode and decode.

Definition 4.29 (Z-algebra of RFA’s): The carrier is [RFA]~. Given the operator requirement
in the X-algebra of LBFA’s, the operator reguirement in this X-algebra is:

o For binary operators, the argument representatives must have disjoint state sets.

The operators of the E-algebra of RFA's are defined in terms of the operators of LBFA’s:

Ce rra = encode(Ce LBra)
Co,rFa = encode(Cy,LBra)
Co RFA encode(Ca,1.BFA) (for all a € V)

C. pra([Mp)=, [M1]=)
Cu,rra([ Mo, [Mi]=)
C.,ara([M]=)
Cy,rra([M]x)

Cr pra({M]a)

encode o C. p pra(decode([Mo)a), decode([M]))
encode o C, 1 gra(decode([Mp)), decode([M]=))
encode o C, 1 pra(decode([M]x))
encode o Cy gra(decode([M]x))
encode © Cy ppra(decode([M]))

i
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In full;
Cerra = [(0,V,0,0,0, true, )=
Co.rea = [(0,V,0,0,0, false, 0))=
Foralla e V:
Caorra = Eet go be a new state
1n

[({QO}r V.9, {QD}a {qo},false, {(QO: G)})}E

end

C. rra([Mo)z, [Mi]=) = let  (Qo,V, followo, firsto, laste, nully, Qmapo) = My
(Q1,V, follow, firsty, lasty, nully, Qmap,) = M,

in
let  first’ = firstg U if (nullp) then first; else @ fi
last’ = last; Uif (null)) then lasty else § fi
in
[(QoU 1, V, followg U followy U (laste x firsty),
first' last’, nully A nully, Qmape U Qmap; )]~
end
end

CU,RFA([MOJE, [MI]E) = let (QU! Vs fouﬂwo,ﬁ”io, lasto, nqu} Qmap()) =M
(Q1,V, followy, firsty, lasty, nully, Qmap1) = My
in
[(Qo U@,V followg U followy, firsto U firsty,
lasty U lasty, nully v nully, Qmapg U Qmap: )=
end

Co,rra([M]x) let (@,V, follow, first, last, null, Qmap) = M
in

[(@,V, follow U (last x first), first, last, true, Qmap)]=
end

Cy rra([M]x) = let  (Q,V, follow, first, last, null, Qmap) = M
in
(Q,V, follow U (last x first}, first, last, null, Qmap)]=
end

Cr rra([M]) let (Q,V,follow, first, last, null, Qmap) = M
in

(Q,V, follow, first, last, true, Qmap)}]~
end

An M € RFA (the image of some E € RE) in this Z-algebra has the following interesting property:

¢ The number of states in M equals the number of (not necessarily distinct) symbols {of V')
occuring in E. This follows from the fact that the operators C, gra (for all @ € V') are the
only RFA operators that introduce new states. This property will be used in Section 4.5 to
derive a practical implementation of the RFA operators.

We can also note the following about the operators:

e The operators do not depend on the choice of representatives of the equivalence classes.
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¢ An important fact is that the operators of this T-algebra are symmetrical. That is, each
operator is its own dual.

O

Definition 4.30 (Homomorphism from RE to [RFA|~): We define rfa € RE — [RFA]~ to
be the unique homomorphism from RE's to [RFA]~. O

Property 4.31 (Homomeorphism rfa): Since the operators of the Z-algebra of RFA’s are
symmetrical (symmetrical functions are defined in Definition A.22), so is rfa. That is, rfao R(E) =
Rorfa(E). D

In Section 4.5 practical impiementations of the Z-algebra of RFA’s (in particular, of homomor-
phism rfe) are discussed.

4.2.2 The Berry-Sethi construction

Given the Z-algebra of RFA’s, we have the desired property that (for E € RE):
bfa(E) = decode o rfa(E)

We now present Berry and Sethi’s FA construction.

Construction 4.32 (Berry-Sethi): Construction BS € RE — [FA]~ is defined as:
BS(E) = decode ¢ rfa(E)

An automaton constructed using this function has the same properties as one constructed with
function {bfe, namely:

e It is e-free.

¢ It has a single start state.

¢ The single start state has no in-transitions.

¢ All in-transitions to a state are on the same symbol (of V).

In practice, function BS is cheaper to compute than {bfa. O

Remark 4.33: The history of this algorithm is somewhat complicated. The following account is
given by Briggemann-Klein [B-K93b]. Glushkov and McNaughton and Yamada simultaneously
{and independently) discovered the same DFA construction [Glus6l, MY60). These papers use
the same underlying e-free FA construction to which they apply the subset construction®. Un-
fortunately, neither of them present the e-free F4 construction (without the subset construction)
explicitly. The undetlying e-free FA construction was presented in some depth (with correctness
arguments) by Berry and Sethi in [BS86, Alg. 4.4]. In their paper, Berry and Sethi also relate
the construction to the Brzozowski construction {Brzozowski’s construction appears as Construc-
tion 5.34 in this paper).

In this paper, we adopt the convention that the e-free FA construction (without subset con-
struction) is named after Berry and Sethi, while the construction with the subset construction is
named after McNaughton, Yamada, and Glushkov. O

Example 4.34 (Berry-Sethi): A representative of the equivalence class BS((aU €)b*} is shown
in Figure 4 appearing on page 32, This is the same FA as in Example 4.23. (This follows from the
fact that the Berry-Sethi construction and the LBFA Z-algebra are commuting ways of arriving
at the same FA isomorphism class). O

8The underlying construction may actually produce a nondeterministic finite automata.
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It is possible to find a composition of functions that commutes with lbfa (and therefore decodeo
rfa) and is cheaper to compute in practice. We first give some required definitions.

Definition 4.35 {Non-isomorphic mapping from [RFA|~ to [FA]~): Function convert €
[RFA]~ — [FA]~ is defined as:

convert([Ml~) = let (Q,V,follow, first, last, null, Qmap) = M
in
let T ={(qo, @meap{q1),q) : (go,q) € follow}
in (Q,V,T,0, first, last)]
end
end

An important property of this function is that:
(VE:E € RE : Lpyo convert o rfa{E) =V ' Lpe(E))

This follows from the fact that convert simply discards the transitions that would be out of the
start state. Function convert does not add any new states, unlike function decode which adds a
new start state. O

Definition 4.36 (Adding a begin-marker): Define function marker, € RE — RE as:
markery(E) =% E

Where § is an alphabet symbol, called a begin-marker. {In the literature, it is usually assumed —
for no particular reason — that symbol $ does not occur in regular expression E.) This function
satisfies the obvious property thai:

(V E . F e RE : CRE(markerb(E)) = {$}£RE(E))

C

Given functions markers, rfa, convert, and the following important property, we can construct an
efficient alternative to homomorphism bfa.

Property 4.37 (Functions markery, rfe, and convert): Because of the properties of convert
and marker,, we can show that:

convert o rfa o marker,(E)

i

{ Definition of marker,, }
convert o rfa($ - E)
= { Definitions of rfa, C. g4 }
convert o C. gpa(rfa(8), rfa(E))
= { Definitions of rfa, Cg gpa }
convert o C. ppa(Cs gra, rfa(E))
= { Definitions of convert, C. rra, Cs rra, rfa, and decode }
decode o rfa( E)
= { Commutativity }
bfa(E)

The composite convert o rfa o markery is an alternative (and in practice, cheaper) implementation
of bfe. O
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The fact that convert o rfa o markery is a construction is depicted in the following commuting
diagram:

RE ﬂ_._ [LBFA]x

markery convert

RE — T | [RFAl.

Construction 4.38 (A variation on the Berry-Sethi construction): Instead of constructing
an FA using the functions Ibfe or BS, it is cheaper in practice to use the composite function

convert o rfa o markery(E)

4.2.3 The McNaughton-Yamada-Glishkov construction

Since the Berry-Sethi construction produces an e-free (possibly nondeterministic) FA, we now
consider making the resulting FA deterministic.

Construction 4.39 (McNaughton-Yamada-Glushkov): (We assume that the composite
function useful, o subset is extended to [FA]~ — [DFA]~.) The McNaughton-Yamada-Glushkov
DFA construction is MYG € RE — [DFA|~, defined as:

MYG(E) = useful, o subset o decode o rfa(E)

A DFA produced by MYG is Complete (by a property of useful, o subset). A practical imple-
mentation is given in Algorithm 4.42 (given below), which implements useful, o subset o decode.
Homomorphism rfe can be implemented using the techniques described in Section 4.5. This algo-
rithm is the same® as that given by McNaughton and Yamada {MY60, Construction method on
pg- 44]. O

Example 4.40 (McNaughton-Yamada-Glushkov): In the case of (a Ue)d* € RE, the Berry-
Sethi construction produces a deterministic FA. Function MY G produces a similar DFA, with a
sink state added to make it Complete. The state graph of a representative DFA of isomorphism
class MYG((a U €)b*) is shown in Figure 5. O

Remark 4.41: The variation on the Berry-Sethi construction (Construction 4.38) can be used
for a practical implementation of the McNaughton-Yamada-Glushkov construction. This would
yield a construction not appearing in the literature. [

9The only difference is that the unrolled first iteration step is not presented explicitly in McNaughton and
Yamada’s paragraph describing their algorithm.
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Figure 5: A representative DFA of the isomorphism class MYG((a U €)b*).

Composite function wuseful, o subset o decode can be implemented using Algorithm 2.45 {which
implements useful, o subset). Here, the first iteration is unrolled to accommodate the definition
of function decode, and some obvious improvements have not yet been made).

{(Q, V, follow, first, last, null, Qmap) € RFA}
let § = {{s}}:sis a new state, s ¢ Q;

DU :=¢68;

let w:uelU;

D,U:=Du{u}, U\ {u};

for a:a eV do
d:=(Up:peu:{g:q¢€ first A Qmap(q) = a});
ifd¢g D — U :=Uu{d)}
ﬂdED——-» skip
fi;

T :=TU{(u,a,d)}

rof;
do U#@—r
let ©:u e U;
D, U :=Du{u},U\ {u});
fora:aeV do
d:=(Up:peu:{q: (pq) € follow A Qmap(g) = a});
ifdg D —U:=Uu{d)}
[de D — skip
fi;
T:=TuU{(u,a,d)}
rof
od;

F:={d:de Dnadnlast # P} Uif (null) then S else # fi
{I(D,V,T,8, 8, F)|~ = useful, o subset o

decode([(Q, V, follow, first, last, null, @mop)]=)}
{Complete(D,V,T,0,5,F)}
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Some simplification gives the algorithm:

Algorithm 4.42 (McNaughton-Yamada-Glushkov):

39

{(Q,V, follow, first, last, null, Qmap) € RFA}
let §={{s}}:sisanew state, s & Q;

DU := 8,0

fora:aeV do
d:={q:q € first A Qmap{q) = a}
U=Uu{dh
T:=Tu{({s},a,d)}

rof;

do U #p—
let v:uel;
D, U :=Du{u}l,U\ {u};
fora:aecV do

d:={Up:peu:{qg:(pq) € follow A Qmap(q) = a}};

ifd¢g D —U:=UU{d}
|de D— skip
fi;
T:=TU{(u,a,d)}
rof
od,
F:={d:de DAdnlast # P} Uif (null} then S else @ fi
{[(D.,V.T,0, 5, F}|~ = useful, o subset o
decode([(Q, V, follow, first, last, null, Qmap)]=)}
{Complete(D,V,T,0, S, F)}

This algorithm is used in the McNaughton-Yamada construction [MY60].

4.3 The dual of the Berry-Sethi construction

The following commuting diagram gives a property of regular expressions and regular languages

that will prove to be useful:

RE Lrp Lreg

R R

RE —LrE Lreg

In this diagram, the two reversal operators are different: one is reversal of RE’s, while the other

is reversal of languages.

Given the definition of an FA construction f and the above diagram, we have the property
that the dual of a construction is again a construction. That is, Ro f o R is also a construction.
Such a dual construction is less efficient than f (since it involves two reversal functions), and we

explore ways to efficiently implement the dual constructions.

Construction 4.43 (Right-biased): We can use R o life o R as a construction. For any given
E € RE, a representative of R o ibfa o R(E) has the following properties (the properties are based

upon those of the left-biased Z-algebra):
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Figure 6: A representative FA of the isomorphism class R o ibfe o R{(a U €)b* ).

It is e-free.

It has a single final state.

The single final state has no out-transitions.

All out-transitions from a state are on the same symbol (in V).

O

Example 4.44 (Right-biased construction): We construct a representative F4 of the isomor-
phism class R o ibfa o R({a U €}b*) The representative is shown in Figure 6. O

To consider the dual of the Berry-Sethi construction, we combine the commuting diagrams of
duals of a construction {(above) and construction decode o rfa, giving:

RE (FAls —EFA ., Lreg

R R R

RE 0| (RFA.—decode | [FAl. _ LEA | Lreg

The source is the upper-left vertex, and the sink is the upper FA vertex.

The construction RodecodeorfaoR (in this diagram) is still inefficient, requiring two redundant
reversal operations. We can make it more efficient, by finding functions that form new paths in
the commuting diagram.

From the definitions of the ¥-algebra of RFA's (Definition 4.29) and homomorphism rfa (Def-
inition 4.30) we know that the RFA operators are symmetrical, and so is 7fe. In other words
rfa o R(E) = Ro rfa(E). This allows us to add two new edges to the above commuting diagram,;
the resulting diagram is:
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RE — % iRFA) [FAls — £FA | Lreg

R R R R

RE rfa [RFA)= decode [FA) Lra Lreg
Construction 4.45 (The dual of Berry-Sethi): The construction is:
R o decode o R o rfa(E)
This construction is the dual of the Berry-Sethi construction (Construction 4.32). O

We give R o decode o R in full:

Rodecode o R([M]=) = let (Q,V, follow, first, last, null, Qmap) = M
f be a new state
in
let T = {{go, @map(g0), q1) : (g0, q1) € follow}
T’ = {(g, Qmap(q), f) : q € last}
S = first Uif (nuil) then {f} else § i
in
[(Q U {f}1 V! T U TI: ﬂ: S: {f})]a’
end
end

The FA resulting from this construction is the same as given in Example 4.44

We can also consider improving the dual of the variation on the Berry-Sethi construction
(Construction 4.38). We combine the commuting diagram showing the dual of a construction,
with construction convert o rfa o markery, giving:

RE [FAl — ZFA | Lreg

R R R

RE markery RE rfa +|[RFA]~ convert [FA|~ Lra Lreg

Again, the source is the upper-left RE vertex, while the sink is the upper-right FA vertex.
Consider the composite function Roconvertorfaomarkeryo R. We begin with the two rightmost
functions:
markery o R(E)
= { Writing R as postfix and superscript }
markery( ER)
= { Definition of marker, (Definition 4.36) }
$-(ER)
{Function Ro R is the identity {see Definition A.19) }
RoR(§-(E®)
{ Definition of R on - regular expressions }
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R((E®)™ - (8)F)
= { Definition of R and Ro R}
R(E-$)

To make this definition more concise, we define an end-marker function.

Definition 4.46 {Adding an end-marker): Define function marker, € RE — RE as:
marker.(E) =E-§

where § is assume to be a symbol in the alphabet. O

Property 4.47 (marker.): Function marker. is the dual of function marker, (Definition 4.36):
marker, o R(E) = R o marker(E)

]

With the above property, we can transform the above commuting diagram, by adding two new
edges:

RE _markere RE [FA]~ Lra Lreg

R R R R

RE markery RE rfa _ [RFA]x Con”eL{FA]g Lr4 Lreg

The composite Ko convertorfa o Romarker, is no more efficient even with the use of marker,.
Fortunately, since rfa is symmetrical, we can replace rfa ¢ R by R o rfa, giving:

RE _marker. RE rfa —[REA [FA]= Lpy Lreg

R R R R R

RE markery RE rfa [RFA]x convert [FA) = Lra Lreg

The composite function R o convert o R is particularly easy to present, using the definitions of
R and convert (Definition 4.35):

Roconverto R([R]=) = let (Q,V, follow, first, last, null, Qmap) = R
in
let T = {{qo, Qmap(@},q1) : (40, q1) € follow}
in [(QV,T,0,first, last)]~
end
end

This leads to the following construction.
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Figure 7: A representative DFA of the isomorphism class ASU((a U €)b*).

Construction 4.48 (The dual of the variation on the Berry-Sethi construction): The
construction is:

R o convert o Ro rfa o marker.(E)

This construction is also presented very informally by Aho, Sethi, and Ullman [ASUS86, Exam-
ple 3.22, pg. 140]. There appears to be an error in item two of the three steps describing the
construction in [ASUS6|. Instead of

2. label each directed edge (i, ) by the symbol at position #, and
the step should read
2. label each directed edge (i, j) by the symbol at position ¢, and

O

Example 4,49 (The dual of the variation on the Berry-Sethi construction}: A represen-
tative FA of the isomorphism class R o convert o R o rfa o marker.((a U €)b*) is shown in Figure 6
on page 40. This is the same FA as in Example 4.44. O

4.3.1 The Aho-Sethi-Ullman DFA construction

In order to obtain a (possibly non- Complete) DFA we use the composite function useful, o subsetopt
(given in Definition 2.44), extended to [FA]s — [DFA]x.

We can immediately give the Aho-Sethi-Ullman DFA construction using this composite func-
tion.

Construction 4.50 (Aho-Sethi-Ullman): The construction is ASU € RE — [DFA]~ defined
as:

ASU(E) = useful, o subsetopt o R o convert o R o rfa o marker.(E)
Algorithm 4.52 (given below) is an imperative program implementing
useful, o subsetopt o R o convert o R

Homomorphism rfa can be implemented using the techniques described in Section 4.5, and function
marker, is trivial o implement. The Aho-Sethi-Ullman algorithm is given in [ASU86, Alg. 3.5,
Fig. 3.44]. O

Example 4.51 (Aho-Sethi-Ullman): We give a representative DFA of the isomorphism class
ASU((aUe)b*). The state graph is shown in Figure 7. O

We compose useful, o subsetopt (as implemented by Algorithm 2.46} with R o convert o R. The
resulting algorithm is simplified in a similar way to the McNaughton-Yamada-Glushkov algorithm
(Algorithm 4.42).
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Algorithm 4.52 (Aho-Sethi-Ullman):

{{Q,V, follow, first, last, null, Qmap) € RFA}
8,T = (if (first # 0) then {first} else 0 fi),D;
D, U:=0,S5;
doU #0—
let w:uelU,
D, U :=DuU{u},U\ {u};
fora:aeVA(Jqg:qeu: Qmaplq) = aA follow(q) £0) do
d:=(Ug:qg€uA @Qmap(q) =a: follow(g));
ifdg D — U:=UuU{d}
| de D — skip
fi;
T:=TU{(u,a,d)}
rof
od;
F:={d:deDAdnlast 0}
{[({(D,V,T,0,5, F)l= = useful o subsetopt o
R o convert o R([(Q, V, follow, first, last, null, @map)]~)}

4.4 Extending regular expressions

For some regular languages, the regular expressions denoting the language can be can be consid-
erably more succinct when operators such as intersection (N) and complement (-} are available
in RE's. Without formally adding them to the signature X, we briefly consider how to implement
operator M in the left-biased E-algebra of FA’s.

Definition 4.53 (Extended regular expressions and their languages): The set of extended
regular expressions {over alphabet V), ERFE, and the languages they denote, are exactly as RE,
with the addition of the operators N € ERFE x ERE — ERF (an infix operator) and - €
ERE — ERE (a prefix operator). Operator N has the same precedence as U, while - has higher
precedence than *. The language of an ERE is defined using the function Lxrp € ERE — Lreg
which is as function £gg, with the extensions

Lere(EqNE)) = Lere(Fy)NLere(El)
Lere(~Ey) = V*\ Lpre(£h)

Remark 4.54: The Y-algebra definition of regular expressions are not used in this section as the
algebraic structure is not needed. O

Definition 4.55 (Intersection of LBFA’s): In defining intersection, we assume that the two
arguments have been constructed in the X-algebra of LBFA. In particular, we require that for
each state, all in-transitions are on the same symbol. Assuming the argument representatives
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have disjoint state sets, one possible implementation of the operator is!?:

Cr,Lara([Mole, [Mi]e) = let  (Qo,V,T0,0,{s0}, Fo) = My
(@1, V, 11,0, {31},F1) =M
qo be a new state
N =c¢ e (Lpa{Mp) N Lra(M)))
in
let @ ={g}u(Ub:beV  m(Tub)) x m2(T1(b)))
T'(a) = {g0} x (To(s0,@) x T1(s1,a))
U{{(p,q), (P q')) : (1P") € To(a) AP # s0
Ag,q') € Ta{a) Ag# 5
A(Bb:beV pem(To(d)ngem(Ti(d))}
in
[(Q') V) TI, 0'n {QU}7 (FO x F ) n Q'
Wif (N) then {g} else § fi)]~
end
end

The expression

Q' ={g0}UUb:beV :m(Ty(b)) x ma(T1(b)))

in the let clause deserves some explanation. A state in the constructed LBFA is either the new
state go, or a pair of states (p, ¢) where p and ¢ (p # so,q # 1) are from My and M, respectively. If
p and g do not have an in-transition on the same symbol, the state (p, g) will be start-unreachable
in the constructed LBFA. For this reason, it is omitted. The definition of the transition relation
is similar. The constructed LBFA is sometimes called the cross-product LBFA. Although the
operator removes most start-unreachable states, some may still remain. 0

We can now present an intersection operator for RFA’s.
Definition 4.56 (Intersection of RFA’s): We define intersection of RFA’s as:

Chn,rra([Mo)=, [Mi]=) = encode o Cn, Lpra(decode{[My)=), decode([M:]=))

In full:
Cn,RFA([MO]g, [Ml]g) = let (Qo, V,fO”O'f.Uo,ﬁTSto, la&ta, nullg, Qmapo) i MQ
(@1, V), follow1, firsty, lasty, nully, Qmap,) = M,
in
let Q' =(Ub:beV: Qmapy (b} x Qmapy (b))
follow' = {{(p,q),(?',4")) : (p,p') € followy
A(q,9") € follow,
A Qmapo(p) = Qmapi(q)
A @mapo(p') = Qmapi(g')}
first' = {(p,q) : p € firstg A q € first,
A Qmapo(p) = Qmape(q)}
Qmap'~(a) = Qmap;*(a) x Qmapy*(a)
in
(@', V, follow', first', (lasty x last;) N Q',
nully A nully, Qmap’)|~
end
end

Note that this operator is symmetrical. O

10The definition presented here is intentionally clumsy, making it easier to present intersection of RFA’s
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In their original paper [MY60, Section IV], McNaughton and Yamada attempt to define intersec-
tion. Unfortunately, their informal presentation is difficult to understand. Subsequent presenta-
tions of the RFA operators have all omitted intersection. For example, Berry and Sethi note (in
[BS86, Remark 3.1]):

“The approach ...does not extend to regular expressions with intersection and com-
plementation operators.”

We can construct an RFA operator for any regular operator (an operator on languages that
preserves the regularity property) for which we can construct an LBFA operator. Examples of
such operators are intersection, symmetrical difference, complement, asymmetrical difference, and
prefix closure.

4.5 Efficiently computing with RFA’s

In this section, we consider some practical methods for constructing RFA’s. The first subsection
considers a practical implementation of the {Z-algebra of) RFA operators, while the second sub-
section introduces some improvements (due to Chang, Paige, and Briiggemann-Klein) to the RFA
operators.

4.5.1 A practical implementation of the RFA operators

In an RFA, the states are mapped to their corresponding symbol (of V') by the seventh component
(usually called Qmap) of the RFA. This seventh component would be redundant if the states and
symbols were in a one-to-one correspondence. Furthermore, the symbols could then be used as
the states. In this subsection, we explore this encoding method, and the requirements on the RE’s
for this method to work. We will also be defining a new, restricted, mapping rfe’ € RE—~ RFA.
We will be able to use this mapping for regular expressions in which each alphabet symbol occurs
no more than once.
We first define an important auxiliary function.

Definition 4.57 (Occurrences of symbols in RE’s): We define function Occ € RE — P(V)
such that Oce(FE) is the set of symbols (of V) occurring in E. We can also define Occe recursively
as follows:

Oce(e) =¥

Oce(®) = 0

Occ(a) = {a} {forae V)
Oce{E-F) = Occ(E)U Occ(F)

Occ(EUF) = Oce(E)U Oce(F)

Oce{E*) = Occ(E)

Occ(Et) = Qce(E)

Occ(E") = Occ(E)

O

Definition 4.58 (RRE): We define RRE C RE as the smallest set satisfying:
e c € RRE,
e 0 € RRE,

e a ¢ RRE (for @ € V),

if B,F € RRE, and Occ(E)N Occ(F) =@ then E- F € RRE and EU F € RRE, and

if £ € RRE then E* € RRE, E* € RRE, and E" € RRE.
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Intuitively, RRE (for restricted regular expressions) denotes the set of all £ € RE such that each
symbol (of V) occurs no more than once in E. O

Example 4.59 (RRE): A RRE is {(auUe)b*. O

In order to give our alternative RE to RFA mapping, rfa’ € RRE — RFA, we first define
some more auxiliary functions., The definitions of these functions also follow directly from the
RFA operators.

Definition 4.60 (First): We define First € RE — P(V') recursively (recall from Example 3.20
that Null(E) = (e € Lre(E))):

First(e) = §

First(9) = 0

First(a) = {a} (fora € V)

First(E-F) = First(E) Uif (Null(EF)) then First(F) else § fi
First(EUF) = First(E)U First(F) -

First(E*) = First(F)

First(Et) = First(E)

First(E”) = First(E)

This definition follows directly from the first tuple element of the RFA operator definitions. O

Remark 4.61: It is useful to have an intuitive understanding of function First. First(E) is the
set of all symbols that can occur as the first symbol of a string in Lre(F). O

Definition 4.62 (Last): Function Last is defined to be the dual of First. D

Remark 4.63: Last(E) is the set of all symbols that can occur as the last symbol of a string in
Crp(E). O

Definition 4.64 (Follow): We define Follow € RE — P(V x V) recursively:

Follow(€) =

Follow(®) = 0

Follow(a) = 0 (fora e V)

Follow(E - FY = Follow(E) U Follow(F)U (Last(E) x First(F))
Foliow(EUF) = Follow(E)U Follow(F')

Follow(E*) = Follow(E) U (Last(E) x First(E))

Follow{E™) = Follow(E) U (Last(E) x First(E))

Follow(E*) = Follow(E)

This definition follows directly from the follow tuple element of the RFA operator definitions. O

Remark 4.65: For a,b € V, (a,b) € Follow(E) is equivalent to ab being a substring of some
string in Lpp(F). O

Example 4.66 (First, Last, Null, Follow): We use the regular expression (@ U €)b* (from Exam-
ple 3.15}):

First{{faUe)b*) = {a,b}
Last({a U €)b*) = {a,b}
Null{{a U e)b*) = true
Follow({aU e)p*) = {(a,b),(b,b)}

We now have the auxiliary functions required for the definition of rfa'.
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Definition 4.67 (Function rfa’ € RRE — RFA): The definition of rfa’ is straightforward:
rfa’ (E) = (Occ(E), V, Follow(FE), First(E), Last(E), Null(E), Iv)
where Iy is the identity function on alphabet symbols. O

Example 4.68 (rfa’): Using the resuits of the above example, we have:

rfa’({a U €)b*) = ({a, b}, {a, b}, {(a,b), (b,0)}, {a, b}, {a, b}, true, {{a,a), (b,)})
|

Property 4.69 (rfa’'): Given E € RRE then rfa{E) = [rfa’(E)]=. O

Function rfa’ is convenient, as all of the auxiliary functions can easily be computed bottom-up
on the structure of E.

Construction 4.70 (An encoding of BS): The method of constructing an RFA (using rfa’)
leads to a particularly concise definition of BS. For example, we define BSenc € RRE — FA:
BSenc(E) = let s bea new state
in
let T ={(a bb):(a,b)e Follow(E)}
T = {(s,a,a) : a € First(E)}
F = Last(E) Uif (Null(E)) then {s} else § fi
in
(Oce(EYU{s},V,TUT", 0,1}, F)
end
end

a
Remark 4.71: Compare the definition of BSenc to the definition of decode (Definition 4.28). O
Property 4.72 (Construction BSenc): For E € RRE:
[BSenc(E)]~ = BS(E)
O

Remark 4.73: By inspection, we see that (for £ € RRE) the FA BSenc(E) {equivalently BS(E))
is deterministic. This implies that:

MYG(E) = complete o BS(E)
a

Remark 4.74: In Section 5.4 we will show that Brzozowski's construction (with an appropriate
encoding) produces a DFA (from an E € RRE) that is isomorphic to the one produced by BSenc
(and therefore BS). O
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Similarly, the Aho-Sethi-Ullman algorithm becomes quite concise (from Algorithm 4.52):

{E € RRE}
E' := marker . (E);
8,T = (if (First(E'} # 0) then {First(E')} else 0 fi),0;
DU :=8,5;
doU#0—
let w:u€ U,
DU :=Du{u}, U\ {u};
for a: e € u A Follow(E'){a) # 0 do
d = {Follow(E"))(e);
ifd¢g D —U:=UU{d}
|de D — skip
fi;
T:=TuU{(u,e,d)}
rof
od;
F={d:deDnrsed}
{Lpa(D,V.T.0,5,F) = Lre(E)}

This algorithm is very similar to the one given in [ASUS6].

The only problem remaining is how to deal with an £ € RE when £ ¢ RRE. The method
usually used is to “mark” the symbols of £ (perhaps with an integer subscript), making each
symbol unique. For example, (a* U ab) ¢ RRE but after marking we get (a] U a2b3) € RRE.
Once the corresponding FA is constructed from the marked regular expression, the marks are
removed (the FA is “unmarked”) and the FA accepts Lrg{E)}. There are a few different styles of
marking. For example, consider a* Uab: McNaughton-Yamada mark this as a} Uasby, Berry-Sethi
use aj U azbs, and Aho-Sethi-Ullman use 11 U 23.

The only disadvantage to the use of marking to encode RFA computation is that marking is
unable to deal with some of the other regular operators, such as intersection, and complementation.
For all E, F € RRE we have the property that Lrg{ENF) = Lrp(E)NLre(F) =@. For example,
given!! aa Ne* (with language Lre(aanNa*) = Lrp(aa) N Lrp(a*) = {aa}). After marking we
get ajag Na} after marking (with Lgrg(aiaz Nal) = ). In Section 4.4 we saw how these operators
can be readily implemented with BRFA’s (without the encoding scheme of this section).

The approach presenied in this subsection is essentially due to McNaughton and Yamada
(MY60], Glushkov [Glus61), and Berry and Sethi {BS86). The presentations in [B-K93a, Section 2],
[BS86], tEvGO3], and [ASUS6, Fig. 3.40, pp. 134-141] are particularly clear. Those interested
in a rigorous treatment of this approach to RFA’s can refer to the paper of ten Eikelder and van
Geldrop [tEvG93].

4.5.2 More efficient RFA operators

The definition of the RFA operators may still result in inefficient implementation. In particuiar,
Briiggemann-Klein and Chang and Paige found that the implementation of the (U) in the RFA
operators may tequire more than constant time [B-K93a, Chan92, CP92]. In most cases the
arguments (of U) are disjoint; the only possible exception is the union follow U {last x first),
appearing in the C, gra and Cy grra operators. Two solutions to this problem will be presented
here.

Convention 4.75 (Constant time union): We use the symbol & to denote union where the
arguments to @ are assumed to be disjoint. O

1 Here we assume, for the moment, that L pp can deal with the intersection operator.
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The first solution was proposed by Chang and Paige [Chan92, CP92}.

Definition 4.76 (Chang-Paige RFA): We add an eighth component W to each RFA

{Q, V, follow, first, last, null, Qmap, W)

such that

W = (last x first) \ follow

These modified RFA’s will be called Chang-Paige RFA’s, and are denoted by RFA’. O

We only give the new operators, instead of the X-algebra. The operators follow directly from
the above definition.

Construction 4.77 (Operators of the Y-algebra of Chang-Paige RFA’s): As usual, the
operator requirement is:

s For binary operators, the representatives have disjoint state sets.

CE,RFA’ = [(ﬂammawaﬂ, tT‘UE,@, @)]E
C@,RFA' = [(Q,V',@, 0: El,false,@, ﬂ)]E
Cocv,rrar = let gy be a new state
in
d [({Q‘[}}, Va my {qU}: {q0}1 fﬂlse, {((IO) ﬂ.)}, {(q{]a qﬂ)})]E
en

C. rea (Mol [Mi]e) = let  (Qo,V, followo, firsto, lasty, nully, Qmapo, Wy) = My

(@1, V, follows, firsty, lasty, nully, @Qmep,, W1) = M,

in
let  first’ = firsty Wif (nully) then first; else @ fi
last’ = last; W if (nuill;} then lasty else @ fi
W' = if (null;) then W, else §) fi
W' = if (nully) then W) else ¢ fi
in
[(Qg ] Q]_, V,fO”O'w[) L*JfO”O’UJ]_ W (lﬂ.Sto x ﬁT‘Sﬁl),
first' last’', nully A nully, Qmapy W Qmap,,
(lasty % firsto) w W' @ W")]~
end
end

Cu,rFar ([M[)]g, [MI]E) = let (Qo, V, followq, firsty, lasty, nully, Qmapy, Ws) = My

(Ql, V,followl,ﬁrstl, [GStl, TLH”l, Qmapl, Wl) = M1

in
[(QowQ1,V, followy & follow,, firsto W firsty,
lasty W lasty, nully V nully, Qmape W Qmap;,
(lasto x first1 ) W (last) x firsto) & Wy v W1 )]~
end

Conrar((M]a) = let (Q,V, follow, first, last, null, Qmap, W) = M

in
(@, V, follow wW, first, last, true, Qmap, B)]~

end
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Cirra([M]=) = let (Q,V, follow, first, last, null, Qmep W) =M

in
(@, V, follow W W, first, last, null, Qmap, B}~
end
Cr rra([M]2) = let (Q,V, follow, first, last, null, Qmap, W) = M
in
(@, V, follow, first, last, true, Qmap, W )]~
end

These operators are symmetrical. The correctness of these operators is shown in Theorem B.3. O

Chang and Paige make additional running-time savings by computing the components of a RFA’
only as needed in the operators C. grar and Cy pra'. The running-time and space savings, along
with implementation details are given in [Chan92, CP92].

The second solution also involves adding an eighth tuple element to RFA’s, giving RFA”.

Definition 4.78 (RFA"}): We add an eighth component W to each RFA
(Q,V, follow, first, lust, null, Qmap, W)
such that
W = follow \ (last x first)
These modified RFA’s are denoted by RFA”. O
As before, the new operators follow directly from the ahove definition.
Construction 4.79 (Operators of the Z-algebra of RFA”): As usual, the requirement for

binary operators is that the representatives of the arguments are chosen such that they have
disjoint state sets.

CE,RFA" = [(®7V7 @: @1 ma tme’ 0: @)]g
C(D,RFA” = [(@:V:- @)@a ﬂ,false,ﬂ, m)]2
Caevirrar = let g be a new state
in

[({QO}, V.8, {(IU}, {QO}afalsew {(QOa G.)}, @)]E

end

C. prar([(Mola, [M1]a) = let (G, V, followq, firstg, lasty, nully, @mapg, Wo) = My
{(Q1,V, follow, firsty, lasty, nully, @map; , W1) = M,
in

let  first’ = firstg Wif (nully) then first; else @ i
last’ = lasty Wif (nully) then lasty else @ ii
W' =1if (null,) then W, else followg fi
W =if (nullp) then W) else follow, fi
W =if (nully A nully) then B else {lasty x first:) fi

in
[(Qo W Q1,V, followy W followy W (lastg X firsty),
first!, last’, nully A nully, Qmapy ¥ Qmap,
Wf ] WH ) W"f)]g
end

end
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Cu,rrar (Mo, [Mi]=) = let  (Qo,V, followo, firsto, laste, nully, @mapg, Wo) = Mo
(@1, V, followy, firsty, lasty, nully, Qmap,, W) = M
in
[(Qo W, V, followy W follow,, firsty ¥ first,
lasty W lasty, nully V nully, Qmapg ¥ @map,,
Wy & W1 e
end
Co gran (M=) = let (Q,V,follow, first, last, null, Qmap, W) = M
in
[(Q,V,W w (last x first), first, last, true, Qmap, W )|~
end
Ci rrar(iMle) = let (Q,V, follow, first, last, null, Qmap, W) = M
in
(@, V, W (last x first), first, last, null, Qmap, W)]=
end
Cr pran([M]z) = let (Q,V, follow, first, last, null, Qmap, W) = M
in
[(Q,V, follow, first, last, true, Qmap, W )]~
end

These operators are symmetrical. Their correctness is shown in Theorem B.4. O
Definition 4.80 (Mapping [RFA']~ and [RFA”|~ to [RFA]~): The mapping is 7. O

Remark 4.81: Although this construction does not appear in the literature, a related one does:
Briiggemann-Klein describes a transformation on regular expressions which closely parallels the
RFA" operators. A regular expression E is first transformed into a star normal-form expression,
denoted by E*; the RFA image of E* has similar properties to the RFA” image of £. The details
of the star normal-form transformations (and the running time improvements resulting from them)
are described in [B-K93a). O
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5 The Myhill-Nerode, Brzozowski and DeRemer construc-
tions

In this section, we explore a DFA construction method — due to Myhill and Nerode — from
which we derive Brzozowski’s construction. First, we make some observations about determinism
in finite automata.

Recall a property of weakly deterministic automata — Property 2.28. Given that the set of
left languages (of the states) in a DFA are disjoint, we will be exploring methods of computing a
set of left languages to construct an automaton.

Definition 5.1 (Left languages of a DFA): Define the left languages of a DFA as:
— —
L@QVT,ESF)={L(g):q€ Q}

8

Since the elements of this set are pairwise disjoint (by Property 2.28), we can also view it as the
(finite) set of equivalence classes of some equivalence relation on V*. There are two potential
problems with this:

o In the case that an M € DFA is not Complete then E(M ) is a partial partition of V*. (This
follows fromn Property 2.16.) To make the definitions in this section easier to present, we
restrict ourselves to Complete DFA’s.

e It may be that ) is a left language of some state — corresponding to a start-unreachable
state. In this section, we will not be interested in DFA’s with start-unreachable states.

Since Lpa{Q. VT, E,S,F)={(Uf:feF: T{f)) (see Definition 2.12) we also note that the
language of an automaton M is the union of some of the equivalence classes in Z(M ).

Definition 5.2 (Right invariance of an equivalence relation): An equivalence relation F
on V* is right-invariant if and only if

Vu,a:vueV' AaaeeV:3Bv:veV  [up-{a} C[v]e))
0

Property 5.3 (Right invariance of an equivalence relation): Sometimes right invariance of
equivalence relation E on V* is given as

(Vu,z:ueV'Aaze V' :Qv:ve V' {ulg {2} CEe)
This is equivalent to the definition given above (by induction on the length of 2 € ¥V*). D

We can now formulate an important property of f(M ), the partition of V'*.

Property 5.4 {Right invariance of a partition of V*): Partition <E(Q, V,T,E, S, F) is right-
invariant if and only if

(Vpa:pEQraeV:(Aqg:qe@: L(p) {a} C L(g))
O

Remark 5.5: It should be clear that for all M € DFA such that Complete(M), (E(M ) is right-
invariant; this follows since for all states p, (and transition relation T € @ x V' — @), since
M € DFA) (and a € V)

T (p)-{a} € T(T(p,a))
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Remark 5.6: Had we been considering non- Complete DFA’s, we would not have a partition on
V*, right invariance could still be defined (for partial partition ‘-E(Q, V,T,E, S, F)} as:

(Vp.a:pEQAaEV AT (pa)£#0:(3q:q€Q: L(p) {a} C T (q)))

We will not be using this definition. We give it to point out that the techniques of this section are
also usable in constructing non- Complete DFA’s (as Brzozowski demonstrated in [Brzo6d]). O

5.1 The Myhill-Nerode construction

Before considering how to construct finite automata, we first present the Myhill-Nerode theorem.
A good text book introduction to the theorem is [HU79].

Theorem 5.7 {Myhill-Nerode): The Myhill-Nerode theorem states that the following state-
ments are equivalent [Myhi57, Nero38, RS59, HU79):

1. L is a regular language.

2. L is the union of some of the equivalence classes of a right-invariant equivaience relation (on
V*) of finite index.

3. Let R;, be the right-invariant equivalence relation defined by
(z,y) eRL,=(Vz:2€e V*:(zze L)=(yz € L))

Relation Ry is of finite index.

Proof:
A following proof is given in [HU79, Theorem 3.9)].

(1) = (2): Assume L is accepted by M € DFA such that Complete(M). Let E be the equivalence

relation corresponding to £ (M). #E is finite, and L = (U f : f € F : £(f)). (See
Definition A .8 for the definition of {.)

(2) = (3): We show that for an equivalence relation E satisfying (2) that E C Ry. (Here C
denotes equivalence relation refinement, see Definition A.10.) We start the derivation using
the right invariance property of E (Property 5.4, written slightly differently):

MurweV*:(Vw:weV :(Bvive V' ([ug- {w}) Cvg)))
= { Assumption that F satisfies (2), forallve V*: (plp C L)V (v]e N L=8)}
VuweV:(Vw:weV: (ule-{wh CL)V (e {w}) nL=0))
= { Definition of Ry }
Vu:weV*:(Fv:iveV*:|ug Cvr.))
{ Definition of refinement (C) — Definition A.11}
Ve © [V7]n,
{ Definition of refinement {C) — Definition A.10}
ECR;
= { Property of refinement — Property A.12}
{E > §RL

]

It follows that since §E is finite, so is Rz
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(3) = (1): We can construct the following Complete DFA (from Ry) accepting L:

let T([w}RL?a‘) = {[wa]RL}

) F ={[w]g, :weL}
([V*]RL 3 Va T, m’ {[E]RL}a F)

end

It follows that L is a regular language.
O
Property 5.8 (Index of equivalence relation E): Given L € Lreg, M € DFA accepting L,
and E (satisfying statement 2 and constructed as in the proof of (1) = (2) of the Myhill-Nerode
theorem) then §E < |M| (since §E = § € (M) by definition of E and Det). O
Property 5.9 (Uniqueness and minimality of equivalence relation R ): Of all equivalence

relations satisfying statement 2 of the Myhill-Nerode theorem, Ry, is the unique minimal one. This
follows from the fact that all others are refinements of Ry, (see the proof of (2) = (3)). O

The theorem does not say much about how to find equivalence relations satisfying statement 2,
other than providing a definition of the unique minimal one, R;,.
We can formalize statement 2 of the Myhill-Nerode theorem:

Definition 5.10 (Predicate MN): For regular language L and equivalence relation E (on V*)
MN(L, E) is equivalent to

s {F is finite,
e L=(Uv:veL:g),and
e [E is right-invariant.

]

Note that MN(L, Rp).
The DFA construction given in the (3) = (1) proof can be used with other right-invariant
equivalence relations.

Construction 5.11 (Myhill-Nerode): Given a language L and right-invariant equivalence
relation E such that MN(L, E} we can construct an automaton accepting L using the function

MNconstr(L,E) = let T(|lw]lg,a)={lwa]g}
F:{[w]E:wEL}
in
(V°]e, V. 7,0, {[e]e}, F)
end
This construction has the following properties:

o The definition is independent of the choice of representatives of the equivalence classes of F.

¢ By inspection we can see that the FA constructed by MNconstr is a Complete DFA.

For any state U € [V*]g we have CW)=U.

All states in the constructed automaton are start-reachable.

The number of states is {E.

The construction satisfies the property

(V L,E : MN(L,E) : Lea(MNconstr(L, E)) = L)
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5.2 The minimal equivalence relation Ry

The only relation (corresponding to L € Lreg) that Myhill and Nerode actually defined was Ry.
This relation is particularly important, being the unique one of minimal index.

Theorem 5.12 (Unique minimal DFA): Given L € Lreg, M = MNconstr(L, Ry) is the unique
minimal Complete DFA accepting L; that is, Ming(M).

Proof:

Assume there exists M’ € DFA such that Complete(M"), Lpa{M') = L and |M’| < |M|. From
the proof of (2) = (3) (and Property 5.8), fR; < ﬂf(M’). In summary, R < ﬁf(M’) <M<
|M| =Ry, and so (by Property A.12) |M'| = |M|, E=R; and M'= M. O

Property 5.13 (Reformuiating R;): We can rewrite the definition of Ry using derivatives (see
Definition A.15) as follows:

(z,y) € Re

{ Property of derivatives and definition of Ry, }
(Vz:zeV* (zez lL)=(z €y L))

{ Definition of = on languages }
7L =y"lL

We could combine this definition of R with MNconstr to get a minimal DFA construction.
Such a function would have a clumsy definition, and therefore we explore some encoding tricks.

5.2.1 Encoding R,

An encoding trick is hinted at by Property 5.13: every equivalence class [w]g, of By can be
characterized by the language w=!L.

Definition 5.14 {Derivative set of a language): We define the set of derivatives of language
L as

deriv(L) = {v7L v e V*}
0
We have the following theorem relating to deriv

Theorem 5.15 (Finiteness of derivatives): If L € Lreg then |deriv(L)} is finite.

Proof:

{R; is finite (from the Myhill-Nerode theorem), and since |deriw(L)| = §Ry, |deriv(L)| is also
finite. O

This theorem has also been given by Brzozowski [Brzo64]. His proof is, however, somewhat more
complicated, and is by induction on the structure of language L.

Definition 5.16 (Encoding an equivalence class): We define a derivative encoding function
{for a given L € Lreg) encderivy, € [V*|r, — deriv(L) as

encderivy ([wlg,) = w™'L

This function has inverse encderivy ' (v~'L) = [v]g,. Both of these functions are independent of
the choice of representative of equivalence class of Ry, O
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Remark 5.17: In Construction 5.11 {with Ry as the equivalence class parameter) the equivalence
classes of i are the left languages of the states of a DFA constructed from Ry. The function
encderivy maps these left languages {equivalence classes) to their corresponding right languages
(the derivatives). The right language (encderiv,,(U)) of a particular equivalence class U € [V*|g,
is called the continuation of U (in language L) by Berry and Sethi [BS86). O

Property 5.18 (Derivatives and function encderivp): Note that (fore € V, w € V*):
o encderivp([e]r, ) =€ 'L =1L,
o encderivi([walg,) = (wa) 'L =a " (w™tL).

These properties follow from Property A.16, and the definition of encderivy. D

Noting the form of function MNconstr, we use the encoding (function encderivy) to obtain
construction MNmin € Ereg —s DFA.

Construction 5.19 (MNmir): Combining MNeonstr (Construction 5.11) with enederiv; (and
its inverse) gives construction MNmin € Lreg — DFA:

MNmin(L) = let T(w 'L,a)={a"l(w1L)}
F={w'lL:ecw L}
in
(deriv(L),V,T,0,{L}, F)
end
Since MNmin is defined using MNconstr, the properties are similar:

« By inspection we can see that the FA constructed by MNmin is a Complete DFA.

» For any state U € deriv(L) we have ?(U) =U.
o All states in the constructed automaton are start-reachable.

e The only state that is not final-reachable is B. The state @ exists in automaton MNmin{L)
if and only if L # V*. It follows that we can remove the sink state @, to obtain a (possibly)
non- Complete DFA with only useful states.

e The constructed DFA is the unique (up to isomorphism) minimal Complete DFA accepting
L (since Ry is implicit in the definition).

» The construction satisfies the property
(VL:Le Creg : CFA(MNmm(L)) = L)
]

Example 5.20 (MNmin construction): We construct the minimal Complete DFA corresponding
to the regular language {¢,a}{b}*, denoted by regular expression (e U ¢)b* (the regular expression
from Example 3.15).

After some calculation (using Property A.17):

a”'({e;a}{b}") (@™ He,a{b}* va™ {b}*
{e3 {0} Ul {o1){b)"
{6}*

b ({ea}{b}) = (b7Heah){o}ubT (b}
{e}- U (b~ b1 {6}

= {o
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Figure 8 The DFA MNmin({e,a}{b}*).

oY ({B}) = (@ {p}){b}"
= 0{b}"
= 0
P = LY
— {b}*
a”'p = ¢
e = 0

we determine that the three derivatives are: L = {¢,a}{b}*, L; = {b}*, and @. The state graph is
shown in Figure 8. O

5.3 The Brzozowski construction

We now concentrate on constructing DFA’s from extended regular expressions, as opposed to
constructing them from regular languages. In Property A.17, a method is given for computing
a derivative of a regular language (based upon the structure of the language). Being able to
compute derivatives in this way also provides us with a definition of derivatives of extended
regular expressions (ERE's). Extended regular expressions were defined in Definition 4.53.

Remark 5.21: The Z-algebra definition of regular expressions is not used in this section as the
algebraic structure is not needed. Regular expressions are used only as syntactic objects, denoting
regular languages. O

Remark 5.22: The remaining constructions in this section do not necessarily depend on extended
regular expressions (normal regular expressions can also be used}. They are introduced because
some regular languages have more succinct descriptions as ERF's than as RE's. O

Definition 5.23 (Derivatives of ERE’s): Assuming @ € V and E, Ey, Fy € ERE

a”'g = @

ale = @

a~'b = if (a=0) then ¢ else @ fi (forall b€ V)
o HEE)) = (a 'Ep)E1Vif (¢ € Lgrp(Fy)) then a7 1E) else ¢ fi

0.—1 (Eo U El) = (G,_IE‘)) U] (G._lEl)
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a Y E*) = (a7'E)E

a " (EY) = (a 'E)E*
oY (E"Y = o’ 'E

a_l(Eo NnE) = (a_lEo) n (aflEl)
e Y=E) = -(aE)

0

Property 5.24 (Derivatives of EREs}: By inspecting the definition of derivatives of ERF's,
we can verify that (for a € V, E € ERE) a  Lerp(E) = Lgrp{a ' E). O

Remark 5.25: Given equivalence relation = {equivalence of regular expressions, extended to
ERE), an E € ERE will have a finite number of derivatives. More formally, |{{w™E]. : w € V*}
is finite. Brzozowski gave the same result by induction on the structure of a ERE in [Brzo64,
Theorem 4.3a]. O

Definition 5.26 (Similarity (~) of regular expressions): Similarity (written ~) is an equiv-
alence relation on ERE's. Two EREs are similar if and only if they are identical or one can be
transformed into the other using the following rules:

1. Ey U E; = Ey U Ey (commutativity of U),
2. EyU (B UE:) = (Ey U E;) U E; (associativity of U), and
3. EUE = E (idempotence of U).

[

Property 5.27 (Similarity): ~C=; that is, ~ is a refinement of =. O

Definition 5.28 (The derivatives of an ERF): Function derivgrr € ERFE — P([ERF].) is
defined as

derivgre(E) = [{v 'E:v e V*}]. = {[v 'E].:veV*})
O

Before proving that derivgrg(F) is finite (for all £ € ERE), we need the following proposition.

Proposition 5.29 (Similarity equivalence class of a union ERFE): Assume a finite set H C
ERE and a fully parenthesized regular expression

J= (- (((h1 Uha) Uhs) Ukg) - U hy)

where (for 1 <i < k) h; € H; each h; is called a term of J. Using ~ we can always find a similar
{and, of course, equivalent) regular expression X, where K is the union of at most |H| terms of
J. This is because the rules defining ~ can be used to reassociate and commute the terms of J
(to place identical terms adjacent to one another), while the idempotence rule of ~ can be used
to remove identical terms. D

Proposition 5.30 (Similarity): Given a finite set # C ERE, the set of all non-similar ERE’s
that are unions of terms h; € H is finite. O

Theorem 5.31 (Finiteness of derivatives under similarity): For all E € ERE, |derivgrp(E)|
is finite.

Proof:

This proof is similar to the one given in Brzozowski’s original paper [Brzo64, Theorem 5.2]. The
proof is by induction on the number of operators in E € ERE,
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Basis: The theorem is true for each of the constants: derivgrp(e) = {[¢]~, {#]~}, derivgre(0) =
{{8]~}, and derivgre(a) = {la]~, []~, @]~} (for a € V).

Induction hypothesis: Assume that |deriv gre(E)| is finite for all E € ERE where E has fewer
than k operators.

Induction step: Assume FE € ERE has k operators. We use case analysis to deal with the
possible forms of E:

E = EyU E;: It is possible to show that
{w By UE) iw eV} ={lw BgUw EBy].cwe V*}
By the induction hypothesis, |deriv pre(Ey)| and |dertvpgp(F1)| are finite, and so is
|def‘iUERE(E)'.
E=EyNE; or E= E} or E=-Ep: An argument similar to that for U applies to these
cases.
E = Ey - Ey: In order to analyze |derivgre(Ey - E1 )|, we consider a particular w™!(Eq - Ey)
(for w € V*). Let w = a; - - - a,, where each a; € V. Writing out w™'(Ep - E1) we get
w(Ey - Ey)
= (a2 an) " (a7 Eg)Ey Uif (¢ € Lprp(Ep)) then aj'E) else § fi)

Had we been abie to continue this rewriting, we would see that [w ™! (Ep - E1 )]~ is equal
to

[(w™'Eo) By U(Uu,v:uv=w:if (¢ € Lrrp(u1Ep)) then v E; else § fi)]..

That is, w=(E, - E1) is the union of a set of terms, one of which is (w™'Eyp) - E),
and the remaining ones are either a derivative of E), or # ¢ FRE. By the induction
kypothesis (the set of derivatives of E is finite) the set of possible terms is finite. It
follows from Propositions 5.29 and 5.30 that |derivggp(E)| is finite.

E=E} or E= Ef: As in the Fy - E; case, we could write out w™'(E}) for a particular
w € V*. If we do this, we see that it is the union of terms, each of which is a derivative
of Ey concatenated with Ej. The set of possible terms is finite — by the induction
hypothesis. Again, it follows from Propositions 5.29 and 5.30 that |derivgpe(F)| is
finite.

O

Remark 5.32: Unfortunately, using similarity (in computing derivatives) may yield more deriva-
tives than recognizing equivalence (=) of derivatives (as shown in Example 5.37). The rules
defining similarity can be augmented with others to decrease the redundancy of the derivatives
{and therefore the size of the constructed DFA). Any equivalence relation G such that ~C G C=
is usable for this. Examples of additional rules are (for Fy, E1, B2 € ERE}:

1. Ey -8 =0 (0 is the zero of concatenation),
2. Equ® = Ey (D is the unit of U),
3. Ey-e = Ej (e is the unit of concatenation),

0* = ¢ (a property of *),

o

. By - (E1UEy) = Ey- E1U Ey - E, (- distributes over U),

o

Eqnd =0 (0 is the zero of N},

7. Eyn By = E; N Ey (commutativity of N),
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8. Eyn (El n Eg) = (Eg n El) N Ey (associa.tivity of ﬂ).
9. EnE = E (idempotence of N).

O

There is a property of similarity that will be needed to present the Brzozowski construction.

Definition 5.33 (Derivative of a similarity equivalence class): For E € ERE anda e V
we have ¢ '{E]. = [a7'E].. This definition does not depend on the choice of representative of
the equivalence class (under ~). O

The Brzozowski construction is an encoding of MNmin to use ERFE's and equivalence classes
of ~.

Construction 5.34 {Brzozowski): Function Brz € ERE — DFA is defined as:

Brz(E) = let T([v7'E].,a)={a [v7 E].}
F= {[’LU_IE]N L EE EERE(w_lE)}
in
(dET‘?:UE‘RE(E), Va T: ﬂ! {{E]N}J F)
end
The properties of Brz correspond to those of MNmin:

e The construction is independent of the representatives of equivalence classes.

By inspection we can see that Brz constructs Complete DFA’s.

For any state E' € derivgrg(F) we have _E(E’) = Lrre(E').

All states in the constructed automaton are start-reachable.

There may be a state that is not final-reachable; this sink state will exists if and only if
Lere(E) # V*. The sink state corresponds to the derivative § € ERE.

»

The construction satisfies the property
(VE:E¢€ERE: Lra(Brz(E)) = Lere(E))
a

Remark 5.35: Any equivalence relation G (on ERE's) such that ~C G C= can be used in place
of ~ in Brzozowski’s construction. O

Remark 5.36: In Brzozowski’s original paper [Brzo64], the sink state (corresponding to derivative

# € ERFE) was always omitted from the constructed DFA, producing a possibly non- Complete DFA.
a

Example 5.37 (Brzozowski’s caonstruction): We construct a Complete DFA corresponding
to regular expression {a U e}b* (the regular expression from Example 3.15). The derivatives are:

a{auep*) = (aHeue))b* Ua™l(b)
= (e laUale)d" U(a b}
= (eud)p*u oy
bl {aUe)p®) = (BHaue))b* UbTI(BY)
(b~laUb~elb* U (b )b
(B U B Ued”
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Figure 9: The DFA Brz((a U €)}b*).

~ §b*ueb*
a eV UBH*) = a l({eUDD)UT(B6)
= ((a Y eW®)B* U™ (d*)) U (a 0"
= (((a leUat@)b*) U (a~'b)b*) U Bb”
= ((BUB)s* U (B)b*} U Bp*
~  Bb*
BH{(eUB)B UBL) = b l((eu@)*)UbL(BD)
= ((B"Heu )b U (b 1BM* U (b710)0*
= ((b7leU b0 U (e)b*) U Db
= ((BUd)” ued™)UBH
~ Pt U eb*
a" @b Ueb*) = oY@ Ua(eb")
= (a7 U ((a™ e)b" U (a1h)b*)
~  0b
LB Ueb*) = BL@PY)UbT(ed)
= (7@ U (b7 el U (b 1B)bY)

~ Bb* U eb”

a”l (@) = (a'0)"
= M

bLbY) = (bl
pb*

The four derivatives (under ~) are: dy = {a U €)b*, dy = (e U B)b6* U Pb*, do = #b* U eb*, and
ds = Pb*. The state graph is shown in Figure 9. Had we been able to recognize equivalence of
ERFE's, we would have had a smaller DFA since (e U B)b* U @6* = @b* U eb*, and we could have
identified states d; and dy. O

5.3.1 Computing derivatives of an ERFE

Brzozowski also shows [Brzo64] if E € ERFE has n derivatives (including £, under any equivalence
relation G such that ~C G C=) then they are all of the form v~'E where |v| < n [Brzof4,
Theorem 4.3b]. Also part of this theorem is if all derivatives (of E) with respect to strings of
length not greater than n have been found, and no new ones are found with respect to strings of
length n+ 1, then no new ones will be found with respect to strings of length greater than n. This
useful property of derivatives (in fact a slightly stronger property) can be stated as follows:
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Theorem 5.38 (Finding derivatives): For all r > 0

{w Bl cweV*Alwl=ry C{[wulEl.:we V* Alw| <7}
>
{[w Bl iweV A|w 27} C {[wlE.:weV*Alw| <r}
(]

This gives the following algorithm (in the guarded commands of [Dijk76]) which computes the
derivatives of a regular expression E (D C [ERE].. and nest C [ERE].):

Algorithm 5.39:

(E € ERE}
D, next, k= 0,{[E}.},0;
{invariant: D = {[w™lE].. :w e V* A|w| < k} Anext = {[w 'E]. :w € V* A|w} = k}}
do next ¢ D —
D,nezt,k:= DUnext, {a 'F:a €V AF € next},k+1
od{D = derivgpe(E)}

5.3.2 Extending derivatives

It is sometimes useful to extend derivatives to deal with additional operators: prefix closure
and certain functions on languages. We now briefly give the definition of derivatives of regular
languages (and thus regular expressions) with these operators.

The prefix closure of a language is defined as:

pref(L) = {u:u™'L # 8}

and the derivative of a prefix closed language is:
a~!(pref(L)) = pref(a'L)

For certain functions f € Lreg x Lreg — Lreg, derivatives are defined as:
a” (f(Lo, L1)) = f(a™ Lo,a™ " Ly)

Some examples of such functions are N, U, asymmetrical difference, and symmetrical difference.
For more on this see [Brzo64j.

5.4 Relating the Brzozowski and Berry-Sethi constructions

it turns out that for RRE’s (recall from Definition 4.58 that an £ € RRE is an RE such that each
symbol of V' occurs at most once in E), the Brzozowski construction (with sink state removal -—
as in Brzozowski's original paper — and a suitable encoding) and the Berry-Sethi construction
produce isomorphic DFA’s. In this section, we consider only RRE's. Berry and Sethi first presented
this result in [BS86).

We will be using the following version of Brzozowski’s construction (for E € RRE), which does
not introduce a sink state (the sink state is equivalent (=) to @ € RRE — its language under Lgg

is #).

Construction 5.40 (Brzozowski — without sink state): Given E € RE, the following
constructs a DFA accepting Lgp(E):

let Q= {[w 'E\.:weV*ALpe(w E)+# D}
T([v™*E]~,a) = if (Cre(a~' (v 'E)) # 0) then {a '[v 'E|.} else § fi
F = {[w™'E]. : Null(w™'E)}

in
(@, V,T,0,{[E].}, F)

end
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In the let clause, the transition function has signature T € @ x V —— P(Q). Recall from
Definition 3.20 that Null(E) =c € Lzg(F). O

For any E € RRE, the only way that Cre(b™ ((wa)  E)) #0 is if Lag((we) 'E) #£ @ and a
b can follow a wa in some string in £rp(E).

In order to make the above construction practical, we explore the possibility of characterizing
all of the derivatives of an ' € RE (except for the derivative E itself) by the symbols occuring in
E.

Definition 5.41 (Unambigucus regular expressions): An F € RE is said to be unambiguous
if and only if, for all @ € Occ(E) (function Occ is defined in Definition 4.57), the following set is
a singleton set:

{{(wa)  E]. :w € V* A Lre((wa) " E) #0}

In other words, all derivatives of E by wae (for w € V* and a € V) are either equivalent to
@ € RRE, or are similar to one another. O

Remark 5.42: If an F € RE is unambiguous, its derivatives are either E or @, or can be
characterized by an element of Occ(E). O

Remark 5.43: The regular expression (e U a) is unambiguous, but is not an RRE. O

Remark 5.44: Unambiguous regular expressions are also defined by Champarnaud [Cham93],
although he characterizes them quite differently, and he does not make use of derivatives. Cham-
parnaud calls such regular expressions local. O

Theorem 5.45 (Characterizing derivatives of RREs): For any E € RRF, FE is unambiguous.
This theorem is also given by Berry and Sethi [BS86, Theorem 3.4].
Proof:

We proceed by induction on the number of operators in £ € RRE.

Basis: The theorem is trivially true for the RRE base cases € and @ since Oce(e) = Occ(@) = 0.
It is also trivially true for the RREa € V.

Induction hypothesis: Assume that the theorem is true for any £ € RRFE with fewer than &
operators.

Induction step: We now consider E € RRE with k operators. We now examine the possible
structure of F {assuming a € Occ{ E)}.

E = Ey U Ey: Given w € V* such that Lpg((wa)™'E) # 0
(wa) " (Eo U E1) = ((wa) ™ Eg) U ((wa) "  Ey)

Since E € RRE, then either @ € Occ{Ey) or @ € Occ(E;) (but not both). It follows
that {(wa)~1(Ey U E)) is similar to (wa)~!Ey U @ or similar to (wa) ' E; U (but not
both). The theorem then follows from the induction hypothesis.

E = FEy - E;: From Theorem 5.31 we know that (for w € V*,a € V) [(wa) {(Ep - E1)]~ is
equal to:

[((we) 1Eg)E; U(U u,v : uva =wa : if (¢ € Lpre(u~'Ey)) then (va)~1E; else § fi)]..

Since E € RRE, then either a € Occ(Ey) or @ € Occ(E;) (but not both). It follows,
by an argument similar to the E = EqU E; case (above), that the theorem holds from
the induction hypothesis.

E=E;, E=E} or E = E}: The argument for these cases proceeds similarly to the E =
Ey - E) case. For more on this type of argument see Theorem 5.31.
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]

Remark 5.46: The above theorem implies that each derivative of E € RRE (under similarity) is
either § (which we ignore since it corresponds to the sink state) or E, or it can he characterized
by an ¢ € Occ(E). D

Definition 5.47 (Encoding the derivatives of an RRE): Given the theorem above, £ € RRE,
we can now give a partial encoding function enc g (corresponding to the & € RRE) from the deriva-
tives of E to Occ(E) such that (for w € V*,a € V) encg((wa) 'E) = a when Lgg({wa) " E) # 0,
and encg is undefined otherwise. Note that this function is not defined on E. O

The following property makes use of the definitions of Null, Occ, First, Last, and Follow
(Definitions 3.20, 4.57, 4.60-4.64 respectively).

Property 5.48 (Functions Follow, First, and Last): The following properties will be used:
o (a,b) € Follow(E)= (A w:we V*: Lap(b"({wa) LE)) £ 0).
e a € First{E) = Lrpla™ E) # 0.
e ac Last(E)=Lrp(Ba ) #0=(Fw:weV*:e€ Lpp((wa) 1 E)).

Derivatives on the right are mentioned in Definition A.15. O

We can rewrite our sink stateless version of Brzozowski’s construction, using the above prop-
erties, to obtain the construction now following.

Construction 5.49 (Encoding Brzozowski for REE's): We can now give our encoded version
(using Oce, First, Last, Null, and Follow) of Construction 5.40, as Brzenc € RRE — DFA:

Brzene(E) = let s be a new state (characterizing E € RRE)
in
let T ={(a,bb):(a,b) e Follow(E)}
T = {(s,a,a) : a € First(E}}
F = Last(F) Uif (Null(E)) then {s} else 0 fi
in
(Oce(E) U {s},V, T UT", B, {s}. F)
end
end

O

Remark 5.50: Using the set Oce(E) as the set of states can yield a DFA with start-unreachable
states. For example, in the DFA Brzenc(® - a), we have start-unreachable state a. O

Remark 5.51: By inspection we see that, for all £ € RRE, Brzenc(E) = BSenc(E) (Construc-
tion 4.70). It follows from Remark 4.73, that for £ € RRE, [Brz(E)|~ = MYG(E). O

Remark 5.52: Finally, we note that the construction Brzenc produces a correct DFA for any
E € RE such that ¥ is unambiguous. That is, £ € RRE is not required. This property is not
noted in the literature. This follows from Definition 5.41 and the definition of Brzenc. O

5.5 Towards DeRemer’s construction

In this subsection, we consider several more constructions based upon the MNconstr and MNmin
constructions {Constructions 5.11 and 5.19). The idea is to characterize the derivatives of a
regular expression by so-called dotted regular expressions. We only consider constructing a DFA
from an RE, as opposed to an ERE. Since some of the proofs are tedious to present, we give this
construction in an informal manner.

We begin by introducing dotted reqular erpressions, which are essentially regular expressions
with a dot (e) appearing in each of them.
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Remark 5.53: We will be characterizing derivatives, not equivalence classes (as is required for
MNeconstr). Using dotted REs, it is considerably easier to characterize the derivatives than the
equivalence classes. O

The dot should not be confused with the concatenation dot, the star normal-form dot of
Briiggemann-Klein (presented in Section 4.5), or the bullet used in typesetting lists.

Definition 5.54 (Dotted regular expressions, their languages, and undot): We recursively
define dotted regular expressions (DRE's), function R € DRE — P(V*), and function undot €
DRE — RE. Function R maps DRE’s to the (regular) language to the right of the dot, and
function undot removes the dot in a DRE.

1. If E € RE then
(a) oE € DRE, R(eE) = Lpp(E), and undot(eE) = E;
(b) Ee € DRE, R(Fe) = {¢}, and undot(Fe) = E.

2. If E€ RE and D € DRE then

(a) EUD € DRE, DUE € DRE, R(EUD) = R(D U E) = R(D), undot(E U D) =
E U undot(D), and undot(D U E) = undot(D) U E;

(b) E-D € DRE, D-E € DRE, R(E-D) = R(D), R(D - E) = R(D) - Lru(E), undot(E -
D) = E - undot(D), and undot(D - E) = undot(D) - E;

(c) D* € DRE, R{D*) = R(D) - Lre(undot(D))*, and undot(D*) = undot(D)*;
(d} Dt € DRE, R(D*+) = R(D) - Lre(undot(D))*, and undot(Dt) = undot{D)*;
(e) D* € DRE, R{(D*) = R(D), and undot(D"} = undot(D)’.

3. Nothing else is a DRE.

A dotted regular expression is also known as an item, from LR parsing [Knut65); we will frequently
use this name. O

We also require a function mapping a regular expression to all of its dottings.
Definition 5.55 (Function dots): We define function dots € RE — P(DRE) as follows:
dots(E) = {D : D € DRE A undot(D) = F}

|

Remark 5.56: For a given E € RE, we will be using sets of items (elements of P{dots(E))) to
characterize the derivatives of £Lrg(E) when constructing a DFA accepting Lrg(E). O

Property 5.57 (dots): For all E € RE, |dots(F)| is finite, and so is |P(dots(E})|. O
We define an item set, and its language as follows:

Definition 5.58 (Item sets and their languages): An item set J is a subset of DRE such
that:

(3E:E € RE : ] C dots(E))

IS denotes the set of all item sets. Essentially, an IS is a set of items, all of which are dottings of
the same regular expression. We also extend undof to IS. O

Definition 5.59 (Language of an [S): The language of a J € IS is given by function L5 €
IS — P(V*) defined as:

Lig(N)=I:TeldJ R}
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Remark 5.60: We will use item sets to characterize the derivatives of an RE. O

We now define derivatives of item sets.

Definition 5.61 (Derivative of an item set): Given J € IS and @ € V we define a=1.J to be
the following set:

1. f I € J has a subexpression ea then I' is in a~1J, where I' is the same as I with the
subexpression ea replaced by as.

2. Nothing else is in a=1J.
ad
We can now define a special type of function, which we call a closure function.

Definition 5.62 (Closure functions): Any function £ € IS — IS can be used as a closure
function, provided that

(VY J:J€IS: L1s(E(T)) = Lis(J)NEE(T) =E(T))
and

(VE,J:E€RENJC dots(E): e € Li5(J) = (Ee) € £(J))
and

(VJa:JeISnaeV : Lig(a &) =a  Lis(J]))

We are now in a position to define our first closure function, and an auoxiliary relation.

Definition 5.63 (Dot closure relation 7): We define a binary relation D on DRE. D is the
smallest relation such that:

1. If E,F € RE, then (here we use infix notation for relation D):

' 14 D co
oE-F) D (eE) F
(Ee)- FF D E.(oF)
E. (Fe) D (E-F)e
o EUF) D (sE)UF
o(EUF} D EU/(eF)
(Ee)UF D (EUF)e
EU(Fe) D (EUF)s
o(E*) D (eE)*
o(E™) D (E*)e
(Ee)” D (eE)
(Ee)” D (E")e
o(Et) D (eE)t
(Eo)* D (eE)t
(Ee)* D (ET)e
.(E:) D (.E)?
o(E’) D (E)e
(Ee)’ D (E')e

2. f E € RE and Dy, D; € DRE such that (D, Dy) € D, then:
(a) (EUDg, EUD,) € D, (DoUE, DiUE) € D, (E-Dg, E-D1) € D, and (Dy-E, D -E) € D.
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(b) (D},D}) € D, (D},Df) € D, and (D}, D}) € D.

a

Definition 5.64 (Closure function C): We define function C € IS —» IS as:
C(J) =D"(J)

Function C satisfies the Definition 5.62, making it a closure function. O

Remark 5.65: The closure function C presented here is an extension (to deal with our definition
of regular expressions) of the one usually given for LR parsing. O

Example 5.66 (Function C): C({e{(aU€)b*)}) is computed to be {e({aUe)b*), (e(aUc))d*, (sal
a)b*, (aU ee)b*, (a U eo)b™, ((aUe)o)d* (aUe)(e(b*)), (a Ue)(ob)*, (aUe)(b™ o), ((aUc)b*)e}. O

In order to construct a DFA for an RE, we require a set of item sets which characterize the set
of derivatives of a the regular expression. The following definition gives the necessary conditions.

Definition 5.67 (Derivative item set): Given E € RE, the set D C P(dots(E)) (that is,
D C IS and for each J € D, E = undot(J)) characterizes (under some closure function £) the
derivatives of E if and only if:

{w™'LrE(E) 1w € V*} = {L15(]) : J € D}
and
(VJ:JeD: J=£E(T)
and
(VJa:JeDAaeV (™)) e D)
We write this property DIS(E, D,£). The set D is called a derivative item sef for E. O

We are now in a position to modify Algorithm 5.39 to compute such a derivative item set (under
some closure function £), instead of a set of derivatives. In the following algorithm, D, next C IS.

Algorithm 5.68:

(E € RE)
D,next :=0,{E({eEN};
do next € D —o
D, next := DUnezt, {€(a"I):a € V AIE next}

od
{DIS(E, D, &)}

This algorithm terminates since |P(dots(E))| is finite (Property 5.57). With the set D computed
above, we can now construct a DFA accepting Lre(FE).
Construction 5.69 (Item set construction): Function Iconstr € RE x P{IS)—+ DFA takes
a regular expression () and a derivative item set (D) for the RE (such that DIS(E, D,()), and
constructs a DFA:
Iconstr(E, Dy = let T(J,a)={Ca"'J)}
S ={C({s£})}
F={J:JeDAEecJ)
in
(D,V,T,8,8,F}
end
A DFA constructed with Iconstr has the following property:
(¥ E,D : DIS(E,D,C) : La(Iconstr(E, D)} = Lre(E))
The DFA is also Complete. O
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Figure 10: The DFA Iconstr((a U €)}b*).

od—

Figure 11: The DFA Iconstr(b*).

Example 5.70 (Iconstr): We construct the IJFA corresponding to (a U€)b*. The derivative item
set is (the individual item sets have been compressed, as a notational convenience, and each item
set 1s given a label):

{Io = e{s(sa U ece)e)(s(eb) e)e, I, = ((a ® Uc)o)(s{ob) e}e, I} = ((aUe)){(obe)"e)e I3 =0}

The DFA is shown in Figure 10 O

5.5.1 Making the construction more efficient

Because of the definition of C, function Jconstr sometimes constructs a DFA which is larger than
necessary, as shown in the following example.

Example 5.71 (A DFA that is not minimal): We use Iconstr to construct a DFA for b* €
RE. The two item sets are D = {{o(b*), (sb)*, (b*}e}, {(be)*, {#b)*,(b*)e}}. The DFA is shown
in Figure 11. The problem is that the two item sets should have been recognized as denoting
equivalent derivatives since:

Lis({o(67), (eb)", (b")o}) = Lis({(be)", (o), (b")e})
They only differ in the items o(b*) and (be)*. O
The problem is that for some J € IS, there is much redundant information in C(J}. In

particular, there may be a J C J such that L,e(J'} = £15(J). We can introduce a function X
such that X' o C is a closure function. That is, A is used as a filter.

Definition 5.72 (Item set optimization function X): Given J € [5 such that J = C(.J),
X(J) is the same as J, with the following removed: any item containing a subexpression of the
form o(E U F), o(E*), or (Ke)*. O

Property 5.73 (Function A o {): Function X o C satisfies Definition 5.62, and is a closure
function. O
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o

Figure 12: The DFA DeRemer(b*).

Remark 5.74: The reason that such items are removed is that the definition of C ensures that
they are redundant; other items will have been added to the item set to ensure that these ones are
not needed. For example, in the case of ¢(E U F) function C will ensure that eE U F and E U eF
are added to the item set. In this case R{¢(EUF)) = R(¢EUF)UR(EUF). O

Ustng composite function X oC, we can now present a revised version of the above construction.

Construction 5.75 (DeRemer’s construction): DeRemer’s construction is function DeRemer,
which is exactly as Iconsir, except that the composite function X oC is used as the closure function
wherever C was used in Jeonstr. This construction is due to DeRemer [DeRe74], where he attributes
the idea behind the definition of A to Earley [Eari70]. O

Remark 5.76: DeRemer presented this construction in a slightly different context: he extended
an LR parser to deal with grammar production rules with regular expression as right hand sides
[DeRe74]. Remark 5.78 points out a slight problem with the original presentation by DeRemer. O

Example 5.77 (DeRemer): We use DeRemer to construct a DFA for & € RE. The only item set
is {(eb)*, (b*)e} and the DFA is shown in Figure 12. With alphabet V' = {b}, this is the minimal
Complete DFA accepting Lpp(6*). O

Remark 5.78: DeRemer and Earley specify that both the closure (function C) and the opti-
mization (function A') operations are to be performed simultaneously. Unfortunately, when ¢ is
permitted as an RE (as we have done) it is possible that the process never terminates. For exam-
ple, consider the closure (with optimization) of {#(a U¢)*}, in the style of DeRemer and Earley.
‘After the first step we have {e(a U €)*, (e{a U €))"}. After an optimization step, and a few more
steps we have {(sa U ¢)*, ((a U €)e)*}, after which we add (e{a U €))* which we had originally
removed. The rewriting process begins again. In this paper, we avoid this problem by defining
the closure and optimization steps separately. O

We can devise an even more effective optimization function than X.

Definition 5.79 (Function }): Given J € IS corresponding to E € RE such that J = C(J),
Y(J) is a subset of J, keeping only the following items:

1. Any item containing a subexpression of the form sa (for some regular expression a € V).

2. The item Ee (if present in J).
n|

Property 5.80 (Function Y o C): Composite function ) o C satisfies Definition 5.62, and is a
closure function. O

Remark 5.81: The function ) makes the computation of derivatives (of a J € IS such that
J = C{J)) particularly easy, as the items in V{J) are precisely those required in the computation
of derivatives and for determining if € € L;¢(J). O

Construction 5.82 (Improved item sets): Our optimized construction, called Oconstr, is as
Iconstr, except that the composite function Y o € is used wherever C was used in fconsir. This
construction does not appear in the literature. O
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Figure 13: The DFA Oconstr{(a U ¢}b*).

Figure 14: The DFA’s Brz(acU bc) and Oconstr{ac U bc).

Example 5.83 (Oconstr): Using Oconstr, we construct a DFA for (a U €)b*. The derivative
item sets are (each item set is given a label for use in the state graph): {l, = {(ea U €)b*,(a U
e}(ob)*, (aUe)b*e}, I} = {{aUe)(od)", (aUe)b*e}, I, = B}. The DFA is shown in Figure 13. This
is the minimal Complete DFA for the given regular expression. O

As seen in the above example, function Oconstr constructs a smaller DFA than Brz did in
Example 5.37. The two constructions seem difficult to compare, as the following example shows:

Example 5.84 (Comparing Brz to (Oconstr): We use Brz and Oconstr to construct DFA’s for
ac U be. The derivatives (under extended similarity — see Remark 5.32, each given a label) are:
{do = acUbe,dy = ¢,d3 = €,d3 = §}. The derivative item sets (using ) o C, each given a label)
are: {Iy = {sacUbc,acU ebc}, I} = {aocUbc}l, Iy = {acUbec}, I3 = {{acUbc)e}, Iy = B} The
results are shown in Figure 14. Construction Oconstr is unable to recognize that states I) and Iy
are equivalent. (An equivalence relation on IS — much like ~ on ERE's — could be defined in
order to identify such equivalent states.) O

We can make a more practical implementation by concatenating an end-marker § onto £ € RE
{using function marker. — see Definition 4.46). The second rule defining ) (Definition 5.79) is
then no longer required.
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Construction 5.85 (Oconstr with end-marker): Using the end-marker, the body of the
Oconstr construction becomes (assuming that DIS(E$, D, Y o(C)):

let T(J,a)={Yol(a"1J)}
S={¥VoC({eE})}

. F={J:JeDA$1T#0}

- (D, V., T,8,5 F)

end

W]

Remark 5.86: The Aho-Sethi-Ulman construction (Construction 4.50) can be viewed as a heavily
encoded variation on the Oconstr construction. Each item in an item set of D is of the form

..ea... (for a € V) and corresponds to the hasis RFA’s that are used in the construction of
the RFA for E. The subset construction (with start-unreachable state removal) of the Aho-Sethi-
Ullman algorithm {Algorithm 4.52) is folded into the algorithm computing the derivative item set
(using composite function Y o C) and the definition of a derivative of an item set. Compare the
DFA produced in Example 4.51 to that produced in Example 5.83; the only difference is the sink
state in the latter example. O
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Conclusions

The conclusions of this paper fall into two groups, depending on the section to which they relate:
constructions based upon the structure of regular expressions {Section 4), or constructions based
upon the Myhill-Nerode theorem (Section 5).

The conclusions about constructions based on regular expression structure are:

Finite automaton constructions are frequently said to be “based upon the structure of regular
expressions.” The -algebra framework (given in Sections 3 and 4) was useful in formalizing
this netion. The Z-algebras were particularly useful in the following ways:

—~ They placed Thompson’s, the left-biased, the right-biased, and the reduced finite au-
tomata (RFA) constructions in a common framework.

— They highlighted the fact that the type of object produced by the Thompson’s, the
left-biased and the right-biased constructions is actually the isomorphism class of a
finite automaton, as opposed to a finite automaton.

The concept of duality (that one construction can be the mirror image of another) played
a central part in finding common parts in constructions. Duality was made more obvious
through the use of L-algebras. The following constructions were found to be related by
duality:

— The Berry-Sethi nondeterministic finite automaton construction {also known in the lit-
erature as the McNaughton-Yamada or the Glushkov nondeterministic finite automata
construction} and the dual of the Berry-Sethi construction (a variant of which is also
known as the Aho-Sethi-Ullman nondeterministic finite automata contruction [ASUSS,
Example 3.22, pg. 140]}.

— The McNaughton-Yamada-Glushkov deterministic finite automaton (DFA) construc-
tion and the Aho-Sethi-Ullman DFA construction®?.

The use of end-markers {concatenated to either the left or the right of a regular expression)
was found to be a simple coding trick, which may be useful in practice. End markers do not
play a central role in any of the constructions, although they have previously been portrayed
as important.

The concept of marking a regular expression (each alphabet symbol occuring in the regular
expression is given a unique mark, making all of the symbols unique — see Section 4.5)
is an encoding trick. Marking is not central to the correctness of any of the constructions,
although it is a useful technique in the practical implementation of some of the constructions.

Marking was found to cause problems in some of the constructions. In particular, intersec-
tion, complementation, and language difference cannot be dealt with using marking!3. In
the Z-algebra framework, intersection, complementation, and language difference can easily
be implemented for the Berry-Sethi, McNaughton- Yamada-Glushkov, and Aho-Sethi-Ullman
constructions — constructions that are all traditionally defined using marking.

Two interpretations of marking appear in the literature. In the first one, being “at a mark”
{Aho, Sethi, and Ullman use the phrase “at a position” [ASU86]} means to be in the state
resulting from making a transition on the alphabet symbol associated with the particular
mark!4. The second interpretation equates being “at a mark” with being in the state which

12Here we assume that the sink state {if it exists) is removed from a DFA produced by the McNaughton-Yamada-
Glushkov construction.

13 Actually, McNaughton and Yamada [MY®60] attempted to define intersection and complementation. Their
informal descriptions are difficult to understand, and more recent papers use marking and have abandoned trying
to define intersection or complementation. See Section 4.4.

14This is the interpretation taken by Glushkov, McNaughton and Yamada, and Berry and Sethi [Glus61, MY&60,

BS36),
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has an out-transition on the alphabet symbol associated with the particular mark (that
is, the marked symbol is valid as the next input symbol}'®. The two interpretations are
duals of one another, and arise naturally from the duality of the left-biased and right-biased
constructions. For example, the interpretations give rise to the duality between McNaughton,
Yamada and Glushkov's DFA and Aho, Sethi, and Ullman’s DFA constructions.

The improvements to the Berry-Sethi construction® due to Briiggemann-Klein [B-K93a] and
Chang and Paige [Chan92, CP92] have been difficult to compare. This has been largely due
to the fact that Chang and Paige’s improvements are to the finite automaton construction
itself, while Briiggemann-Klein’s improvements involve transforming the regular expression.
In Section 4.5, we presented an improvement to the construction {not found in the literature)
that mirrors Briiggemann-Klein’s improvements {not on regular expressions, but on finite
auntomata), and is easy to compare to Chang and Paige's construction.

Some relationships between the constructions were found that were not made obvious by the
¥-algebra derivations:

— For restricted regular expressions (where each alphabet symbol occurs at most once —
as in marked regular expressions) the Berry-Sethi construction produces a deterministic
FA. As a consequence, the Berry-Sethi construction and the McNaughton-Yamada-
Glushkov DFA construction produce isomorphic finite automata {(with the exception of
the sink state present in a McNaughton-Yamada-Glushkov DFA).

— The Berry-Sethi construction {and therefore the McNaughton-Yamada-Glushkov DFA
construction) and the Brzozowski construction (under an appropriate encoding) pro-
duce isomorphic finite automata for restricted regular expressions. This result was
originally presented by Berry and Sethi {BS8&6).

The conclusions about the Myhill-Nerode, Brzozowski, and DeRemer constructions (Section 5)

are:

» Deriving the second major family of constructions from the Myhill-Nerode theorem proved

useful in a number of ways:
— The use of equivalence classes makes the correctness argument for the Myhill-Nerode
construction particularly clear.

— The unique minimal DFA (for a particular language) can be easily constructed using a
particular equivalence class as the parameter to the Myhill-Nerode construction.

— Derivatives {of a language) are a useful encoding of the equivalence classes of Myhill
and Nercde’s unique minimal-index equivalence relation Rp.

— The definition of derivatives provides an efficient method to compute finite sets which
encode the infinite sets that are used in the Myhill-Nerode construction.

e The Brzozowski construction can be viewed as an ingenious encoding of the Myhill-Nerode

minimal DFA construction.

e Brzozowski's original paper provided a proof (a similar one is given in this paper} that his

construction also works when only similarity of regular expressions is recognized. Similarity
is defined in his paper using four rules, and is defined in this paper using only three rules.
The missing fourth rule {that ¢ is the unit of concatenation) is not required in the definition
of similarity for the correctness of our presentation of Brzozowski’s construction.

15 This is the interpretation taken by Aho, Sethi, and Ullman [ASUS86).
18Which is therefore an improvement to the McNaughton-Yamada-Glushkov and the Aho-Sethi-Ullman nonde-
terministic finite automaton constructions.
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¢ We defined the equivalence and the similarity of regular expressions as equivalence relations
on regular expressions. We also demonstrated that any such equivalence relation E can
be used in Brzozowski’s construction, provided that F is a refinement of equivalence and
similarity is a refinement of E.

s For restricted regular expressions, Brzozowski’s construction (with an encoding), the Berry-

Sethi construction, and the McNaughton-Yamada-Glushkov construction produce isomor-
phic DFA’s.

o The use of dotted regular expressions {also known as items, from LR parsing) is a useful,
if obscure, encoding of the derivatives of a regular expression. We obtained the following
results on the use of dotted regular expressions:

— Computing the set of all dotted regular expressions (from a given regular expression)
can be defined very simply. The derivatives of dotted regular expressions, and the
construction of a DFA can be defined simply. This construction does not appear in the
literature.

— The straightforward definition of dotted regular expressions is unable to deal with inter-
section and complementation. This is for the same reason that marking constructions
are unable to deal with intersection and complementation.

— DeRemer specified a DFA construction that appears to be very easy to implement. It
is an optimization over the straightforward dotted regular expression construction, and
the constructed DFA is always smaller.

— The original specification of item closure, due to DeRemer and Earley, is incomplete.
They attempted to define closure and optimization as a single step. This can lead
to non-termination, as we have demonstrated. The problem can be easily solved by
defining closure and optimization steps separately.

— We show that additional optimizations, added to DeRemer’s construction, can reduce
the size of the produced DFA. This construction is not given in the literature. Further-
more, the optimizations are arguably easier to understand than those of DeRemer, and
likely easier to implement.

— Tt is possible to show that this improved construction is related to the Aho-Sethi-Ullman
DFA construction.
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A Some basic definitions

Convention A.1 (Powerset): For any set A we use P(A) to denote the set of all subsets of A.
P(A) is called the powerset of A; it is sometimes written 24. O

Convention A.2 (Sets of functions): For sets 4 and B, A — B denotes the set of all total
functions from A to B, while A—% B denotes the set of all partial functions from A to B. O

Remark A.3: For sets A, B and relation C C A x B we can interpret £ as a function C € A —
P(B). O

Convention A.4 (Tuple projection): For an n-tuple t = (z,23,...,2,) We use the notation
wi{t) {1 <i < n) to denote tuple element z;; we use the notation 7;(t) (1 <i < =) to denote the
(n — 1}-tuple (z1,...,25-1,%ip1,. .. Tn). Both = and 7 extend naturally to sets of tuples. O

Convention A.5 (Tuple arguments to functions): For functions (or predicates) taking a
single tuple as an argument, we usually drop one set of parentheses in a function application. O

Convention A.6 {Relation composition): Given sets 4, B, C (not necessarily different) and
two relations, £ C A x B and F C B x C, we define relation composition (infix operator o) as:

EoF={(a,c):(3b: b€ B:(a,b) € EA(bc) € F)}
O

Convention A.7 (Equivalence classes of an equivalence relation): For any equivalence
relation F on set A we denote the set of equivalence classes of F by [A]g; that is

[Ale = {la]e : a € A}
Set [A] £ is also called the partition of A induced by E. O

Definition A.8 (Index of an equivalence class): For equivalence relation E on set A, define

{E = |[A]g|- LE is called the indez of E. D
Definition A.9 (Alphabet): An alphebet is a non-empty set of finite size. O

Definition A.10 (Refinement of an equivalence relation): For equivalence relations E and
E' {on set A), E is a refinement of E' if and only if EC E'. O

Definition A.11 (Refinement (C) relation on partitions): For equivalence relations E and
E' (on set A), [A]g is said to be a refinement of [A] g+ (written [A]g C [A]g ) f and only if £ C E'.
An equivalent statement is that [A]g T [A]g if and only if every equivalence class (of A) under
E is entirely contained in some equivalence class (of A) under E'. O

Property A.12 (Equivalence relations): Given two equivalence relations E, F', we have the
following property:

(EC F)A({E = tF) = (E = F)
O

Definition A.13 (Regular languages): Lregy denotes the set of all regular languages over
alphabet V. That is, Lyegy C P{V*) is the smallest set containing V that is closed under U
(language union), - {a dot, language concatenation), and * (Kleene closure). The subscript V is
dropped when no ambiguity arises. D

Definition A.14 (Operator ? on languages): We define 7 as a postfix {(superscript) operator
on languages as L' = LU {¢}. O
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Definition A.15 (Left derivatives): Given language A C V* and w € V* we define the left
derivative of A with respect to w as:

wlA={zeV*: wx c A}

Sometimes derivatives are written as DA or as %. Righi derivatives are analogously defined.

Derivatives can also be extended to B~1A where B is also a language. 0

Property A.16 (Left derivatives): The following two properties follow from Definition A.15
(assuming L is a language):

ewel=ccw L, and
o (wa) 'L=a Y{wlL).
[

Property A.17 (Derivatives of regular languages): Assuming a € V and L, Ly, L, € Lreg,
derivatives have the following properties (given with respect to the structure of regular languages):

a'¢ = 0
a” e} = 0
a~'{h} = if (a =b) then {¢} else D fi
a YLoLy) = (e 'Lo)L,Uif (¢ € Ly) then a~ 'L, else § fi
a—l(Lo ul,) = (a_ng) U (a_lLl)
a (L) = (a7 'L)L*
a YLt} = (a 'L)L*
a‘l(L?) = ao’lL
G_I(Lo nLy) = (a_ng) R (a_lLl)

a'(=L) = ~(a"'L)

The definition related to Kleene closure is shown as follows:
a~Y(L*)
= { Definition of * }
"I (L\ {e}) L7 U {e})
= { Definition of a=1(Ly U L) }
" (L\{e})L) Ua~ e}
{ Definition of derivative of concatenation and {e} }
(a1 (L \{e})L*
{ Definition of derivative of {¢} }

(a"1L)L*
The definition related to complementation - is as follows:
a~!(-L)
= { Definition of derivative }
{z:ax €L}
= { Definition of - operator }
~{z:az e L}

{ Definition of a 'L }
~(a'1)
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a

Definition A.18 (Preserving a predicate): A (partial) function f € B™ > B (for fixed
n > 0) is said to preserve predicate (or property) P (on B) if and only if

(v B': B € B"n (domain(f))A(Vk:1<k<n:P(n(B')): P(f(B"))
The set domain(f) refers to those elements of B™ on which f is defined. D

Intuitively, a function f preserves a property P if, when every argument of f satisfies P, the result
of f applied to the arguments also satisfies P.

Definition A.19 (Reversal operator): A reversal operator R (usually written postfix and
superscript) for a set A is a function R € A — A such that Ro R (equivalently R?} is the identity
function on A. We sometimes write the reversal operator as a standard (prefix notation) function.
O

Definition A.20 (Tuple and relation reversal): For an n-tuple (1, x3,- .., z.) define reversal
as (postfix and superscript) function R:

(1:1,1'2,. L :x’n)R = (xna e !$21$1)
Given a set A of tuples, we define AR = {z®:2¢€ A4}, O

Definitign A.21 (Dual of a function): We assume two sets A and B whose reversal operators
are K and R’ respectively. Two functions, f € A — B and f; € A —+ B are one another’s dual
if and only if

fla) = (fala®)™
In some cases we relax the equality to isomorphism (when isomorphism is defined on B). O

Definition A.22 (Symmetrical function): A symmetrical function is one that is its own dual.
O

Proposition A.23 (Symmetrical functions}: The composition of two symmetrical functions
is again symmetrical. O
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B Proofs of some ¥-algebra operators

In this section, we sketch proofs of the correctness of the operators of Thompson’s E-algebra (Defi-
nition 4.1}, the left-biased Z-algebra operators (Definition 4.20), the Chang-Paige RFA' operators
(Construction 4.77), and the RFA" operators {Construction 4.79).

Theorem B.1 (Correctness of Thompson’s Z-algebra of FA’s): Recall the operator def-
initions of Definition 4.1. We only present a correctness proof for the operator Cy rp. In the
following derivation we assume the context of the innermost let clause of the operator definition.

Lra(Cura({My)=, [Mi]))
= { Definition of Lps }
(To UT1) (g0, 1)
= { Definition of E' }
(Us,f:8€SoAfER Tfs,MUUs,f:s€S1AfeF THs, [))
{ Definitions of £ pa{[Mo]~), Cra([Mi]=)}
Lra([Mo)a) U Lra([My]=)

O

Theorem B.2 (Correctness of the LBFA operators): Recall the operator definitions of
Definition 4.20. We present a correctness proof of the operator Cyy rpra. In the following derivation
we assume the context of the innermost let clause of the operator definition.

Lpa{Cu,Lpra([Mo], [Mi]x))
{ Definitions of £Lp4 and F'}
(Uf:feRnQ T (g, HUUf:feRnQ :T"(g,f))
Uif (N) then T"*(qo,q) else @ fi
{ Definitions of £r4([Mo]=), Lra([M1]x), N, T}
Lra([Mo]=) U Lpa([Mi]=) Uif (¢ € (Lra(Mo} U Lra(M))) then {¢} else 0 fi
{Deﬁnition of EFA([MD]E) tJ EFA([Mllg) }
Lra([Mo]e) U Lra([M,]=)

I

a

Theorem B.3 (Correctness of the Chang-Paige RFA' operators): Recall Definition 4.76
and Construction 4.77. We only present the derivation of the eighth component (usually called
W) for operators C. gpra and Cy grpas (the others are easy to prove). We assume the context of
the innermost let clause for both operators.

C-,RFA': last’ x ﬁT’St' \ (followu &Jfollowl W lasty x ﬁTStl)
{ Definitions of first’ and last’ }
(last; Wif (nully) then lasty else O fi) x (firsto Wif (nullp) then first) else @ fi)
\ (followg W follow; W lasty x first))
{ Rewriting }
(lasty x firsto Wif (nully) then last; x firstl else 0 fi
W if (nully) then lasty x firsty else @ fi
W if (nuliy A nully) then lesty x first; else @ fi
\ (followq W follow; W lastg X first1)
{ Assumption that Qo N @y =@}
lasty x firsto Wif (nully) then last, x first; \ follow; else @ fi

I
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W if (nully) then lasty x firsto \ followg else @
{Definitions of Wy and W, }
lasty x firsto W if (nully) then W) else @ fi wif (null;) then W, else § fi
= { Definitions of W' and W" }
last) % firstg W W'w W

Cu,rrart (lasto W lasty) x (firstg W first1) \ (followg W follow, )
{ Rewriting }

(lasty x firsty W lasty x firsty W lasty x firsty W last; x first) \ (followg W follow:)
{ Assumption that Qo N Q1 =0}

(lastg x firsty \ followg) W lasiy x first; W last1 x firsto W (lasty x firsty \ follow,)
{ Definitions of Wy and W, }

lastp x firsty W lasty x firsto W Wo W W,

O

Theorem B.4 (Correctness of the RFA” operators): Recall Definition 4.78 and Construc-
tion 4.79. We only present the derivation of the eighth component (usually called W) for operators
C..rrav and Cy gra~ (the others are easy to prove). We assume the context of the innermost
let clause for both operators.
C-,RFA”: (fallowo ¥ follow, W (lastg X ﬁT’Stl)) \ (JGS# X ﬁT‘St’)
= { Definitions of first’ and last’ }
(followg @ follow W (lastg % first1)) \ (({ast; W if (null,) then lasty else @ fi)
% (firsto Wif (nully) then first; else 0 fi))
= { Rewriting }
(followg W follow; W (laste x firsty)) \ (lasty x firség
W if (nullp) then lasty x first; else § fi
W if (nully) then lasty x firsty else @ fi
W if (nully A nully) then lasto x first; else @ fi)
= { Assumption that Qo N1 =@}
if (nully) then follow, \ last, x firsty else follow, fi
W if (nully) then followy \ lastg x firsty else followy fi
Wif (nully A null)) then lasty x first; \ lasty x first, else lasto % first; fi
= { Definitions of W, and W;; rewriting }
if (nully) then Wy else follow; fiwif (null)) then Wy else followy fi
W if (nully A nully) then @ else lasty x firsé; fi
= { Definitions of W* W*" and W™}
W.’ E’J WH lﬂ WHI

Cu grart  (followg W follow: )\ ((lasty W lasty) x (firsty W first;))
= { Rewriting }
(followq W follow,) \ (lasty x firsto W lastg X first; W lasty x firsto W last; x first;)
= { Assumption that Qo N @1 =0}
followy \ (lasty x firsty) W followy \ (lasty x first,)
= { Definitions of W, and W, }
Wy W)
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