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Abstract 

This paper presents a taxonomy of finite automata minimization algorithms. Brzozowski's 
elegant minimization algorithm differs from all other known minimization algorithms, and is 
derived separately. All of the remaining algorithms depend upon computing an equivalence 
relation on states. We define the equivalence relation, the partition that it induces, and its 
complement. Additionally, some useful properties are derived. It is shown that the equivalence 
relation is the greatest fixed point of an equation, providing a useful characterization of the 
required computation. We derive an upperbound on the number of approximation steps 
required to compute the fixed point. Algorithms computing the equivalence relation (or 
the partition, or its complement) are derived systematically in the same framework. The 
algorithms include Hopcroft's, several algorithms from text-books (including Hopcroft and 
Ullman's [HU79], Wood's [Wood87], and Aha, Sethi, and Ullman's [ASU86]), and several new 
algorithms or variants of existing algorithms. 

*Third printing. 
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2 1 INTRODUCTION 

1 Introduction 

The minimization of deterministic finite automata is a problem that has been studied since the late 
1950's. Simply stated, the problem is to find the unique (up to isomorphism) minimal determin
istic finite automaton that accepts the same language as a given deterministic finite automaton. 
Algorithms solving this problem are used in applications ranging from compiler construction to 
hardware circuit minimization. With such a variety of applications, the number of differing pre
sentations also grew: most text-books present their own variation, while the algorithm with the 
best running time (Hopcroft's) remains obscure and difficult to understand. 

This report presents a taxonomy of finite automata minimization algorithms. The need for a 
taxonomy is illustrated by the following: 

• Most text-book authors claim that their minimization algorithm is directly derived from 
those presented by Huffman [Huff54] and Moore [Moor56]. Unfortunately, most text-books 
present vastly differing algorithms (for example, compare [AU92], [ASU86], [HU79], and 
[Wood87]), and only the algorithms presented by Aho and Ullman and by Wood are directly 
derived from those originally presented in [Huff54, Moor56]. 

• While most of the algorithms rely on computing an equivalence relation on states, many 
of the explanations accompanying the algorithm presentations do not explicitly mention 
whether the algorithm computed the equivalence relation, the partition (of states) that it 
induces, or its complement. 

• Comparison of the algorithms is further hindered by the vastly differing styles of presentation 
- sometimes as imperative programs, or as functional programs, hut frequently only as a 
descriptive paragraph. 

A related taxonomy of finite automata construction algorithms appears in [Wats93]. 
All except one of the algorithms rely on determining the set of automaton states which are 

equivalent!. The algorithm that does not make use of equivalent states is discussed in Section 2. 
In Section 3 the definition and some properties of equivalence of states is given. Algorithms 
that compute equivalent states are presented in Section 4. The main results of the taxonomy 
are summarized in the conclusions - Section 5. Appendices A and B give the basic definitions 
required for reading this paper. The definitions related to finite automata are taken from [Wats93]. 
The minimization algorithm relationships are shown in a "family tree" in Figure 1. 

The principal computation in most minimization algorithms is the determination of equivalent 
(or inequivalent) states - thus yielding an equivalence relation on states. In this paper, we 
consider the following minimization algorithms: 

• Brzozowski's (possibly nondeterministic) finite automaton minimization algorithm as pre
sented in [Brzo62]. This elegant algorithm (Section 2) was originally invented by Brzozowski, 
and has since been re-invented without credit to Brzozowski. Given a (possibly nondeter
ministic) finite automaton without f-transitions, this algorithm produces the minimal deter
ministic finite automaton accepting the same language. 

• Layerwise computation of equivalence as presented in [Wood87, Moor56, Brau88, Urba89]. 
This algorithm (Algorithm 4.2) is a straightforward implementation suggested by the ap
proximation sequence arising from the fixed-point definition of equivalence of states. 

• Unordered computation of equivalence. This algorithm (Algorithm 4.3, not appearing in the 
literature) computes the equivalence relation; pairs of states (for consideration of equivalence) 
are chosen in an arbitrary order. 

• Unordered computation of equivalence classes as presented in [ASU86]. This algorithm 
(Algorithm 4.4) is a modification of the above algorithm computing equivalence of states. 

I Equivalence of states is defined later. 
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• Brzozowski (§ 2) Equivalence of states (§ 3) 

equivalence relation pointwise 

(§ 4.1-4.5, 4.7) (§ 4.6) 

approx. from above approx. from below 

imperative program 

(§ 4.1-4.5) (4.10) 

(4.9) 

layerwise unordered state pairs 
memoization 

(4.2) Hopcroft-Ullman (4.7) (pg. 16) 

Naive Improved 

(4.3) (4.5) 

eg. classes eg. classes 

ASU (4.4) (4.6) 

lists 

(pg. 13) 

optimized list update 

Hopcroft (4.8) 

Figure 1: The family trees of finite automata minimization algorithms. Brzozowski's minimization 
algorithm is unrelated to the others, and appears as a separate (single vertex) tree. Each algorithm 
presented in this paper appears as a vertex in this tree. For each algorithm that appears explicitly 
in this paper, the construction number appears in parentheses (indicating where it appears in this 
paper). For algorithms that do not appear explicitly, a reference to the section or page number 
is given. Edges denote a refinement of the solution (and therefore explicit relationships between 
algorithms). They are labeled with the name of the refinement. 
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• Improved unordered computation of equivalence. This algorithm (Algorithm 4.5, not ap
pearing in the literature) also computes the equivalence relation in an arbitrary order. The 
algorithm is a minor improvement over the other unordered algorithm. 

• Improved unordered computation of equivalence classes. This algorithm (Algorithm 4.6, not 
appearing in the literature) is a modification of the above algorithm to compute the equiv
alence classes of states. This algorithm is used in the derivation of Hopcroft's minimization 
algorithm. 

• Hopcroft and Ullman's algorithm as presented in [HU79J. This algorithm (Algorithm 4.7) 
computes the inequivalence (distinguishability) relation. Although it is based upon the 
algorithms of Huffman and Moore [Huff54, Moor56], this algorithm uses some interesting 
encoding techniques. 

• Hopcroft's algorithm as presented in [Hopc71, Grie73J. This algorithm (Algorithm 4.8) is the 
best known algorithm (in terms of running time analysis) for minimization. As the original 
presentation by Hopcroft is difficult to understand, the presentation in this paper is based 
upon the one given by Gries. 

• Pointwise computation of equivalence. This algorithm (Algorithm 4.9, not appearing in the 
literature) computes the equivalence of a given pair of states. It draws upon some nOll

automata related techniques, such as: structural equivalence of types and memoization of 
functional programs. 

• Computation of equivalence from below (with respect to refinement). This algorithm (Algo
rithm 4.10, not appearing in the literature) computes the equivalence relation from below. 
Unlike any of the other known algorithms, the intermediate result of this algorithm can be 
used to construct a smaller (although not minimal) deterministic finite automaton. 
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2 An algorithm due to Brzozowski 

Most minimization algorithms are applied to a DFA. In the case of a nondeterministic FA, the 
subset construction is applied first, followed by the minimization algorithm. In this section, we 
consider the possibility of applying the subset construction (with useless state removal) after an 
(as yet unknown) algorithm to yield a minimal DFA. We now construct such an algorithm. (The 
algorithm described in this section can also be used to construct the minimal Complete DFA, by 
replacing function subsetopt with subset.) 

Let Mo = (Qo, V,To,0,5o,Fo) be the <-free FA to be minimized and M, = (Q" V,T"0,5,,F,) 
be the minimized DFA such that .cFA(Mo) = .cFA(M,) (and of course Min(M,) - see Defini
tion B.19). (For the remainder of this section we make use of Minimal (Property B.21) as opposed 
to Min.) Since we apply the subset construction last, we have some intermediate finite automa
ton M, = (Q" V, T

" 
0, 5" F,) such that M, = useful, 0 subsetopt(M,). We require that M, is 

somehow obtained from Mo, and that .cFA(M,) = .cFA(M,) = .cFA(Mo). 
From the definition of Minimal(M,) (Property B.21), we require 

-> -> 
(II p, q : p E Q, A q E Q, A P # q: .c(p) # .c(q)) A Useful(M,) 

For all states q E Q2 we have q E P(Q,) since M, = useful, 0 subsetopt(M,). Property B.25 of 
the subset construction gives 

-> -> 
(II p: p E Q, : .c (p) = (U q: q E Q, A q E p: .c (q))) 

We need a sufficient condition on M, to ensure Minimal(M,). The following derivation gives such 
a condition: 

= 

Minimal (M,) 

{Definition of Minimal (Property B.21)} 
-> -> 

(lIp,q:PEQ,AqEQ,AP#q: .c(p)# .c(q))AUseful(M,) 

{Property B.25; M, = useful, 0 sUbsetopt(M,J } 
-> -> 

(II p,q: p E Q, A q E Q, Ap # q: .c(p) n .c(q) = 0) A Usefulf(M,) 

{Definition of Det' (Property B.18) and Useful" Useful f (Remark B.13) } 

Det'(M{') A Useful,(M{') 

{Det'(M) ¢= Det(M)} 

Det(M{') A Useful,(M{') 

The required condition on M, can be established by (writing reversal as a prefix function) M, = 
R 0 useful, 0 subsetopt 0 R( Mo). 

The complete minimization algorithm (for any <-free Mo E FA) is 

M, = useful, 0 subsetopt 0 R 0 useful, 0 subsetopt 0 R( Mo) 

This algorithm was originally given by Brzozowski in [Brz0621. The origin of this algorithm was 
obscured when Jan van de Snepscheut presented the algorithm in his Ph.D thesis [vdSn851. In 
this thesis, the algorithm is attributed to a private communication from Prof. Peremans of the 
Eindhoven University of Technology. Peremans had originally found the algorithm in an article by 
Mirkin [Mirk65]. Although Mirkin does cite a paper by Brzozowski [Brz064], it is not clear whether 
Mirkin's work was influenced by Brzozowki's work on minimization. Jan van de Snepscheut's recent 
book [vdSn93] describes the algorithm, but provides neither a history nor citations (other than 
his thesis) for this algorithm. 
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3 Minimization by equivalence of states 

In this subsection, we restrict ourselves to considering minimization of Complete DFA's. This 
is strictly a notational convenience, as the minimization algorithms can be modified to work 
for non-Complete DFA's. A Complete minimized DFA will (in general) have one more state (a 
sink state) than a non-Complete minimized DFA, unless the language of the DFA is V'. Let 
M = (Q, V,T,0,S,F) be a Complete DFA; this particular DFA will be used throughout this 
section. We also assume that all of the states of M are start-reachable, that is Useful,(M). Since 
M is deterministic and Complete, we will also take the transition relation to be total function 
T E Q x V ---; Q instead of T E Q x V ---; P(Q). 

In order to minimize the DFA M, we compute an equivalence relation E <; Q x Q defined as: 

-> -> 
(p, q) E E == (L.(p) = L.(q)) 

Since this is an equivalence relation, we are really interested in unordered pairs of states. It is 
notationally more convenient to lise ordered pairs instead of unordered pairs. 

The equivalent states are merged according to equivalence relation E with the merge transfor
mation. 

Transformation 3.1 (Merging states): For any equivalence relation H such that H <; E, the 
function merge can be used to reduce the number of states in the DFA2. Function merge is defined 
as: 

merge((Q,v,T,0,{s},F),H) = let T'={(iP]H,a,[q]H):(p,a,q)ET} 
in 

end 

The definition of merge is independent of the choice of representatives of the equivalence classes. 
Function merge satisfies the property that 

LFA(merge(M,H)) = LFA(M) IIlmerge(M,H)I:S IMllllmerge(M.H)1 = ~H 

and it preserves Complete, f.-free, Useful, Det, and Minimal; indeed, merge is only defined on 
f.-free and deterministic FA's. D 

-> 
In order to compute relation E, we need a property of function .c. 

-> -> 
Property 3.2 (Function L): Function L satisfies 

-> -> 
L (p) = (U a: a E V: {a}· L(T(p, a))) U (if (p E F) then {€} else ° fi) 

o 

This allows us to give an alternate (but equivalent) characterization of equivalence of states. 

Definition 3.3 (Equivalence of states): Equivalence relation E is the greatest (under refine
ment) fixed point of the equivalence 

(p,q) E E == (p E F == q E F) II (Va: a E V: (T(p,a),T(q,a)) E E) 

o 

Remark 3.4: The greatest fixed point has the least number of equivalence classes of any such 
fixed point. 0 

Remark 3.5: Any fixed point of the equivalence in Definition 3.3 can be used. In order to 
minimize the automaton, the greatest fixed point is desired. 0 

2When H is the identity relation on states, function merge will not reduce the number of states. 
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Property 3.6 (Approximating E): We can compute this greatest fixed point with successive 
approximations. The successive approximations of E are as follows (for k 2: 0): 

(p,q) E Ek+! = (p,q) E Ek /\ (Va: a E V: (T(p,a),T(q,a)) E E k ) 

where Eo is defined by 

(p, q) E Eo = (p E F = q E F) 

An equivalent definition of Eo is Eo = (Q \ F)2 U F2. We also have the property that E k+1 ~ Ek 
for all k 2: o. 0 

Remark 3.7: If Ek is an equivalence relation, then so is E k +1 • Eo is an equivalence relation. 0 

Remark 3.8: An intuitive explanation of Ek is useful. A pair of states p, q are said to be k
-> 

equivalent (written (p, q) E Ek) if and only if there is no string w : Iwl :':: k such that wEI:. (p) 't 
-> 

wEI:. (q). As a consequence, p and q are k-equivalent if and only if 

• they are both final or both non-final, and 

-> 
• for all a E V, T(p, a) and T(q, a) are (k - I)-equivalent (by the definitions of I:. and T'). 

o 

Remark 3.9: An important property of E is that it is also the greatest fixed point, under ~ 
(set containment instead of refinement), of the equivalence in Definition 3.3. As the greatest fixed 
point, E can be computed with a ~-descending sequence of relations, starting with Q x Q. Such 
a sequence need not consist only of equivalence relations. There may be more steps in such an 
approximating sequence than in the Ek sequence given above. Fortunately, each such step is 
usually easier to compute than computing E k +1 from Ek . Some algorithms that compute these 
cheaper (but longer) sequences are given in Sections 4.2-4.5 and 4.7. 0 

All previously known algorithms compute E by successive approximation from above (with 
respect to ~). A new algorithm in Section 4.7 computes E by successive approximation from 
below. In that section, the practical importance of this is explained. 

3.1 Distinguishability 

It is also possible to compute E by first computing its complement D = ,E. Relation D (called 
the distinguishability relation on states) is defined as: 

-> -> 
(p, q) E D = (L.(p) # L.(q)) 

Definition 3.10 (Distinguishability of states): D is the least (under ~, set containment3 ) 

fixed point of an equation 

(p,q) E D = (p E F 't q E F) V (3 a: a E V: (T(p,a),T(q,a)) E D) 

o 

Property 3.11 (Approximating D): As with equivalence relation E, relation D can be com
puted by successive approximations (for k 2: 0) 

(p,q) E Dk+! = (p,q) E Dk V (3 a: a E V: (T(p,a),T(q,a)) E D.) 

with Do = ,Eo = «Q \ F) x F) U (F x (Q \ F)). For all k 2: 0 we have Dk = ,Ek. We also have 
the property that Dk+l ;> Dk for k 2: O. 0 

3Here, ~ denotes normal set containment; refinement does not apply since D is not necessarily an equivalence 
relation. 



8 3 MINIMIZATION BY EQUIVALENCE OF STATES 

Remark 3.12: As with Ek, an intuitive explanation of Dk is useful. A pair of states p, q are 
said to be k-distinguished (written (p, q) E D k ) if and only if there is a string w : Iwl ~ k such 

---> ---> 
that wEe (p) t wEe (q). As a consequence, p and q are k-distinguished (some authors say 
k-distinguishable) if and only if 

• one is final and the other is non-final, or 

• there exists a E V such that T(p, a) and T(q, a) are (k - I)-distinguished. 

o 

3.2 An upperbound on the number of approximation steps 

We can easily place an upperbound on the number of steps in the computation of E. 
Let E j be the greatest fixed point of the equation defining E. We have the sequence of 

approximations (where 1Q is the identity relation on states): 

Eo :::> El :::> •.. :::> E j ;2 1Q 

The indices of some of the equivalence relations in the approximation sequence are known: ~IQ = 
IQI and ~Eo ~ 2. We can deduce that: 

~Eo < ~El < ... < ~Ej ~ ~IQ = IQI 
In the case that ~Eo = 0, we have that Eo is the greatest fixed point. In the case that ~El = 1, 
either all states are final states, or all states are non-final ones; in both cases Eo is the greatest 
fixed point. In the case that ~Eo = 2, we have i + 2 ~ ~Ei' Since j + 2 ~ ~Ej ~ ~IQ = IQI we get 
j ~ IQI- 2. This gives an upperbound of (IQI- 2) max 0 steps for the computation (starting at 
Eo) of the greatest fixed point E j (using the approximating sequence given in Property 3.6). 

A consequence of this upperbound is that E = E uQI - 2)maxo. As we shall see later, this 
can lead to some efficiency improvements to algorithms computing E. This result is also noted 
by Wood [Wood87, Lemma 2.4.11. This upperbound also holds for computing D and [QlE by 
approximation. 

3.3 Characterizing the equivalence classes of E 

It is also practical to compute [QlE: the set of equivalence classes of E. In order to characterize 
partition [QIE, we begin our derivation with Definition 3.3, the characterization of E as the largest 
equivalence relation (under <;;) such that 

= 

(V p,q: (p,q) E E: (p E F = q E F) 1\ (Va: a E V: (T(p, a), T(q, a)) E E» 

{Definition of membership in E; move a to outer quantification} 

(V p,q,a: (p,q) E E I\a E V: (p E F = q E F) 1\ [T(p,a)JE = [T(q,a)JE) 

{Introduce equivalence classes Qo, Ql explicitly} 

(VQo,Ql,a: Qo E [QlE I\Ql E [QlEl\a E V: 
(V p,q: p E Qo I\q E Qo: (p E F = q E F) 1\ (T(p,a) E Ql = T(q,a) E Qd)) 

Definition 3.13 (Function Splittable): In order to make this quantification more concise, we 
define 

Splittable(Qo,Ql,a) = (3 p,q :pE Qo I\q EQo: (T(p,a) E Ql tT(q,a) E Ql))) 

o 

Using Splittable, [QlE is the largest partition (under ~) such that [QJE ~ [QJEo and 

(VQo,Ql,a: Qo E [QlEI\Ql E [QlEl\aE V: ,Splittable(Qo,Ql,a» 

This characterization will be used in the computation of [Q]Eo 
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4 Algorithms computing E, D, or [Q]E 
In this section, we consider several algorithms that compute D, E, or [QIE. Some ofthe algorithms 
are presented in general terms: computing D and E. Since only one of D or E is needed (and not 
both), such a general algorithm would be modified for practical use to compute only one of the 
two. 

4.1 Computing D and E by layerwise approximations 

The definition of E k+1 in terms of Ek (and likewise for D) leads naturally to the following algorithm 
computing D and E (where variable k is a ghost variable, used only for specifying the invariant) 

Algorithm 4.1: 

G,H:= Do,Eo; 
Gold,Hold,k:= 0,Q x Q,O; 
{invariant: G = Dk II H = Ed 
do G # Gold ----> 

{G # Gold II H # Hold} 
Gold, HOld := G,H; 
G:= (u p,q: (p,q) E GOld V (3 a: a E V: (T(p,a),T(q,a)) E GOld): {(p,q)}); 
H:= (u p,q: (p,q) E HOld II (\I a: a E V: (T(p,a),T(q,a)) E Hold) : {(p,q)}); 
{G = ,H} 
k:= k + 1 

od{G = DIIH= E} 

This algorithm is said to compute D and E layerwise, since it computes the sequences Dk and 
Ek· The update of G and H in the repetition can be made with another repetition as shown in 
the program nOw following. 

Algorithm 4.2 (Layerwise computation of D and E): 

G, H := Do, Eo; 
Gold,Hold,k:= 0,Q x Q,O; 
{invariant: G = Dk II H = Ed 
do G # Gold ----> 

{G # GOld II H # Hold} 
Gold, Hold := G,H; 
for (p,q) : (p,q) E Hold do 

rof; 

if (3 a: a E V: (T(p,a),T(q,a)) E Gold) ----> G,H :=GU{(p,q)},H\ {(p,q)} 
~ (\I a : a E V : (T(p, a), T(q, a)) E Hold) ----> skip 
Ii 

{G = ,H} 
k:= k + 1 

od{G=DIIH=E} 

The algorithm can be split into two: one computing only D, and the other computing only E. 
The algorithm computing only E is essentially the algorithm presented by Wood in [WoodS7, pg. 
1321. According to Wood, it is based on the work of Moore [Moor561. Its running times is O(IQI3). 
Brauer uses some encoding techniques to provide an O(IQI2) version of this algorithm in [BrauSSI, 
while Urbanek improves upon the space requirements of Brauer's version in [Urba89]. None of 
these variants is given here. The algorithm computing only D does not appear in the literature. 

With a little effort this algorithm can be modified to compute [QIE. 
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4.2 Computing D, E, and [QlE by unordered approximation 

Instead of computing each Ek (computing E layerwise), we can compute E by considering pairs 
of states in an arbitrary order (as outlined in Remark 3.9). This is done in the following algorithm 
(which also computes D): 

Algorithm 4.3: 

G,H:= DOl Eo; 
{invariant: G = ,H A G <; D} 
do (3 p,q,a: a E V A (p,q) E H: (T(p,a),T(q,a)) E G) --+ 

let p,q: (p,q) E H A (3 a: a E V: (T(p,a),T(q,a)) E G); 
{(p, q) E D} 
G,H:= G u {(p,q)},H \ {(p,q)} 

od{G = D A H = E} 

This algorithm can be split into one computing only D, and one computing only E. At the end 
of each iteration step, it may be that H is not an equivalence relation (that is, H # H') -
see Remark 3.9. A slight modification to this algorithm can be made by adding the following 
assignment before the od: 

H := (MAX~ J : J <; H A J = J' : J); G := ,H 

Addition of this assignment makes the algorithm compute the refinement sequence Ek (see Re· 
mark 3.9). This assignment may improve the running time of the algorithm if a cheap method of 
computing the quantified MAX is used. This algorithm does not appear in the literature. 

When we convert the above algorithm to compute [QlE, the resulting algorithm is the following 
one, given by Aho, Sethi, and Ullman in [ASU86, Alg. 3.6l: 

Algorithm 4.4: 

P:= [QlEo; 
{invariant: [QlE (;; P (;; [QlEo} 
do (3 Qo,Q"a: Qo EPA Q, EPA a E V : Splittable(Qo, Q"a)) --+ 

let Qo,Q"a: Splittable(Qo,Q"a); 

od 

Qo := {p: p E Qo AT(p,a) E Q.}; 
{,Splittable(Qo \ Qo, Q" a) A ,Splittable( Qo, Q" a)} 
P:= P \ {Qo} u {Qo \ Qo, Qo} 

{(If Qo,Q"a: Qo E PAQ, E PAa E V: ,Splittable(Qo,Q"a))} 
{P=[QlE} 

This algorithm has running time 0(IQI2). 

4.3 More efficiently computing D and E by unordered approximation 

We present another algorithm that considers pairs of states in an arbitrary order. This algorithm 
(which also computes D) consists of two nested repetitions: 



4.4 An algorithm due to Hopcroft and Ullman 

Algorithm 4.5: 

G,H:=Do,Eo; 
{invariant: G = ,H II G <;; D} 
do (3 p,q,a: a E V II (p,q) E H: (T(p,a),T(q,a)) E G)-----> 

let p,a :pE QllaE V 11(3 q: (p,q) EH: (T(p,a),T(q,a)) E G); 
for q: (p,q) E H II (T(p,a),T(q,a)) E G do 

G,H:= G U {(p,q)}, H \ {(p, q)} 
rof 

od{G = D II H = E} 
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As with Algorithm 4.3, at the end of each outer iteration step, it may be that H '" H'. This 
can be solved with an assignment to H as can be done in Algorithm 4.3. This algorithm does not 
appear in the literature. It can also be modified to compute only D or only E. 

Modifying the above algorithm to compute [Q]E is particularly interesting; the modified algo
rithm will be used in Section 4.5 to derive an algorithm (by Hopcroft) which is the best known 
algorithm for FA minimization. The algorithm is (where variable Pol d is used only for the invari
ant): 

Algorithm 4.6: 

P:= [Q]Eo ; 

{invariant: [Q]E c:: P c:: [Q]Eo } 

do (3 Q"a: Q, E PllaE V: (3 Qo: Qo E P: Splittable(Qo,Q"a)))-----> 
let Q"a: (3 Qo: Qo E P: Splittable(Qo,Q"a)); 

od 

Pold := Pi 
{invariant: [Q]E c:: P c:: Pold} 
for Qo : Qo E Pold II Splittable (Qo, Q" a) do 

Q~ := {p: p E Qo II T(p,a) E Qr}; 
P:= P \ {Qo} U {Qo \ Q~,Q~} 

rof 
(V Qo : Qo E P : ,Splittable( Qo, Q" a))} 

{(V Q"a: Q, E P II a E V: (V Qo: Qo E P: ,Splittable(Qo,Q"a)))} 
{P= [Q]e} 

The inner repetition "splits" each eligible equivalence class Qo with respect to pair (Q" a). (In 
actuality, some particular Qo will not be split by (Q" a) if ,Splittable(Qo, Q" a).) 

4.4 An algorithm due to Hopcroft and Ullman 

From the definition of D, we see that a pair (p, q) is in D if and only if p EFt q E F or there 
is some a E V such that (T(p, a), T(q, a)) E D. This forms that basis of the algorithm considered 
in this subsection. With each pair of states (p, q) we associate a set of pairs of states L(p, q) such 
that 

(r,s) E L(p,q) =? ((p,q) ED=? (r,s) E D) 

For each pair (p, q) (such that (p, q) V' Do - p and q are not already known to be distinguished) 
we do the following: 

• If there is an a E V such that we know that (T(p,a),T(q,a)) E D then (p,q) E D. We add 
(p, q) to our approximation of D, along with L(p, q), and for each (r, s) E L(p, q) add L(r, s), 
and for each (t,u) E L(r,s) add L(t,u), etc. 
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• If there is no a E V such that T((p, a), T(q, a» E D is known to be true, then for all bE V 
we put (p, q) in the set L(T(p, b), T(q, b» since (T(p, b), T(q, b» E D ~ (p, q) E D. If later it 
turns out that for some b E V, (T(p, b), T(q, b» E D, then we will also put L(T(p, b), T(q, b)) 
(including (p,q» in D. 

In our presentation of the algorithm, the invariants given are not sufficient to prove the correctness 
of the algorithm, but are used to illustrate the method in which the algorithm works. The algorithm 
is: 

Algorithm 4.7: 

for (p,q): (p,q) E (Q x Q) do 
L(p, q) := 0 

rof; 
G :=Do; 
{invariant: G <;; D /\ (V p,q: (p,q) ¢ Do: (V r,s: (r,s) E L(p,q): (p,q) E D ~ (r,s) ED» } 
for (p, q) : (p, q) ¢ Do do 

if (3 a: a E V: (T(p,a),T(q,a» E G)----> 
A,B:= {(p,q)},0; 
{invariant: A <;; D /\ B <;; G /\ A n B = 0 

/\ A u B = (U p, q : (p, q) E B : L(p, q))} 
do A # 0 ----> 

od 

let (r,s): (r,s) E A; 
G := G U {(r, s)}; 
A, B:= A \ {(r, s)},B U {(r,s)}; 
A:= Au (L(r,s) \ B) 

~ (Va: a E V: (T(p,a),T(q, a» ¢ G)----> 
for a E V: T(p, a) # T(q,a) do 

rof 
fi 

rof{G = D} 

{(T(p, a), T(q, a» E D ~ (p, q) E D} 
L(T(p, a), T(q, a» := L(T(p, a), T(q, a» U {(p, q)} 

This algorithm has running time O(IQI') and is given by Hopcroft and Ullman [HU79, Fig. 3.8]. 
In [HU79] it is attributed to Huffman [Huff54] and Moore [Moor56]. In their description, Hopcroft 
and Ullman describe L as mapping each pair of states to a list of pairs of states. The list data-type 
is not required here, and a set is used instead. 

It is possible to modify the above algorithm to compute E. Such an algorithm does not appear 
in the literature. 

4.5 Hopcroft's algorithm to compute [QlE efficiently 

We now derive an efficient algorithm due to Hopcroft [Hopc71]. This algorithm has also been 
derived by Gries [Grie73]. This algorithm presently has the best known running time analysis of 
all DFA minimization algorithms. 

We begin with Algorithm 4.6. Recall that the inner repetition "splits" each equivalence class 
Qo with respect to pair (QI,a). An observation (due to Hopcroft) is that once all equivalence 
classes have been split with respect to a particular (Ql,a), no equivalence classes need to be split 
with respect to the same (QI, a) on any subsequent iteration step of the outer repetition [Hopc71, 
pp. 190-191], [Grie73, Lemma 5]. The observation is simple to prove: the equivalence classes 
never grown in size, and we need only prove that (for all equivalence classes Q): 

,Splittable(Q,Q"a) ~ (V Q~: Q~ <;; Q: ,Splittable(Q,Q"a» 
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We can use this fact to maintain a set L of such (equivalence class, alphabet symbol) pairs. We 
will then split the equivalence classes with respect to elements of L. In the original presentations 
of this algorithm [Hopc71, Grie73], L is a list. As this is not necessary, we retain L's type as a set. 

P:= [Q]Eo ; 

L:= P X V; 
{invariant: [Q]E ~ P ~ [Q]Eo 1\ L <;; (P x V) 

1\ L ;:> {( Q" a) : (Q" a) E (P x V) 1\ (~ Qo : Qo E P : Splittable( Qo, Q" all) 
1\ (\I Qo, Q" a: Qo E Q 1\ (Q" a) E L : ,Splittable(Qo, Q" a)) => (P = [Q]E)} 

do L 0; 0---> 

let Q"a: (Q"a) E L; 
Pold := P; 
L:= L \ {(Q" a)}; 
{invariant: [Q]E ~ P ~ Pold} 
for Qo : Qo E POld 1\ Splittable( Qo, Q" a) do 

Q~ := (p: p E Qo 1\ T(p, a) E Qd; 

rof 

P:= P \ {Qo} U {Qo \ Q~,Q~}; 
forb:bEVdo 

rof 

if (Qo, b) E L ---> L := L \ {(Qo, b)} U {( Q~, b), (Qo \ Q~, b)} 
I (Qo, b) 'i L ---> L:= L U {(Q~, b), (Qo \ Q~, b)} 
Ii 

{(\I Qo : Qo E P : ,Splittable( Qo, Q" all) 
od{P = [Q]E} 

The innermost update of L is intentionally clumsy and will be used to arrive at the algorithm 
given by Hopcroft and Gries. In the update of set L, if (Qo,b) E L (for some b E V) and Qo has 
been split into Qo \ Q~ and Q~ then (Qo, b) is replaced (in L) by (Qo \ Q~, b) and (Q~, b). 

Another observation due to Hopcroft is that splitting an equivalence class with respect to any 
two of (Qo, b), (Q~, b), and (Qo \ Q~, b) is the same as splitting the equivalence class with respect 
to all three [Hopc7l, pp. 190-191]' [Grie73, Lemma 6]. This is shown in the following intermezzo. 

We only prove that: if an equivalence class Q has been split with respect to (Qo) b) and (Q~, b), then 
it need not be split with respect to (Qo \ Q~) b). The two remaining cases can be proven analogously. 

,Splittable(Q, Qo, b) /\ ,Splittable(Q, Q~, b) 

{De Morgan} 

,(Splittable(Q, Qo, b) V Splittable(Q, Q~, b» 

{ Definition of Splittable } 

,((3 p,q: p,q E Q: T(p,b) E Qo '" T(q,b) E Qo) 

V (3 p,q: p,q E Q: T(p,b) E Q~ '" T(q,b) E Q~)) 
{ Combine existential quantifiers} 

,(3 p,q : p,q E Q : (T(p, b) E Qo '" T(q,b) E Qo) V (T(p, b) E Q~ '" T(q, b) E Q~)) 
=> {Q~ <;; Qo} 

,(3 p,q: p,q E Q: T(p, b) E Qo \ Q~ '" T(q,b) E Qo \ Q~) 
{ Definition of Splittable } 

,Splittable(Q,Qo \ Q~,b) 

The two remaining cases can be proven analogously. 
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For efficiency reasons we therefore choose the smallest two of the three (comparing IQol, IQ~I, and 
IQo \ QW in the update of set L. If (Qo, b) rt L, then splitting has already been done with respect 
to (Qo,b) and we add either (Q~,b) or (Qo \ Q~,b) (whichever is smallest) to L. On the other 
hand, if (Qo,b) E L, then splitting has not yet been done and we remove (Qo,b) from L and add 
(Q~,b) and (Qo \Q~,b) instead. 

Lastly, we observe that by starting with P = [Q[Eo = {Q \ F, F} we have already split Q. As 
a result, we need only split with respect to either (Q \ F, b) or (F, b) (for all b E V) [Hopc71, pp. 
190-191]' [Grie73, Lemma 7J. 

This gives the algorithm4: 

Algorithm 4.8 (Hopcroft): 

P:= [QJEo; 
L:= (if (lFI:S IQ\F[) then {F} else {Q\F} Ii) x V; 
{invariant: [QJE I; P I; [QJEo f\ L <;; (P x V) 

f\ (V QO,Ql,a: Qo E Q f\ (Ql,a) E L: ,Spiittable(Qo,Ql,a)) =? (P = [QJE)} 
do L", 0 ----; 

let Ql,a: (Q"a) E L; 
Pold:= P; 
L:= L \ {(Q" a)}; 
{invariant: [QJE I; P I; Pold} 
for Qo : Qo E Pold f\ Splittabie(Qo,Ql,a) do 

Q~ := {p: p E Qo f\ T(p, a) E Q.}; 

rof 

P:= P \ {Qo} U {Qo \ Q~,Q~}; 
for b: bE V do 

rof 

if (Qo, b) E L ----; L := L \ {(Qo, b)} U {(Q~, b), (Qo \ Q~, b)} 
~ (Qo, b) rt L----; 

L:= L U (if (IQ~I :S IQo \ Q~I) then {(Q~, b)} else {(Qo \ Q~, b)} Ii) 
Ii 

{(V Qo : Qo E P: ,Spiittable(Qo, Q" a))} 
od{P = [QJe} 

Unfortunately, the running time analysis of this algorithm is complicated and is not discussed 
here. It is shown by both Hopcroft and Gries that it is O(lQllog IQ[), [Grie73, Hopc71J. 

4Part of the invariant has been omitted, being rather complicated to derive. 
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4.6 Computing (p, q) E E 

From the problem of deciding the structural equivalence of two types, it is known that equivalence 
of two states can be computed recursively by turning the fixed point definition of E into a functional 
program. If the (unmodified) definition were to be used directly as a functional program, there is 
the possibility of non-termination. In order for the functional program to work, it takes a third 
parameter along with the two states. 

The following program, similar to the one presented in [t-Ei91[, computes relation E pointwise; 
an invocation equiv(p, q, 0) determines whether states p and q are equivalent. It assumes that two 
states are equivalent (by placing the pair of states in S, the third parameter) until shown otherwise. 

function equiv(p, q, S) is 
if {p, q} E S --+ eq := true 
~ {p,q} ¢ S--+ 

eq := (p E F '" q E F); 
eq:=eq/\ (Va: aE V: equiv(T(p,a),T(q,a),SU{{p,q}})) 

fl· , 
return eq 

The 'V quantification can be implemented using a repetition 

function equiv(p, q, S) is 
if {p, q} E S --+ eq:= true 
~ {p,q} ¢ S--+ 

fl· , 

eq := (p E F '" q E F); 
for a: a E V do 

eq := eq /I equiv(T(p, a), T(q, a), S U {{p, q}}) 
rof 

return eq 

The correctness of this program is shown in [t.Ei91]. Naturally, the guard eq can be used in 
the repetition (to terminate the repetition when eq '" false) in a practical implementation. This 
optimization is omitted here for clarity. 

There are a number of methods for making this program more efficient. From Section 3.2 
recall that E = E uQI - 2)maxo. We add a parameter k to function equiv such that an invocation 
equiv(p, q, 0, k) returns (p, q) E Ek as its result. The recursion depth is bounded by ([Q[ - 2) max O. 
The new function is 

function equiv(p, q, S, k) is 
if k = 0 --+ eq := (p E F '" q E F) 
~ k '" 0/\ {p,q} E S --+ eq:= true 
~ k '" 0 /I {p, q}¢ S --+ 

fl· , 

eq := (p E F '" q E F); 
for a: a E V do 

eq:= eq/\ equiv(T(p,a),T(q,a),Su {{p,q}},k-l) 
rof 

return eq 
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The third parameter S is made a global variable, improving the efficiency of this algorithm in 
practice. As a result, equiv is no longer a functional program in the sense that it now makes use 
of a global variable. The correctness of this transformation is shown in [t-Ei91]. We assume that 
S is initialized to 0. When S = 0, an invocation equiv(p, q, ClQI - 2) max 0) returns (p, q) E E; 
after such an invocation S = 0. 

Algorithm 4.9 (Pointwise computation of E): 

function equiv(p, q, k) is 
if k = 0 --+ eq := (p E F == q E F) 
~ k # 0 II {p, q} E S --+ eq := true 
~ k # 0 II {p, q} 'f- S --+ 

ft· , 

eq := (p E F == q E F); 
S:= SU {{p,q}}; 
for a: a E V do 

eq:= eq II equiv(T(p,a),T(q,a),k -1) 
rof; 
S:= S\ {{p,q}} 

return eq 

The procedure equiv can be memoized to further improve the running time in practice. 
This algorithm does not appear in the literature. 

4.7 Computing E by approximation from below 

This latest version of function equiv can be used to compute E and D (assuming 1Q is the identity 
relation on states, and S is the global variable used in Algorithm 4.9): 

Algorithm 4.10 (Computing E from below): 

S,G,H:= 0,0,IQ; 
{invariant: (G U H) C; (Q x Q) II G C; D II H C; E} 
do (G U H) # Q x Q --+ 

let p, q : (p, q) E (( Q x Q) \ (G U H»; 
if equiv(p,q,(IQI- 2) max 0) --+ H:= Hu {(p,q)} 
~ ,equiv(p,q,ClQI- 2) max 0) --+ G:= G U {(p,q)} 
ft 

od{G =DIIH = E} 

Further efficiency improvements can be made as follows: 

• We change the initialization of G to G := ((Q \ F) x F) U (F x (Q \ F». 

• We make use of the fact that E = E'; obviously E is symmetrical, halving the required 
amount of computation. H can be updated at each iteration step by H := H' (provided the 
data-structures in the implementation are such that *-closure is easily implemented). 

• Make use of the facts that 

(p, q) 'f- E =? (V T, S : T E Q II sEQ 
II (3 w:w E V': T'(T,W) =pIlT'(s,w) =q): ((r,s) 'f- E) 

(p,q) E E =? (V w: w E V': (T'(p,w),T'(q,w)) E E) 

The first (respectively second) implication states that if p, q are two distinguished (respec
tively equivalent) states, and T,S are two states such that there is wE V* and T(r,w) = 

pll T(s,w) = q (respectively T(p,w) = Til T(q,w) = s), then T,S are also distinguished 
(respectively equivalent). 



4.7 Computing E by approximation from below 17 

This algorithm has worse running time than the O(lQllog IQI} of Hopcroft's algorithm [Hopc71, 
Grie73J. This algorithm has a significant advantage over all of the known algorithms: although 
function equiv computes E pointwise from above (with respect to ~J refinement), the main program 
computes E from below (with respect to ~, normal set incluSion5). As such, any intermediate 
result H in the computation of E is usable in (at least partially) reducing the size of an automaton; 
all of the other algorithms presented have unusable intermediate results. This property has use in 
reducing the size of automata when the running time of the minimization algorithm is restricted 
for some reason (for example, in real-time applications). 

5This is set inclusion, as opposed to refinement, since the intermedia.te result H may not be an equivalence 
relation during the computation. 
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5 Conclusions 

The conclusions about minimization algorithms are: 

• A derivation of Brzozowski's minimization algorithm was presented. This derivation proved 
to be easier to understand than either the original derivation (by Brzozowski), or the deriva
tion given by van de Snepscheut. A brief history of the minimization algorithm was presented, 
hopefully resolving some misattributions of its discovery. 

• The definition of equivalence (relation E) and distinguishability (relation D) as fixed points 
of certain equations proved easier to understand than many text-book presentations. 

• The fixed point characterization of E made it particularly easy to calculate an upperbound 
on the number of approximation steps required to compute E (or D). This upperbound 
later proved useful in determining the running time of some of the algorithms, and also in 
making efficiency improvements to the pointwise algorithm. 

• The definition of E as a greatest fixed point helped to identify the fact that all of the 
(previously) known algorithm computed E from above (with respect to refinement). As 
such, all of these algorithms have intermediate results that are not usable in minimizing the 
finite automaton. 

• We successfully presented all of the well-known text-book algorithms in the same frame
work. Most of them were shown to be essentially the same, with minor differences in their 
loop structures. One exception was Hopcroft and Ullman's algorithm [HU79], which has a 
distinctly different loop structure. The presentation of that algorithm (with invariants) in 
this paper is arguably easier to understand than the original presentation. Our presentation 
highlights the fact that the main data-structure in the algorithm need not be a list - a set 
suffices. 

• Hopcroft's minimization algorithm [Hopc71] was originally presented in a style that is not 
very understandable. As with Gries's paper [Grie73], we strive to derive this algorithm 
in a clear and precise manner. The presentation in this paper highlights two important 
facts: the beginning point for the derivation of this algorithm is one of the easily understood 
straightforward algorithms; and, the use of a list data-structure in both Hopcroft's and 
Gries's presentation of this algorithm is not necessary - a set can be used instead. 

• This paper presented several new minimization algorithms, many of which were variations 
on the well-known algorithms. Two of the new algorithms (presented in Sections 4.6 and 
4.7) are not derived from any of the well-known algorithms, and are significant in their own 
right. 

- An algorithm was presented that computes the relation E in a pointwise manner. This 
algorithm was refined from an algorithm used to determine the structural equivalence 
of types. Several techniques played important roles in the refinement: 

* the upper bound on the number of steps required to compute E was used to improve 
the algorithm by limiting the number of pairs of states that need to be considered 
in computing E pointwise; 

* memoization of the functional-program portion of the algorithm was used to reduce 
the amount of redundant computation. 

A new algorithm was presented, that computes E from below. This algorithm makes 
use of the pointwise computation of E to construct and refine an approximation of 
E. Since the computation is from below, the intermediate results of this algorithm 
are usable in (at least partially) reducing the size of the DFA. This can be useful in 
applications where the amount of time available for minimization of the DFA is limited 
(as in real-time applications). In contrast, all of the (previously) known algorithms 
have unusable intermediate results. 
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A Some basic definitions 

Convention A.I (Powerset): For any set A we use PtA) to denote the set of all subsets of A. 
PtA) is called the powerset of A; it is sometimes written 2A 0 

Convention A.2 (Sets of functions): For sets A and B, A ----> B denotes the set of all total 
functions from A to B, while A+ B denotes the set of all partial functions from A to B. 0 

Remark A.3: For sets A, B and relation C c;:: A x B we can interpret C as a function C E A ----> 

P(B). 0 

Convention A.4 (Tuple projection): For an n-tuple t = (XI,X2,'" ,xn ) we use the notation 
11"i(t) (1 :s i :s n) to denote tuple element Xi; we use the notation ITi(t) (1 :s i :s n) to denote the 
(n -I)-tuple (Xl, ... ,Xi-I,Xi+1," .xn). Both 11" and IT extend naturally to sets of tuples. 0 

Convention A.5 (Relation composition): Given sets A, B, C (not necessarily different) and 
two relations, E c;:: A x Band F c;:: B x C, we define relation composition (infix operator 0) as: 

Eo F = {(a, c) : (3 b: bE B : (a, b) E E A (b, c) E F)} 

o 

Convention A.6 (Equivalence classes of an equivalence relation): For any equivalence 
relation E on set A we denote the set of equivalence classes of E by [AlE; that is 

[AlE = {[alE: a E A} 

Set [AlE is also called the partition of A induced by E. 0 

Definition A.7 (Index of an equivalence class): For equivalence relation E on set A, define 
~E = I[AlEI. ~E is called the index of E. 0 

Definition A.S (Alphabet): An alphabet is a non-empty set of finite size. 0 

Definition A.9 (Refinement of an equivalence relation): For equivalence relations E and 
E' (on set A), E is a refinement of E' if and only if E c;:: E'. 0 

Definition A.IO (Refinement (~) relation on partitions): For equivalence relations E and 
E' (on set A), [AlE is said to be a refinement of [AlE' (written [AlE ~ [AlE') if and only if E c;:: E'. 
An equivalent statement is that [AlE ~ [AlE' if and only if every equivalence class (of A) under 
E is entirely contained in some equivalence class (of A) under E'. 0 

Definition A.ll (Tuple and relation reversal): For an n-tuple (Xl, X2,"" xn) define reversal 
as (postfix and superscript) function R: 

Given a set A of tuples, we define AR = {xR : X E A}. 0 
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B Finite automata 

In this section we define finite automata, some of their properties, and some transformations on 
finite automata. Most of these definitions are taken directly from [Wats93]. 

Definition B.1 (Finite automaton): A finite automaton (an FA) is a 6-tuple (Q, V, T, E, S, F) 
where 

• Q is a finite set of states, 

• V is an alphabet, 

• T E P(Q x V x Q) is a transition relation, 

• E E P(Q x Q) is an <-transition relation 

• S <;; Q is a set of start states, and 

• F C;; Q is a set of final states. 

The definitions of an alphabet and function P are in Definition A.8 and Convention A.I respec
tively. 0 

Remark B.2: We will take some liberty in our interpretation of the signatures of the transition 
relations. For example, we also use the signatures T E V ---> P( Q x Q), T E Q x Q ---> P(V), 
T E Q x V ---> P(Q), T E Q ---> P(V x Q), and E E Q ---> P(Q). In each case, the order of the 
Q's from left to right will be preserved; for example, the function T E Q ---> P(V x Q) is defined 
as T(p) = {(a,q) : (p,a,q) E T}. The signature that is used will be clear from the context. See 
Remark A.3. The definition of ---> appears in Convention A.2. 0 

Since we only consider finite automata in this paper, we will frequently simply use the term 
automata. 

B.l Properties of finite automata 

In this subsection we define some properties of finite automata. To make these definitions more con
cise, we introduce particular finite automata M = (Q, V, T, E, S, F), Mo = (Qo, Vo, To, Eo, So, Fo), 
and M, = (Q" V

"
T

"
E

"
S"F,). 

Definition B.3 (Size of an FA): Define the size of an FA as IMI = IQI. 0 

Definition B.4 (Isomorphism (~) of FA's): We define isomorphism (~) as an equivalence 
relation on FA's. Mo and MI are isomorphic (written Mo ~ M,) if and only if Vo = VI and there 
exists a bijection 9 E Qo ---> Q, such that 

• TI = {(g(p),a,g(q)): (p,a,q) E To}, 

• E, = {(g(p),g(q)): (p,q) E Eo}, 

• S, = {g(s) : s E So}, and 

• FI = {g(f) : f E Fo}. 

o 

Definition B.5 (Extending the transition relation T): We extend transition relation T E 

V ---> P(Q x Q) to T' E V' ---> P(Q x Q) as follows: 

T'«) = E' 
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and (for a E V,w E V') 

T'(aw) = E' a T(a) a T'(w) 

Operator a (composition) is defined in Convention A.5. This definition could also have been 
presented symmetrically. 0 

Remark B.6: We also sometimes use the signature T' E Q x Q ~ P(V'). 0 

Definition B.7 (Left and right languages): The left language of a state (in M) is given by 
<-

function C M E Q ----> P(V'), where 

'£ M(q) = (u S : S E 5 : T'(s, q)) 

-> 
The right language of a state (in M) is given by function C M E Q ----> P(V'), where 

-> 
C M(q) = (U f: f E F: T'(q, f)) 

The subscript M is usually dropped when nO ambiguity can arise. 0 

Definition B.B (Language of an FA): The language of a finite automaton (with alphabet V) 
is given by the function CFA E FA ----> P(V*) defined as: 

CFA(M) = (U s,f: s E 5/\ f E F: T'(s,f)) 

o 

Definition B.9 (Complete): A Complete finite automaton is one satisfying the following: 

Complete(M) == (1/ q, a: q E Q /I a E V : T(q, a) oJ 0) 

o 

Definition B.IO «-free): Automaton M is <-free if and only if E = 0. 0 

Definition B.ll (Start-useful automaton): A Useful, finite automaton is defined as follows: 

<-
Useful,(M) == (1/ q : q E Q: C (q) oJ 0) 

o 

Definition B.I2 (Final-useful automaton): A Useful J finite automaton is .defined as: 

-> 
UsefuIJ(M) == (1/ q: q E Q : C (q) oJ 0) 

o 

Remark B.13: Useful, and Useful J are closely related by FA reversal (to be presented in Trans
formation B.22). For all M E FA we have UsefuIJ(M) == Useful,(M R ). 0 

Definition B.14 (Useful automaton): A Useful finite automaton is one with only reachable 
states: 

Useful(M) == Useful,(M) /I UsefuIJ(M) 

o 

Property B.15 (Deterministic finite automaton): A finite automaton M is deterministic if 
and only if 
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• it does not have multiple start states, 

• it is €-free, and 

• transition function T E Q X V -----> P(Q) does not map pairs in Q x V to multiple states. 

Formally, 

Det(M) == (lSI::; 111 E-jree(E) II (V q, a: q E Q II a E V : IT(q, all ::; 1)) 

o 

Definition RI6 (Deterministic FA's): DFA denotes the set of all deterministic finite au
tomata. We call FA \ DFA the set of nondeterministic finite automata. 0 

Convention B.I7 (Transition function of a DFA): For (Q, V,T,0,S,F) E DFA we can con
sider the transition function to have signature T E Q x V -I-> Q. (A definition of-l-> appears in 
Convention A.2.) The transition function is total if and only if the DFA is Complete. 0 

Property B.I8 (Weakly deterministic automaton): Some authors use a definition of a 
deterministic automaton that is weaker than Det; it uses left languages and is defined as follows: 

, ~ ~ 

Det (M) == (V qo,q, : qo E Q II q, E Q II qo of q, : L(qo) n L(q,) = 0) 

Det(M) '* Det' (M) is easily proved. 0 

Definition B.I9 (Minimality of a DFA): An M E DFA is minimal as follows: 

Min(M) == (V M' : M' E DFA II LFA (M) = LFA (M') : IMI ::; IM'I) 

Predicate Min is defined only on DFA's. Some definitions are simpler if we define a minimal, but 
still Complete, DFA as follows: 

Mine(M) == (V M' : M' E DFA II Complete(M') II LFA (M) = LFA(M') : IMI ::; IM'I) 

Predicate Mine is defined only on Complete DFA's. 0 

Property B.20 (Minimality of a DFA): An M, such that Min(M), is the unique (modulo 
"") minimal DFA, due to the Myhill-Nerode theorem. Introductory presentations of the theorem 
appear in [HU79, Wats93J. 0 

Property B.2I (An alternate definition of minimality of a DFA): For the purposes of 
minimizing a DFA, we use the definition (defined only on DFA's): 

Minima/(Q, V, T, 0, S, F) == 
-> -> 

(V qo,q,: qo E Qllq, E Qllqo of q,: L(qo) of L(q,) 

II Useju/(Q,v,T,0,S,F) 

We have the property that (for all M E DFA) Minima/(M) == Min(M). It is easy to prove that 
Min(M) '* Minima/(M). The reverse direction follows from the Myhill-Nerode theorem. 

A similar definition that relates to Mine is (also defined only on DFA's): 

Minimalc(Q,V,T,0,S,F) == 
-> -> 

(V qo,q,: qo E Qllq, E Qllqo of q,: L(qo) of L(q,) 

II Useju/,(Q, V, T, 0, S, F) 

We have the property that (for all ME DFA such that Comp/ete(M» Minima/c(M) == Minc(M). 
The contrapositive of Minc(M) '* Minimale(M) is easily proved, and the reverse direction also 
follows from the Myhill-Nerode theorem. 0 
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B.2 Thansformations on finite automata 

Transformation B.22 (FA reversal): FA reversal is given by postfix (superscript) function 
R E FA ----> FA, defined as: 

(Q, V,T,E,S,F)R = (Q, V,TR,ER,F,S) 

Function R satisfies 

o 

Transformation B.23 (Removing start state unreachable states): Transformation useful, E 
FA ----> FA removes those states that are not start-reachable: 

useful,(Q, V,T,E,S,F) = let U = SReachable(Q, V,T,E,S,F) 
in 

(U,v,Tn (U x V x U),En (U x U),Sn U,Fn U) 
end 

Function useful s satisfies 

(If M: M E FA: Useful,(useful,(M» II LFA(useful,(M» = LFA(M» 

o 

Transformation B.24 (Subset construction): The function subset transforms an <-free FA 
into a DFA (in the let clause T' E P(Q) x V ----> P(P(Q») 

subset(Q, V,T,0,S,F) = let T'(U,a) = {(U q: q E U: T(q, a))} 
F' = {U : U E P(Q) II Un F '" 0} 

in 
(P(Q), V,T',0,{S},F') 

end 

In addition to the obvious property that (for all M E FA) LFA(subset(M)) = LFA(M), function 
subset satisfies 

(If M: M E FA II <-free(M) : Det(subset(M» II Complete(subset(M») 

It is also known as the "powerset" construction. 0 

Property B.25 (Subset construction): Let Mo = (Qo, V,To,0, So, Fo) and Ml = subset(Mo) 
be finite automata. By the subset construction, the state set of Ml is P(Qo). We have the 
following property: 

~ ~ 

(lfp:PEP(Qo): LM,(p)=(u q:qEp: LMo(q») 

o 
Definition B.26 (Optimized subset construction): The function subsetopt transforms an 
<-free FA into a DFA. This function is an optimized version of subset. 

subsetopt(Q, V,T,0,S,F) = let T'(U,a) = {(U q: q E U: T(q, a))} 
Q' = P(Q) \ {0} 
F' = {U: U E P(Q) II U n F '" 0} 

in 
(Q', V, T' n (Q' x V x Q'), 0, {S}, F') 

end 

In addition to the property that (for all M E FA) LFA(subsetopt(M» = LFA(M), function 
subsetopt satisfies 

(If M : M E FA II <-free(M) : Det(subsetopt(M))) 

o 
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