
1

A Taxonomy of IEEE 802.11 Wireless
Parameters and Open Source

Measurement Tools
Diego Dujovne, Thierry Turletti, Fethi Filali

Abstract—The analysis and evaluation of new wire-
less network protocols is a long process that requires
mathematical analysis, simulations, and increasingly
experimentations under real conditions. Measure-
ments are essential to analyze the performance of
wireless protocols such as IEEE 802.11 networks in
real environments, but experimentations are complex
to perform and analyze. Usually, network researchers
develop their own tools, sometimes from scratch, to fit
the requirements of their experimentations, and these
tools are then abandoned when the paper is pub-
lished. In this study, we emphasize the importance,
for the network research community, to use and
contribute to the development of open source mea-
surement tools. In this regard, we propose a survey
and classification of IEEE 802.11 wireless parameters
and open source tools available to collect or estimate
these parameters. We highlight the parameters that
can be extracted from wireless traffic probes and
those that are available through the driver of wireless
cards. Then, we introduce and compare open source
tools that can be used to make the measurements,
with special attention to the flexibility of the tools
and their application scope. Finally, we discuss with
several case studies the combination of tools that best
suit the needs of the wireless experiments and provide
a list of common pitfalls to avoid.

Keywords: IEEE 802.11, open source software,
probes, wireless analyzers, wireless measurements,
wireless parameters.

I. INTRODUCTION

It has long been recognized that wireless net-
works play an important role in the access networks
at the border of the Internet. The most deployed
wireless access networks are those based on the
IEEE 802.11 standard [1]. However, these networks
are affected by many problems such as exposed
and hidden terminals [2] and possible high packet
loss due to the unreliable and time-varying nature

Diego Dujovne is currently with Universidad Diego Portales,
Chile (Email: ddujovne@mail.udp.cl); this work has been done
while he was in the Planète project-team, INRIA, France.
Thierry Turletti is with the Planète project-team, INRIA, France
(Email: turletti@sophia.inria.fr). Fethi Filali is with the Mobile
Communications department of Institut Eurécom, France (E-
mail: fethi.filali@eurecom.fr).

of the wireless channel. Pre-existing applications
that once used to work flawlessly in a wired envi-
ronment have to be adapted to wireless and new
services are rapidly emerging to take advantage
of mobility and portable devices. However, the
elaboration of new transmission mechanisms, and
especially the validation procedure is a complex
task to perform. Usually, an analytical evaluation
is performed to assess the basic behavior of the
protocol. Then simulations are used to study and
analyze the new protocol with various conditions
in a fully-controlled environment. But simulators
generally can not reflect with enough accuracy the
impact of composite factors on the performance of
transmission protocols such as hidden terminals,
capture effect, fading, scattering and interference.
So, experimentation is necessary to test the new
protocol under more realistic conditions, although
this environment offers less controllability than
simulation [3], [4].

Within the evaluation process, the wireless ex-
perimentation is regarded as the most difficult task
to perform because it needs a complex set up and
it requires to monitor and analyze a large number
of parameters. Some commercial solutions1 can be
applied as Mahanti et al. [6] demonstrate through
the analysis of 1 billion wireless frames from a
platform installed on the University of Calgary
campus. But most often, specific tools have to
be developed to satisfy the specific needs of each
experiment because of the lack of adaptable tools
available for the corresponding experimentation
scenario. This leads to the design of programs
that can not be used for any other experiment
without significant changes, and often with poor or
nonexistent documentation to possibly make these
changes. As a general case, when the experiment
is finished and the results are published, the tool is
abandoned and sometimes lost forever. We argue

1A list of commercial monitoring tools can be found also at
the “Wi-Fi Planet“ site [5].



2

that the development of flexible wireless measure-
ment and analysis open source tools will highly
benefit the network research community. Several
open source measurement tools for IEEE 802.11
networks already exist, and some of them can be
used to run wireless experiment. Few of these
tools have been originally designed for research
purpose, and most of them have been developed
to monitor networks, discover topologies or to
identify anomalies and security breaches.

This paper aims to help the reader in choosing
the best set of tools to achieve his/her specific
needs by providing a survey and taxonomy of avail-
able measurement and analysis wireless tools. In
particular, we focus on measurement tools for the
Linux Operating System such as data acquisition
tools, filtering and analysis tools, which form links
of a global evaluation chain. The snapshots of tools
presented in this survey is current as of November
2008. While the tools mentioned in the paper are
all available in the public domain, to the best of our
knowledge there is no study available that provides
a deeper analysis of existing measurement tools
for 802.11-based networks and that discusses their
relevance according to the user needs. Complemen-
tary to this study, a survey of application-oriented
network metrology tools is available at [7].

One of the objectives of this paper is to avoid
re-inventing the wheel for each new wireless ex-
periment, where the desired functionalities may
already be present in existing tools (or combination
of tools). We also emphasize that selecting the
most efficient tools with regard to the target metrics
to measure is a critical step to perform prior to
evaluating network protocols.

The remainder of this paper is organized as
follows. Section II introduces the 802.11 protocol
basics and in particular the PHY and MAC layer
characteristics. Section III identifies and classifies
the most important wireless parameters of the
IEEE 802.11 standard. Section IV presents the
steps required to perform wireless measurements.
Section V introduces open source tools through an
exhaustive survey of publicly available measure-
ment tools. Section VI presents several case studies
of wireless experiments and some common pitfalls
to avoid. Finally, Section VII concludes the paper.

II. BASICS OF IEEE 802.11

A. 802.11 PHY Layer

IEEE 802.11 gathers together several standards
for wireless local area network (WLAN) com-
puter communication, developed by the IEEE

LAN/MAN Standards Committee (IEEE 802) in
the 5 GHz and 2.4 GHz public spectrum bands [1].
These standards specify both physical (PHY) and
medium access control (MAC) layers. In 1997,
IEEE defined three kinds of options in the PHY
layer, which are an infrared (IR) baseband PHY, a
frequency hopping spread spectrum (FHSS) radio
and a direct sequence spread spectrum (DSSS)
radio. All these options support both 1 and 2Mbps
PHY rates. In 1999, two high rate extensions were
defined: (1) 802.11b based on DSSS technology,
with data rates up to 11Mbps in the 2.4GHz band,
and (2) 802.11a, based on orthogonal frequency
division multiplexing (OFDM) technology, with
data rates up to 54Mbps in the 5GHz band. In 2003
was proposed the 802.11g standard that extends
the 802.11b PHY layer to support data rates up to
54Mbps in the 2.4GHz band. This family of wire-
less standards and several other amendments have
been merged in a single document called IEEE
802.11-2007 [1]. IEEE 802.11 is still evolving.
For example, IEEE 802.11n is an expected amend-
ment to the IEEE 802.11-2007 wireless standard
to significantly improve network throughput over
previous standards. It builds on previous 802.11
standards by adding multiple-input multiple-output
(MIMO) and 40 MHz operation to the PHY layer,
operating on both 2.4GHz and 5GHz bands.

It is well known that 802.11 wireless channels
are prone to high error rates and channel variabil-
ity compared to wired Ethernet [8]. Examples of
sources for channel variability include multipath
propagation, mobility and time-varying multiuser
interference. Indeed, 802.11b/g devices suffer inter-
ference from a large number of products operating
in the unlicensed 2.4 GHz band. Devices operating
in the 2.4 GHz range include microwave ovens,
Bluetooth devices, baby monitors and cordless
telephones. Since the 2.4 GHz band is heavily
used to the point of being crowded, using the less
overloaded 5 GHz band gives 802.11a a significant
advantage. However, this high carrier frequency
also brings problems and the effective overall range
of 802.11a is slightly less than that of 802.11b/g.
Indeed, 802.11a signals cannot penetrate as far as
those for 802.11b because they are absorbed more
easily by walls and other solid objects in their path.

B. 802.11 MAC Layer
The 802.11 MAC layer aims to provide access

control functions to the wireless medium such as
access coordination, addressing or frame check
sequence generation. Two different classes of wire-
less configuration have been defined for 802.11:



3

The infrastructure network, where many stations
(STAs) can communicate with the wired backbone
through an access point (AP), and the ad hoc
network, where any device can communicate di-
rectly with other devices, without any connectivity
to the wired backbone. In infrastructure mode,
an AP works as an authentication and network
association device, and can act as a bridge with
other networks. A group of STAs coordinated by
802.11 MAC functions is called a basic service set
(BSS) in infrastructure mode and independent BSS
(IBSS) in ad hoc mode, respectively. The IEEE
802.11 MAC sub-layer defines two medium access
coordination functions, the basic Distributed Co-
ordination Function (DCF) and an optional mode
called Point Coordination Function (PCF), which
is unused in practice.

DCF is an asynchronous transmission mode
based on Carrier Sense Multiple Access with Col-
lision Avoidance scheme (CSMA/CA). Collision
detection can not be implemented because, due to
the nature of the channel, a station is not able to
transmit and listen at the same time [8]. Actually,
two different carrier sensing mechanisms are used:
PHY carrier sensing at the air interface and virtual
carrier sensing at the MAC layer. PHY carrier
sensing detects the presence of other STAs by
analyzing all packets received from other STAs.
Virtual carrier sensing is optionally used by a sta-
tion to inform all other stations in the same BSS (or
IBSS) how long the channel will be reserved for its
frame transmission. The sender can set a duration
field in the MAC header of data frames, or in the
Request-To-Send (RTS) and Clear-To-Send (CTS)
control frames. Then, other stations will update
their local timers of network allocation vectors
(NAVs) to take into account this duration. The
RTS/CTS mode is often used to reduce collisions
in presence of hidden nodes [9].

IEEE 802.11e-2005 (or 802.11e) is an amend-
ment to the IEEE 802.11 standard that defines
a set of quality of service (QoS) enhancements
for WLAN applications through modifications to
the MAC layer, and has been incorporated into
the IEEE 802.11-2007 specification. In order to
provide queue based QoS support, a new MAC
layer coordination function has been proposed,
called hybrid coordination function (HCF). Within
the HCF, two interoperable methods of channel
access are defined: HCF Controlled Channel Ac-
cess (HCCA) and Enhanced Distributed Channel
Access (EDCA). HCCA is based on polling, while
EDCA is based on a slotted and highly parametric
CSMA/CA protocol. The 802.11e amendment is

important for delay-sensitive applications, such as
voice over wireless IP and multimedia streaming.

C. Structure of 802.11 Frames

All of the 802.11 frames share the same basic
PHY level structure : a preamble to train the
receiver followed by a Start of Frame (SOF) de-
limiter; a Physical Layer Convergence Procedure
(PLCP) header and the payload called the MAC
Protocol Data Unit (MPDU). The PLCP carries
the signal field containing the payload data rate, a
service field describing modulation characteristics,
the length of the payload in microseconds and the
Cyclic Redundancy Check (CRC) of the PLCP
header. The preamble and the PLCP header are
transmitted at 1Mbps regardless of the current data
transmission speed. Three types of MPDU exist:
Management, Control or Data.

TABLE I
COMMON DLT HEADER VALUES

Parameter Description

Timestamp

Packet arrival time. At the radiotap header,
there is the MAC timestamp, which cor-
responds to the arrival of the first bit of
the packet. libpcap [10] adds another times-
tamp extracted from the system clock, after
the packet has arrived to the kernel level.

RSSI

Received Signal Strength Indication. Mea-
sures the average receiving power of the
packet. The RSSI value and bounds varies
between implementations [13].

Channel Channel number where the packet was
transmitted.

Noise level
Characterizes the background noise level
measured before packet reception on the
channel at the receiver.

Data Rate Physical bit rate of the packet payload.
Preamble PLCP preamble length (short or long).

III. A TAXONOMY OF WIRELESS PARAMETERS

Wireless parameters are essential to monitor
the network, to detect possible anomalies or to
analyze deeply the behavior of network protocols.
A very large number of wireless parameters exist
at different levels of the protocol stack, and are
available either from the wireless card drivers or
through packet traces. In this section, we propose
a classification of most common wireless parame-
ters that distinguishes between per-packet, per-flow,
per-station and per-BSS wireless parameters.

A. Per-Packet Wireless Parameters

Per-packet wireless parameters are those in-
cluded in PHY and MAC headers of each packet



4

and are available through packet sniffing. The fol-
lowing two subsections detail the most important
PHY and MAC information present in IEEE 802.11
frames sniffed from the wireless medium.

1) PHY data information: As we mentioned
in section II-C, every 802.11 frame starts with a
training sequence, a Start Of Frame (SOF) marker
and a PLCP header. When a sniffer captures a
frame, the three of them are removed on the
hardware interface before the frame arrives to the
driver, and an artificial header, called DLT (Data
Link Type), is added instead. Different formats
of DLT headers exist and they are defined in
the pcap [10] library. DLT headers include PHY-
level information captured by the network interface
card. Note that if some PHY-level parameters are
not supported, the user still has the possibility to
add the missing features himself. However, such
changes require OS kernel development skills and
assume that sufficient chipset documentation is
available.

The different types of DLTs specified in the
pcap library include a variety of media like fiber
optics, PPP serial links, ethernet and wireless net-
works. For 802.11 networks, the most popular ones
are AVS2 [11], PRISM3 and radiotap [12]. These
three DLT types share some common parameters
shown in Table I. In the remainder of the paper,
we focus on the radiotap header type because it
provides more features than the other header types.
The radiotap header type consists of a standard
preamble followed by an extensible bitmap indicat-
ing the presence of optional capture fields packed
into the header as compactly as possible. This
typically includes information such as rate, channel
number, signal at per-packet basis RSSI (Receive
Signal Strength Indicator measured for the PLCP
header by the circuitry on the wireless network
interface card [13]) and timing information (a 64-
bit field in microseconds indicating when the first
bit of the MPDU arrives at the MAC).

2) MAC data information: On top of the phys-
ical layer, lies the MAC layer. Table II identifies
the main fields included in the MAC header of
IEEE 802.11 frames, see [1]. We also present a
use example for each of them.

B. Per-Flow Statistical Parameters

Per-flow statistical parameters are essential to
analyze the performance of applications on top

2AVS: (AbsoluteValue Systems, Inc).
3Originally designed by Intersil Inc., PRISM Wireless LAN

business is now part of Conexant Systems Inc.

of IEEE 802.11 wireless networks, or to study
the fairness between the different stations. They
are general industry-accepted statistical parameters
obtained by processing packet traces sniffed on
the wireless medium, i.e., by analyzing packet
presence, packet headers and arrival time.

Table III presents a non-exhaustive list of per-
flow statistical parameters with a use case example
for each of them.

C. Per-Station Statistical Parameters

Each station may have several active flows in
the same time. It is sometimes useful to analyze
the performance of all flows that belong to the
same station. Per-station statistical parameters cor-
respond to the aggregation of per-flow statistical
parameters detailed in the previous subsection, plus
statistical parameters including:
• active flag: true if the station has at least one

flow running,
• association state: associated or disassociated,
• association duration,
• MAC address of the current associated AP,
• Current Received Signal Strength Indication

(RSSI) [16], [13],
• Current uplink physical transmission rate.

D. Per-BSS Statistical Parameters

Per-BSS statistical parameters include the ag-
gregation of per-station wireless parameters, and
other statistics such as the parameters described in
Table IV. These wireless parameters are used to
monitor and to analyze the characteristics of the
whole channel.



5

TABLE II: MAC header structure

Parameter Description

Type/Subtype

These two fields together identify the function of the received frame.
They are useful to classify the traffic between management, control
and data frames. Each of the frame types has several defined subtypes.

More Fragments field
Set to 1 when it is not the last part of the frame. This indicator is useful
to reassemble a sequence of fragments and to compute fragment loss.

Retry field

Set to 1 if this frame is a retransmission of an earlier frame.
This bit helps in eliminating duplicating frames and enables many
measurements on frame loss, since the frame is retried a fixed number
of times.

Power Management field

Indicates when the sender toggles to power save mode. The behavior
of the Access Point changes when at least one of the stations is in
power save mode. In particular, multicast and broadcast packets are
transmitted only after fixed periods and unicast packets are buffered
for the station.

More Data field Set to 1 if there are buffered unicast frames for the destination station.

Protected Frame field

Set to 1 if the frame body field contains information that has been
processed by a cryptographic encapsulation algorithm. Encryption is
systemwide, for monitoring and statistics purposes, while decrypting
is only required if the payload is of interest.

Duration

The contents of this field vary with frame type and subtype. For data
frames, if the More Fragments bit is set to 1, and the destination
address field contains an individual address, the duration value is set
to the time, in microseconds, required to transmit the next fragment
of this management frame, plus two ACK frames, plus three SIFS
intervals. To calculate the medium idle time, the duration value must
be taken into account.

Addresses

Identify the basic service set identifier (BSSID), source address,
destination address, transmitting station address and receiving station
address of the frame. Certain frames may not contain some of the
address fields. This information is useful to identify the different
stations and to classify the individual flows. Roaming stations can
also be identified when starting sessions on different APs.

Sequence Control

Carries a sequence number and a fragment number. The former can
be used to identify lost frames and to detect intrusions and/or failures
while the latter indicates which part of the packet is being carried by
the current frame.

Frame Check Sequence4
Trailer of the frame, it is used to verify the integrity of the frame
through a CRC. Frames with errors can be logged to identify the
source of lost frames.

Backoff5
Derived from the difference between the timestamp values of suc-
cessive frames, this parameter can be used to detect MAC layer
misbehavior [14].

4The FCS parameter is not part of the MAC header. It is the last field of the MAC frame and follows the Frame Body field.
5The backoff parameter is not included in 802.11 MAC header, it is computed by software.



6

TABLE III: Per-Flow Statistical Parameters

Parameter Description

Goodput
Measures the packet arrival rate during a fixed period of time at the
application level. It can be used to evaluate the quality perceived by
the application.

Data loss rate

Measures the number of data frames lost during a period of time,
it is the inverse of the data delivery ratio. The loss can be due
to transmission errors (e.g. noise, interference), buffer overflow or
collisions. It can be used to estimate the link quality, the quality
perceived by the application or as feedback to adaptive wireless-aware
protocols.

Data loss burstiness
Measures the number of packets which are lost consecutively. This
parameter can be used to measure the quality of a link or to tune the
error correction algorithms [15].

Delay

Measures the latency at the application layer for a frame from
departure at the transmitter to the arrival at the receiver. The delay
is a consequence of queuing, packet retransmissions and packet
transmission on the medium. It can be used to estimate the channel
load or to evaluate performance of real time applications.

Jitter

Estimate of the statistical variance of the data packet interarrival time.
High variability may harm the protocol stability and performance; It
can be the result of packet loss bursts, after successive retransmissions.
Same use cases as for the delay.

Airtime
Stands for the effective transmission time on the medium. This
parameter is used as a fairness metric between the flows that share
the same wireless channel.

Retransmission probability
It is function of the packet loss rate observed for both data and
acknowledgement transmission. It can be used to estimate the link
quality.

TABLE IV: Per-BSS Statistical Parameters

Parameter Description

Channel capacity
Theoretical maximum traffic rate at the physical layer. For example,
it is equal to 11Mbps for IEEE 802.11b and to 54Mbps for IEEE
802.11a.

Overall data throughput Aggregated throughput of all data packets transmitted on the medium.
It can be used to estimate the channel load.

Overall signaling throughput
Aggregated throughput of management and control frames (such as
beacon, RTS/CTS/ACK) of all packets transmitted on the medium. It
can be used to compute the channel overhead.

Packet loss spatial correlation

Identifies the packet loss related to the position relative to the AP
and the other attached stations. This information is available from
the correlation between packet logs (source and receiver probes) and
from the wireless driver statistics logs (packets lost at the sending
queues are not considered). It can be used to analyze and improve the
performance of multicast transmission protocols [17], [18].

Load level
Number of packets present in the wireless medium per time unit. It
indicates the level of medium usage.

Continued on next page



7

TABLE IV – continued from previous page
Parameter Description

Available bandwidth
Corresponds to the rate at which a new flow can send traffic without
affecting competing flows. Different algorithms have been proposed
to estimate the available resources, see [19], [20], [21], [22].



8

IV. STEPS TO RUN WIRELESS MEASUREMENTS

The most important source of information to
analyze wireless networks are statistics inferred
from packets sent on the channel. They are ob-
tained using packet sniffers, which are stations that
passively listen all the packets on the medium.
Furthermore, statistics provided by the drivers of
wireless cards can be used as a complementary
source of information, and the range of statistics
available depends on the evolution state of the
driver. The choice of open-source drivers as mad-
wifi [23], enables the instrumentation of the driver
and also the sharing of the source code with other
laboratories in order to validate the experiments.
More complete PHY and MAC layers capture data
can be obtained with hardware specific platforms
like GNU Radio [24] or WARP [25], but these fall
out of the scope of this publication.

In the following, we describe the different steps
involved in doing wireless measurements.
• Sniffing: The packet sniffing task consists

in retrieving all frames transmitted on the
wireless medium. It can be divided in two
stages: The first one is the hardware side,
which depends exclusively on the ability of
the wireless cards to detect, decode, buffer
and transfer the packets to the PC bus (either
through PCI, PCMCIA, USB, PCI express
or whichever standard communications bus is
used). The second one is the software side,
where the driver sends a copy of any received
or transmitted packets to a part of the kernel
called the packet filter. By default, all the
packets are then copied from the kernel space
to the user space where the sniffer is actually
running. To create a sniffer, the driver of the
wireless card must be configured in monitor
(also called promiscuous) mode. Each sniffer
generates an event log (or a packet trace) com-
posed of all packets sniffed6 on the wireless
channel.

• Merging: Producing an accurate packet trace
requires great care. In the wireless domain,
spatial diversity prevents any single sniffer
from capturing the overall traffic. Thus, many
spatially dispersed sniffers are required to re-
construct all the traffic. Using too few packet
sniffers, placing them poorly, or using in-
adequate hardware can introduce missed or
reordered packets and incorrect timestamps.
When multiple sniffers are used, the inde-

6For obvious privacy reasons, the payload of packets should
be discarded before building up packet traces.

pendent traces have to be combined and syn-
chronized down to microsecond granularity to
construct a synchronized single trace of all
frame transmissions [26], [27], [28], [29].

• Processing: Once an accurate packet trace is
ready, the actual processing can start. First,
if some packets present on the trace are not
relevant for the analysis, they can be filtered
out from the packet trace to speed up the fol-
lowing computations. Then the parameters to
analyze can be extracted, possibly combined
with other sources of statistics (like the ones
provided by the wireless card drivers). Vari-
ous computations can follow, such as average
calculation and the result can be displayed to
the user.

• Monitoring: If the processing task is done
in realtime, i.e. when sniffing and processing
operations are done simultaneously, it is called
monitoring in the remainder of the paper.
Monitoring is useful to analyze in realtime
the network behavior, for example to detect
network anomalies. It can be implemented
using a single packet sniffer combined with
a simple packet analyzer.

V. TOOLS FOR WIRELESS MEASUREMENTS

This section proposes a classification of the main
open source tools that can be used to characterize
wireless experiments. Wireless measurement tools
come in three different flavors: Adaptations or
derivatives from wired measurement tools, like
Wireshark and Mognet; Monitoring tools specific
to the wireless environment like Kismet, Wifiscan-
ner and Wavemon; and tools which target experi-
mental wireless measurements, like Airtraf, Jigsaw
or WisMon. A tool is required for each of the
tasks we have defined on section IV. Furthermore,
some tools can be used for different purposes; for
example, Wireshark can be used for capturing and
to do filtering as a processing task. At the end of
the section we provide a classification where each
of the tool is assigned to one or multiple tasks to
execute during an experiment.

In the following, we distinguish between tools
that retrieve wireless parameters through the driver
of wireless cards from tools that capture and/or
process logs of packets sniffed from the wireless
channel. We present only the most essential fea-
tures of each tool. The reader can find further
technical details in the references provided in the
text.



9

A. Tools Based on Driver-Level Statistics

As we mentioned in Section IV, the drivers
of wireless cards can be used as a complemen-
tary source of statistical information. The madwifi
driver [23] is currently the most advanced open
source driver available for Atheros-based wire-
less cards. It uses the Wireless Extensions for
Linux and has companion applications to simplify
the configuration and the statistical data capture.
It allows to print the internal PHY and MAC
events to the system log through the athdebug
and 80211debug utilities respectively [30]. Also,
the driver keeps internal statistics which can be
accessed through the athstats [31] utility for the
PHY related statistics, and using the 80211stats
utility for the MAC statistics. Although the madwifi
driver itself is open source, it depends on the
proprietary Hardware Abstraction Layer (HAL),
which is only available in binary form. However,
it is currently evolving to a full open source driver
called ath5k, which does not depend on the HAL.

Furthermore, some devices store these statistics
in management information bases (MIBs). In this
case, the statistics can be retrieved using Simple
Network Management Protocol (SNMP) tools [32].
However, note that SNMP statistics can sometimes
be inaccurate and should consequently be used with
cautious [33].

Wireless Tools for Linux: The Linux Wireless
Extensions (WE) and the Wireless Tools (WT) [34]
form a generic API allowing a Linux driver to
expose to the user space configuration and WLAN
statistics. This set of tools creates a uniform inter-
face at the user space to configure, control, query
and debug the wireless interfaces. A typical usage
example of wireless tools is the access to the
aggregate data statistics using iwconfig, the set-
ting of specific driver-level parameters with iwpriv
and the listing of the results of access points in
range. They use a very basic textual interface and
are included by default on most Linux kernels.
However, different or invalid implementations of
these utilities may lead to erroneous results, so
these statistics should be compared with known
statistics to guarantee that the results are coherent.
The Wireless tools for Linux are distributed as open
source code under the GNU Public Licence (GPL).

WaveMon: WaveMon [35] is an example of
a wireless monitoring tool that uses the Wire-
less Extensions for Linux. It is a ncurses-based
lightweight wireless monitor tool that can be run
with or without a GUI. It supports devices with
low processing power and low resolution display

and allows to watch in realtime the signal and
noise levels, packet statistics and wireless card
configuration. Two different views are available:
A snapshot of the current state of the wireless
link statistics, and a historical graph for the same
parameters. During an experiment, Wavemon can
provide basic insight about the link quality from
the signal power side. It can not be used for batch
mode experiments because packet logging is not
available; all the processing is done in realtime.
Current version is 0.4.0b and it is distributed as
source code under the GNU public license for the
Linux operating system. A typical application of
Wavemon is monitoring during the experiment.

WRAPI: WRAPI [36] is not a tool but a
hardware-independent library that allows applica-
tions to access MAC-layer information. It requires
an application on top of it to call the functions,
and execute data capture. So it is not functional by
itself, but it is very useful to perform measurements
on a Windows platform, and, to our knowledge,
it is the only open source package that works
on Windows XP. WRAPI uses the NDIS user
mode I/O protocol to communicate from the user-
mode side to the driver. Using this communica-
tion protocol, it is possible to query information
and set parameters. A limited number of parame-
ters is available, including wireless configuration,
packet level statistics, current MAC address, signal
strength and AP information, but per-packet infor-
mation is not available. It is worth mentioning that
the statistical information provided by the driver
for part of parameters is preprocessed internally,
e.g. to calculate running average. As preprocessing
operations affect the measurement results, the fact
that these operations are not documented and the
corresponding source code is not publicly available
is problematic to perform rigorous analysis. This
library was developed for Windows XP exclusively,
and Version 2.0 of the source code is available
on the WRAPI website [36] without any license
information.

Figure 1 illustrates the position of driver-level
statistic tools within the Operating System.

B. Measurement Tools Based on Packet Traces

In this section we discuss relevant open source
tools that can be used to perform the measurement
tasks described in Section IV, i.e., sniffing, merg-
ing, processing and monitoring. As most tools im-
plement more than one of these tasks, it is difficult
to classify them based on their functionalities and
we have chosen to present them in the alphabetical



10

Hardware

Driver

Wireless Tools

API
Interface

Wavemon

WRAPI

Windows

Libpcap

Win driver

Linux

User 
Space

Kernel 
Space

User 
Space

Kernel 
Space

Fig. 1. Position of driver-level statistics tools

order. To recapitulate, Table VI gives a snapshot of
the main functionalities of each tool at the end of
the section.

Airtraf: Airtraf [37] is a wireless analyzer that
gathers accumulated wireless statistics from each
station and for each TCP flow. It can be used to
monitor wireless statistics during an experiment,
such as packet count, byte count, bandwidth us-
age and signal strength. It can also analyze the
state of APs and the associations between stations
and APs. Airtraf is sniffing-based and depends on
underlying libraries to capture packets. There is
no graphical interface available as open source for
the polling server. Airtraf allows to create a “near
realtime” picture of the wireless parameters, access
points, stations present in the BSS and on TCP
flows transmitted between them. This information
is presented either as a cumulative (for packet or
byte counts), mean value (e.g. power value) or
instantaneous value (e.g. current bandwidth usage).
Unfortunately, there is no historic log nor graphical
user interface display to analyze the behavior of
parameters. Furthermore, there is no event log to
follow the transactions from the management pack-
ets. Version 1.1 of Airtraf for Linux is available
under the GNU public license, but a commercial
branch of this tool is available from Elixar Inc.

EasySnuffle: EasySnuffle [38] is a measurement
tool composed of a collection of modules to insert
on the kernel, device drivers and user space. These
modules act as probes at MAC, IP and UDP layers
and have been designed for analyzing performance
of multimedia transmissions over wireless net-
works. The basic setup includes a specific wireless
device driver for the Prism2 chipset, a custom mod-
ified kernel and a user application. The main ad-

vantage of this tool is the possibility to instrument
the system at different levels of the communication
stack. However, the last version of the tool was
released in 2002 and the modules lack flexibility to
evolve to a newer version of the kernel. The source
code is available for the Linux operating system
at the Snuffle website [39]. Although this tool is
rather outdated, we have included it as an example
of instrumentation through all the measurement
chain. Using this type of instrumentation, it is
easier to do a cross layer analysis since all the data
is captured on the same time basis.

Jigsaw: Jigsaw [28] is a multi-sniffer tool for
infrastructure wireless systems that combines the
packet traces to generate a comprehensive view of
events taking place in the network. It is used to ful-
fill the sniffing and merging tasks. To synchronize
the time across traces gathered by multiple sniffers,
Jigsaw identifies frames that are overheard by mul-
tiple (but not all) monitors. It tackles the problem
of clock drifts (the change in skew over time)
using an exponentially weighted moving average
of past skew measurements to predict future skew
on a per-instance basis. Jigsaw can be used offline
to gather and synchronize all the collected traces
from an experiment. The output is composed of a
single file including all the packets collected during
the experiment. This tool allows to reconstruct a
complete description of all link- and transport-layer
conversations. Some inference techniques are used
to deduce the presence, time placement, and even
contents of missing data. Version 2.4 of this tool
is available under the GPL licence from the Jigsaw
website [40] for the Linux operating system.

Kismet: Kismet [41] is a monitoring tool used to
discover wireless networks. It creates a list of avail-



11

able access points in the selected channels and a
list of attached stations using information contained
on collected packets. For each item, it provides
detailed information such as the addresses, traffic
and station activity. The lightweight text-based
interface allows the user to build a monitoring
system without loading a graphical server. The
main advantage of this tool lies in its ability to
recover and gather in a smart way per-station traffic
and fill station information structures with the
results. This tool can also provide GPS information
about scanned APs using the gpsd open source tool.
Flexibility of Kismet comes from the client-server
architecture, built as a server processing engine and
a client, interconnected with a proprietary protocol.
The client (and possibly multiple clients) can be
run on a different machine than the server. This
tool does not provide any statistical analysis tools,
although it can be used as a source of disassembled
packets for data capture. Since Kismet includes a
packet dissector, an application can be built on top
of it to retrieve only the relevant parameters, which
can be selected in realtime through the client-server
communication protocol. Kismet runs on Linux
with a large number of cards and can also run on
Windows but only on cards that support AirPcap
from CACE Technologies. It is licensed under the
GPL and current version 2007-10-R1 is available
at the Kismet website [41].

Mognet: Mognet [42] is a basic sniffer and
analyzer tool that has been designed for personal
digital assistants (PDAs) that support Java. It cap-
tures packets in realtime and disassembles the
802.11 headers using either a graphical or a text-
based interface. Mognet can also generate output
in libpcap format. The main objective of this tool
is to display and disassemble packets with no
further analysis, but with the possibility to examine
packets collected in realtime. It does not include
processing and analysis functionalities because the
processing power is still limited in PDAs. It is
inspired by Ethereal. Since this tool can generate
trace logs, it can be integrated within experiments
where merging and postprocessing are done in
batch mode. Although Mognet has not evolved
since 2003, the current 1.16 version still works
on any wireless cards that support the monitor
mode. Mognet is available under the GNU public
license and works on any PDA that includes a Java
interpreter and a C compiler.

Pcap: The pcap library7 [10] is not a tool
but since it is the core of many tools such as
tcpdump and kismet, it is worth mentioning it in
this section. Libcap is an open source library that
provides a high level interface to network packet
capture systems. The goal of this library is to
create a platform-independent API to eliminate the
need of system-dependant packet capture in each
application, as every OS vendor may implements
its own capture mechanisms. As we mentioned
in Section III-A1, different types of DLTs are
specified in this library, including a variety of
media like fiber optics, PPP serial links, ethernet
and wireless networks.

Wifiscanner: Wifiscanner [43] is an ana-
lyzer/detector of IEEE 802.11b STAs and APs
which can listen alternatively on all the 14 chan-
nels. It can be used to monitor parameters during an
experiment and also for sniffing. Wifiscanner also
includes an integrated IDS (Intrusion Detection
System) to detect anomalies like MAC usurpation.
A basic text-based interface is provided for passive
sniffing operation. This tool provides the user a
realtime packet disassembly of the 802.11 header.
It also keeps cumulative values of the observed
packet types at the MAC level. A list of current
stations can be displayed with the number of trans-
mitted packets. All network traffic can be saved in
the pcap format for post analysis. Current version
1.02 is available under the GNU public license for
Linux operating system [43].

Wireshark: Wireshark [44] (formerly Ethereal)
is the de facto open source network protocol ana-
lyzer. It integrates a general-purpose packet sniffer
and packet analyzer tool for almost any type of net-
work. It includes a very powerful packet dissector
and classifier tool and currently supports more than
700 different protocols. Specific filters can be built
for each field of the captured packets. However,
Wireshark lacks post-processing and analysis tools,
providing only basic statistics and graphs. The
main packet list uses coloring filters, which helps
to identify faster which type of packets are present.
It also includes decryption support for many pro-
tocols, including IPsec, WEP and WPA/WPA2.
Packet timestamps come from the Winpcap- packet
capture library, which is independent from Wire-
shark. Version 1.0.2 of Wireshark is available under
the GNU GPL and runs on Windows, Linux, MAC
OS X, Solaris, FreeBSD and NetBSD operating
systems [44].

7The pcap library is called libpcap on Unix-like systems and
Winpcap on Windows systems.



12

Input Method/Format Output format
Packet Pcap Wireless Tools Tool Text Graphical Text Pcap DB

Capture for Linux API UI UI√
Airtraf

√
√

Easysnuffle
√ √

√ √
Jigsaw

√
√ √

Kismet
√ √ √

√
Mognet

√
√

Wavemon
√

√
Wifiscanner

√ √
√ √

Wireshark
√ √ √

√
Wismon

√ √
√

Wit
√

TABLE V
I/O FORMATS OF WIRELESS MEASUREMENT TOOLS

Wismon: Wismon [45] is a packet analyzer tool
that has many useful functionalities for a wireless
experimental usage. It provides physical parame-
ters in realtime for evaluation during experiments
and allows to record logs for further processing. It
can be used for building a single view of the whole
wireless communication channel. Wismon uses
multiple probes running Kismet (version 2004-10-
R1). Using a kismet patch, probes synchronize the
timestamp with the beacon timestamp at the probe
level, providing ready-synchronized packets. The
Wismon tool uses a client-server architecture. The
server creates a single list of packets and discards
duplicated packets heard by the different probes.
This list is thoroughly analyzed and the packet
headers are classified per station. The Wismon
client shows the list of the current stations at the
server and displays for each station its character-
istics in real time. Version 0.1.R3 of this tool is
available under the Cecill8 license for the Linux
operating system from the Wismon website [45].

Wit: Wit [29] is MAC analyzer tool for IEEE
802.11 networks that includes a distributed pas-
sive sniffing mechanism. It collects traces obtained
from multiple and independent passive sniffers
and stores them in a common database. Wit can
be used to perform the merging task of wireless
experiments. Three processing steps are done to
construct an enhanced trace of packets. First, a
robust merging procedure combines the necessarily
incomplete views from multiple, independent snif-
fers into a single, more complete trace of wireless
activity. Next, an inference engine based on formal
language methods is used to reconstruct packets
that were not captured by any sniffer and to de-
termine whether each packet was received by its
destination. Finally, it derives network performance

8see http://www.cecill.info/ .

measures from this enhanced trace. Wit is available
online [46] as perl scripts that process data traces.

CRAWDAD repository of tools: The CRAW-
DAD [47] (Community Resource for Archiving
Wireless Data At Dartmouth) website contains a
repository of basic scripts and tools to process
packet logs and SNMP statistics. Various scripts
can be used to extract fields and flags from in-
dividual packets, to create a list of stations from
the packet logs, to anonymize the packet traffic (in
order to be published later in the public domain),
and to estimate the location of devices. Most of
these tools and scripts tools are available under the
GNU public license (or some variations of it) for
the Linux OS.

Snapshot of Tools: Table V and Table VI pro-
vide, respectively, the input/output formats and a
snapshot of the main characteristics for each of the
tools described above.



13

TA
B

L
E

V
I

C
H

A
R

A
C

T
E

R
IS

T
IC

S
O

F
W

IR
E

L
E

S
S

M
E

A
S

U
R

E
M

E
N

T
T

O
O

L
S

To
ol

Sn
iffi

ng
M

er
gi

ng
Pr

oc
es

si
ng

M
on

ito
ri

ng
C

om
m

en
ts

Pl
at

fo
rm

A
ir

tr
af

N
o

N
o

N
o

T
hr

ou
gh

pu
t,

Te
xt

-b
as

ed
in

te
rf

ac
e

N
ew

ve
rs

io
n

be
ca

m
e

co
m

m
er

-
ci

al
,

in
cl

ud
in

g
th

e
w

eb
in

te
r-

fa
ce

L
in

ux

E
as

yS
nu

ffl
e

Si
ng

le
pr

ob
e

N
o

St
at

is
tic

s
ex

tr
ac

tio
n

N
o

D
riv

er
an

d
ke

rn
el

in
st

ru
m

en
ta

tio
n

L
in

ux

Ji
gs

aw
M

ul
tip

le
pr

ob
es

re
al

-t
im

e
m

er
gi

ng
Fi

lte
ri

ng
,T

ra
ffi

c
re

co
ns

tr
uc

tio
n

N
o

To
sy

nc
,

us
es

ex
po

ne
nt

ia
lly

w
ei

gh
te

d
of

pa
st

sk
ew

m
ea

-
su

re
m

en
ts

L
in

ux

K
is

m
et

M
ul

tip
le

pr
ob

es
N

o
N

o
T

hr
ou

gh
pu

t,
Te

xt
-b

as
ed

in
te

rf
ac

e
V

er
y

po
pu

la
r

an
d

ad
va

nc
ed

w
ar

dr
iv

in
g

to
ol

L
in

ux
an

d
W

in
do

w
s

(r
es

tr
ic

te
d)

M
og

ne
t

Si
ng

le
pr

ob
e

N
o

Fi
lte

ri
ng

N
o

Ja
va

ba
se

d,
ta

rg
et

ed
fo

r
po

rt
ab

le
de

vi
ce

s
M

ul
tip

la
tf

or
m

(t
oo

l
m

os
tly

w
ri

tte
n

in
Ja

va
)

W
av

em
on

N
o

N
o

N
o

St
at

is
tic

s
ca

lc
ul

at
io

n,
Te

xt
-b

as
ed

in
te

rf
ac

e
N

o
lo

gg
in

g
L

in
ux

W
ifi

sc
an

ne
r

N
o

N
o

N
o

N
et

w
or

k
st

ru
ct

ur
e

gr
ap

h
ge

ne
ra

tio
n

W
ar

dr
iv

in
g

or
ie

nt
ed

L
in

ux

W
ir

es
ha

rk
Si

ng
le

pr
ob

e
N

o
Fi

lte
ri

ng
an

d
flo

w
an

al
yz

er
N

o
V

er
y

ex
te

ns
iv

e
pr

ot
oc

ol
de

co
di

ng
M

ul
tip

la
tf

or
m

W
is

M
on

M
ul

tip
le

pr
ob

es
R

ea
l-

tim
e

m
er

gi
ng

N
o

D
at

a
cl

as
si

fic
at

io
n

pe
r

so
ur

ce
,

re
ce

nt
hi

st
or

y
bu

ff
er

Pa
ck

et
lo

gg
in

g
an

d
of

fli
ne

an
al

ys
is

L
in

ux

W
it

N
o

O
ffl

in
e

m
er

gi
ng

Fi
lte

ri
ng

,T
ra

ffi
c

re
co

ns
tr

uc
tio

n
N

o
H

as
a

fo
rm

al
la

ng
ua

ge
to

de
-

sc
ri

be
co

nv
er

sa
tio

ns
be

tw
ee

n
ho

st
s

M
ul

tip
la

tf
or

m
(t

oo
l

m
os

tly
w

ri
tte

n
in

Pe
rl

)



14

VI. USE OF TOOLS

This section presents a set of case studies to
demonstrate the use of tools discussed in Sec-
tion V. We propose for each scenario the com-
bination of tools that best suit the needs of the
experiment. Then we present a list of common
pitfalls to avoid.

A. Case Studies

In the following, nine examples of measurements
are presented. We have selected the tools according
to their pertinence and their practical approach:
e.g., for configurability and standard logging for-
mat, the use of tcpdump file format for packet
logs. In most cases, custom scripts that fit the
wireless experiment needs have to be used jointly
with the measurement tools. Driver-level tools like
Wireless Extensions for Linux and WaveMon pre-
sented on Section V-A are independent from the
packet capture tasks. So, they can be used on any
of the case studies below to provide snapshots of
PHY and MAC statistics.

• Throughput: Throughput measurement con-
sists in counting the amount of bits transmitted
per second between the AP and each of the
stations. In this experiment, the wireless traf-
fic is captured using several wireless probes,
which are configured in promiscuous mode.
We propose to use Wireshark to capture and
filter packets for each station, because it pro-
vides two usage modes: In the first place, a
test can be done using the graphical user inter-
face of Wireshark, where the wireless traffic
can be observed while it is being captured.
This helps to check if anomalies occur on the
captured traffic (like periodic disconnection
of an Access Point), which may void the
experiment. In the second place, and in order
not to interfere with the environment, the user
can execute remotely a command-line version
of Wireshark, called Tshark. If the analysis is
targeted to a single or multiple flows, packet
filtering is also possible using Wireshark as a
postprocessing engine. After obtaining the fil-
tered packet list, the user can execute a custom
script to extract the packet description header
containing the packet size and the timestamp,
in order to compute various statistics such
as throughput. WisMon can be also used to
monitor the experiment remotely, using either
a new probe or one of the probes used by
Wireshark.

• Contention Window: The contention window
size corresponds to the period between the
end of the SIFS/DIFS and the start of the
next packet. Note that the DLT header of each
packet contains the receiving timestamp. For
practical reasons, we propose to use Wire-
shark to capture the packets, and the algorithm
described by Berger et al. to measure packet
interarrival times with high precision [48].
This type of measurement only requires fil-
tered logs of packet lengths and their times-
tamps, which are present in the DLT header.
A custom script is used to extract timestamps
and packet sizes. No merging is required since
traffic is light and the probe is near to the
source. Kismet can be used for monitoring
and detecting any unexpected events. Indeed,
in this scenario monitoring is only useful
to identify possibly foreign packets coming
from nearby stations not participating on the
experiment.

• Airtime: As mentioned in Section III-B, the
airtime measures the medium utilization from
the calculation of transmitted packet length.
This is useful to analyze the application-level
throughput relative to usage of the physical
wireless channel, see [49], [50]. We propose
to use Jigsaw for the capture, synchronization
and merging operations because for this ex-
periment, we need the most complete view
of the wireless environment, which can be
provided by a single list of all the participating
packets. Then, a custom script can be run to
calculate the airtime, by extracting from the
packet logs the timestamp, the packet length,
the type of preamble, the duration and the
transmission rate per packet. Monitoring can
be performed using Airtraf as well as Wismon
to watch the overall throughput from each
of the concurrent sources. This solution is
better than using separate tools for each task,
because the overall processing can be done
within the merged packet log.

• Spatial packet loss: In this experiment, the
goal is to estimate the correlation between
sent and received packets with respect to
the position of stations. The pattern of bit
errors changes according to signal reflections,
diffractions and interferences, which may af-
fect neighboring stations. For instance, such
a behavior can be caused by interference cre-
ated by an AP present on a nearby channel.
We propose to use Wireshark to collect the
packets and to only keep in memory those



15

which belong to the flows under study. In this
case, merging and synchronization operations
must not be done because it is critical to
analyze the same packets captured on different
probes. Then, packet loss correlation can be
computed on packet logs using a custom script
that analyzes the packet sequence number to
find out which packets are missing for each
source. In such a simple algorithm, a packet
lost by all the stations is suspected to be a
collision while a packet lost only by individual
stations is considered as noise. On the other
hand, a packet lost by more than one station
(but not all of them) is suspected to be the
outcome of a local effect between stations
of the same characteristics (region/distance).
Note that heavy traffic conditions can gener-
ate packet drops before transmission on the
wireless medium. This type of loss could be
badly interpreted as collisions on the wire-
less medium. So, we recommend to monitor
queue drop count both at the AP and at the
STAs: such information can be obtained from
specific instrumentation of the wireless card
drivers. Monitoring can be achieved using
Wismon, which provides per-station statistics
for retransmissions and traffic.

• Analyzing capture effect: The capture effect,
also called co-channel interference tolerance,
is the ability of certain radios to correctly
receive a strong signal from one transmit-
ter despite significant interference from other
transmitters. In other words, a frame with the
highest received signal strength can be suc-
cessfully decoded at the receiver in presence
of simultaneous transmissions of several sta-
tions. Lee et al. have studied this problem us-
ing a testbed with the aim to capture as many
collisions as possible [51]. For each collision,
the timestamp, signal strength and bit rate
parameters have been analyzed. We propose to
use Jigsaw to perform packet capture, traces
merging and synchronization, since here we
need again the global view of the traffic, and
also the ability to discriminate the existence
of detected and undetected collisions. After
the construction of a single list of packets,
a custom script will serve to analyze the
superposition of packets and to detect possi-
ble capture effect by inspecting timestamps
and packet lengths. The experiment can be
monitored either using WisMon to display a
graphical view of the traffic involved with the
measured power, or Airtraf, to get the mean

values during the experiment.
• Impact of Rx power on packet loss: This

experiment aims to study the sensitivity of a
flow to variations of the receiving power (and
consequently SNR). The experiment layout
is simple: One AP sends data at decreasing
power levels with fixed rate and constant
packet size to three receivers placed at dif-
ferent locations within range. This experi-
ment helps us understand the performance of
packet-level power control to increase power
efficiency on portable devices. For practical
reasons, we suggest the use of Wireshark to
control the packet capture and to filter data.
Then, a custom script can be used to compare
the sequence number between the transmitted
and received packets in order to compute
the packet loss. We also propose WisMon
for monitoring, as this tool can provide per-
second received power information.

• Impact of Tx rate on packet loss: The
objective of this experiment is to measure
the efficiency of the physical rate selection
algorithm using packet loss information. We
keep the same layout than for the previous
experiment: one transmitter AP sends packets
with decreasing rates keeping a fixed trans-
mission power level and a constant packet size
to three receiver stations at different locations
within range. But for this experiment, we pro-
pose different tools: Wireshark for capturing
and filtering and Wit to create a database
with the physical parameters of the transmit-
ted packets. Finally, a custom script will use
the sequence number from the database and
the packet rate to analyze the percentage of
packets received for each transmitted rate. The
most important task to monitor this experi-
ment is to ensure that the packet transmission
from the source does not stop, and this can be
done with either Kismet or Airtraf.

• Impact of mobility: Mobility has critical
effects on packet loss, delay and throughput
because it generates higher variations of the
channel characteristics, increasing the bit error
rate. To measure the impact of mobility, the
traffic received at each mobile station has to be
captured. We propose to use the combination
of Mognet and Wit tools: Mognet to collect
traffic received on stations, and Wit to ana-
lyze and reconstruct traffic patterns. Although
Wit was not initially intended for mobility
environments, its traffic inference engine can
be helpful in analyzing very lossy channels.



16

The experiment can be monitored with Kismet
using a fixed transmitter or receiver, to ensure
that there is no unexpected anomaly (such as
a disconnection or a malfunctioning station).

• Flood attack detection: Flood attack is a
common threat for APs. Although recent APs
are ready to manage such attacks, there are
still many devices that can be severely affected
by them. To detect this type of attack, we
propose to use the combination of Wifiscanner
and Wireshark tools: Wifiscanner for moni-
toring and detecting traffic pattern of a flood
attack, and Wireshark as a general purpose
tool for capturing and storing the traffic. Then,
a custom script can be used offline to identify
potential sources of attack.

Table VII regroups the above examples of wire-
less measurements and recapitulates the corre-
sponding recommended tools.

From the former examples of wireless mea-
surements, several patterns arise: Wireshark is es-
sentially a sniffing and filtering tool. Packet logs
can easily be analyzed, merged and synchronized
using Wit. Jigsaw covers the capture, merging and
synchronization tasks altogether; its usage is more
recommended when there is no special filtering to
be done before merging the packet logs. Monitor-
ing can be performed by Kismet to analyze which
stations are participating on the experiment, and
detect possible packets coming from other stations
during the experiment. Wismon as a monitor is
convenient for experiments where both PHY and
MAC layers and involved. Mognet is often used as
a replacement of Wireshark for mobility-enabled
experiments, whereas Airtraf decomposes the traf-
fic on different layers. Airtraf can be used for mon-
itoring purposes during flow-oriented experiments
and/or experiments with cross-layer interactions.
Wifiscanner targets security experiments, since it
can detect certain misbehavior patterns from the
STAs. For the processing stage, all the solutions
use a custom script. As we have mentioned earlier,
there is a small collection of custom scripts avail-
able at the CRAWDAD repository, which can help
as a starting point to fulfil more specific functions.

One can notice the lack of flexibility for data
processing in the list of tools presented above.
Although packet log capture, merging and synchro-
nization utilities are available, once the traces are
merged, the result is a binary file with tcpdump
format to be processed. This file, which can be-
come huge after a few minutes of experimentation,
can be processed with the pcap library to extract
the packets, decode them into fields and extract the

relevant parameters to plot the graphs and analyze
the results. This operation represents a heavy and
unrewarding task. Moreover, custom scripts used
to process the results are generally rewritten from
scratch for new experiments. The need for custom
scripts shows that there is no standard tool to
process straight the data and obtain standard graphs
like the probability density function (pdf) from a
specific parameter, or the interarrival time for a
particular packet flow.

B. Common Pitfalls to Avoid

In this section, we present a non exhaustive list
of very common pitfalls which can occur during
experiments and some suggestions to avoid them
when possible.

• CPU overload at the sniffer: In Section IV,
we mentioned that when a station uses the
promiscuous mode, the wireless card driver
sends a copy of any received or transmitted
packets to a part of the kernel called the
packet filter. Then all the packets have to
be copied from the kernel space to the user
space where the sniffer is actually running.
Interruptions can be handled late if the OS is
overloaded. If a packet arrives late, the arrival
timestamp added by the capture library looses
accuracy9. The copy operation consumes a lot
of CPU time and can overload the machine,
causing the kernel to drop packets. If only
part of packets have to be analyzed, we sug-
gest to construct a specific filter expression
that fits the measurement needs, and apply
it to the packet filter. Portoles-Comeras et
al. [52] have measured the capture limits of
a wireless experimental platform, based on
commercial off-the-shelf hardware. They have
shown that sniffers can offer full rate capture
when correctly calibrated, i.e. up to the level
of saturation loss. Within their layout, they
observed a limit of 2500 packets per second
for Atheros sniffers and 2150 packets per sec-
ond for Prism-based cards. At the kernel level,
there is place for improvement on the packet
capture efficiency, as Deri [53] shows in the
case of wired networks for high speed cap-
ture. Nevertheless, current 802.11a/b/g packet
capture rate has not reached yet to the bound
where these improvements would be needed.

9Note that the receiver’s wireless device further adds a
timestamp on the radiotap header to identify the arrival of the
first bit of the packet.



17

TABLE VII
RECOMMENDED TOOLS FOR DIFFERENT USAGES

Type of Experiment Recommended Tools
Sniffing Merging Processing Monitoring

Throughput Wireshark Wit
Wireshark &
Custom script Wismon

Contention Window Wireshark Not needed Custom script Kismet
Airtime Jigsaw Jigsaw Custom script Airtraf
Spatial packet loss Wireshark Not needed Custom script Wismon
Analyzing capture
effect

Jigsaw Jigsaw Custom Script Wismon or
Aitraf

Impact of Rx power
on packet loss Wireshark Not needed

Wireshark filter-
ing+
Custom Script

Wismon

Impact of Tx rate
on packet loss Wireshark Not needed

Wireshark filter-
ing+
Custom Script

Kismet or
Airtraf

Impact of mobility Mognet Wit Custom Script Kismet
Flood attack detection Wireshark Not needed Custom script Wifiscanner

• Traffic overload: Caution is required in in-
terpreting packet loss in presence of high data
rate traffic, because packet loss can also occur
due to buffer overflow. We suggest to use
flexible wireless card drivers such as madwifi
which can be easily instrumented to identify
potential packet loss due to high contention
on the medium.

• Card/OS-dependent performance: The
sniffing process can produce different results
according to the type of wireless card driver
and to the operating system. As we mentioned
in Section III-A1, when a sniffer captures
a frame, it replaces the PLCP header by a
DLT header whose format depends on the
wireless card driver. But the packets captured
may also differ from one operating system to
the other. To cope with heterogeneous header
formats, the pcap library is widely used on
Linux platforms. Libpcap opens a special
type of capture socket to retrieve all types
of packets. However, such a functionality
is not available on Windows platforms.
Indeed, the corresponding Winpcap library
drops all control packets received and so,
many frames are not available at the upper
layers. Furthermore, using Winpcap, packets
sniffed are converted in fake ethernet packets,
which causes the removal of some important
information, like reception power level, noise,
channel, modulation or MAC timestamp. For
Windows platforms, we suggest to use
a commercial capture library such as
Airpcap [54] from CACE technologies

company, which allows to retrieve all data,
control and management 802.11 frames.

• Positioning sniffers and merging traces:
As we mentioned in Section IV, a single
probe may not be able to observe all the
frames sent to or from a particular AP due
to radio reception and range. It is therefore
very important to use spatially dispersed snif-
fers and to synchronize the different traces at
the microsecond granularity. Merging wireless
traces is a critical operation and we suggest
the use of verification mechanisms such as
the one proposed by Schulman et al. [55],
which evaluates the fidelity of merged and
independent wireless network traces by esti-
mating their completeness and clock accuracy.

• Imprecise RSSI measurements: The Re-
ceiver Signal Strength Indicator is known to
be inaccurate in different platforms. For in-
stance, measurements provided by the Atheros
5212 chipset do not allow for a fine-grained
differentiation in the range relevant to bit-
rate selection (especially at bit-rates below
36Mbps) [56]. Due to the fact that the IEEE
802.11 standard does not specify a required
method of measuring RSSI, signal strength
numbers from different vendors should not
be compared to each other, since they are
probably measuring it in different ways [13].

• Identifying sources of interferences: With-
out special electromagnetic isolation, like ane-
choic chambers [57], 802.11 devices suffer
interference from a large number of products
operating in the unlicensed 2.4 GHz band, see



18

Section II-A. When stations are not mobile,
most of the channel power variability is due
to moving objects around. For example, a
temporal signal fading occurs when an object
obstructs the line of sight (LOS) between the
stations and the AP. Also, as IEEE 802.11
channels are not orthogonal, possible inter-
channel interference in crowded spectrum and
unplanned configurations can decrease drasti-
cally the performance of wireless protocols.
Furthermore, during an experiment, a number
of nearby machines or devices passing by can
interfere with the experiment/measurement,
even if the packets are sent on non-orthogonal
channels. This is the case for mobile stations
that try to associate to the nearest APs using
active probing. Another source of interference
is due to recent Smart APs implementing
internal algorithms that periodically scan the
overall channels to detect neighbor APs and
to dynamically select the clearest channel to
use. Therefore, it is important to characterize
all potential sources of interferences during
the wireless measurements phase. A spectrum
analyzer could be used jointly with wireless
probes to complete and refine the measure-
ment process.

VII. CONCLUSION

In this paper, we proposed a taxonomy of
IEEE 802.11 wireless parameters and relevant open
source measurement tools that can be used for
wireless experimentations and monitoring. We fo-
cus on tools available in the public domain for the
Linux environment and discuss their features and
usage with several case studies. Then, we present
some common pitfalls to avoid while performing
wireless measurements.

There is still a wide choice of development
branches for collaboration and development for
wireless monitoring and experimentation. For in-
stance, there is still no support of the wireless
headers for 802.11e parameter extraction and inter-
pretation, nor support for MIMO radio parameters
for the upcoming IEEE 802.11n standard. Data
management for wireless experimentation is cur-
rently at an early development stage. Not only the
packet traces should be collected and stored for
further analysis, but also the layout, experimental
conditions and configuration corresponding to the
experimentation. Such information is very impor-
tant to perform rigorous performance analysis of
wireless protocols.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their
valuable suggestions that help to improve the pre-
sentation of the paper. This work was partially
supported by the EU FP7 IST OneLab2 grant No
224263.

REFERENCES

[1] "IEEE Standard for Information technology-
Telecommunications and information exchange between
systems-Local and metropolitan area networks-Specific
requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications",
IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-
1999), June 12 2007.

[2] L. Kleinrock and F. Tobagi, "Packet switching in radio
channels part II: The hidden terminal problem in carrier
sense multiple-access modes and the busy-tone solution,"
IEEE Trans. Commun., Vol. COM-23, No. 12, pp. 1417-
1433, 1975.

[3] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and
C. Elliott, "Experimental evaluation of wireless simulation
assumptions," Proc. of ACM MSWiM, October 2004.

[4] D. Kotz, C. Newport and C. Elliott, "The Mistaken Ax-
ioms of Wireless-network Research", Technical Report
TR2003-467, Dept. of Computer Science, Darmouth Col-
lege, July 2003, [Online]. Available: http://pdos.csail.mit.
edu/decouto/papers/kotz03.pdf.

[5] Wireless Warrior [Online]. Available: http:
//www.wireless-warrior.org/software/sniffing/.

[6] A. Mahanti, C. Williamson and M. Arlitt, "Remote analysis
of a distributed WLAN using passive wireless-side mea-
surement", Perform. Eval. 64, 9-12, pp. 909-932, October
2007.

[7] F. Michaut and F. Lepage, "Application-oriented net-
work metrology: metrics and active measurement tools",
IEEE Communications Surveys magazine, Vol. 7, No. 2,
2005. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=1610543&isnumber=33817.

[8] A. Goldsmith, "Wireless Communications", Cambridge
University Press, ISBN 0-521-83716-2, 2005.

[9] S. Khurana, A. Kahol, and A.P. Jayasumana, "Effect of
hidden terminals on the performance of IEEE 802.11 MAC
protocol", Proc. of 23rd Conference on Local Computer
Networks (LCN), pp. 12-20, 1998.

[10] Libpcap [Online]. Available: http://www.tcpdump.org/.
[11] AVS Capture Frame Format, [Online]. Available:

http://www.locustworld.com/tracker/getfile/prism2drivers/
doc/capturefrm.txt.

[12] Radiotap [Online]. Available: http://www.radiotap.org.
[13] J. Barker, "You Believe You Understand What You Think

I Said: The Truth About 802.11 Signal And Noise Met-
rics", Document D100201, 2004 - Connect802 Corporation,
[Online]. Available: http://www.connect802.com/download/
techpubs/2004/you_believe_D100201.pdf.

[14] M. Raya, J.P. Hubaux and I. Aad, "DOMINO: a system to
detect greedy behavior in IEEE 802.11 hotspots", Proceed-
ings of the 2nd international conference on Mobile systems
(MobiSys), Boston, MA, June 2004.

[15] F. Vacirca and A. Baiocchi, "Characterization of Service
Times Burstiness of IEEE 802.11 DCF," Wired/Wireless
Internet Communications, Springer, 2007, pp. 223-234.

[16] J. Bardwell, "Converting Signal Strength Percentage
to dBm Values," November 2002, WildPackets Inc.,
[Online]. Available: http://www.wildpackets.com/elements/
whitepapers/Converting_Signal_Strength.pdf.



19

[17] D. Dujovne and T. Turletti, "Multicast in 802.11 WLANs:
an experimental study," Proc. of the 9th ACM international
Symposium on Modeling Analysis and Simulation of Wire-
less and Mobile Systems (MSWiM), Torremolinos, Spain,
October 2-6, 2006. pp. 130-138.

[18] J. Lacan and T. Perennou, "Evaluation of Error Con-
trol Mechanisms for 802.11b Multicast Transmissions,"
International Workshop on Wireless Network Measurement
(WinMee), Boston, MA, USA, April 3, 2006.

[19] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla and M. Y. Sana-
didi, "CapProbe: A Simple and Accurate Capacity Estima-
tion Technique," Proc. of ACM SIGCOMM’04, Portland,
OR, USA, September 2004.

[20] K. Lakshminarayanan, V. N. Padmanabhan, and J. Padhye,
"Bandwidth Estimation in Broadband Access Networks,"
Proc. of ACM IMC’04, Taormina, Sicily, Italy, October
2004.

[21] A. Johnsson, B. Melander, and M. Bjorkman, "Bandwidth
Measurement in Wireless Networks," Mediterranean Ad
Hoc Networking Workshop (Med-Hoc-Net), Porquerolles,
France, June 2005.

[22] H.-Y. Wei and Y.-D. Lin, "A survey and measurement-
based comparison of bandwidth management techniques,"
IEEE Communications Surveys magazine, Vol. 5, No. 2,
2003. Available: http://www.comsoc.org/livepubs/surveys/
public/2003/oct/pdf/wei.pdf.

[23] Madwifi project [Online]. Available: http://madwifi.org/.
[24] Gnuradio [Online]. Available: http://www.gnu.org/

software/gnuradio/.
[25] Warp [Online]. Available: http://warp.rice.edu.
[26] J. Yeo, S. Banerjee and A. Agrawala, "Measuring traffic

on the wireless medium: Experience and pitfalls", Technical
report, CS-TR 4421, University of Maryland, College Park,
December 2002. [Online]. Available: http://www.cs.umd.
edu/Library/TRs/CS-TR-4421/CS-TR-4421.pdf.

[27] J. Yeo, M. Youssef and A. Agrawala, "Characterizing the
IEEE 802.11 Traffic: The Wireless Side," CS-TR-4570,
March 2004. [Online]. Available: http://www.cs.umd.edu/
Library/TRs/CS-TR-4570/CS-TR-4570.pdf.

[28] Y.C Cheng J. Bellardo, P. Benko, A.C. Snoeren, G.M.
Voelker and S. Savage, "Jigsaw: Solving the Puzzle of
Entreprise 802.11 Analysis," in Proc. of ACM SIGCOMM,
Pisa, Italy, September 11-15 2006.

[29] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan,
"Analysing the MAC-level Behavior of Wireless Networks
in the Wild," Proc. of ACM SIGCOMM, Pisa, Italy,
September 11-15 2006.

[30] Athdebug and 80211debug documentation, Madwifi
v0.9.4, [Online]. Available: http://www.madwifi.org/.

[31] athstats.c, Madwifi v0.9.4 source code, [Online]. Avail-
able: http://www.madwifi.org.

[32] R. Presuhn et al., "Version 2 of the Protocol Operations
for the Simple Network Management Protocol (SNMP),"
IETF RFC 3416, December 2002.

[33] T. Henderson and D. Kotz, "Problems with the Dartmouth
wireless SNMP data collection," Dartmouth Computer Sci-
ence Technical Report TR2003-480, December 2003.

[34] Wireless Tools for Linux [Online]. Available: http://www.
hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html.

[35] Wavemon tool [Online]. Available: http://eden-feed.erg.
abdn.ac.uk/wavemon/.

[36] Wrapi [Online]. Available: http://sysnet.ucsd.edu/pawn/
wrapi/.

[37] Airtraf tool [Online]. Available: http://airtraf.sourceforge.
net.

[38] C. Hoene, B. Rathke and A. Wolisz: “EasySnuffle: A tool
to measure the performance of multimedia flows over IEEE
802.11b”, Technical University of Berlin TKN - Berlin -
Germany, March 10, 2002, [Online]. Available: http://www.
tkn.tu-berlin.de/research/easysnuffle/EasySnuffle.pdf.

[39] Easysnuffle tool [Online]. Available: http://www.tkn.
tu-berlin.de/research/easysnuffle/.

[40] Jigsaw tool [Online]. Available: http://sysnet.ucsd.edu/
wireless/.

[41] Kismet tool [Online]. Available: http://www.
kismetwireless.net.

[42] Mognet tool [Online]. Available: http://www.monolith81.
de/mognet.html.

[43] Wifiscanner tool [Online]. Available: http://wifiscanner.
sourceforge.net.

[44] Wireshark tool [Online]. Available: http://www.wireshark.
org.

[45] WisMon tool [Online]. Available: http://planete.inria.fr/
software/WisMon/.

[46] Wit tool [Online]. Available: http://www.cs.washington.
edu/research/networking/wireless/index.html.

[47] Crawdad repository [Online]. Available: http://crawdad.cs.
dartmouth.edu/tools.php.

[48] G. Berger-Sabbatel, Y. Grunenberger, M. Heusse, F.
Rousseau and A. Duda, "Interarrival Histograms: A Method
for Measuring Transmission Delays in 802.11 WLANs,"
Research Report, LIG - Grenoble Informatics Laboratory,
Grenoble, 2007, [Online]. Available: http://drakkar.imag.fr/
spip.php?article242.

[49] K. Papagiannaki, M. Yarvis, and W. S. Conner, "Exper-
imental Characterization of Home Wireless Networks and
Design Implications," Proc. IEEE INFOCOM, Barcelona,
Spain, April, 2006.

[50] R.G. Garroppo, S. Giordano, S. Lucetti, and L. Tavanti,
"Providing air-time usage fairness in IEEE 802.11 networks
with the deficit transmission time (DTT) scheduler," Wire-
less Network, 13, 4 August 2007, 481-495.

[51] J. Lee, W. Kim, S. Lee, D. Jo, J. Ryu, T. Kwon and
Y. Choi, "An experimental study on the capture effect in
802.11a networks," Proc. of the Second ACM international
Workshop on Wireless Network Testbeds, Experimental
Evaluation and Characterization (WinTECH), Montreal,
Quebec, Canada, September 10, 2007.

[52] M. Portoles-Comeras, M. Requena-Esteso, J. Mangues-
Bafalluy, M. Cardenete-Suriol, "Monitoring wireless net-
works: performance assessment of sniffer architectures,"
Proc. of IEEE ICC, Istambul, Turkey, pp.646-651, June
2006.

[53] L. Deri, S.P.A. Netikos, K. Via Del Brennero and L.L.
Figuretta, “Improving passive packet capture:beyond device
polling”, Proc. of SANE, Amsterdam, The Netherlands,
September 2004.

[54] Airpcap product, CACE technologies [Online]. Available:
http://www.cacetech.com/products/airpcap_family.htm.

[55] A. Schulman, D. Levin and N. Spring, "On the Fidelity
of 802.11 Packet Traces", 9th Passive and Active Measure-
ment conference, Cleveland, Ohio, April 2008.

[56] K. Ramachandran, H. Kremo, M. Gruteser, P. Spasojevic
and I. Seskar, "Scalability Analysis of Rate Adaptation
Techniques in Congested IEEE 802.11 Networks: An OR-
BIT Testbed Comparative Study", Proc. of WoWMoM,
Helsinki, Finland, June 2007.

[57] G. Rahmatollahi, S. Galler, J. Schroeder, K. Jobmann
and K. Kyamakya, “Propagation Delay Based Positioning
Using IEEE 802.11b Signals”, Proc. of 3rd Workshop
on Positioning, Navigation and Communication (WPNC),
Hannover, Germany, March 2006.

Diego Dujovne Diego Dujovne obtained his Electronic En-
gineer 6-year degree from National University of Cordoba,
Argentina in 1999. Between 1999 and 2001 he worked as
lecturer at the Informatics and Electronics Departments and
from 2002 to 2004 he worked as a full-time Adjoint-Professor



20

as the director of the Digital Signal Processing Lab at UNC,
Argentina. He obtained his PhD at the Planète project-team at
INRIA Sophia Antipolis, France in 2009, and he is currently a
full-time researcher and lecturer at Universidad Diego Portales,
Chile. His research interests include MAC layer development for
wireless networks, WLAN multicast improvements and Wire-
less experimental measurements. Additionally, he is member of
IEEE since 1994.

Thierry Turletti Thierry Turletti re-
ceived the M.S. (1990) and the Ph.D.
(1995) degrees in computer science
both from the University of Nice -
Sophia Antipolis, France. He has done
his PhD studies in the RODEO group
at INRIA Sophia Antipolis. During the
year 1995-96, he was a postdoctoral
fellow in the Telemedia, Networks and
Systems group at LCS, MIT. He is
currently a senior research scientist at

the Planète group at INRIA Sophia Antipolis. His research
interests include multimedia applications, congestion control
and wireless networking. Dr. Turletti serves on the Editorial
Board of the Wireless Communications and Mobile Comput-
ing (WCMC), Wireless Networks (WINET) and Advance on
Multimedia (AM) journals.

Fethi Filali Fethi Filali received his
Computer Science Engineering and
DEA degrees from the National Col-
lege of Informatics (ENSI) in 1998
and 1999, respectively. At the end of
1999, he joined the Planète research
team at INRIA (National research in-
stitute in informatics and control) in
Sophia-Antipolis to prepare a Ph.D.
in Computer Science which he has
defended on November 2002. During

2003, he was an ATER (Attaché Temporaire d’Enseignement
et de Recherche) at the Université of Nice Sophia-Antipolis
(UNSA) and he joined on September 2003 the Mobile Commu-
nications department of Institut Eurécom in Sophia-Antipolis
as an Assistant Professor. He is/was involved in several
French-funded (Dipcast, Constellation, Rhodos, Cosinus, Air-
net, WiNEM) and IST FP6/7 (Widens, Newcom, Daidalos, E2R,
Multinet, Unite, Chorist, iTetris, Newcom++) projects. In the
context of some of these projects, he designed and developed
an open, flexible and efficient architecture for the support
of heterogeneous radio technologies. This architecture was
integrated in EURECOM’s wireless software-radio platform.
His current research interests include WIMAX (802.16)-related
communication mechanisms, QoS support in IEEE 802.11-
based networks, sensor and actuator networks (SANETs), vehi-
cle adhoc networks (VANETs), routing and TCP performance
in wireless networks. He served as a technical reviewer of
several international conferences and journals. Additionally, he
is a member of IEEE and IEEE Communications Society.
In April 2008, he was awarded the «Habilitation à Diriger
des Recherches» (HDR) from the University of Nice Sophia-
Antipolis for his research on wireless networking.


