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A TAXONOMY OF LATENT STRUCTURE ASSUMPTIONS FOR 

PROBABILITY MATRIX DECOMPOSITION MODELS 

MICHEL MEULDERS,  PAUL D E  BOECK,  IVEN VAN MECHELEN 

KATHOLIEKE UNIVERSITEIT LEUVEN 

A taxonomy of latent structure assumptions (LSAs) for probability matrix decomposition (PMD) 

models is proposed which includes the original PMD model (Maxis, De Boeck, & Van Mechelen, 1996) 

as well as a three-way extension of the multiple classification latent class model (Marls, 1999). It is shown 

that PMD models involving different LSAs axe actually restricted latent class models with latent variables 

that depend on some external variables. For parameter estimation a combined approach is proposed that 

uses both a mode-finding algorithm (EM) and a sampling-based approach (Gibbs sampling). A simulation 
study is conducted to investigate the extent to which information criteria, specific model checks, and 

checks for global goodness of fit may help to specify the basic assumptions of the different PMD models. 
Finally, an application is described with models involving different latent structure assumptions for data 

on hostile behavior in frustrating situations. 

Key words: discrete data, matrix decomposition, Bayesian analysis, data augmentation, posterior predic- 

tive check, psychometrics. 

PMD models were introduced by Maris, De Boeck, and Van Mechelen (1996) to analyze 

three-way three-mode binary data. The data typically represent associations between two types 

of elements that are repeatedly observed, for instance, persons who judge whether or not they 

would display a certain hostile response in a frustrating situation. PMD models have been applied 

in several substantive contexts such as psychiatric diagnosis (Maris et al., 1996; Meulders,  De 

Boeck, & Van Mechelen, 2001), marketing research (Candel & Maris, 1997), emotion percep- 

tion in facial expressions (de Bonis, De Boeck, Pdrez-Diaz, & Nahas, 1999), and cross-cultural 

research about the risks of contracting AIDS in different situations (Meulders, De Boeck, Van 

Mechelen, Gelman, & Maris, 2001). 

To explain a rater 's judgment  about the association of two elements (e.g., a situation and 

a response), PMD models assume a twofold process: First, it is assumed that, at each new en- 

counter, each of a set of latent features may be linked to an element. Second, it is assumed that 

the association between two elements results from combining the feature patterns of these ele- 

ments according to a specific mapping rule. For instance, according to a disjunctive communality 

(DC) rule, the l inkage of one common feature to both elements is a sufficient condition for the 

elements to be associated, whereas, with a conjunctive dominance (CD) rule it is necessary that 

all the features that are linked to one element are also linked to the other element. 

The assumption that, at each new encounter, possibly a new pattern of features is linked to 

each element, will further be denoted the latent structure assumption (LSA) of the model as it 

describes how observed associations between elements are determined by latent processes. The 

LSA of the original PMD model (published originally by Maris et al., 1996) is often untenable 

in practice because of two reasons. First, it implies that all observed associations are statistically 
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independent, and therefore it will also be referred to as the independence model. Second, it ex- 

cludes the existence of individual differences as it implies that persons have the same probabil i ty 

to indicate an association between two elements. 

In this paper we will formulate alternative LSAs that do allow to model  dependencies in 

the data and that do allow to capture individual differences. The models that will be presented 

can formally be regarded as latent class models. For parameter estimation, a combined approach, 

which involves locating the posterior mode(s) with EM and computing a sample of the poste- 

rior distribution with the Gibbs sampler, may be of interest, as both approaches have strengths 

and weaknesses. More specifically, they differ in how the specification of different types of pri- 

ors is supported, how standard errors are computed, how convergence is monitored, and how 

over-parameterization is dealt with. In addition, a strategy for model selection using information 

criteria as well as global goodness-of-fit  tests and specific model checks will be proposed. As 

will be seen, these are powerful tools which may help to specify the LSA of the PMD model, but 

they can also help to specify other model aspects, such as the mapping rule and the number of 

features. 

The outline of the remaining parts of the paper is as follows: First, PMD models with al- 

ternative LSAs will be presented. Second, parameter estimation will be discussed. Third, tools 

for model selection will be proposed and their performance will be evaluated in a simulation 

study. Finally, models involving different LSAs will be applied to real data on hostile behavior 

in frustrating situations. 

A Taxonomy of PMD Models  with Different Latent Structure Assumptions 

To introduce PMD models with alternative LSAs,  we first describe the original PMD model 

in the context of a specific example. Consider persons p ( p  = 1 . . . . .  P )  who judge whether or 

not they would display a certain hostile response r ( r  = 1, . . . ,  R) (e.g., "curse", "wanting to hit 

someone") in a certain frustrating situation s(s  = 1 . . . . .  S) (e.g., "you bang your shins against 

a park bench", "you just found out that someone opened your personal mail", etc.). Observed 

judgments are denoted by the random variable y~r which equals 1 if  person p would display 

response r in situation s, and 0 otherwise. Applying the independence PMD model to these data, 

the following assumptions are made: 

1. Situation-feature association. It is assumed that persons, at each new encounter, attribute 

to a situation certain features that pertain to the nature of the frustration in that situation. For 

example, whether or not the frustrating event is seen as caused intentionally, or whether or not 

other persons are present in the situation. Formally, the atribution of a feature to a situation 

is conceived as the realization of a Bernoulli variable Xr sf ~ Bern(~sf)  which equals 1 if 

feature f ( f  = 1 . . . . .  F)  is attributed to situation s when person p is judging pair (s, r) ,  and 

0 otherwise. 

2. Feature-response association. It is assumed that, at each new judgment,  a response may (or 

may not) be linked to each of the features. For example, whether or not intentional causality 

is linked to "cursing" as a response, or whether or not the absence of other persons is linked 

to cursing. Formally, the linldng of a feature to a response is represented as a realization of 

the Bernoulli  variable Zs~ ~ Bern(pr / )  which equals 1 if  response r is linked to feature f 

by person p judging pair (s, r) ,  and 0 otherwise. 

3. Situation-response association. It is assumed that whether or not a person would associate 

the response to the situation is a function of the features that are attributed to the situation 

and the features that are linked to the response. For instance, with a disjunctive communali ty  

rule, attributing a feature to a situation that is also linked to a given response is a sufficient 

condition for that response to be displayed in that situation. For example, a link between 

"cursing" and the feature "that no other persons are present in the situation" means that one 

will curse as soon as this feature is attributed to a frustrating situation (e.g., "you bang your 



MICHEL MEULDERS, PAUL DE BOECK, IVEN VAN MECHELEN 63 

shins against a park bench"). Formally, the disjunctive communali ty rule can be expressed as 

With a conjunctive dominance rule, for a response to be displayed in a certain situation, it is 

necessary (and sufficient) that all the features that are linked to the response are also attributed 

to the situation. This means that "features" should be interpreted here as requisites, imposed 

by the responses. For instance, if  the requisites for "cursing" are "intentionally caused" and 

"absence of others", then one will curse only if  both requisites are met by the situation (e.g., 

"you just found out that someone has opened your personal mail"). Formally, the conjunctive 

dominance rule reads that 

y p r =  1 <=> ' v ' f :  Xr sf > Zsrp f .  

Note that this rule allows one to capture in a very natural way the case of responses that occur 

in all situations of a given set (e.g., a feeling of irritation in frustrating situations). Indeed, 

such responses will tend to impose no requisites at all and hence, the conjunctive dominance 

rule will be satisfied for all situations. 

The DC and CD rules are formally related in that applying the DC rule to the complement 

of the data (i.e., 1 - g~ r) and transforming the situation parameters (i.e., ~sf +-  1 - C~sf) 
yields the same results as applying the CD rule to the original data. 

The LSA of the PMD model concerns the way the observed data depend on the latent 

variables X and Z. In particular, the independence PMD model assumes that the latent variables 
r F  X~p = ( X ~  . . . . .  X~ if)  and the latent variables Z~p = (Z~.~ . . . . .  Z~.p ) are realized for each triple 

(5, r, p) .  This assumption will be denoted as (5rp, rsp), with the first part (i.e., 5rp) referring to 

the realization of X and the second part (i.e., rsp) referring to the realization of Z. 

One may construct other LSAs by assuming that the latent variables X and/or Z have a 

fixed value for certain parts of the data. In this way, different dependence PMD models can be 

constructed. First, one may assume that persons attribute a fixed pattern of features to a situation, 

independent of the response, that is, XSlp = . . .  = XR ps for each pair (5, p) ,  whereas the linking 

of features to responses is renewed at each encounter. This assumption, which will be denoted 

s = (g~l,  g~ R) to be dependent because they are based (sp, rsp), implies the observations Yp . . . .  

on the same realization of the latent situation variables. This dependency has a situational origin; 

it refers to fixed situation meanings within persons. 

Second, one may assume that the attribution of features to a situation is renewed at each 

encounter, but that the linking of features to a certain response is fixed for each person, indepen- 

dent of the situation being judged. This assumption, which will be labeled (5rp, rp) implies the 

r = (F i r  , , g s t )  to be dependent. This type of dependency originates from observations Yp . . .  

the response; it refers to fixed response meanings within persons. As will be explained more in 

detail in the following paragraphs, models (sp, rsp) and (srp, rp) may be considered a three-way 

extension of the multiple classification latent class model  (MCLCM; Maris, 1999). 

Finally, one may assume that persons have a fixed opinion about the features that are at- 

tributed to a situation and that the linking of features to a response is fixed as well. This model, 

which will be denoted (sp, rp), assumes the observations Yp (g~ 1, sR . . . . .  g~ ) to be dependent. 

The source of the dependency is then located in the situations and the responses; it refers to fixed 

situation meanings and fixed response meanings within persons. 

A Formal Description of PMD Models with Different Latent Structure Assumptions 

As for each person a binary S x R matrix of responses is observed, we may consider a 

multinomial model  for the frequencies with which these 2 sR possible matrices occur. Models 
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with different LSAs can be derived by using different types of independence restrictions in spec- 

ifying the kernel of this multinomial likelihood. In particular, model  (srp, rsp) assumes all the 

elements in the S x R matrix to be independent, model  (sp, rsp) assumes independency within 

columns while the elements within a row are dependent, model (srp, rp) assumes independency 

within rows, while the elements within a column are dependent, and model  (sp, rp) assumes all 

the elements in the matrix to be dependent. 

Furthermore, the different types of independence restrictions imply that each model actually 

operates on a different marginal table of the S x R x P array. In particular, the independence 

PMD model may be considered a model for the frequencies of persons who display a response 

s and likewise, model  in a situation. Model  (sp, rsp) is a model  for the frequencies of patterns yp, 

r Finally, model (sp, rp) is a model  for the (srp, rp) is a model for the frequencies of patterns yp. 

frequencies with which the patterns yp occur. However, we must emphasize that for the models to 

yield a comparable likelihood, it is necessary to consider them as models for the same frequency 

table, which is the case if they are considered as restrictions of the same multinomial model. 

In the following paragraphs we describe for each model  the l ikelihood of the observed 

response patterns yp rather than the l ikelihood of the frequencies of these patterns (however, 

these likelihoods only differ in the normalizing constant of the multinomial likelihood, which is 

the same for all the models). The latter is convenient as the realization of the latent variables (but 

not their distribution) may depend on the person. As the DC and the CD rule are formally related, 

only models involving a DC rule will be described. 

It turns out that PMD models with different LSAs can formally be described as extended 

latent class models (LCM) with constrained parameters. The models are extended LCMs because 

the distributions of the latent variables may depend on external variables (i.e., situation, response) 

and they are constrained LCMs as both conditional and marginal latent class probabilities of the 

LCM are a function of more basic parameters. 

Latent Structure Assumption (srp, rsp) 

The likelihood of the independence PMD model can be expressed as 

P(Yl ~r, 0) = I - [  I - [  I - [  ~ P(YprlXSrp' zsrp)p(XSrp' zsrp I°'s' Or). (1) 
S f p X,Z 

The 2 2F possible realizations of (XSp, Zrp) may be considered each as a latent class. The 2 2F+l 

SF S f conditionalprobabilities p(yp IXrp, zsp) (i.e., 2 2F for each value of y~r) are constrained to be 

0 or 1. This reflects the mapping of latent variables into observed variables. For instance with a 

DC mapping rule, this probabil i ty may be expressed as 

p(yp iXrp, Zrsp)= p(y•r= llxSrp, Zsp) r k z i  ° =0lXrp  ' 

[1 I-I(1  rr ,q = - -Xrpgsp)J I - I (1-Xrpgsp)J  • (2) 
f f 

In (2), the probabil i ty of no association P(Y = OIX, Z) is derived as the probabil i ty that none 

of the features is at the same time linked to the response and also attributed to the situation. The 

probabil i ty of an association P(Y = 1 IX, Z) is then derived by taking the complement,  that is, 

1 - P ( Y  = 0IX, Z) .  

Furthermore, the marginalprobabilities of the latent classes p (XrSp, zsrp I~rs, Or) are also con- 

strained because the latent variables X and Z are assumed to be independent Bernoulli variables. 

In other words, the model for these probabilit ies is not saturated, but is rather an independence 

model. As a result, the 2 2F marginal probabilities p (XrSp, zsrplo's, Or) for a given combination of 

s and r are based on only 2 F  parameters. 
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Latent Structure Assumptions (sp, rsp) and (srp, rp) 

The likelihood of the model with LSA (sp, rsp) may be expressed as 

The description of model (srp, rp) is analogous and may be obtained by simply changing the 

role of situations and responses. The 2 f possible realizations of X~ may be considered each as a 

latent class. For each response the 2 F+I conditionalprobabilities p(ySpr Ix~, Or) (i.e., 2 F for each 

value of y~r) are constrained as they are a function of only F response parameters. In general, 

these conditional probabilities may be derived as 

P(Y~rlx5, Or) = E P(Y~rlx5' z,~)p(z:ploj. (4) 
z 

For instance, with a DC mapping rule (4) can be expressed as 

p(yplxSp,pr) = 1 -  H ( 1 -  xJpr f  H ( 1 -  xJpr f  (5) 

f f 

In addition, in (3), the marginal probabilities p (x~ l O-s) are also restricted as the latent situation 

variables are assumed to be independent Bernoulli variables. That is, the model for the marginal 

probabilities is not a saturated model but rather an independence model. As a consequence, the 

2 F marginal probabilities p (x~ l O-s) for a given situation s are based on only F parameters. 

The PMD model with assumption (sp, rsp) may also be regarded as a three-way exten- 

sion of the MCLCM (Maris, 1999) which was originally developed to analyze two-way data. 

With MCLCM's  there are only two types of elements: persons (p) and items (i). The LSA is 

(p, ip). The latent classes are classes of persons determined by F binary latent variables X{. 
The marginal probabilities p (xplo's) do not depend on an external variable. There is, so to speak, 

only one situation (S = 1) and as many binary responses as there are items, and consequently, 

there is only one set of marginal probabilities. 

Latent Structure Assumption (sp, rp) 

The likelihood of model (sp, rp) can be expressed as 

P(YIm 0) -- I - I  ~ P(YP Ixp, zp)p(xp, zp I~r, p). (6) 
p X,Z 

The 2 (s+R)F realizations (Xp, Zp) are considered as latent classes. From (6) it follows that the 

application of model (sp, rp) may be problematic from both a theoretical and a practical point 

of view. A theoretical problem is that with model (sp, rp) the probabilistic process in the latent 

variables will generally not suffice to explain the observed data. To clarify this, consider for 

instance a PMD model with F features and a deterministic mapping rule C(.). In that case, it 

can be that for some observed data yp no latent data (Xp, Zp) exist such that C(xp, Zp) = yp. 

To solve this problem one may add an error component to the model, or construct a probabilistic 

condensation rule (De Boeck, 1997) so that latent data (Xp, Zp) may always lead to observed 

data yp with a nonzero probability. A practical problem is that the number of latent classes in 

the model is generally very large (2 (s+R)F) so that parameter estimation (with the algorithms 

described below) becomes impossible in practice. 

Estimation 

To obtain parameter estimates of the PMD model, one may use a mode-finding algorithm 

to locate the mode(s) of the likelihood, or one may use a sampling-based approach to compute a 
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sample of the entire likelihood. As will be indicated, both approaches have strengths and weak- 

nesses so that a combined approach may be of interest. 

As the augmented likelihood of the PMD model is proportional to a product of Bernoulli 

variables, that is, p(x, z, y]o-, O) = p(xlo')p(zlo)P(ylx, z) cx p(xlo-)p(zlo), it is convenient to 

use estimation algorithms that especially gain from the tractable form of the augmented likeli- 

hood. In particular, one may use an EM algorithm for maximization (Dempster, Laird, & Rubin, 

1977) and a Markov chain Monte Carlo (MCMC) method such as the Gibbs sampler in order to 

compute a sample of the likelihood (Gelfand & Smith, 1990; Geman & Geman, 1984; Tanner & 

Wong, 1987). 

For the independence PMD model, the EM algorithm has been described by Maris et al. 

(1996) and the Gibbs sampling algorithm has been described by Meulders, De Boeck, Van 

Mechelen, Gelman, and Maris (2001). For model (sp, rsp), one may easily adapt the EM algo- 

rithm that was developed by Maris (1999) to estimate MCLCMs. The Gibbs sampling algorithm 

for this model is described in Appendix A. To perform each of these estimation procedures, a 

Delphi program was written, which may be obtained from the authors upon request. As an al- 

ternative, one might consider BUGS (Spiegelhalter, Thomas, Best, & Gilks, 1995) for the fully 

Bayesian estimation and LEM (Vermunt, 1997) for the ML estimation of the models. 

It turns out that maximization and computation of a sample of the posterior each have 

strengths and weaknesses when they are used for parameter estimation. First, a problem with 

maximizing the likelihood is that, with PMD models, ML estimates may not exist within the in- 

terior of the parameter space (Maris et al., 1996). One may solve this problem by using a strictly 

concave prior (e.g., a Beta(0j 12, 2) for each parameter O j) and by maximizing the posterior dis- 

tribution p(o-, PLY). On the other hand, with the Gibbs sampler, one may specify any type of 

prior, or even estimate the form of the prior from the data. This is advantageous because a mis- 

specification of the prior may decrease the fit and may lead to wrong substantive conclusions 

(see Meulders, De Boeck, Van Mechelen, & Gelman, 2000). 

Second, computation of a sample of the entire posterior distribution is advantageous because 

it provides not only point estimates (i.e., posterior mean) but also (1 - c~)% posterior intervals 

without relying on a normal approximation of the posterior distribution. As a result, standard 

errors will also be accurate for small samples (Tanner & Wong, 1987). In addition, the sample 

of the posterior distribution may also be used to check the fit of the model with the technique of 

posterior predictive checks (Rubin, 1984). 

Third, monitoring convergence is more straightforward in the context of maximization than 

when using an MCMC method to approximate the entire posterior. In particular, it is well-known 

that the EM algorithm has the strong property to increase the posterior density at each itera- 

tion, and to converge to a stationary point of the parameter space. Hence, a sufficiently small 

difference in posterior density between subsequent iterations can be used as an easy criterion to 

stop iterating. For the Gibbs sampler, it is known that, under some mild regularity conditions, 

the simulated sequences converge to the true posterior distribution (Gelfand & Smith, 1990), but 

assessing whether convergence has been attained is a difficult problem which has not completely 

been solved yet (Cowles & Carlin, 1996). In this paper we will monitor the convergence of the 

Gibbs sampler with the approach suggested by Gelman and Rubin (1992). 

Fourth, although computationally feasible, exploring highly multimodal posteriors with the 

Gibbs sampler can be complicated if different local maxima are not well-separated. This is often 

due to a lack of identifiability. 

As is generally the case with mixture models, PMD models are not identified in a trivial way 

because one may permute the labels of the mixture components without changing the likelihood 

or the posterior. This problem is called label-switching (Stephens, 2000). As a result, the posterior 

of a PMD model with F features consists of F ! identical regions of posterior density. A further 

complication is that the restrictions that are imposed on the parameters do not imply the posterior 

of PMD models to have a unique maximum (see also Maris, 1999). When using the EM algorithm 

for parameter estimation it is guaranteed that the algorithm will always converge to a stationary 
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point. Subsequently, one may evaluate whether the Hessian in this point is negative definite. If 

this is the case, the model is said to be "locally identifiable" (Formann, 1992; Goodman, 1974). 

When applying the Gibbs sampler, the multimodality of the posterior can be problematic if 

the regions corresponding to different modes are not well-separated, which means that within a 

chain different modes are visited. As a result, point estimates derived on the basis of the sample 

(e.g., posterior mean) become difficult to interpret. This kind of multimodality, with connected 

modes, may often be due to the fact that the model is over-parameterized. In addition, over- 

parameterization typically causes high posterior correlations between parameters which may 

seriously retard the way the Gibbs sampler moves through the parameter space and which is 

usually accompanied by high autocorrelations in this process (Carlin & Louis, 1996, p. 187). In 

order to solve the problem of over-parameterization one may try to impose extra constraints on 

the model's parameters. 

Model Selection 

An important topic in fitting PMD models to empirical data is to specify the three building 

blocks of the model, that is, the LSA, the number of features, and the mapping rule. Several 

criteria and model checks may be used to reach this goal. First, information criteria are global 

as they assess the global GOF of the model and they are relative as they are used to compare 

models. Second, specific model checks are not global, but intended to evaluate the fit of specific 

model assumptions. These checks are relative if they involve a comparison of models and they 

are absolute if they compare observations to what is expected under the model. Third, global 

model checks are global and absolute as they assess global GOF by comparing observations to 

what is expected under the model. 

Information Criteria 

Two well-known information criteria are Akaike's Information Criterion (AIC) (Akaike, 

1973, 1974) and the Bayesian Information Criterion (BIC) (Schwarz, 1978). Both AIC and BIC 

take the form of a sum of a badness-of-fit term (minus twice the log likelihood of the fitted 

model) and a penalty term, which is a measure of the complexity of the model. The model 

having the lowest value for AIC or BIC is selected. For AIC and BIC the penalty terms equal 

2k and log(N)k, respectively, with k being the number of free parameters in the model and with 

N being the total "sample size". The latter is the sum of cell counts rather than the number of 

cells of the frequency table to which the model is applied (Raftery, 1986). Specifically, for PMD 

models the sample size equals the number of persons (P). 

Spiegelhalter, Best, and Carlin (1998) recently developed the Deviance Information Crite- 

rion (DIC). In contrast to AIC and BIC, this criterion is not based on the likelihood of the model 

at the mode, but rather on the likelihood of the draws of the posterior sample. In particular, it is 

defined as 

DIC = D + kD, 

with D the posterior mean of the deviance, that is, Eo ly [ -2  log P(Yl 0)], and with kD being an 

estimate of the effective number of parameters in the model, namely, kD = D - D(O), with 

being the posterior mean. 

Specific Model Checks 

In order to check the validity of the LSA one may use a specific model check that is absolute 

in nature. The basic idea in constructing a test statistic for this purpose is the fact that different 

LSAs imply different subsets of observations to be dependent. For instance, model (srp, rsp) 

implies all observations to be independent whereas model (sp, rsp) assumes observations within 
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s yp to be dependent. Therefore, one may distinguish between both models by computing, for each 

situation s, the correlation between responses r and r* across persons, that is, 

(S) SF SF* 
Tr, r. (y) = corp (yp , yp ). (7) 

Under assumption (srp, rsp) the expected value of (7) is zero, while under assumption (sp, rsp) 
the correlations will reflect dependencies between observations within y~ due to the existence of 

s In the same way, one may use correlations (across persons) between different latent classes xp. 

pairs of situations for each response to distinguish between models (srp, rsp) and (srp, rp). 
To determine the number @features, we may use a conditional l ikelihood-ratio (LR) test 

which is relative in nature as it is used to compare models with different numbers of features. 

The LR statistic to compare Ho of F features versus H1 of F + r features is defined as follows: 

p ( y l 0 f )  
LR(y)  = - 2  log . (8) 

P(yIOF+r ) 

Finally, no specific model checks are proposed for the selection of the mapping rule. 

Global Model Cheeks 

To evaluate the global GOF of latent structure models for the analysis of categorical data 

one traditionally uses measures of the power divergence family (Cressie & Read, 1984) such as 

the Pearson-){ 2 statistic or the unconditional LR statistic (which compares the model under inves- 

tigation with the saturated model). These statistics may be conceived as measures of divergence 

between observed frequencies and frequencies that are expected under the model. For instance, 

the Pearson-){ 2 statistic is defined as 

, 0)]  2 ){2(y) = ~ [Oj(y) - Ej(y,  

j=l Ej (y, 0) 
(9) 

with Oj and Ej being observed and expected frequencies, respectively. 

Von Davier (1997) conducted a Monte Carlo study to investigate the performance of several 

bootstrapped statistics for global GOF when the data are sparse. His results indicated that the 

Pearson-){ 2 statistic performed well whereas the unconditional LR statistic accepted underfitting 

models too frequently. Therefore, we will focus on Pearson-){ 2 measures instead. 

When using (9) to assess the global GOF of PMD models, Oj and Ej can be defined ac- 

cording to the LSA of the model. For instance, with the independence PMD model the Oj's are 

frequencies of persons who would (or would not) display a response in a certain situation. In 

general, there are 2SR of such frequencies observed. Furthermore, the Ej's are calculated as 

P x p(y~r 10). With LSA (sp, rsp) the Oj's are frequencies of persons having a specific response 

pattern y} ( j  = 1 . . . . .  2R); the Ej's are calculated as P x p(y}lO).  On the other hand, with 

LSA (srp, rp) the Oj's are frequencies of persons having response pattern y} ( j  = 1 . . . . .  2 s)  

and the Ej's are calculated as P x P(Y~ 10). 
J 

For PMD models, a classical approach to testing can only be used in a limited number of 

cases. First, the reference distribution of the statistic to check the LSA is generally unknown. 

Second, when testing Ho of F features versus H1 of F + r features, Ho is at the boundary of the 

parameter space. In this case, the regularity conditions of LR tests break down (McLachlan & 

Basford, 1988) so that the asymptotic distribution is unknown. Third, when the data are sparse 

the ){2 approximation to the Pearson-){ 2 statistic may be poor, so that simulation of the reference 

distribution might be a useful alternative. 

Having obtained a sample of the posterior distribution, it is straightforward to use the tech- 

nique of posterior predictive checks (PPCs) to evaluate measures of specific and global fit (see 
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Gelman, Carlin, Stern, & Rubin, 1995; Meng, 1994; Rubin, 1984). Gelman, Meng, and Stern 

(1996) define PPC p-values for different types of measures and describe related computational 

procedures. In particular, we may distinguish between two types of measures: statistics that only 

depend on the data, denoted as T(y) and discrepancy measures that depend on the data and the 

parameters, denoted as T(y, 0). In some cases the computation of a statistic also involves a pos- 

terior mode (which is just a complex function of the data). In this way, discrepancy measures can 

actually be turned into a statistic. 

For instance, (7) is a statistic, (9) is obtained by turning the discrepancy measure X2(y, 0) 

into a statistic, and (8) may also be regarded a statistic that is a function of the posterior mode of 

the restricted and the unrestricted model. 

In case of a statistic, the PPC p-value can be computed by generating new data sets yrep (us- 

ing the draws from the posterior) and by computing the proportion of replicated data sets in which 

T(y rep) > T(y). In case of a statistic based on posterior mode(s), the procedure is equivalent, 

except that, to compute the statistic, one has to locate the posterior mode(s). One may note that 

these Bayesian procedures only differ from the classical parametric bootstrap procedure (Efron 

& Tibshirani, 1993) in the way the data are replicated: the former uses draws from the posterior 

to replicate data whereas the latter uses the maximum-likelihood estimate. In case of a discrep- 

ancy measure, the p-value is computed as the proportion of replicated data sets in which realized 

discrepancies (T(y rep, O)) exceed or equal observed discrepancies (T(y, 0)). This procedure is 

computationally less demanding than the one using a statistic (derived from a discrepancy mea- 

sure) because realized and observed discrepancies are computed using a draw from the posterior 

(which was used to replicate the data), rather than an estimate of the posterior mode for each 

replicated data set. 

The different types of PPC p-values can all be interpreted as measures of surprise or incom- 

patibility, that is, extreme p-values indicate a failure of the model to capture the aspect measured 

by T(.). PPC p-values typically are not uniformly distributed under the null model. In particular, 

they are often conservative, which means that their asymptotic distributions are more concen- 

trated around 1/2 than a uniform (Bayarri & Berger, 2000; Meng, 1994; Robins, Van Der Vaart, 

& Ventura, 2000). 

Simulation Study 

A simulation study is conducted to investigate the extent to which information criteria and 

specific/global model checks can help to specify the different aspects of PMD models. As this 

paper focuses on the LSA of the PMD model, results concerning this aspect will be described 

in detail whereas results concerning the mapping rule and the number of features will only be 

briefly summarized (for a more elaborate description, see Meulders, 2000). 

We consider 12 types of models by crossing all levels of three factors: LSA ((srp, rsp) 

or (sp, rsp)), the number of features (1, 2, 3), and the mapping rule (disjunctive communality, 

DC, or conjunctive dominance, CD). These are called the generation models. For each type of 

generation model, 10 data sets with a particular number of situations and responses (S = 20, R = 

6) for each of three sample sizes (P = 100, 300, 1000) are generated using uniformly distributed 

starting values. 

For each data set the EM algorithm is used to locate the posterior mode(s) for each of the 

12 model types, now called analysis models. In addition, for data sets with the smallest sample 

size (P  = 100), Gibbs sampling is used to compute a (local) sample of the posterior for analysis 

models having LSA (srp, rsp) and having a smaller (or the same) number of features than the 

generation model. The reason for not applying the Gibbs sampler to models that assume more 

features than the generation model is that such models are often overparameterized, which may 

complicate the computation of a local sample. In the same way, models having LSA (sp, rsp) are 

not estimated with Gibbs because the posterior is also often multimodal. 
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Specification of  the LSA 

The results of the simulation study show that the likelihood of models (evaluated at the 

posterior mode) with a correct LSA is always higher than the likelihood of models with a wrong 

LSA. Hence, mode-based information criteria (AIC and BIC) have an excellent performance to 

select the LSA of the PMD model. 

To evaluate the capacity of the correlational statistic (7) to distinguish between LSAs (srp, 

rsp) and (sp, rsp), we bootstrapped the 95% confidence interval (CI) of this statistic for each 

situation s and for all pairs of responses r and r*. This yields for each analysis a set of S R ( R  - 

1)/2 = 300 CIs. Note that we use a parametric bootstrap procedure instead of PPCs here because 

the EM algorithm, unlike the Gibbs sampler, is applied to all the cells of the simulation design. 

However, the posterior predictive intervals that are obtained with the PPC approach are very 

similar to the CIs obtained with the bootstrap procedure and lead to the same conclusions. 

The proportion of observed correlations which are below or above their CI are denoted as Pl 

and Pu, respectively. Table 1 shows, for models that were generated and analyzed with a specific 

LSA the means and the 95% CI of Pl and Pu. Note that the results presented in Table 1 are 

obtained by aggregating over all levels of the other factors (number of features, mapping rule, 

and sample size) in the simulation design. 

First, consider the case in which the data are generated with the independence model. When 

using the correct LSA to analyze the data, the 95% CIs of Pl and Pu are rather small ({.007, .043] 

and {.007, .047], respectively) and their means (.023 and .024, respectively) approximate the 

expected value of .025 rather well. On the other hand, when using LSA (sp, rsp), Pl is higher 

than expected (95% CI of [.037, .353] with mean value of .145) and Pu is lower than expected 

(95% CI of [.000, .023] with mean value of .009). Hence, correlations induced by model (sp, rsp) 

are higher than those in the data generated with the independence model. Moreover, we may note 

that especially the distribution of Pl deviates more from the expected value of .025 if the sample 

size increases and that the power of is this test is relatively independent of the (mis)specification 

of other model aspects (not shown in Table 1). 

Second, consider the case in which the data are generated with LSA (sp, rsp). When using 

the correct LSA to analyze the data, the 95% CIs of Pl and Pu are rather large ([.007, .253] and 

[.000, .793], respectively) and the mean values (.067 and .162, respectively) are larger than the 

expected value of .025. A further inspection of the distribution of the values of Pl and Pu in the 

different cells of the simulation design reveals that Pl and Pu are especially large if the number of 

features and/or the mapping rule are wrongly specified. For analysis models with LSA (sp, rsp) 

that are completely correctly specified, the 95% CIs of Pl and Pu ([.007, .055] and [.005, .037], 

respectively) are much smaller and the means (.022 and .017, respectively) are much closer to the 

expected value of .025. On the other hand, when using the independence model for the analysis, 

Pl is lower than expected (95% CI of [.00, .007] with mean value of .001) and Pu is higher than 

expected (95% CI of [.303, .973] with mean value of .731). Hence, observed correlations of data 

generated with model (sp, rsp) are generally higher than predicted by the independence model. 

Moreover, we may note that, especially the distribution of Pu deviates more from the expected 

TABLE 1. 

Mean  and 95% CI of Pl and Pu as a funct ion of the L S A  of  the generat ion and the analysis model  

LSA Pl Pu 

Generation Model Analysis Model Mean CI Mean CI 

(srp, rsp) (srp, rsp) .023 [.007,.043] .024 [.007,.047] 

(srp, rsp) (sp, rsp) .145 [.037,.353] .009 [.000,.023] 

(sp, rsp) (srp, rsp) . 0 0 1  [.000,.007] . 7 3 1  [.303,.973] 

(sp, rsp) (sp, rsp) .067 [.007,.253] .162 [.000,.793] 
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value of .025 with increasing sample sizes and that the power of this test is relatively independent 

of the (mis)specification of other model aspects (not shown in Table 1). 

Finally, we note that the proposed specific model check is more powerful to reject LSA 

(srp, rsp) when the data stem from LSA (sp, rsp) than to reject LSA (sp, rsp) when the data 

are generated with the independence model. This is plausible as model (sp, rsp) is a model  for 

the correlations between pairs of responses and as such, it can capture zero correlations to some 

extent. 

Specification of the Mapping Rule 

The likelihood of models with a correct mapping rule is always higher than the l ikelihood 

of models with a wrong mapping rule. Hence, mode-based information criteria have an excellent 

performance to select this model  aspect. On the other hand, with complex models, a sample- 

based information criterion (DIC) sometimes selects the wrong mapping rule. 

Specification of the Number of Features 

The results of the simulation study show that information criteria, global model checks, 

and a specific model check such as the conditional LR test may lead to different conclusions 

concerning the number of features that is needed. 

Mode-based information criteria (AIC and BIC) always select the correct number of features 

if  the data are generated with LSA (sp, rsp). If  the data are generated with the independence 

model, the BIC, and to a lesser extent the AIC sometimes select models that assume less features 

than the generation model. However, if  the sample size increases both AIC and BIC perform 

better. In particular, for sample sizes equal to 100, 300, and 1000, the AIC selects a smaller 

number of features than the generating model in 7%, 0% and 0% of the cases, respectively; for 

the BIC this is respectively the case in 22%, 7% and 3% of the model selections that were made. 

On the other hand, the results of the DIC (based on the cells of the simulation design in 

which Gibbs sampling was applied) are promising in that it always selects the correct number 

of features. The better performance of the DIC, compared to AIC and BIC, could be explained 

by the fact that it includes a measure of model complexity which is based on the data at hand, 

whereas AIC and BIC involve an approximation that is based on asymptotic theory. 

Finally, a comparison of different PPCs (based on the cells of the simulation design in which 

Gibbs sampling is applied) indicates that under a correct specification of the LSA, more expen- 

sive procedures (in terms of computational costs) generally have more power to reject models 

that assume less features than the generation model. In particular, the conditional LR test is the 

most expensive procedure and it is also the most powerful one, the Pearson-x 2 discrepancy mea- 

sure is cheapest, and it fails to reject parsimonious models most often, and finally, the Pearson-x 2 

statistic takes an intermediate position with respect to computational costs and power to reject 

models that assume less features than the generation model. 

Example  

Data 

As an illustration, PMD models with different LSAs are applied to data that were gathered 

by Vansteelandt (1999) in a study of individual differences in hostile behavior. In this study 316 

subjects indicated on a three-point scale to what extent they would display each of 21 hostile 

responses in each of 14 frustrating situations (0 = not, 1 = limited, 2 = strong). Situations and 

responses were selected from an S-R inventory of hostil i ty (Endler & Hunt, 1968). In this paper 

a subset of 6 situations and 4 responses is analyzed (see Table 2) because an exploratory analysis 

indicated that too many features were needed to obtain a fitting model for the entire data set. To 
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TABLE2. 

Descrip~on ~ situations and responses 

Set  E lemen t  

si tuation 

response 

your  instructor  unfair ly accuses  you  of  cheat ing on an examina t ion  

you  have  j u s t  found  out  that someone  has  told lies about  you  

you  are driving to a par ty and sudden ly  your  car  has  a flat tire 

you  are wait ing at the bus stop and the bus  fails to stop for you  

someone  has  opened  your  persona l  mai l  

you  accidental ly  bang your  shins  against  a park  bench  

become tense 

feel irritated 

curse 

want to strike something or someone 

Note: From "S-R Inventories of Hostility and Comparisons of the Proportions of Variance 

from Persons, Behaviors, and Situations for Hostility and Anxiousness" by N.S. Endler 
and J.M. Hunt, 1968, Journal of Personality and Social Psychology, 9, pp. 310-311. 
Copyright 1968 by the American Psychological Association. Adapted by permission of 

the author. 

apply PMD models, the raw data are dichotomized (0 vs. 1 or 2), given that we, like Vansteelandt 

(1999), were interested in the occurrence of hostile responses, and not in their degree. 

Analysis 

Conjunctive and disjunctive models with LSAs (srp, rsp), (sp, rsp), or (srp, rp) and assum- 

ing 1 up to 6 features are fitted. Figure 1 shows AIC values for the fitted models: Except for 

the one-feature model, models involving LSA (srp, rp) yield a lower AIC than models involv- 

ing the independence assumption or LSA (sp, srp). Furthermore, differences between disjunctive 

and conjunctive models are rather small for models assuming more than 2 features. As the in- 

dependence model is actually a model  for the frequencies in the S x R table, it is saturated for 

F > 2. As a result, the l ikelihood of this model  cannot decrease for F > 2. In order to check the 

results without being hampered by the saturation problem, we have applied each of the models 

to a larger data set (i.e., S = 14, R = 8). These analyses also indicated that the independence 

PMD model has a substantially lower l ikelihood than models with other LSAs and that it should 

be rejected on the basis of a specific model check. As disjunctive models are often more easy 

to interpret, we will further investigate the fit of the disjunctive model with LSA (srp, rp) using 

specific and global model checks. 

Specific model check for the validity of the LSA. The LSA (srp, rp) may be checked by 

computing the 95 % posterior predictive interval of correlations between pairs of situations within 

a response. This yields RS(S - 1)/2 = 60 posterior intervals. The results indicate that, for 

models assuming 1 up to 6 features, none of the observed correlations is below the corresponding 

posterior interval (except for the one-feature model where 22% of the correlations are lower) 

and that the proportion of observed correlations above their posterior interval decreases if  more 

features are added. Furthermore, models assuming 4, 5, and 6 features have a reasonable fit as 

in these cases 93%, 97%, and 98% of the correlations are within their 95% posterior interval. 

When correlations of the same type are checked for the independence model and for LSA (sp, 

rsp), for models assuming 1 up 6 features, only 5% of the correlations could be captured by their 

posterior interval. 

Specific and global model checks to select the number of features. Information criteria and 

specific/global model  checks lead to different conclusions concerning the number of features that 
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FIGURE 1. 

AIC values for disjunctive and conjunctive models having LSA (srp, rap), (ap, rap), or (srp, rp) and assuming 1 up to 6 

features. 

is needed in the present application. In particular, the BIC would select 4 features, the AIC and 

the Pearson-z 2 discrepancy measure would select 6 features and according to the conditional LR 

test and the Pearson-z 2 statistic the data even provide evidence in support for a solution with 

more than 6 features. Finally, according to the DIC at least 6 features are needed. 

In the following section we will discuss the parameters of the four-feature model  more in 

detail. This is the simplest model that has a reasonable fit for the LSA test and it is the best model  

according to the BIC. Also, the AIC did not decrease much after four features. 

Interpretation of Selected Model 

Table 3 shows the posterior means and 95% posterior intervals for the parameters of the 

selected model. The first feature has a high probabili ty of being attributed to most situations and 

must therefore be considered a general frustration feature. Only the situation in which "you bang 

your shins against a park bench" has a low probabili ty of being associated to this feature (.22). 

This first feature is very much linked to "feelings of irritation" as a response (.76). 

The second feature has a high probabil i ty of being attributed to situations in which expressed 

aggressive reactions from the part of the frustrated person are perceived as inappropriate. This 

is very clear and direct in the situation of "being unfairly accused" (.90). Aggression may 

in this situation be inhibited by the presence of the examination instructor, who is usually a 

person of higher status, such as a professor. This second feature may be labeled the aggression- 
is-inappropriate feature. Typical responses that are linked to this feature are "feelings of irrita- 
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tion"(.67) and "becoming tense" (.94), both of which are internal reactions. On the other hand, 

external aggressive reactions such as "cursing" and "wanting to strike something or someone" 

have a low probability to be linked to this feature (.04 and .08, respectively). 

The third feature has a high probability of being attributed to situations without a frustrating 

person that could possibly hear anything from the part of the frustrated person. (e.g., "you are 

waiting at the bus stop and the bus fails to stop for you" (.85); "you are driving to a party and 

suddenly your car has a flat tire" (.89); "you accidentally bang your shins against a park bench" 

(.85)). The third feature may therefore be called the no-frustrating-person-present feature. The 

response that is linked to this feature is a verbal aggressive reaction, namely "cursing" (.73), and 

to a lesser extent it is also linked to irritation (.33). 

Finally, the fourth feature is attributed with a moderate probability to situations in which 

someone shows lack of respect for you (e.g., "someone has told lies about you" (.38); "someone 

has opened your personal mail" (.23)). This is a lack-of-respect feature. This feature is the only 

one that is linked to "want to strike" (.49), and it is very much linked to "feeling irritated" (.73) 

and "cursing" (.73). 

In sum,feelings of irritation occur in all frustrating situations, unless the irritation can be di- 

rectly and freely expressed because no frustrating person is present; becoming tense is specific for 

situations in which hostility may not be shown, cursing occurs when nobody can feel offended, 

and wanting to strike is rather rare and restricted to serious cases of lack of respect. Irritation 

is a rather general response, and if it occurs, it can be accompanied by tension (not showing or 

expressing aggression), or by cursing or wanting to strike (expressing one's aggression). 

General Discussion 

In this paper, the independence assumption of the PMD model is questioned and a taxonomy 

of alternative LSAs is proposed. Going beyond the independence assumption in a particular 

application is advantageous for several reasons: 

First, from a substantive point of view, different LSAs imply different psychological pro- 

cesses and related individual differences for the way in which the data were generated. For in- 

stance, whether or not persons differ in what a situation means to them, as expressed in the 

features that are attributed to a situation, has implications for the LSA. Second, from a method- 

ological point of view, a correct specification of the LSA generally yields more plausible models 

(i.e., with a higher likelihood), and allows to account for correlations in the data. 

For parameter estimation of PMD models, both a mode-finding algorithm (EM) and a 

sampling-based algorithm (Gibbs) are described. As each algorithm has strong and weak points, 

a combined approach is recommended. With respect to model selection, it is shown that infor- 

mation criteria, specific model checks, and checks for global GOF are powerful tools to specify 

the basic assumptions of PMD models, that is, the LSA, the mapping rule, and the number of 

features. 

Finally, some topics need further research. The first topic is the dependency structure of the 

model. The estimation of a model which accounts for correlations between pairs of responses 

and between pairs of situations at the same time (i.e., (sp, rp)) is hampered by theoretical as well 

as practical problems. Although the problem is currently unsolved, we do have some suggestions 

about how to proceed. A first approach, which deals with the theoretical problem, but not with 

the practical one, is to use a probabilistic mapping rule. A second approach, is to build a model 

which assumes that persons differ in the subset of features they are sensitive to for the whole set 

of situation-response pairs that are being judged (Meulders, De Boeck, & Van Mechelen, 2002). 

Such a model can explain correlations between pairs of situations and between pairs of responses 

at the same time, but only in a moderate way, and less well than models with LSA (sp, rsp) or 

(srp, rp) which focus on correlations between reponses and situations, respectively. 

The second topic is the multimodality of the posterior distribution. Using the Gibbs sampler 

for parameter estimation is not straightforward if the posterior distribution is highly multimodal 
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and if the different modes are not well-separated. In particular, it may be the case that several 

modes are visited within one chain which makes summarizing the information in the posterior 

sample less straightforward. To deal with this problem one may use clustering-like tools to clas- 

sify the draws of the posterior depending on the mode they are associated with (Celeux, Hurn, 

& Robert, 2000). If multimodality is due to label-switching, one may use a relabelling algorithm 

(Stephens, 2000). 

Appendix A: Gibbs Sampling Algorithm 

This section describes the different steps of the Gibbs sampler to compute a sample of the 

posterior distribution p(o-, O]Y) for model (sp, rsp). A conjugate prior Beta(0j ]c~, 8) is assumed 

for each parameter Oj. 
In each iteration, the algorithm involves the following steps: 

s from 1. For each pair (s, p) draw the vector xp 

p(x~ly~, o's, O) (x I-I P(YSprlxSp ' Or)p(xSp I~rs)" 
r 

r from 2. For each triple (s, r, p) draw the vector Zsp 

S SF S 
p(z,~ly~ r, xp, Or) cx p(yp Ixp, Z~p)p(z~plOr). 

3. For each pair (s, f )  draw %f from 

B e t a @ + ~ x y ,  f i + ~ ( l - x y ) ) .  
P P 

4. For each pair (r, f )  draw Prf from 

Beta(c~ + ~-~ ~-~ rf r f ) )  
. 

s p s p 

The values of o- and O in subsequent iterations form a Markov chain that converges, under 

some mild regularity conditions, to the true observed posterior distribution (Tanner & Wong, 

1987). 
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