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Abstract

The generalized linear mixed model is commonly used for the analysis of hierarchical non-
Gaussian data. It combines an exponential family model formulation with normally distributed
random effects. A drawback is the difficulty of deriving convenient marginal mean functions with
straightforward parametric interpretations. Several solutions have been proposed, including the
marginalized multilevel model (directly formulating the marginal mean, together with a hierar-
chical association structure) and the bridging approach (choosing the random-effects distribution
such that marginal and hierarchical mean functions share functional forms). Another approach,
useful in both a Bayesian and a maximum likelihood setting, is to choose a random-effects distri-
bution that is conjugate to the outcome distribution. In this paper, we contrast the bridging and
conjugate approaches. For binary outcomes, using characteristic functions and cumulant generat-
ing functions, it is shown that the bridge distribution is unique. Self-bridging is introduced as the
situation in which the outcome and random-effects distributions are the same. It is shown that
only the Gaussian and degenerate distributions have well-defined cumulant generating functions
for which self-bridging holds.

Some Keywords: Cauchy distribution; Characteristic Function; Cumulant; Degenerate Dis-
tribution; Identity Link; Logit link; Log link; Marginalization; Mixed Models; Mixture Distribution;
Probit Link; Random Effects; Random-effects Distribution.

1 Introduction

The class of generalized linear mixed models (GLMM; Breslow and Clayton 1993, Wolfinger and

O’Connell 1993; Molenberghs and Verbeke 2005) is now a standard framework for handling hierar-

chical data of a non-Gaussian nature. In this a generalized linear model, based on the exponential

family and conditional upon the random effects, is combined with a Gaussian distribution for the

latter.

While convenient and flexible, a commonly-quoted drawback for such models is the lack of a closed-

form marginal representation. Zeger, Liang, and Albert (1988) derived exact marginal mean func-
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tions for certain cases, in particular the probit-normal and Poisson-normal, as well as an approximate

marginal mean for the logit-normal case. Molenberghs, Verbeke, and Demétrio (2007) and Molen-

berghs et al (2010) extended the GLMM to incorporate overdispersion random effects, typically cho-

sen to be conjugate to the outcome distribution, that allow a more flexible accommodation of overdis-

persion (McCullagh and Nelder 1989, Hinde and Demétrio 1998ab). For example, the Poisson-normal

model is extended with gamma random effects, and termed the Poisson-gamma-normal combined

model. Other instances include the logit-beta-normal and probit-beta-normal model for binary data,

and the Weibull-gamma-normal for time-to-event responses. In their work, these authors derived

more general marginalization results, with closed-form marginal means, variances, higher-order mo-

ments, and even joint distributions. Predictably, the sole exception is the probit-beta-normal model,

for which only approximate expressions exist. But, even when closed forms arise, they typically fail

to provide functions with convenient parameterizations. For example, the Poisson-gamma-normal

model in general, and the Poisson-normal GLMM in particular, do not produce a single group effect

parameter in nearly all the cases for which the hierarchical model nevertheless does contain such a

parameter. The same is true for all other instances, the sole exception being the linear mixed model

(Laird and Ware 1982, Verbeke and Molenberghs 2000).

This is the reason why alternative approaches have been proposed that facilitate the derivation of

marginal functions and corresponding marginal parameters.

First, Heagerty (1999) and Heagerty and Zeger (2000) proposed the marginalized multilevel model

(MMM), by specifying simultaneously the marginal mean and the mean conditional upon the random

effects. They achieve this by including a connector function that is derived by solving an integral

equation. Second, Wang and Louis (2003, 2004) proposed, for hierarchical binary data and, in the

first instance restricted to a random intercept, an approach where both the hierarchical and the

marginal mean is of a logistic form. To achieve this goal, they chose a particular form for the

random-intercept distribution, termed the bridge distribution, which is derived through the solution

of an integral equation. As well as the logit link, they also consider the probit, complementary

log-log, and Cauchy links. Iddi and Molenberghs (2011) brought together overdispersion correction

and MMM, into a so-called COMMM.
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Molenberghs et al (2012) built upon this work in several ways. First, they showed that the bridge

distribution in the binary-data case is unique. Second, also for the binary case they established that

marginalizing a GLMM, using the MMM framework, and using the bridge concept results in three

different approaches. Third, they derived bridge distributions for several further links and/or for

vector rather than scalar random effects. Fourth, they showed that for the identity and logarithmic

links, vast classes of bridge distributions exist. Fifth, they formally established a relationship between

the three operations mentioned above: (1) marginalizing a GLMM or a combined model; (2) finding

the connector function for a MMM or a COMMM; and (3) deriving the bridge distribution. They

showed that, for the log and identity links, used when outcome variables have supports in the form

of a half line and the real line, respectively, that the three specifications are identical in a number

of situations and exhibit close connections in others. Sixth, they applied the various approaches to

two sets of data, one with a binary outcome, the other with counts. They made generic SAS code

available for all three approaches and for both data types.

Wang and Louis (2003) and Molenberghs et al (2012) used, for binary outcomes, the Fourier trans-

form and its inverse to compute bridge distributions. While elegant as a general solution, it is not

straightforward in practice even for fairly standard distributions when used as inverse link functions.

This is already clear from the motivating case in Wang and Louis (2003), i.e., the logit link. In this

paper, progress is made by exploiting the near identity between a Fourier transform and a characteris-

tic function of a distribution. Some distributions admit a fairly simple characteristic function, in spite

of a complicated density form, or vice versa. Moreover, when the characteristic function is expanded

using a version of the Gram Charlier A series, i.e., admits an exponentiated cumulant generating

function, further progress can be made. After this, two important problems are considered. First,

the bridge problem can be reversed: the random-effects density is given, and a link function is then

derived. Second, uniqueness results are derived.

The aim of this paper is to further develop the concepts of bridging, inverse bridging, and self bridging,

exploiting properties of the characteristic function and its series expansion. It is not our intention to

provide additional applications; for those interested in these we refer to Molenberghs et al (2012),

who provide sufficient tools to apply the models discussed here. In the next section, we review
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existing work on mixing and mixing distributions, as well as the three operations of marginalizing

a GLMM, deriving an MMM, and deriving a bridge distribution. In Section 3, we then introduce

the characteristic function in this context. Inverse bridging and uniqueness results are studied in

Section 4. These results are illustrated by means of several commonly encountered distributions in

Section 5. The concept of self-bridging is introduced and existence and uniqueness results derived

in Section 6.

2 Mixing Distributions

2.1 The Concept of Mixing

To fix notation, suppose a hierarchical outcome Yij is measured for each independent unit i =

1, . . . , N at occasion j = 1, 2, . . . , ni. The response for the ith unit, Y i = (Yi1, Yi2, . . . , Yini
)T is

assumed to follow a distribution f(yi|bi), where bi is a random effect, also called mixing variable. We

allow for the special case that Y i is scalar and hence ni = 1. The conditional distribution f(yi|bi)

is allowed to depend on, perhaps unknown, parameters. These are not essential here and will be

dropped from notation to the extent possible. By f(bi) we refer to the mixing distribution. The joint

distribution is f(yi, bi), which also admits the reverse factorization into the marginal distribution

f(yi) and the predictive distribution f(bi|yi). In Bayesian terms, the mixing distribution is referred

to as the prior, with the predictive distribution the posterior. Continuing in the Bayesian setting, the

marginal distribution is termed the data distribution and the conditional one the likelihood.

conditional/lik mixing/prior joint marginal/data predictive/posterior

f(yi|bi) · f(bi) = f(yi, bi) = f(yi) · f(bi|yi).

(1)

The above notation refers either to densities or probability mass functions, depending on whether the

corresponding arguments are continuous or discrete. Generically, we will refer to them as distributions

and the set of five will be termed a quintuple.

In likelihood terms, the conditional and mixing distributions are specified, but inferences made on

the marginal distribution. Bayesians will formulate a prior and combine it with the likelihood to

draw inferences in terms of the posterior. These conventional routes imply that one needs to pass
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from some components in the quintuple to others. Depending on the parametric forms chosen, such

operations may be simple or cumbersome. We turn to this next.

2.2 Operations on the Quintuple

When both the conditional and the mixing distribution are chosen to be normal, the so-called linear

mixed model results (Laird and Ware 1982, Verbeke and Molenberghs 2000) and it is well known that

then the other three components of the quintuple are normal too. This facilitates both likelihood and

Bayesian inferences. A generic expression, as well as expressions for several particular cases are given

in Appendix A.1. For what follows, a few points need to be made. First, conjugacy is elegant and

convenient for Bayesian inference, because the prior and the posterior share the same distributional

form, with the parameters of the latter updates of the former. In particular, this implies that the

dimensions of the prior and the posterior are identical. Second, these identical distribution forms

do not hold for the likelihood case, where one would use the marginal distribution as given in (1).

While in this case the marginal distribution is expressed as an exponentiated linear combination of

the other three normalizing constants, this can lead to a form that is very different from that of the

conditional distribution. For example, the marginal may be multivariate and the conditional a product

of univariate distributions. Unsurprisingly, from Section A.1, the normal-normal is an exception, but

in all other cases, the marginal distribution is fairly intractable.

Note however that, although the use of conjugacy can lead to marginal models with closed-form

expressions for the moments and marginal density, it does not in general allow us to construct marginal

expectations with pre-specified parametric form. This has the implication that, when interest lies in

a marginal distribution with a pre-specified form in terms of expectation, conjugacy is not a viable

route. We now review three possible alternatives and then focus on the third of these, bridging.

In a generalized linear mixed model (Wolfinger and O’Connell 1993, Breslow and Clayton 1993,

Molenberghs and Verbeke 2005), the conditional distribution is chosen from the exponential family:

fij (yij |θij, bi, φ) = exp{φ−1 [yijθij − ψ(θij)] + c(yij, φ)}, (2)

with the mixing distribution remaining normal. In (2), θij is the natural parameter, ψ(·) is the gen-

erating function, c(·) the normalizing constant, and φ an overdispersion parameter. The dependence
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on bi is usually through the natural parameter, e.g., θij = x′
ijβ+z′

ijbi. Here, xij and zij are design

vectors and β is a vector of fixed but unknown parameters.

An important tool for likelihood inference is the marginal mean µm
i = E(Y i). It can be obtained

from the marginal distribution, or from the conditional mean µc
i = E(Y i|bi) by integrating over the

random effects. Again here, for notational convenience, dependence of the mean on other information

than the random effects is suppressed.

In general though, obtaining the marginal distribution, the marginal mean, or the posterior can

be cumbersome and there are a number of important cases where no closed-form solution exists.

This is because the conditional mean may not be a linear function of the random effects. For the

exponential family, it is customary to introduce the concept of an inverse link function g(·) such that

θij = g−1(µc
ij).

When the conditional distribution is Bernoulli and the logit link is chosen together with a normal

mixing distribution, then there is no closed form for µm
ij , let alone for the marginal distribution. While

Molenberghs et al (2010) have shown that for a number of cases closed forms exist for the marginal

distributions, means, variances, and higher moments, it remains of value to consider choices for the

distributions such that marginals and posteriors remain tractable.

Heagerty (1999) formulated a so-called marginalized multilevel model (MMM) approach by requiring

g−1(µm
ij ) = x′

ijβ, (3)

g−1(µc
ij) = ∆ij + z′

ijbi, (4)

Here, the function ∆ij connects the marginal and conditional means through the same link function.

Wang and Louis (2003) specified a model by requesting that the marginal mean and the conditional

mean are specified by identical link functions, with predictors that are the same up to a multiplicative

factor φ and an offset k:

g−1(µm
ij ) = k + φx′

ijβ, (5)

g−1(µc
ij) = x′

ijβ + z′
ijbi. (6)

Specification (5)–(6) is similar to (3)–(4), but now the random-effects distribution of bi is unknown,
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rather than the connector ∆ij in (4). From (5) and (6) the random-effects distribution needs to be

solved. We term this the bridge operation.

Molenberghs et al (2012) drew attention to the fact that marginalization, MMM, and bridging can

be formulated in terms of integral equations. Assume that the fixed predictor x′
ijβ and random

predictor z′
ijbi are pre-specified, as well as the link function g−1(·). The integral equations are as

follows.

Marginalization: The mixing distribution f(bi) is given, while the marginal mean is unknown. This

leads to the explicit integral:

µm
ij =

∫
g(x′

ijβ + z′
ijbi)f(bi)dbi. (7)

It is also possible to marginalize the entire distribution, as given in (1).

Marginalized Multilevel Model Integral Equation: The random-effects density f(bi) is given,

with the connector function ∆ij unknown and identified through the relationship:

µm
ij = g(x′

ijβ) =

∫
g(∆ij + z′

ijbi)f(bi)dbi. (8)

Bridge Integral Equation: The random-effects density f(bi) is unknown, as well as the constants

k and φ, but are identified through:

µm
ij = g(k+ φx′

ijβ) =

∫
g(x′

ijβ + z′
ijbi)f(bi)dbi. (9)

As before, the identifying relationship is the solution to an integral equation.

MMM and bridging are intended to produce convenient expressions that facilitate parametric infer-

ences based on the marginal model. Alternatively, one can ensure that the components in (1) satisfy

conjugacy (Cox and Hinkley 1974, p. 370; McCullagh and Nelder 1989). The conditional and mixing

distributions are said to be conjugate if and only if they can be written in the generic forms:

f(yij |θij) = exp
{
φ−1[yijh(θij)− ψ(θij)] + c(yij, φ)

}
, (10)

f(θij) = exp {γ[λh(θij)− ψ(θij)] + c∗(γ, λ)} , (11)
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where ψ(θij) and h(θij) are functions, φ, γ, and λ are parameters, and the additional functions

c(yij, φ) and c∗(γ, ψ) are so-called normalizing constants. Note that (10) differs slightly from (2) in

that θij is now replaced by a function. This is not essential because the function can be absorbed

into the parameter itself. More fundamental is the fact that in (2) bi is random and θij is fixed,

whereas in (10) bi is not present but rather θij is random. Both formulations give rise to different

classes of models. The earlier one leads to GLMM, whereas the current formulation is behind

overdispersion models. Molenberghs et al (2007, 2010) combined both into a single model; this will

not be considered here.

It can then be shown, upon constructing the joint distribution from (10) and (11) and then con-

structing the reverse factorization, that the marginal and predictive distributions are:

f(yij) = exp

[
c(yij, φ) + c∗(γ, λ)− c∗

(
φ−1 + γ,

φ−1yij + γλ

φ−1 + γ

)]
, (12)

f(θij |yij) = exp

{
(φ−1 + γ)

[
φ−1yij + γλ

φ−1 + γ
h(θij) − ψ(θij)

+c∗
(
φ−1 + γ,

φ−1yij + γλ

φ−1 + γ

)]}
. (13)

The marginal model (12) is used for likelihood inferences. It is expressed in terms of the three

normalizing constants of (10), (11), and (13). The posterior (13) is used for Bayesian inference and

can be seen as an update of (11) by replacing the prior by the posterior parameters:

γ → φ−1 + γ, λ → φ−1yij + γλ

φ−1 + γ
.

In other words, conjugacy leads in Bayesian terms to retention of the distributional form when going

from prior to posterior, upon updating the parameters. In likelihood terms, where f(y) is used,

conjugacy leads to a marginal consisting of the three normalizing constants, as is clear from (12).

This, while elegant, is a different parametric form than the conditional distribution (10). It is here

that the bridge operation comes in, to preserve, not the entire distribution, but the parametric form

of the mean function.

In the Appendix, several examples of conjugate quintuples are given.
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2.3 Bridging

Aa stated at the end of the previous section and, in contrast to conjugacy, which operates at the

level of the distributions, bridging is defined through (5) and (6) and operationalized in (9) at the

level of the means. Molenberghs et al (2012) considered three generic cases.

The first one is where the mean function takes values on the entire real line. A natural link is then

the identity and the bridging problem is trivial. In that case, the bridge equation is satisfied by any

integrable function. Moreover, marginalization, bridging, and the MMM operations are identical.

This is seen by assuming that bi follows a distribution with finite mean and density f(bi), producing

φ = 1 and kij = z′
ijE(bi).

The second case arises for mean functions taking non-negative values only over a half line; without

loss of generality, assume that they take values over the nonnegative real numbers. A natural

link is then the logarithmic function. Marginalizing the corresponding Poisson-normal GLM is then

also straightforward (Zeger, Liang, and Albert 1988, Molenberghs, Verbeke, and Demétrio 2007,

Molenberghs et al 2012):

E(Yij) =

∫
ex

′

ijβ+z′

ijbiϕ(bi)dbi = ex
′

ijβ+ 1

2
z′

ijDzij . (14)

The connector function for the MMM, in the Poisson case, then is:

∆ij = x′
ijβ − 1

2
z′

ijDzij. (15)

For the bridge distribution, the corresponding equation is:

ekij+φx′

ijβ =

∫
ex

′

ijβ+z ′

ijbif(bi)dbi, (16)

satisfied by not only the normal but a wide class of mixing distributions. For the normal, φ = 1, and

kij = 1
2z′

ijDzij. As in the case of the identity link, the three operations are strongly related, though

not identical. Indeed, for the marginalized GLMM and for the bridge, the constant kij appears in the

marginal mean, whereas the same constant appears in the connector when considering the MMM.

Molenberghs et al (2012) considered this log-linear case for the Poisson distribution, the Weibull

distribution, the gamma distribution, and the Inverse Gaussian distribution.
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The third case, for which the mean function takes values through an interval, is fundamentally

different from the other two and will be the focus in the remainder of the paper. The generic

example is binary data where the conditional distribution is Bernoulli or, more generally, binomial,

although a variety of other examples, such as percentages, could be considered as well. While

intervals other than the unit interval could be considered, we focus here without loss of generality

on the unit interval. Because the link function should be a one-to-one map between the unit interval

and the real line, it is necessarily a distribution function. So, in contrast to the linear and log-linear

cases, the bridge equation (9) can be seen as a relationship between two density functions. Although

the function g(·) is a distribution rather than density function, Wang and Louis (2003) have shown

how the equation can be transformed to give an integral equation between two densities. Writing

H(·) ≡ g−1(·), Wang and Louis (2003) showed that the bridge equation becomes:

H(k+ φη) =

∫
H(b+ η)f(b)db. (17)

Here, η ≡ x′
ijβ for ease of notation. Their derivation was focused on a random intercept only.

Because our development builds upon Wang and Louis’s (2003) work, we provide a brief review of

the relevant steps. Taking derivatives on both sides of (17) with respect to η, leads to

φh(k + φη) =

∫
h(b+ η)f(b)db, (18)

with h = H ′, the first derivative. This is a convolution: h ∗ f−b(η) = φh(k + φη). The subscript

−b refers to sign reversal. They then transformed this equation to the Fourier domain and applied

properties of the Fourier transform to yield:

Ff−b(ξ) = eikξ/φFh(ξ/φ)
/
Fh(ξ), (19)

where

(Fh)(ξ) =

∫
e−iξxh(x)dx, (20)

the Fourier transform. Clearly, (20) maps the density corresponding to the inverse link function to

its characteristic function, as also noted by Wang and Louis (2003). This property will be taken up

in the next section. Applying the inverse Fourier transform yields the generic solution to (17):

f(b) =
1

2π

∫
ei(k/φ−b)ξ (Fh)(ξ/φ)

(Fh)(ξ) dξ. (21)
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Wang and Louis (2003) also showed that, for symmetric h(·), k = 0, and that 0 ≤ φ ≤ 1.

We note as well that the existence and uniqueness of the bridge density is guaranteed. Existence holds

whenever h(·) is integrable and non-degenerate, which is satisfied for all conventional links, precisely

stemming from the connection with density functions. Uniqueness follows by construction and from

the uniqueness of the Fourier transform. Uniqueness will be revisited in terms of the characteristic

function in the next section.

In what follows, we will be using three particular instances: the logit, probit, and Cauchy. We now

set out existing results on these.

First, Molenberghs et al (2012) drew attention to the fact neither the marginal mean nor the

connector function in the MMM, for a normal random effect, have a closed form. It then follows that

the normal distribution is not bridge. In fact, Wang and Louis (2003) derived an entirely different

solution, by solving:

expit(k + φx′
ijβ) =

∫

b
expit(x′

ijβ + bi)f(bi)dbi. (22)

Their solution, derived based on (21) and Fourier transform operations, reads k = 0 and

f(bi) =
1

2π

sin(φπ)

cosh(φbi) + cos(φπ)
, (23)

with

φ =
1√

1 + 3
π2 d

, (24)

and d the random-intercept variance. Wang and Louis (2003) studied the properties of (22).

Second, matters are entirely different for a probit link. In that case, the marginal mean function is

explicit (Zeger, Liang, and Albert 1988, Griswold and Zeger 2004, Molenberghs et al 2010):

E(Yij) = Φ
(
φij · x′

ijβ
)

=

∫

b
Φ(x′

ijβ + z′
ijbi)ϕ(bi)dbi, (25)

with

φij =
1√

1 + z′
ijDzij

, (26)

as is the connector function for the probit-normal GLMM:

∆ij = φ−1
ij x′

ijβ =
√

1 + z′
ijDzij · x′

ijβ. (27)
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Molenberghs et al (2012) derived from (25) that the normal density is the bridge with k = 0 and

φij as in (26). Thus, as opposed to the logit case, all three operations lead to closed forms and can

be said to coincide, up to perhaps a multiplicative factor of the form (26).

It is important to realize that a probit link admits the normal distribution as a bridge. Stated

differently, the normal is “self-bridging,” a concept that we will formally define and return to in

Section 6.

Third, when the Cauchy distribution

H(η) =
1

π

(π
2

+ arctanη
)

is used, the corresponding density is h(η) =
[
π(1 + η2)

]−1
, with Fourier transform (Fh)(ξ) =

exp(−|ξ|), a well-known special Fourier transform (Spiegel 1968, p. 176, Section 33.18). The bridge

density then simply follows:

f(b) =
1

2π

∫ +∞

0

e−ibξ− ξ

φ
+ξdξ +

1

2π

∫ 0

−∞

e−ibξ+ ξ

φ
−ξdξ =

1

π

(φ−1 − 1)

(φ−1 − 1)2 + b2
.

Hence, the standard Cauchy link produces a Cauchy bridge with parameter c2 = (φ−1 − 1)2, leading

to φ = (c+ 1)−1. Interestingly, the Cauchy is also “self-bridging,” and this will be revisited as well

in Section 6.

3 Bridging Using Characteristic Function

As seen in the previous section, the Fourier operation employed by Wang and Louis (2003) is closely

linked with the use of the characteristic function. Given the vast body of results on the characteristic

function, it is of interest to examine this further.

Because the characteristic function of a distribution H is defined as

ϕh(ξ) =

∫
eiξxh(x)dx, (28)

the connection with Fourier transform (20) is immediate, a fact also noted by Wang and Louis

(2003). This implies that (19) can be restated as

ϕh(ξ) · ϕf(ξ) = e−ikξ/φ · ϕh(ξ/φ). (29)
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The importance of this lies in the fact that there are many useful results known about the char-

acteristic function of a distribution. We will make use of these in what follows, especially results

about series expansions of such functions. Clearly the characteristic function representation of the

bridge integral equation transforms in into multiplicative equation (29). This is hardly surprising,

because it restates the approach of Wang and Louis. However, we may consider whether the other

integral-equation operations, marginalization and MMM construction, can be restated in a parallel

way.

For marginalization equation (7), a characteristic function representation is possible only when all

functions involved are densities. However, we do have densities for binary datae real line, because

a link functions is a 1-to-1 map between the unit interval and the real line. Thus, upon writing

`(ηij) = µm
ij , with ηij = x′

ijβ, and further restricting attention to a random intercept example

z′
ijbi = bi, we obtain the following characteristic function representation of (7):

ϕ`(ξ) = ϕh(ξ) · ϕ ef
(ξ), (30)

where h = g−1 in this case, and f̃ reflects the necessary sign change of the argument, because of

the argument ηij + bi of h leads to a convolution only if the sign of the argument of f is reversed.

Evidently, for symmetric densities f this is immaterial.

Applying (30) to the logistic normal model, with

ϕh(ξ) = B(1 − iξ, 1 + iξ) = Γ(1 − iξ) · Γ(1 + iξ) =
2πξ

eπξ − e−πξ
,

and ϕf(ξ) = exp
[
−1

2ξ
2σ2
]
, we immediately find that

ϕ`(ξ) =
2πξe−

1

2
ξ2σ2

eπξ − e−πξ
.

Thus, the characteristic function of the “marginal mean density,” (i.e., inverse link function) has a

closed form, even though the marginal mean itself does not.

For MMM, the situation is not so straightforward. We write (8) in simplified notation as:

h(η) =

∫
h(∆ + b)f(b)db,
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then the transform equation in terms of ∆ is

∫
ei∆ξh(η)d∆ =

∫ ∫
ei∆ξh(∆ + b)f(b)d∆, (31)

where ∆ and η are functions of each other. Writing η = η(∆), (31) becomes

∫
ei∆ξH(∆)d∆ = ϕh(ξ) · ϕ ef

(ξ), (32)

where H(∆) = h(η(∆)). This is not a very practicable result. As we will see next, the main use of

the characteristic-form representation is with bridging.

4 Bridging, Inverse Bridging, and Uniqueness

Characteristic function representation (29) of the bridge equation is useful in its own right. This is

clearly the case for distribution with a relatively simple characteristic function. For example if h is

chosen to be the standard normal density, the ϕh(ξ) = exp(−0.5ξ2) and hence

ϕf(ξ) exp

[
(iξ)

1!

k

φ
+

(iξ)2

2!

(
1

φ2
− 1

)]
, (33)

which implies that f can only be the normal density with mean µ = k/φ and variance σ2 = 1/φ2−1.

The exponentiated Taylor series expansion form of (33) is not a coincidence and is reminiscent of

the Gram-Charlier A series (Kolassa 2006) expression of a characteristic function, used to write a

characteristic function of an arbitrary density as a series expansion “around” the normal density, with

the same possible for the density itself. Rather than considering the Gram-Charlier A series, we will

adopt the general exponential series expansion:

ϕh(ξ) = exp

(
∞∑

r=1

κ
(h)
r (iξ)r

r!

)
, (34)

where κ
(h)
r is the rth cumulant of h. Using (34) for both h and f , characteristic-function condition

(29) becomes:
∞∑

r=1

κ
(f)
r (iξ)r

r!
+

∞∑

r=1

κ
(h)
r (iξ)r

r!
= −(iξ)

k

φ
+

∞∑

r=1

κ
(h)
r (iξ)r

φrr!
. (35)

This is equivalent to the set of conditions:

κ
(f)
1 + κ

(h)
1 =

κ
(h)
1

φ
− k

φ
, (36)

κ(f)
r + κ(h)

r =
κ

(h)
r

φr
, (r ≥ 2). (37)
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Conditions (36) and (37) allow us to find the cumulants and hence characteristic function of f in

terms of these of h:

κ
(f)
1 = −k

φ
+

(
1

φ
− 1

)
κ

(h)
1 , (38)

κ(f)
r =

(
1

φr
− 1

)
κ(h)

r , (r ≥ 2), (39)

and vice versa:

κ
(h)
1 =

φ

1− φ

(
k

φ
+ κ

(f)
1

)
, (40)

κ(h)
r =

φr

1− φr
κ(f)

r , (r ≥ 2). (41)

These equations establish the unique correspondence between f and h, provided that both have

existing, finite cumulants of all orders. Of course, this is up to some parametric freedom at the first

order.

Equations (40)–(41) show that not only one can derive the bridge density corresponding to a given

density (inverse link function), but also that the reverse operation can be conducted. We will refer

to this as the inverse bridge operation.

The above establishes the theorem:

Proposition 1 Provided that an inverse link function f and a random-effects distribution h both

admit a cumulant generating function and that they are in a bridge relationship, then h is unique to

f and vice versa.

5 Illustration

Using bridging and inverse bridging we recover in a straightforward way the results from Wang and

Louis and from our previous paper (normal, Cauchy, t,. . . ) and several others that we present in the

supplementary material.

Note that the Cauchy distribution is a special case in the sense that it does not admit a cumulant

generating function, which is necessary for the results of the previous section. Nevertheless, from its
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characteristic function we have shown, along with Wang and Louis (2003), that it too is self-bridging.

We will return to the Cauchy once more in the next section.

On the other hand, the degenerate distribution, often considered irregular, is regular when its char-

acteristic function is considered. Indeed, if f(x) = δa, then ϕf (ξ) = exp(iξa), and (29) is satisfied

for both h and f degenerate. Indeed, the condition implies that

iξah + iξaf = −k
φ
iξ + iξ

ah

φ
,

immediately yielding the equations linking f to h and reverse relationship:

af = ah

(
1

φ
− 1

)
− k

φ
, (42)

ah =
φ

1 − φ
af +

1

1 − φ
k. (43)

Relations (42)–(43) are derived from the characteristic function and not from the cumulant generating

representation. However, the same would follow immediately, given the form of the characteristic

function. In fact, the characteristic function of the degenerate distribution is a simple special case of

that of the normal, with the second cumulant now also equal to zero, apart from the ones of order

3 and higher. The degenerate distribution is also self bridging so, provided, φ < 1, f degenerate

implies that h is degenerate and vice versa.

As another example, take h to be the loggamma density:

h(x) =
e−αxe−e−x

Γ(α)
, (44)

with characteristic function

ϕh(ξ) =
Γ(α− iξ)

Γ(α)
, (45)

leading to the condition:

Γ(α− iξ)

Γ(α)
· ϕf(ξ) = e−

iξk

φ ·
Γ
(
α− i ξ

φ

)

Γ(α)
, (46)

which, in turn, leads to the following expression for the characteristic function of f :

ϕf (ξ) = e
− iξk

φ ·
Γ
(
α − i ξ

φ

)

Γ(α− iξ)
. (47)
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Conversely, start from f loggamma, i.e., ϕf (ξ) takes the form (45), leading to condition:

ϕh(ξ) · Γ(α − iξ)

Γ(α)
= e

− iξk
φ · ϕh

(
ξ

φ

)
. (48)

Clearly, condition (48) is more involved than its counterpart (46). We therefore use the characteristic-

function form:

ϕh(ξ) = exp

[
+∞∑

r=1

κ
(h)
r (iξ)r

r!

]
,

which allows us to rewrite (48) as

+∞∑

r=1

κ
(h)
r (iξ)r

r!
+ ln Γ(α− iξ)− lnΓ(α) =

−iξk
φ

+
+∞∑

r=1

κ
(h)
r (iξ)r

φrr!
. (49)

Write

lnΓ(α − iξ) = ln Γ(α) +
+∞∑

r=1

γ(r) (−iξ)r

r!
,

then (49) becomes

+∞∑

r=1

κ
(h)
r (iξ)r

r!
+

+∞∑

r=1

γ(r)(−i)r ξ
r

r!
=

−iξk
φ

+

+∞∑

r=1

κ
(h)
r

φr

(iξ)r

r!
.

Equating powers leads to

κ
(h)
1 =

φ

1 − φ

(
k

φ
− γ(1)

)
,

κ
(h)
5 =

φr

1 − φr
(−1)rγ(r), (r ≥ 2),

with γ(r) the rth derivative of ln Γ(α+x), evaluated at x = 0. In other words, γ(1)(α) = ψ(α), the

digamma function and, for r ≥ 2,

γ(r)(α) = ψ(r−1)(α) =
dr

dαr
ln Γ(α) =

dr−1

dαr−1
ψ(α),

the polygamma function.

Returning to expression (47) and using the conventional characteristic function expansion for f , the

equation can be written:

+∞∑

r=1

κ
(f)
r (iξ)r

r!
= −iξk

φ
+

+∞∑

r=1

γ(r)

φr

(−iξ)r

r!
−

+∞∑

r=1

γ(r) (−iξ)r

r!
.

This leads to

κ
(f)
1 = −k

φ
− γ(1)

(
1

φ
− 1

)
,

κ(f)
r = γ(r)(−1)r

(
1

φr
− 1

)
, (r ≥ 2).
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6 Self Bridging

We have found up to this point that three distributions are so-called self bridging, in the sense that

their f and h have the same parametric form, up to the values taken by the parameters. These are

the normal, Cauchy, and degenerate distributions.

We term a distribution regular if all of its cumulants exist and are finite, implying that it permits a

cumulant generating function. This allows us to formulate and prove the following theorem:

Proposition 2 If a regular distribution is self-bridging, then it is either the normal or the degenerate

distribution.

Proof. Conditions (29) for self-bridging distributions become

ϕh(ξ)e
− ξek

eφ · ϕh

(
ξ

φ̃

)
= e

− ξk
φ · ϕh

(
ξ

φ

)
, (50)

where k̃ and φ̃ are introduced to ensure that the inverse link and mixing distributions are the same

up to a change in location and scale. From regularity, (50) is equivalent to the conditions:

κ1

(
1 + φ̃−1 − φ−1

)
=

k̃

φ̃
− k

φ
, (51)

κr

(
1 + φ̃−r − φ−r

)
= 0. (52)

The range for φ is [0, 1] while φ̃ can take any non-negative value, and from the presence of the

location parameters, (51) can always be satisfied, whatever the scale parameters and first cumulant.

Next, (52) is clearly satisfied if all cumulants from order 2 onwards up to at most one are equal to

zero. If all are zero, then the degenerate distribution results. If κ2 6= 0 but all others equal zero, then

the normal distribution results. Further, if for one given r ≥ 3, together with κ1, then a polynomial

cumulant generating function results of order at least 3. However, Lukacs (1970) showed that there

are no distributions with such a cumulant generating function.

The one remaining situation is where κr 6= 0 and κs 6= 0 for r 6= s. Note that, if this does occur, then

there must be infinitely many of them unequal to zero, because otherwise a polynomial characteristic

function would again result. But we can show that already for two values, this is not possible. Indeed,

in this case, the second factors on the left hand side of (52) would have to be zero for r and s,
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implying that (1 + λ̃r)1/r = λ = (1 + λ̃s)1/s, where λ = φ−1 and λ̃ = φ̃−1. This can be written as

||(1, λ̃)||r = ||(1, λ̃)||s. However, the norms are ordered, with equality holding only when λ = 1 and

λ̃ = 0, which does not correspond to a finite solution for φ̃. This completes the proof.

Now, we have seen in Section 2.3 that also the Cauchy distribution is self-bridging. This is not

in conflict with Theorem 2 because the Cauchy distribution does not admit a regular cumulant

generating function. Indeed, for the general Cauchy density:

h(x) =
1

πγh
· 1[

1 +
(

x−µh

γh

)] , (53)

the characteristic function is:

γh(ξ) = eµhiξ−γh|ξ|. (54)

Requiring that also f is of the form (53), with parameters µf and γf , then the correspondence

equations become:

µf = µh

(
φ−1 − 1

)
, µh = φ

1−φ · µf ,

γf = γh

(
φ−1 − 1

)
, γh = φ

1−φ · γf .

(55)

Note that, when φ = 0.5, then f and h are not only both Cauchy, but identical Cauchy distributions.

So, the Cauchy distribution is self bridging, even though the characteristic function is not of the

usual cumulant generating function form, because none of the cumulants exist.

From a practical perspective, only the normal distribution is self-bridging and a candidate for data

analysis. This implies that the three operations in all other cases differ from each other, to varying

degrees. So, the choice between them has genuine substantive implications.

7 Concluding Remarks

This paper is concerned with the general problem of constructing marginal expectations and their

parameters from generalized linear mixed models (GLMM) and their extensions. We focused on one

particular framework, the so-called bridging operation. Because the expectation operator is linear and

multiplicative, the identity link case is trivial, while the logarithmic case is straightforward, and these

have been dealt with in Molenberghs et al (2012). The identity link corresponds to random variables
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with real-line support, the logarithmic with half lines. This leaves the important case of variables

with finite-interval support. Without loss of generality, we restricted attention to the unit interval.

This is the setting considered by both Wang and Louis (2003) and Molenberghs et al (2012).

We have developed these results for interval data, using the concept of conjugacy on the one hand

and the bridging operation on the other. We saw that conjugacy is a natural device for the Bayesian

paradigm, but is not when interest lies in the marginal distribution with a pre-specified form in terms

of expectation.

This suggests considering quintuples with a conditional and marginal factor with the same parametric

form, which can be achieved through the bridging operation. We have shown that using the char-

acteristic function and its series expansions facilitates bridging and also allows for inverse bridging,

which means that the parametric form for the random-effects distribution is pre-specified and the

inverse link defining the mean function derives from the operation. Through this representation,

uniqueness results can be readily derived.

Finally, we have introduced the concept of self-bridging, meaning that the random-effects distribution

and the inverse link function are of the same form. We established that it is an extremely strong

condition in the sense that there is only one practically useful regular instance: the normal function.

The other regular instance, in the sense of admitting a characteristic function with series expansion,

is the degenerate distribution. Other instances necessarily will be irregular. One example, studied

here, is the Cauchy. This irregular case, as well as others, is not considered here, and is unlikely to

be useful in practice.
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Supplementary Materials

A Conjugate Quintuples

To simplify notation, indices will be removed from outcome and parameters.

A.1 The Normal-normal Model

The quintuple is:

f(y|b) ∼ N (Xβ + Zb,Σ),

f(b) ∼ N (0, D),

f(y, b) ∼ N

[(
Xβ

0

)
,

(
ZDZ ′ + Σ ZD

DZ ′ D

)]
,

f(y) ∼ N (Xβ, ZDZ ′ + Σ),

f(b|y) ∼ N [DZ ′(ZDZ ′ + Σ)−1(Y −Xβ), (Z ′Σ−1Z +D−1)−1].

These expressions can be found, among others, in Searle, Casella, and McCulloch (1996).

A.2 The Beta-binomial Model

The quintuple is:

f(y|θ) =

(
n
y

)
θy(1− θ)n−y,

f(θ) =
θα−1(1 − θ)β−1

B(α, β)
= Beta(α, β),

f(y, θ) =

(
n
y

)
B(α, β)

θy+α−1βn−y+β−1
,

f(y) =

(
n
y

)
B(y + α, n− y + β)

B(α, β)
,

f(θ|y) =
θy+α−1(1− θ)n−y+β−1

B(y + α, n− y + β)
= Beta(y + α, n− y + β).

1



A.3 The Poisson-gamma (Negative Binomial) Model

The quintuple is:

f(y|θ) =
θye−y

y!
,

f(θ) =
θα−1e−θ/β

Γ(α)
= Gamma(α, β),

f(y, θ) =
θy+α−1e−θ(1+1/β)

y!Γ(α)
,

f(y) =
1

y!
· Γ(y + α)

Γ(α)
,

f(θ|y) =
θy+α−1e−θ/[β/(β+1)]

Γ(y + α)
= Gamma[y + α, β/(β + 1)].

A.4 The Gamma-gamma Model

The quintuple is:

f(y|β) =
1

Γ(α)
yα−1e−βyβα = Gamma(α, β),

f(β) =
1

Γ(α0)
βα0−1e−ββ0βα0

0 = Gamma(α0, β0),

f(y, β) =
1

Γ(α)Γ(α0)
yα−1eβ(y+β0βα+α0−1βα0

0 ,

f(y) =
Γ(α+ α0)

Γ(α)Γ(α0)
· βα0

0

(y + β0)α+α0
=

1

y
Beta

(
y

y + β0
;α, α0

)
,

f(β|y) =
1

Γ(α+ α0)
e−β(y+β0))(y + β0)

α+α0βα+α0−1 = Gamma(α+ α0, y + β0).

A.5 The Dirichlet-multinomial Model

The quintuple is:

f(y1, . . . , yn|θ1, . . . , θn) =

(
N

y1, . . . , yn

)
θy1

1 . . . θyn
n =

(
N

y

)
θy ,

f(θ) =
1

B(α)

n∏

i=1

θαi−1
i = Dirichlet(α),

f(y, θ) =

(
N
y

)
1

B(α)

n∏

i=1

θyi+αi−1
i ,

f(y) =

(
N

y

)
1

B(α)
B(y + α),

f(θ|y) =
1

B(y + α)

n∏

i=1

θyi+αi−1
i = Dirichlet(y + α).

with
∑n

i=1 yi = N , 0 ≤ αi ≤ 1, and
∑n

i=1 αi = 1.
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A.6 General Conjugate Exponential Families

The quintuple is:

f(y|θ) = exp
{
φ−1[yh(θ) − ψ(θ)] + c(y, φ)

}
,

f(θ) = exp {γ[λh(θ)− ψ(θ)] + c∗(γ, λ)} ,
f(y, θ) = exp

[
(φ−1y + γλ)h(θ)− (φ−1 + γ)ψ(θ) + c(y, φ) + c∗(γ, λ)

]
,

f(y) = exp

[
c(y, φ) + c∗(γ, λ)− c∗

(
φ−1 + γ,

φ−1y + γλ

φ−1 + γ

)]
,

f(θ|y) = exp

{
(φ−1 + γ)

[
φ−1y + γλ

φ−1 + γ
h(θ) − ψ(θ) + c∗

(
φ−1 + γ,

φ−1y + γλ

φ−1 + γ

)]}
.

B Additional Bridge Distribution Results

Apart from the cases listed in the main paper, Wang and Louis (2003) and Molenberghs et al (2012)

derived a couple of others. These are reviewed here.

For the complementary log-log H(η) = 1 − exp[− exp(η)], Wang and Louis (2003) derived the
bridge:

f(b) =
1

2π

∫
ei(k/φ−b)ξ

Γ
(
1 − iξ

φ

)

Γ(1 − iξ)
dξ,

with φ =
(
1 + 6π−2d

)−1
. Thus, the log-positive stable distribution is the bridge for the complemen-

tary log-log link. Γ(·) is the gamma function.

Molenberghs et al (2012) considered Student’s t distribution as an inverse link function, with density

hν(η) =
Γ
(

ν+1
2

)
√
νπΓ

(
ν
2

)
(

1 +
η2

ν

)−ν+1

2

.

Hurst (1995) shows that the characteristic function is

(Fhν)(ξ) =
Kν/2 (

√
ν|ξ|) · (√ν|ξ|)ν/2

Γ(ν/2)2ν/2−1
, (56)

where Kα(ξ) is the modified Bessel function of the second kind, with index α (Abramowitz and
Stegun 1964, p. 375). Using generic expression (21) and (56), together with the fact that symmetry

implies k = 0, the bridge distribution for the t link can be shown to be:

fν(b) =
1

2πφν/2

∫
e−ibξ

Kν/2

(√
ν
∣∣∣ ξ
φ

∣∣∣
)

Kν/2 (
√
ν|ξ|) dξ. (57)
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