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Abstract. Elliptic curves with small embedding degree and large prime-order sub-
group are key ingredients for implementing pairing-based cryptographic systems. Such
“pairing-friendly” curves are rare and thus require specific constructions. In this pa-
per we give a single coherent framework that encompasses all of the constructions of
pairing-friendly elliptic curves currently existing in the literature. We also include new
constructions of pairing-friendly curves that improve on the previously known con-
structions for certain embedding degrees. Finally, for all embedding degrees up to 50,
we provide recommendations as to which pairing-friendly curves to choose to best
satisfy a variety of performance and security requirements.

Key words. Elliptic curves, Pairing-based cryptosystems, Embedding degree, Effi-
cient implementation.

1. Introduction

There has been much interest in recent years in cryptographic schemes based on pair-
ings on elliptic curves. In a flurry of research results, many new and novel protocols
have been suggested, including one-round three-way key exchange [44], identity-based
encryption [12,75], identity-based signatures [19,70], and short signature schemes [13].
Some of these protocols have already been deployed in the marketplace, and developers
are eager to deploy many others.

However, whereas standard elliptic curve cryptosystems such as ElGamal encryption
or ECDSA can be implemented using randomly generated elliptic curves, the elliptic
curves required to implement pairing-based systems must have certain properties that
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randomly generated elliptic curves are unlikely to have. To this end it is important that it
should be easy to find such “pairing-friendly” elliptic curves for all kinds of applications
and all desired levels of security.

Our contribution in this paper is threefold:

• To gather all of the existing constructions of pairing-friendly elliptic curves into a
single coherent framework;

• To describe several new constructions of pairing-friendly elliptic curves that im-
prove on existing constructions for certain embedding degrees;

• To recommend curves to use for a variety of security levels and performance re-
quirements.

1.1. Pairings and Embedding Degrees

The most common pairings used in applications are the Tate and Weil pairings on el-
liptic curves over finite fields; other proposed pairings include the Eta pairing [8], the
Ate pairing [42], and their generalizations [41]. Given an elliptic curve E defined over
a finite field Fq , all of these pairings take as inputs points on E that are defined over
Fq or over an extension field Fqk and give as output an element of F

×
qk . For a pairing-

based cryptosystem to be secure, the discrete logarithm problems in the group E(Fq)

of Fq -rational points on E and in the multiplicative group F
×
qk must both be compu-

tationally infeasible. The best known discrete logarithm algorithm on elliptic curves is
the parallelized Pollard rho algorithm [72,86], which has running time O(

√
r) where r

is the size of largest prime-order subgroup of E(Fq). On the other hand, the best algo-
rithm for discrete logarithm computation in finite fields is the index calculus attack (e.g.,
[68]) which has running time subexponential in the field size. Thus to achieve the same
level of security in both groups, the size qk of the extension field must be significantly
larger than r . The ratio of these sizes is measured by two parameters: the embedding
degree, which in most cases1 is the degree k of the extension field that the pairing maps
into; and the parameter ρ = logq/ log r , which measures the base field size relative to
the size of the prime-order subgroup on the curve. We will call an elliptic curve with a
small embedding degree and a large prime-order subgroup pairing-friendly. (For precise
definitions of all of these terms, see Sect. 2.)

There has been much speculation about the exact sizes of r and qk required to match
standard sizes of keys for symmetric encryption, using, for example, the Advanced En-
cryption Standard (AES) [54,69]. The problem is complicated by the fact that the effec-
tiveness of index calculus attacks is not yet fully understood, especially over extension
fields. We outline in Table 1 our own view of the matter, distilled from material taken
from various authoritative sources, in particular [37] and [54]. The listed bit sizes are
those matching the security levels of the SKIPJACK, Triple-DES, AES-Small, AES-
Medium, and AES-Large symmetric key encryption schemes.

As we can see from the table, to achieve varied levels of security it is necessary to
construct curves with varying embedding degree. We give two different ranges for the
embedding degree because the ratio of the extension field size qk to the subgroup size r

depends not only on the embedding degree k but also on the parameter ρ; specifically,

1 See the discussion after Remark 2.2.
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Table 1. Bit sizes of curve parameters and corresponding embedding degrees to obtain commonly desired
levels of security.

Security level Subgroup size Extension field size Embedding degree k

(in bits) r (in bits) qk (in bits) ρ ≈ 1 ρ ≈ 2

80 160 960–1280 6–8 2*, 3–4
112 224 2200–3600 10–16 5–8
128 256 3000–5000 12–20 6–10
192 384 8000–10000 20–26 10–13
256 512 14000–18000 28–36 14–18

we have logqk/ log r = ρ · k. Thus, for example, if we wish to set up a system with
a 160-bit elliptic curve subgroup and a 1280-bit extension field, we could use a curve
with embedding degree 8 and ρ = 1 (though we currently know of no such curves), a
curve with embedding degree 4 and ρ = 2, or anything in between with ρ · k = 8.

In general, curves with small ρ-values are desirable in order to speed up arithmetic
on the elliptic curve. For example, an elliptic curve with a 160-bit subgroup and ρ = 1 is
defined over a 160-bit field, while a curve with a 160-bit subgroup and ρ = 2 is defined
over a 320-bit field, and the group operation can be computed much more quickly on
the first curve. On the other hand, though, at times a larger ρ-value is acceptable for the
sake of fast pairing evaluation. For example, at a security level of 80 bits, using a 512-
bit q , a 160-bit r , and k = 2 represents an efficient setup for some choices of curves and
protocol; see [78] for a detailed explanation. Therefore k = 2 (marked with an asterisk)
has been included in Table 1 at the 80-bit security level.

1.2. Our Framework

A primary contribution of this paper is to give a classification of the known methods
for constructing pairing-friendly elliptic curves. A diagram outlining this classification
is given in Table 2.

The designers of the first pairing-based protocols proposed the use of supersingular
elliptic curves [12]. However, such curves are limited to embedding degree k = 2 for
prime fields and k ≤ 6 in general [62], so for higher embedding degrees, we must turn
to ordinary curves.

There are a large number of constructions of ordinary elliptic curves with prescribed
embedding degree. All of these constructions are based on the complex multiplication
(CM) method of curve construction, and all construct curves over prime fields. The CM
algorithm takes as input a prime power q (which in our applications will always be
prime) and an integer n, and constructs an elliptic curve over Fq with n points [1]. In
Sect. 2 we will give a list of conditions for a given k such that if q and n satisfy these
conditions, then the algorithm will terminate in a reasonable amount of time and the
curve constructed will have embedding degree k.

The highest-level distinction we make in our framework is between methods that
construct individual curves and those that construct parametric families of curves. The
former type are methods that give integers q and r such that there is an elliptic curve
E over Fq with a subgroup of order r and embedding degree k with respect to r . The
latter type are methods that give polynomials q(x) and r(x) such that if q(x0) is a prime
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Table 2. Classification of pairing-friendly elliptic curves.

Pairing-friendly
elliptic curves

Families
of curves

Curves not
in families

Supersingular
curves (Sect. 3)

Cocks–Pinch
curves (Sect. 4.1)

DEM curves
(Sect. 4.2)

Sparse
families
(Sect. 5)

Complete
families
(Sect. 6)

MNT, GMV,
Freeman

Cyclotomic
families (Sect. 6.1)

Sporadic
families

(Sect. 6.2)

Scott–Barreto
families (Sect. 6.3)

power for some value of x0, there is an elliptic curve E over Fq(x0) with a subgroup of
order r(x0) and embedding degree k with respect to r(x0). (In practice the prime power
q(x0) is always prime.) Parametric families have the advantage that the sizes of the
finite field and the prime-order subgroup can be varied simply by specifying x0.

Supersingular curves, which we discuss in Sect. 3, do not fall into families. There
are also two constructions in the literature that produce ordinary elliptic curves with
small embedding degree that are not given in terms of families: the method of Cocks
and Pinch [22] and that of Dupont, Enge, and Morain [27]. In Sect. 4 we describe these
two methods and discuss their merits and drawbacks.

The remaining constructions of ordinary elliptic curves with small embedding degree
fall into the category of families of curves. Here we make another distinction. The con-
struction of such curves depends on our being able to find integers x, y satisfying an
equation of the form

Dy2 = 4q(x) − t (x)2

for some fixed positive integer D and polynomials q(x) and t (x). The parameter D

is the CM discriminant (often called simply the “discriminant”), which we will define
formally in Sect. 2. In some cases, this equation will only have solutions for some set
of (x, y) that grows exponentially; we call such families sparse. In others, this equation
may be satisfied for any x, and in fact we can write y as a polynomial in x, and the
equation gives an equality of polynomials; we call such families complete.

Sparse families, discussed in Sect. 5, are primarily based on the ideas of Miyaji,
Nakabayashi, and Takano [64]. These families give most of the known constructions of
curves of prime order but are currently limited to embedding degrees k ≤ 10. Complete
families, discussed in Sect. 6, exist for arbitrary k but usually lead to curves with ρ > 1.
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All of the constructions of complete families can be viewed as choosing a polynomial
r(x) parameterizing the pairing-friendly subgroup size and computing polynomials in
Q[x] that map to certain elements of the number field K = Q[x]/(r(x)). We can then
further classify the complete families according to the properties of the number field K .
We briefly list here the families and the corresponding type of number field.

• Cyclotomic families (Sect. 6.1): K is a cyclotomic field, r is a cyclotomic polyno-
mial, and K contains

√−D for some small D. Constructions appear in [5,17].
• “Sporadic” families (Sect. 6.2): K is a (perhaps trivial) extension of a cyclotomic

field, r is not a cyclotomic polynomial, and K contains
√−D for some small D.

Constructions appear in [4,47]; we give new examples in Sect. 6.2.
• Scott–Barreto families (Sect. 6.3): K is an extension of a cyclotomic field, and K

contains no
√−D for any small D. Constructions appear in [81].

1.3. New Constructions

In addition to classifying construction methods, in Sect. 6 we give several new construc-
tions of pairing-friendly elliptic curves. Our focus throughout is to construct families
with minimal ρ-value, as we believe that such families will be most useful in practice.

In Sect. 6.1 we use the method of Brezing and Weng to demonstrate families of
pairing-friendly elliptic curves with ρ ≤ 2 for every embedding degree k ≤ 1000 that
is not divisible by 72. Examples of these constructions have previously appeared in
the literature for specific values of k, but the families have not been described in the
general terms that we use, and even the examples that do appear have not all been shown
to satisfy the criteria necessary to produce valid parameters for constructing pairing-
friendly curves (our Definition 2.7). We conjecture that our constructions extend to all
k not divisible by 72; these conjectures are mainly of theoretical interest, as we do not
expect that curves with k > 1000 will be necessary in practice in the foreseeable future.

In Sects. 6.2 and 6.3 we give a few more examples of new complete families of curves
for certain small values of k. Most of these families have ρ-values smaller than those
achieved by any construction in Sect. 6.1.

Our most significant contribution with regard to new constructions is Theorem 6.19.
The constructions of Sects. 6.1 and 6.2 have in common that we first fix a (small) square-
free CM discriminant and then compute the corresponding complete family of curves,
all with the same discriminant. We refer to such constructions as basic constructions.
However, to ensure maximum security, some users may desire a greater degree of ran-
domness in cryptosystem parameters. Such users will prefer more flexibility with regard
to the CM discriminant, in particular to be able to have variable discriminants within
a family of curves. This is achieved through Theorem 6.19, which, given a paramet-
ric family of curves with fixed discriminant that satisfies certain conditions, allows us
to build a family of curves with variable square-free CM discriminant and the same ρ-
value. Thus, combining a basic construction with Theorem 6.19 yields a general method
for constructing families of curves with variable CM discriminant and ρ < 2. Previous
constructions with variable discriminant required either ρ ≥ 2 or k ≤ 6.

In Sect. 6.4 we use Theorem 6.19 to give examples of variable-discriminant paramet-
ric families for any embedding degree k satisfying gcd(k,24) ∈ {1,2,3,6,12}. In par-
ticular, Constructions 6.20 and 6.24 combine Theorem 6.19 with the method of Brezing
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and Weng to give new families of curves for k ≡ 3 (mod 4) and k ≡ 2 (mod 8), respec-
tively. When k is not divisible by 3, these families have ρ-value smaller than that of any
other known variable-discriminant complete family with the same embedding degree.
Furthermore, the families with k ≡ 10 (mod 24) and k ≥ 34 have ρ-value smaller than
any other known complete family with the same embedding degree, with either fixed
(in advance) or variable discriminant. Table 5 lists the variable-discriminant family with
smallest ρ-value for each k ≤ 50.

1.4. Recommendations

The body of this paper gathers in one place for the first time all known methods for
constructing pairing-friendly elliptic curves. In Sect. 8 we distill this information into
recommendations for users wishing to implement pairing-based protocols. As require-
ments for security and performance will vary from system to system, we provide several
different recommendations among which users will choose according to their needs.

Section 8.1 discusses our recommendations for the case where minimizing ρ is not
necessary; in general we recommend the Cocks–Pinch method (Theorem 4.1).

Section 8.2 considers the case where we wish to minimize ρ. We summarize our rec-
ommendations in Table 5. For each embedding degree k, 1 ≤ k ≤ 50, the table gives
two options: a parametric family of curves with CM discriminant 1 or 3, and a para-
metric family of curves with variable CM discriminant, both of which minimize ρ in
their respective category. In general, we recommend the former to users for whom per-
formance is paramount, and the latter to users who are suspicious of curves with small
CM discriminant.

Our families are described in terms of polynomials whose values give the field size
and subgroup size for the pairing-friendly curve, and the ρ-value of a family is defined
in terms of these polynomials. In each case we have checked that our families can be
used to produce explicit curves and that the ρ-values of these curves are very close to
the ρ-value of the family.

Section 8.3 considers the case where we wish to take advantage of certain techniques
for speeding up pairing evaluation. These techniques, discussed in Sect. 7, offer the
greatest improvement when the embedding degree is of the form k = 2i3j . Table 6
gives a recommended family of curves for each such embedding degree less than 50.

Finally, Sect. 8.4 discusses curves with subgroups whose orders are composite num-
bers that are presumed to be infeasible to factor. Such curves, first proposed for use by
Boneh, Goh, and Nissim [14], are used in a number of recent protocols and are an active
subject of research.

2. How to Generate Pairing-Friendly Curves

We assume that the reader is familiar with elliptic curves and finite fields; for a good
exposition of the former, see Silverman’s book [82], and for the latter, see the book of
Lidl and Niederreiter [55]. We begin by fixing some notation related to elliptic curves.
Let E be an elliptic curve defined over a field K ; we may also use E/K (read “E over
K”) to denote such a curve. We denote by E(K) the group of K-rational points of E

and by #E(K) the order of this group when it is finite. For any integer r , we let E[r]
denote the group of all r-torsion points of E (defined over an algebraic closure K of K)
and by E(K)[r] the group of r-torsion points of E that are defined over K .
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For any prime power q , we let Fq denote the field of q elements. If E is an elliptic
curve over Fq , we define the trace of E/Fq to be t = q + 1 − #E(Fq). A theorem of
Hasse (the “Hasse bound”) says that |t | ≤ 2

√
q [82, Theorem V.1.1]. If gcd(t, q) = 1,

the elliptic curve E is said to be ordinary; otherwise E is supersingular. (For a multitude
of equivalent definitions of supersingularity, see [82, Theorem V.3.1].)

Let E/K be an elliptic curve. If the ring of K-endomorphisms of E, denoted End(E),
is strictly larger than Z, then we say that E has complex multiplication or that E is a
CM curve. All elliptic curves over finite fields are CM curves, with End(E) ⊗ Q iso-
morphic to either a quadratic imaginary field (if E is ordinary) or a quaternion algebra
(if E is supersingular). If E/Fq is ordinary, we define the complex multiplication dis-
criminant (or CM discriminant) of E to be the square-free part D of the nonnegative
integer 4q − t2. (Other authors may define the CM discriminant to be negative, or to
be the discriminant of the quadratic imaginary field Q(

√−D).) With this definition, we
have End(E) ⊗ Q ∼= Q(

√−D). By abuse of notation, we may extend this definition to
supersingular curves E/Fq , but in this case D has no relation to End(E).

The original application of pairings to cryptography, due to Menezes, Okamoto, and
Vanstone [62] and Frey and Rück [34], was the use of the Weil or Tate pairing (respec-
tively) to reduce the discrete logarithm problem in the group of points on an elliptic
curve to a discrete logarithm problem in the multiplicative group of a finite field. As
these pairings are bilinear and nondegenerate, they can be used to “embed” a subgroup
of an elliptic curve into a subgroup of the multiplicative group of a finite field.

It is well known from the theory of elliptic curves that if E is an elliptic curve defined
over a field K and r is an integer prime to charK , the Weil pairing is a nondegenerate
bilinear map

er : E[r] × E[r] → μr ⊂ K,

where μr is the group of r th roots of unity in K [82, Sect. III.8]. If the group E(K)[r]
is cyclic, the nondegeneracy of the pairing allows us to “embed” E(K)[r] into the mul-
tiplicative group of the extension field K(μr). We call the degree of this extension the
“embedding degree” of E.

Definition 2.1. Let E be an elliptic curve defined over a field K , and suppose E has
a K-rational point of order r with gcd(r, charK) = 1. The embedding degree of E with
respect to r is the extension degree [K(μr) : K].

Remark 2.2. If K is a finite field Fq and r | #E(Fq) is relatively prime to q , the fol-
lowing three conditions are equivalent:

(1) E has embedding degree k with respect to r .
(2) k is the smallest integer such that r divides qk − 1.
(3) k is the order of q in (Z/rZ)×.

We often ignore r when stating the embedding degree, as it is usually clear from the
context.

Hitt [43] observed that when q = pm, the Weil and Tate pairings take values in the
field F = Fp(μr). The field F is called the minimum embedding field of E with respect
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to r . If q is not prime, then F may be a proper subfield of Fqk . Since the security of a
pairing-based cryptosystem depends on the difficulty of the discrete logarithm in F×, in
these cases one must be careful to choose parameters so that F is sufficiently large. On
the other hand, since most of the curves we consider are defined over prime fields, we
may safely ignore this result for the bulk of our discussion. We will however take this
observation into account when discussing supersingular curves defined over non-prime
fields (Sect. 3).

For constructive applications of pairings, the embedding degree of E needs to be
small enough so that the pairing is easy to compute but large enough so that the dis-
crete logarithm in F

×
qk is computationally infeasible. Balasubramanian and Koblitz [3]

showed that for a random elliptic curve E over a random field Fq and a prime r ≈ q ,
the probability that E has embedding degree less than log2 q with respect to r is vanish-
ingly small, and in general the embedding degree can be expected to be around r . Luca,
Mireles, and Shparlinski [57] have obtained similar results for fixed values of q . These
results imply that if r and q are both of size around 2160 (the smallest values currently
acceptable for security in implementations), pairings on a random curve take values in
a field of around 2160 bits, so the computation is completely hopeless.

To avoid the Pohlig–Hellman attack [71], the points on E(Fq) used in cryptographic
protocols should have prime order. Our problem is thus to find elliptic curves that have
large prime-order subgroups and small embedding degrees. Such curves are commonly
referred to as “pairing-friendly,” but this term has never been formally defined. We make
the notion precise in the following definition.

Definition 2.3. Suppose E is an elliptic curve defined over a finite field Fq . We say
that E is pairing-friendly if the following two conditions hold:

(1) there is a prime r ≥ √
q dividing #E(Fq), and

(2) the embedding degree of E with respect to r is less than log2(r)/8.

In this definition, the bound on the subgroup size r is based on the result, due to
Luca and Shparlinski [56], that curves having small embedding degree with respect to r

are abundant if r <
√

q and quite rare if r >
√

q . The bound on the embedding degree
is based on the rationale that embedding degrees of practical interest in pairing-based
applications depend on the desired security level, of which r is a clear measure. In
particular, the bound log2(r)/8 is chosen to roughly reflect the bounds on k given in
Table 1.

Recently a number of pairing-based protocols have been proposed that require elliptic
curves E/Fq that have small embedding degree with respect to a large composite num-
ber r of known factorization, such as an RSA modulus. By analogy with Definition 2.3,
we will say that such an E is pairing-friendly if r >

√
q and the embedding degree of

E with respect to r is less than log2(r)/8.
Since supersingular elliptic curves have embedding degree 2 over prime fields Fp

with p ≥ 5 and have embedding degree at most 6 in any case [62], a supersingular curve
is always pairing-friendly if it has a large prime-order subgroup. Section 3 discusses
supersingular curves in more detail.

If we want to vary the embedding degree to achieve higher security levels, we must
construct pairing-friendly ordinary elliptic curves. This turns out to be a difficult task.
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There are a number of methods in the literature for constructing such curves, all of
which follow essentially the same high-level structure:

(1) Fix k and compute integers t, r, q such that there is an elliptic curve E/Fq that
has trace t , a subgroup of prime order r , and embedding degree k.

(2) Use the complex multiplication method to find the equation of the curve E

over Fq .

The difficult part of such algorithms is finding t, r, q as in Step (1) while ensuring
that Step (2) remains feasible.

An ordinary elliptic curve with these properties can be constructed if and only if the
following conditions hold:

(1) q is prime or a prime power.
(2) r is prime.
(3) t is relatively prime to q .
(4) r divides q + 1 − t .
(5) r divides qk − 1, and r � qi − 1 for 1 ≤ i < k.
(6) 4q − t2 = Dy2 for some sufficiently small positive integer D and some integer y.

Condition (1) ensures that there is a finite field with q elements. Since the proportion
of prime powers to primes is virtually zero, we will in general take q to be a prime
number. Condition (6) implies that t ≤ 2

√
q; together with condition (3), this implies

that there exists an ordinary elliptic curve E defined over Fq with #E(Fq) = q + 1 − t

(cf. [88, Theorem 4.1]). Conditions (2) and (4) combine to tell us that E(Fq) has a
subgroup of prime order r . By Remark 2.2, condition (5) is equivalent to E having
embedding degree k with respect to r .

We now know that if such t, r, q can be constructed, then there exists an ordinary
elliptic curve E/Fq with embedding degree k and an order-r subgroup. The requirement
that D be sufficiently small in condition (6) is necessary for us to be able to find the
equation of such a curve. The method we use is the complex multiplication (CM) method
of curve construction, due originally to Atkin and Morain [1]. The CM method, which
was devised for use in primality testing, constructs a curve with endomorphism ring
isomorphic to a given order O in a quadratic imaginary field Q(

√−D) and can be used
to construct a curve with a specified number of points. The complexity of the method
is O(|DO|1+ε), where DO is the discriminant of the order O [18,29]. Given current
computational power, the method can construct curves over finite fields when |DO| ≤
1012 [83]. In practice we can always take O to be the ring of integers in Q(

√−D), in
which case |DO| = D or 4D and D is the CM discriminant of the resulting curve. Thus
we see that “sufficiently small” in condition (6) can be taken to be D < 1012.

The equation in condition (6) is called the CM equation. If we use condition (4) to
write q + 1 − t = hr for some h, then the CM equation is equivalent to

Dy2 = 4hr − (t − 2)2. (2.1)

We call h the cofactor of the pairing-friendly curve.
Constructions of pairing-friendly curves make substantial use of the theory of cyclo-

tomic polynomials and cyclotomic fields. We recall a few basic facts here; for a deeper
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discussion, see Lidl and Niederreiter’s book [55]. For every positive integer k, we let ζk

denote a primitive kth root of unity in Q, i.e., an algebraic number such that (ζk)
k = 1

and (ζk)
� �= 1 for any positive � < k. The minimal polynomial of ζk is known as the

kth cyclotomic polynomial and is denoted Φk(x). These polynomials have integer coef-
ficients and can be defined recursively by setting Φ1(x) = x − 1 and using the formula

xk − 1 =
∏

d|k
Φd(x) (2.2)

for k > 1. The degree of Φk(x) is denoted ϕ(k) and is also called Euler’s totient func-
tion; it gives the number of positive integers less than or equal to k that are relatively
prime to k.

The following observation is crucial for the construction of prime-order curves with
embedding degree k.

Proposition 2.4. Let k be a positive integer, E/Fq an elliptic curve with #E(Fq) = hr

where r is prime, and let t be the trace of E/Fq . Assume that r � kq . Then E/Fq has
embedding degree k with respect to r if and only if Φk(q) ≡ 0 (mod r), or, equivalently,
if and only if Φk(t − 1) ≡ 0 (mod r).

Proof. Let us first assume that E has embedding degree k with respect to r . Then
r | qk − 1 but r � qi − 1 for any 1 ≤ i < k. By (2.2) and since r is prime, this means
r | Φk(q). Now, since q + 1 − t = hr , q ≡ t − 1 (mod r), so r | Φk(t − 1).

Conversely, if r | Φk(t − 1), then r | Φk(q) and thus r | qk − 1; this means that E/Fq

has embedding degree at most k. It remains to show that r � qi − 1 for any 1 ≤ i < k.
We follow Menezes’ proof [60, Lemma 6.2]. Let f (x) = xk − 1 and F = Z/rZ. Then
F is a field. Since r � k, we have gcd(f (x), f ′(x)) = 1 in F[x]. Thus, f has only single
roots in F. Using (2.2) and the fact that q is a root of Φk(x) over F, we obtain Φd(q) �≡
0 (mod r) for any d | k, 1 ≤ d < k. Therefore, r � qd − 1 for any d | k, 1 ≤ d < k.
Finally, we note that r � qi −1 for any positive i that does not divide k, since in this case
we would have r | qgcd(i,k) − 1. �

Proposition 2.4 tells us that we can replace condition (5) necessary to construct a
pairing-friendly curve with the following:

(5′) r divides Φk(t − 1).

2.1. Families of Pairing-Friendly Curves

For applications, we would like to be able to construct curves of specified bit size. To this
end, we describe “families” of pairing-friendly curves for which the curve parameters
t, r, q are given as polynomials t (x), r(x), q(x) in terms of a parameter x. The idea
of parameterizing t, r, q as polynomials has been used by several different authors in
their constructions, including Miyaji, Nakabayashi, and Takano [64]; Barreto, Lynn,
and Scott [5]; Scott and Barreto [81]; and Brezing and Weng [17]. Our definition of a
family of pairing-friendly curves is a formalization of ideas implicit in these works. The
definition provides a concise description of many existing constructions and gives us a
framework that we can use to discover previously unknown pairing-friendly curves.
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Since the values of q(x) and r(x) will be the sizes of a field and a group in which we
wish to do cryptography, respectively, the polynomials we construct will need to have
the property that for many values of x, q(x) is a prime power (which in general we will
take to be a prime), and r(x) is prime or a small cofactor times a prime. However, one
drawback to the description of q and r as polynomials is that very little is known about
prime values of polynomials. For example, it is not even known that x2 + 1 takes an
infinite number of prime values. Thus when describing the polynomials that we wish to
take prime values, we must impose conditions that make it likely that they will do so.

Our definition is motivated by the following fact: if f (x) ∈ Z[x], then a famous con-
jecture of Buniakowski and Schinzel (see [53, p. 323]) asserts that a nonconstant f (x)

takes an infinite number of prime values if and only if f has positive leading coefficient,
f is irreducible, and gcd({f (x) : x ∈ Z}) = 1. Furthermore, a conjecture of Bateman
and Horn [9] vastly generalizes the prime number theorem to give the expected density
of such prime values. For our purposes, we must also consider polynomials with rational
coefficients; our definition incorporates the natural generalization of these conjectures
to such polynomials.

Definition 2.5. Let f (x) be a polynomial with rational coefficients. We say that f

represents primes if the following conditions are satisfied:

(1) f (x) is nonconstant.
(2) f (x) has positive leading coefficient.
(3) f (x) is irreducible.
(4) f (x) ∈ Z for some x ∈ Z (equivalently, for an infinite number of x ∈ Z).
(5) gcd({f (x) : x,f (x) ∈ Z}) = 1.

Clearly each of the conditions of Definition 2.5 is necessary for f to take an infinite
number of prime values; their sufficiency is conjectural. We note that testing whether a
polynomial f (x) represents primes is a finite calculation: condition (4) can be tested by
computing f (x) for all integers x ∈ [0,N) for some N such that N ·f (x) ∈ Z[x], while
condition (5) can be tested by computing some f (n) ∈ Z and determining whether f (x)

is identically zero mod p for all primes p dividing f (n). In addition, if either f (x) = ±1
for some x or f (x) takes two distinct prime values, then conditions (4) and (5) are both
satisfied.

We need one more definition before we can define families of pairing-friendly curves.

Definition 2.6. A polynomial f (x) ∈ Q[x] is integer-valued if f (x) ∈ Z for every
x ∈ Z.

For example, f (x) = 1
2 (x2 + x + 2) is integer-valued and represents primes.

Definition 2.7. Let t (x), r(x), and q(x) be nonzero polynomials with rational coeffi-
cients.

(i) For a given positive integer k and positive square-free integer D, the triple
(t, r, q) parameterizes a family of elliptic curves with embedding degree k and
discriminant D if the following conditions are satisfied:
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(1) q(x) = p(x)d for some d ≥ 1 and p(x) that represents primes.
(2) r(x) is nonconstant, irreducible, and integer-valued and has positive lead-

ing coefficient.
(3) r(x) divides q(x) + 1 − t (x).
(4) r(x) divides Φk(t (x) − 1), where Φk is the kth cyclotomic polynomial.
(5) The equation Dy2 = 4q(x) − t (x)2 has infinitely many integer solutions

(x, y).

If these conditions are satisfied, we often refer to the triple (t, r, q) as a family.
(ii) For (t, r, q) as in (i), if x0 is an integer and E is an elliptic curve over Fq(x0) with

trace t (x0), then we say E is a curve in the family (t, r, q).
(iii) We say that a family (t, r, q) is ordinary if gcd(t (x), q(x)) = 1.
(iv) We say that a family (t, r, q) is complete if there is some y(x) ∈ Q[x] such that

Dy(x)2 = 4q(x) − t (x)2; otherwise we say that the family is sparse.
(v) We say that (t, r, q) parameterizes a potential family of curves if conditions (2)–

(5) of (i) are satisfied; in this case p(x) may or may not represent primes.

Part (i) of Definition 2.7 is designed so that if (t, r, q) parameterizes a family of
curves with embedding degree k, and (x0, y0) is a solution to the equation of condition
(5) such that t (x0) is an integer and p(x0) is an integer prime, then there exists an elliptic
curve E/Fq(x0) with a subgroup of order r(x0) and embedding degree k. If D < 1012,
then E can be constructed via the CM method. All of the ordinary families we describe
below have d = 1 in condition (1), so q(x) will represent primes and the curves we
construct will be defined over prime fields. However, we do allow d > 1 in order to fit
the supersingular curves of Sect. 3.3 into this framework as well as to accommodate any
future constructions over non-prime fields.

We note that it may happen that a triple (t, r, q) satisfying Definition 2.7(i) does not
lead to any explicit examples of elliptic curves; for example, if t (x) is never an integer
simultaneously with q(x). However, all of the families we present in this paper have
been shown to produce explicit examples of pairing-friendly elliptic curves for certain
values of x.

In addition to finding an x0 such that q(x0) is prime, for cryptographic applications,
we also need r(x0) to be prime or very nearly prime. The conditions (2) on r(x) suggest
that this will often be the case. Assuming that the Bateman–Horn conjecture is true,
by fixing a y0 and choosing values of x0 near y0, the expected time needed to find an
x0 with the necessary properties grows linearly in degq and deg r and quadratically in
logy0; see [32, Algorithm 4.1 and Proposition 4.2] for details.

Condition (3) of Definition 2.7(i) ensures that for a given value of x for which q(x)

is prime, r(x) divides #E(Fq(x)). If in fact r(x) = q(x) + 1 − t (x), then for values of x

for which r(x) and q(x) are both prime, #E(Fq) will be prime. This is the ideal case,
but it is difficult to achieve in practice. We therefore define a parameter ρ that represents
how close to this ideal a given curve or family of curves is. This parameter expresses
the ratio of the size q of the field to the size r of the prime-order subgroup of E(Fq).
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Definition 2.8.

(i) Let E/Fq be an elliptic curve, and suppose that E has a subgroup of order r .
The ρ-value of E (with respect to r) is

ρ(E) = logq

log r
.

(ii) Let t (x), r(x), q(x) ∈ Q[x], and suppose that (t, r, q) parameterizes a family
(or potential family) of elliptic curves with embedding degree k. The ρ-value of
(t, r, q), denoted ρ(t, r, q), is

ρ(t, r, q) = lim
x→∞

logq(x)

log r(x)
= degq(x)

deg r(x)
.

By Definition 2.3, pairing-friendly curves have ρ(E) ≤ 2. On the other hand, the
Hasse bound |#E(Fq) − q + 1| ≤ 2

√
q implies that ρ(t, r, q) is always at least 1. (For

individual curves, ρ(E) ≥ 1 − 2 log 2
log r

.) If there are curves in the family (t, r, q) whose
order is prime, then deg r = degq and ρ(t, r, q) = 1; this is the “ideal” case. Note,
however, that the converse may not be true: if ρ(t, r, q) = 1, then we may find that for
any curve E in this family, #E(Fq) = hr(x) where h is a constant-size cofactor. (For
examples of such families, see [36, Sect. 3].)

We conclude this section by demonstrating some properties of ρ for ordinary elliptic
curves with embedding degree 1 or 2.

Proposition 2.9. Suppose that (t, r, q) parameterizes a family of ordinary elliptic
curves with embedding degree k ≤ 2 and discriminant D.

(1) If k = 1, then ρ(t, r, q) ≥ 2 if either of the following conditions holds:
(a) deg t (x) ≥ 1, or
(b) there are an infinite number of integer solutions (x, y) to the CM equation

(2.1) for which r(x) is square free and relatively prime to D.
(2) If k = 2, then ρ(t, r, q) ≥ 2.

Proof. Since r(x) divides Φk(t (x) − 1) and degΦk = 1 for k = 1 or 2, if Φk(t (x) −
1) �= 0, then we must have deg t (x) ≥ deg r(x). Thus by the Hasse bound ρ(t, r, q) ≥ 2.
It remains to consider the cases k = 1, t (x) = 2 and k = 2, t (x) = 0. If t (x) = 0, then the
family of curves is not ordinary, a contradiction. Now suppose k = 1 and t (x) = 2; then
the CM equation (2.1) becomes Dy2 = 4h(x)r(x). The hypothesis (b) implies that there
are an infinite number of x for which h(x) ≥ r(x), and therefore degh(x) ≥ deg r(x).
Since degq(x) = degh(x) + deg r(x), we conclude that ρ ≥ 2. �

Remark 2.10. Let E/Fq be an ordinary elliptic curve that has embedding degree k ≤ 2
with respect to r , and let D be the CM discriminant of E. Using the same reasoning as
in the proof of Proposition 2.9, one can show that if either

(1) k = 1, r is square free, and gcd(r,D) = 1, or
(2) k = 2 and r is prime,

then ρ(E) ≥ 2(1 − ε) with ε → 0 as r → ∞.
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3. Supersingular Curves

Recall that an elliptic curve E/Fq (where q = ps for some prime p and s ∈ N) with
#E(Fq) = q + 1 − t is supersingular if and only if gcd(t, q) > 1. Waterhouse [88, The-
orem 4.1] showed that group orders of supersingular elliptic curves are of the form
q + 1 − t with t2 ∈ {0, q,2q,3q,4q}. It follows directly from this result that super-
singular curves have embedding degrees k ∈ {1,2,3,4,6}, and furthermore k = 2 is the
only possible embedding degree over prime fields Fq with q ≥ 5 [62]. Menezes [59] has
characterized prime-order supersingular curves with embedding degrees k = 3,4,6. For
fields of characteristic 2 and 3, representatives for each Fq -isomorphism class of super-
singular curves have been determined by Menezes and Vanstone [61] and Morain [65],
respectively.

The only known general method to construct supersingular curves is reduction of CM
curves in characteristic zero. In particular, the CM curves y2 = x3 +ax and y2 = x3 +b

defined over Q reduce to supersingular curves over Fp for all odd primes p ≡ 3 (mod 4)

and p ≡ 2 (mod 3), respectively. These two curves will suffice for most applications;
Algorithm 3.3 gives an explicit procedure for constructing a supersingular curve over
any given prime field.

As supersingular curves with embedding degree k �= 2 cannot be defined over prime
fields, in this section we consider non-prime fields a well as prime fields. For efficiency
reasons, we restrict ourselves to non-prime fields of characteristic 2 or 3 and fields of
the form Fp2 for large primes p; we give data for characteristic 3 fields only if no
constructions for characteristic 2 fields or for prime fields exist. (Note, however, that
due to Coppersmith’s index calculus method for discrete logarithm computation in finite
fields of small characteristic [24], the fields Fq must be larger when q = 2s or 3s than
when q = p or p2.) When discussing non-prime fields we must take into account the
work of Hitt [43] and consider how the minimal embedding field F

pk′ (i.e., the field in
which the Weil and Tate pairings take their values) compares to the field Fqk determined
by the embedding degree.

Remark 3.1. Due to the perception of the Menezes–Okamoto–Vanstone and Frey–
Rück reductions [34,62] as “attacks,” supersingular curves are widely believed to be
“weak” curves and thus not desirable for cryptographic applications. However, Koblitz
and Menezes argue [51]:

There is no known reason why a nonsupersingular curve with small embed-
ding degree k would have any security advantage over a supersingular curve
with the same embedding degree.

On the other hand, in contrast to ordinary curves with embedding degree k > 1, super-
singular curves have the added advantage that they have distortion maps (in the sense
of Verheul [87]), which is a desirable feature in some pairing-based applications. See
Sect. 7.2 or [21] for further details.

3.1. Embedding Degree k = 1

Supersingular curves with embedding degree k = 1 exist only over finite fields Fq where
q = ps with s even [62]. In this case we must have t = ±2

√
q , and thus #E(Fq) =
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q ± 2
√

q + 1. Since the subgroup order r must divide both #E(Fq) and Φk(1) = q − 1,
we see that r is a factor of gcd(#E(Fq), q − 1) = √

q ± 1, and therefore such curves
must have ρ ≥ 2.

To construct supersingular curves with embedding degree 1, we let q ′ = √
q and

let E/Fq ′ be a curve with trace zero, i.e., #E(Fq ′) = q ′ + 1. Then the characteristic
polynomial of the q ′-power Frobenius endomorphism is x2 + q ′, which factors as (x +
i
√

q ′)(x − i
√

q ′), where i = √−1. The Weil conjectures [82, Theorem V.2.2] then tell
us that the characteristic polynomial of the q-power Frobenius map is (x + q ′)2, so
#E(Fq) = (q ′ + 1)2 = q + 2

√
q + 1. Thus even though E/Fq ′ has embedding degree 2,

if we consider E as a curve over Fq , then E has embedding degree 1 with respect to r .
We note that if q ′ is prime, then Fq is also the minimal embedding field for E with
respect to r .

We will see in Algorithm 3.3 below how to construct a trace-zero curve over Fq ′
with an order-r subgroup for arbitrary r . Since we may take logq ′/ log r arbitrarily
close to 1 for such curves, the ρ-value of E/Fq with embedding degree 1 can be made
arbitrarily close to 2, and we see from the discussion above that this is the best possible
ρ-value. We conclude that in any case where a supersingular curve E/Fq with k = 1
and ρ(E) = ρ0 is desired, we may obtain an entirely equivalent setup by choosing a
supersingular curve E′/F√

q with k = 2 and ρ(E′) = ρ0/2.
As a side note, if we let E′ be a quadratic twist (over Fq ) of the curve with

q + 2
√

q + 1 points, then #E′(Fq) = q − 2
√

q + 1. This curve also has embedding
degree 1 over Fq , but in fact since #E′(Fq) = (p − 1)2, the minimal embedding field is
Fp . Thus the twisted curve can be thought of as having “embedding degree 1/2”: the
curve is defined over Fq , but the Weil and Tate pairings take values in a field half the
size of Fq .

3.2. Embedding Degree k = 2

The case of embedding degree 2 offers the most flexibility; in fact, we can construct
curves over prime fields with arbitrary subgroup order r and arbitrary ρ-value. For
embedding degree k = 2, we require r | q + 1. This is certainly the case if t = 0, and
such supersingular curves can be defined over both prime and non-prime fields.

In fields of characteristic 2 or 3, there is only one supersingular curve up to Fq -
isomorphism, namely, the curve with j -invariant zero [82, Sect. 5.4]. Explicitly, in fields
Fq of characteristic 2, the trace-zero supersingular curves over Fq are

E/Fq : y2 + y = x3 + δx

if q = 2s with s even, where TrFq/F4 δ �= 0, and

E/Fq : y2 + y = x3

if q = 2s with s odd [61]. If either ρ < 3(1 − 1/ log2 r) or s is prime and r > 3, then
Fq2 is also the minimal embedding field for E with respect to r [10, Proposition 3.5].

Construction of supersingular curves over prime fields of characteristic greater than
3 makes use of the following theorem:
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Theorem 3.2 [52, Theorem 13.12]. Let L be a number field, and E/L be an elliptic
curve with complex multiplication. Suppose EndL(E) ⊗ Q = Q(

√−D). Let p | p be a
prime of L where E has good reduction. Then the reduction of E mod p is supersingular
if and only if p does not split in Q(

√−D), i.e., (−D
p

) �= 1.

Given a subgroup size r , if we choose any h such that q = hr − 1 is prime, then we
have the following algorithm (combining the constructions of Koblitz and Menezes [51,
Sect. 7] and Bröker [18, Sect. 3.4]) for constructing a curve over Fq with embedding
degree 2 with respect to r .

Algorithm 3.3. Input: a prime q ≥ 5. Output: a supersingular elliptic curve E/Fq .

(1) If q ≡ 3 (mod 4), return y2 = x3 + ax for any a ∈ F
×
q with −a /∈ (F×

q )2.

(2) If q ≡ 5 (mod 6), return y2 = x3 + b for any b ∈ F
×
q .

(3) If q ≡ 1 (mod 12), do the following:
(a) Let D be the smallest prime such that D ≡ 3 (mod 4) and (−D

q
) = −1.

(b) Compute the Hilbert class polynomial HD of Q(
√−D).

(c) Compute a root j ∈ Fq of HD (mod q).
(d) Let m = j/(1728 − j), and return y2 = x3 + 3mc2x + 2mc3 for any c ∈ F

×
q .

Assuming the Generalized Riemann Hypothesis, the running time of the algorithm is
O((logp)3+ε) for any ε > 0 [18, Theorem 3.8]. The requirement in Step (1) that −a

be a nonsquare in F
×
q guarantees that E[2] �⊂ E(Fq), so E has embedding degree 2

with respect to the subgroup of order 2 [62, Lemma 2]. The condition D ≡ 3 (mod 4) in
Step (a) guarantees that the Hilbert class polynomial HD has a root in Fq [18, Sect. 3.4].

Note that this construction allows us to choose r and h almost completely arbitrar-
ily, so we may make our choices so that r and q have low Hamming weight or some
other special form. (However, we may want to avoid q with low Hamming weight; see
Sect. 7.5 for details.) In particular, Boneh, Goh, and Nissim [14] observe that we may
choose r to be a large composite number such as an RSA modulus. Furthermore, by
fixing any ρ0 ≥ 1 and choosing h ≈ rρ0−1, we may ensure that the curve constructed
has ρ-value very close to ρ0.

We see from Theorem 3.2 that the popular supersingular curves y2 = x3 + ax and
y2 = x3 + b are simply special cases of the general construction method, for the two
equations define CM curves over Q with endomorphism rings Z[i] and Z[ζ3], respec-
tively. However, these two cases have the additional nice property that the distortion
maps are easy to compute, as both curves have automorphisms defined over Fq2 . Koblitz
and Menezes [51] give explicit determinations of the distortion maps in both cases.

3.3. Embedding Degree k = 3

A supersingular curve over Fq has embedding degree k = 3 with respect to a subgroup
of prime order r > 3 if and only if q = ps with s even, and t = ±√

q [64]. In character-
istic p > 3, the only such curves are those of the form

E/Fq : y2 = x3 + γ,
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where γ is a non-cube in F
×
q [65]. If we specialize to the case q = p2 where p ≡

2 (mod 3) is a large prime, then we have #E(Fp2) = p2 ± p + 1. If the sign of the
middle term is positive (i.e., t = −p), then for certain p = 3x − 1, we may find curves
of prime order, since r(x) = (3x − 1)2 + (3x − 1) + 1 represents primes in the sense of
Definition 2.5. In the case where t = p we find that #E(Fq) must be a multiple of 3 but
can be equal to 3 times a prime.

We can recast these results in our language of “families” (Definition 2.7). Depending
on the sign of t , we have one of

t (x) =−3x + 1, r(x) = 9x2 − 3x + 1, q(x) = (3x − 1)2;
t (x) =3x − 1, r(x) = 9x2 − 9x + 3, q(x) = (3x − 1)2.

(3.1)

Since 4q(x) − t (x)2 = 3(3x − 1)2, the triple (t, r, q) parameterizes a family of elliptic
curves with embedding degree 3 and discriminant 3. The ρ-value of this family is 1.
In particular, if r(x0) and 3x0 − 1 are prime for some x0 ∈ Z, then we may construct a
curve over Fq(x0) with embedding degree 3 and prime order. Since #E(Fp2) is equal to
Φ6(p) if t > 0 and Φ3(p) if t < 0, we see that the minimal embedding field is Fp6 = Fq3

in the first case and Fp3 = Fq3/2 in the second case.
Since arithmetic in Fp2 for suitably chosen p can be as fast as arithmetic in Fp′ with

p′ ≈ p2, the families (3.1) give a good method for generating useful curves with embed-
ding degree 3 and small ρ-value. Note that particularly fast Fp2 arithmetic results when
optimal extension fields [2] are used; Duan, Cui, and Chan [26] give sample families
and curves for this set-up.

If q = 2s , then curves with embedding degree 3 are of the form

E/Fq : y2 + γ jy = x3 + α,

where j ∈ {1,2}, γ is a non-cube in F
×
q , and either α = 0 or α ∈ Fq such that

TrFq/F2 γ −2jα = 1 for j ∈ {1,2}. If α = 0, we have t = √
q if and only if 4 � s and

t = −√
q otherwise. If α �= 0, we have t = √

q if and only if 4 | s and t = −√
q other-

wise [61].
If t = √

q and ρ < 10/3(1 − 1/ log2 r), then the minimal embedding field of E with
respect to r is Fq3 , while if t = −√

q and ρ < 4/3, then the minimal embedding field is
Fq3/2 [10, Proposition 3.8].

3.4. Embedding Degree k = 4

Supersingular curves that have embedding degree k = 4 with respect to a subgroup
of prime order r > 2 only exist over finite fields of characteristic 2. Then necessarily,
q = 2s with s odd, and t = ±√

2q [64]. The only possible such curves are ([61])

E/Fq : y2 + y = x3 + x and E/Fq : y2 + y = x3 + x + 1.

For the first curve, t = √
2q if and only if s ≡ ±3 (mod 8) and t = −√

2q otherwise,
while for the second curve, t = √

2q if and only if s ≡ ±1 (mod 8) and t = −√
2q

otherwise. If either ρ < 3/2(1 − 1/ log2 r) or s is prime and r > 5, then Fq4 is also the
minimal embedding field for E with respect to r [10, Proposition 3.2].
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3.5. Embedding Degree k = 6

Supersingular curves that have embedding degree k = 6 with respect to a subgroup
of prime order r > 3 only exist over finite fields of characteristic 3. Then necessarily,
q = 3s with s > 1 and odd, and t = ±√

3q [64]. The only possible such curves are
([65])

E/Fq : y2 = x3 − x + δ and E/Fq : y2 = x3 − x − δ,

where δ ∈ Fq with TrFq/F3δ = 1 (for example, δ = 1 if s ≡ 1 (mod 3)). For the first
curve, t = √

3q if and only if 4 � s − 1 and t = −√
3q otherwise, while for the second

curve, t = √
3q if and only if 4 | s − 1 and t = −√

3q otherwise.
If either ρ < 5/3(1 − 1/ log2 r) or s is prime and r > 7, then Fq6 is also the minimal

embedding field for E with respect to r [10, Proposition 3.3]. Harrison, Page, and Smart
[40] give specific choices of prime extension degrees s for which supersingular curves
over F3s of almost-prime group order and embedding degree k = 6 exist.

4. Generating Ordinary Curves with Arbitrary Embedding Degree

We begin our survey of methods for constructing pairing-friendly ordinary elliptic
curves with the two most general methods in the literature, the Cocks–Pinch method and
the Dupont–Enge–Morain method. Both methods can be used to construct curves with
arbitrary embedding degree; however, both methods produce curves with ρ ≈ 2, which
may not be suitable for certain applications. Neither method produces families of curves
in the sense of Definition 2.7, but we will see in Sect. 6 that the Cocks–Pinch method
does generalize to produce families with ρ < 2. Furthermore, the Cocks–Pinch method
has the advantage that it can produce curves with prime-order subgroups of nearly ar-
bitrary size. The subgroups of Dupont–Enge–Morain curves, on the other hand, must
have an order r that is the value of a certain polynomial, which results in the value of r

being more difficult to specify precisely.

4.1. The Cocks–Pinch Method

In an unpublished manuscript [22], Cocks and Pinch gave a procedure for constructing
pairing-friendly curves with arbitrary embedding degree k. The Cocks–Pinch method
is important not only because it is the most flexible algorithm for constructing ordinary
pairing-friendly curves, but also because it can be generalized to produce families of
curves with ρ < 2; see Sect. 6. In addition, the method can be generalized to produce
pairing-friendly abelian varieties of arbitrary dimension g ≥ 2 [31,33].

The Cocks–Pinch method works by first fixing a subgroup size r and a CM discrim-
inant D and then computing a trace t and prime q such that the CM equation must be
satisfied.

Theorem 4.1 [22]. Fix a positive integer k and a positive square-free integer D. Exe-
cute the following steps.

(1) Let r be a prime such that k | r − 1 and (−D
r

) = 1.
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(2) Let z be a kth root of unity in (Z/rZ)×. (Such a z exists because k | r − 1.) Let
t ′ = z + 1.

(3) Let y′ = (t ′ − 2)/
√−D (mod r).

(4) Let t ∈ Z be congruent to t mod r , and let y ∈ Z be congruent to y′ mod r . Let
q = (t2 + Dy2)/4.

If q is an integer and prime, then there exists an elliptic curve E over Fq with an order-r
subgroup and embedding degree k. If D < 1012, then E can be constructed via the CM
method.

The key feature of this algorithm is that y is constructed such that Dy2 + (t − 2)2 is
divisible by r . With q chosen such that the CM equation 4q − t2 = Dy2 is satisfied, this
yields 4(q + 1 − t) ≡ 0 mod r . Lastly, the choice of t ensures that Φk(t − 1) ≡ 0 mod r .

We observe that there is no reason to believe a priori that t or y can be chosen
to be much smaller than r , and thus in general q ≈ r2. We conclude that the curves
produced by this method tend to have ρ-values around 2. However, these curves are
easy to generate, and in particular we can take r to be any prime congruent to 1 mod k,
so r can have low Hamming weight or other desirable features.

Remark 4.2. In Step (4) we could in fact choose t and y to be any integers congruent
to t ′ and y′ modulo r . In particular, if we wish to generate a curve with a given ρ-value
ρ0 ≥ 2, we could add to t and y an integer divisible by r and of size roughly rρ0/2. For
a discussion of situations where curves with ρ > 2 might be useful, see Sect. 7.1.

Remark 4.3. Rubin and Silverberg [74] have observed that the Cocks–Pinch method
can be used to construct curves with embedding degree k with respect to r when r is
a large composite number, such as an RSA modulus. As in the case where r is prime,
these curves have ρ-value around 2.

4.2. The Dupont–Enge–Morain Method

Whereas the Cocks–Pinch method fixes an r and then computes t and q such that the
CM equation is satisfied, the approach of Dupont, Enge, and Morain [27] is to compute
t and r simultaneously using resultants. The theory of resultants is discussed in [53,
Sect. IV.8].

Theorem 4.4 [27]. Fix a positive integer k and execute the following steps.

(1) Compute the resultant

R(a) = Resx

(
Φk(x − 1), a + (x − 2)2) ∈ Z[a].

(2) Choose a ∈ Z such that R(a) is prime and set r = R(a).
(3) Compute g(x) = gcd(Φk(x − 1), a + (x − 2)2) in Fr [x] and let t ′ ∈ Fr be a root

of the polynomial g.
(4) Let t ∈ Z be congruent to t ′ mod r . Let q = (t2 + a)/4.
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If q is an integer and prime, then there exists an elliptic curve over Fq with an order-r
subgroup and embedding degree k. If a = Dy2 with D < 1012, then E can be con-
structed via the CM method.

The key idea of the Dupont–Enge–Morain method is to use the following property of
resultants [53, Corollary IV.8.4]: if f (x) and g(x) are polynomials over a field K , then
Resx(f (x), g(x)) = 0 if and only if f (x) and g(x) have a common root in K . When
we consider Φk(x − 1) and a + (x − 2)2 as polynomials in the two variables a, x, the
resultant R is a single-variable polynomial in a of degree ϕ(k). If we choose a such
that r = R(a) is prime, then R(a) ≡ 0 (mod r), and thus Φk(x − 1) and a + (x − 2)2

have a common factor g(x) when considered as polynomials mod r , i.e., in Fr [x]. We
will show in Lemma 4.5 below that r ≡ 1 (mod k), which implies that Φk(x) splits
into distinct linear factors in Fr (x). Since g(x) | Φk(x), the polynomial g(x) has a root
t ′ ∈ Fr . The values of t and r computed thus satisfy r | Φk(t −1) and r | Dy2 + (t −2)2.
By construction of q , the CM equation holds, which then yields q + 1 − t ≡ 0 (mod r).

As in the Cocks–Pinch construction, there is no reason to believe a priori that t is
much smaller than r , and thus in general q ≈ r2. We conclude that the curves produced
by this method tend to have ρ values around 2.

The following lemma suggests that it should be easy to find values of a such that
R(a) in Step (2) is prime; see also the discussion preceding Definition 2.5.

Lemma 4.5. Fix a positive integer k, and let R(a) ∈ Z[a] be defined as in Theorem 4.4
above. Then R(a) represents primes (in the sense of Definition 2.5). Furthermore, if
R(a) is an odd prime for some a ∈ Z, then R(a) ≡ 1 (mod k).

Proof. Since both polynomials input to the resultant are monic and have integer co-
efficients, R(a) is also monic with integer coefficients. If k ≤ 2, we are done since any
monic linear polynomial represents primes. We may thus assume that k ≥ 3.

Let ζk ∈ Q be a root of Φk(x), and let K = Q(ζk). The properties of resultants (see
[53, Proposition IV.8.3]) then imply that

R(a) = NormK/Q

(
a + (ζk − 1)2). (4.1)

If R(a) is reducible, then the root −(ζk − 1)2 of R(a) must lie in a proper subfield of
K and thus be fixed under the Galois conjugation ζk �→ ζ e

k for some e �= 1 (mod k). In
this case we must then have ζk + ζ e

k = 2, which cannot happen for k ≥ 3. Thus R(a) is
irreducible.

From (4.1) we see that R(0) = NormK/Q(1 − ζk)
2 = Φk(1)2. By well-known proper-

ties of cyclotomic polynomials (see [53, Sect. VI.3]) we have that if k = pm is a prime
power, then Φk(1) = p, and otherwise Φk(1) = 1. If k is not a prime power then this
implies that gcd({R(a) : a ∈ Z}) = 1. If k = pm is a prime power, then to draw the same
conclusion we must show that p � R(a) for some a ∈ Z.

Let k = pm. Then the prime p is totally ramified in K = Q(ζk), with a unique prime
factor p satisfying σ(p) = p for all σ ∈ Gal(K/Q). Furthermore, in the residue field Fp

the cyclotomic polynomial Φk(x) has a single root 1 with multiplicity ϕ(k). It follows
that σ(a + (ζk − 1)2) ≡ a (mod p) for every σ ∈ Gal(K/Q), and therefore R(a) ≡
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aϕ(k) ≡ 1 (mod p) whenever gcd(a,p) = 1. We conclude that gcd({R(a) : a ∈ Z}) = 1
if k is a prime power.

We have now shown that R(a) represents primes in the sense of Definition 2.5. If
r = R(a) is prime for some a, then the element a+ (ζk −1)2 ∈ K has prime norm r , and
it follows that r splits completely into principal ideals in K . Since the primes splitting
completely in K = Q(ζk) are exactly those congruent to 1 mod k, this completes the
proof. �

Like the Cocks–Pinch method, the Dupont–Enge–Morain method is effective for
computing curves with arbitrary embedding degree k. However, whereas in the for-
mer method we could choose the subgroup size r nearly arbitrarily, in this method r is
a value of the polynomial R(a). Since R(a) has degree ϕ(k), the primes r we find will
grow roughly like aϕ(k). One can also take r to be any prime factor of R(a) congruent
to 1 mod k, but such r will still be roughly the size of R(a) since it will only be feasible
to compute an r of cryptographic size if the remaining factors of R(a) are small. Thus
the possible subgroup orders r are more restricted in the Dupont–Enge–Morain method
than in the Cocks–Pinch method. This is the only significant difference between the
two methods, and thus we recommend using the Cocks–Pinch method for applications
where a curve with arbitrary embedding degree and ρ ≈ 2 is desired.

5. Sparse Families of Pairing-Friendly Curves

Recall that to construct families of pairing-friendly curves, we search for polynomials
t (x), r(x), q(x) that satisfy certain divisibility conditions modulo r(x) and for which
the CM equation

Dy2 = 4q(x) − t (x)2 = 4h(x)r(x) − (
t (x) − 2

)2 (5.1)

has infinitely many solutions (x, y). Here, h(x) is the “cofactor” satisfying

h(x)r(x) = q(x) + 1 − t (x).

If we are searching for curves of prime order, then we set h(x) = 1. Miyaji,
Nakabayashi, and Takano [64] were the first to construct ordinary elliptic curves of
prime order with prescribed embedding degree. Their construction relies on the fact
that if the right-hand side of (5.1) is a quadratic polynomial, then we can make a substi-
tution to transform the equation into a generalized Pell equation. Such equations often
have an infinite number of solutions, in which case we obtain a family of curves in the
sense of Definition 2.7.

Freeman [30] placed this result in a more general context by observing that if f (x) =
4q(x) − t (x)2 is the right-hand side of (5.1) and f (x) is square free, then (5.1) defines
a smooth affine plane curve of genus g = � degf −1

2 �. If f (x) is quadratic, then g = 0,
and genus-zero curves have either no integral points or an infinite number of integral
points. In the latter case we obtain a family (t, r, q) in the sense of Definition 2.7. On the
other hand, if degf (x) ≥ 3, then condition (5) of Definition 2.7 can never be satisfied
([30, Proposition 2.10]). Indeed, in this case the curve defined by (5.1) has genus g ≥ 1,
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and by Siegel’s theorem (see [82, Theorem IX.4.3] and [25, Sect. I.2]) such curves have
only a finite number of integral points.

The case that f (x) contains a square factor is a very rare and lucky case. (However, it
can occur; see the Barreto–Naehrig construction [4], which we describe from a different
viewpoint in Sect. 6.2.) As for the case that f (x) is quadratic (and square free), Freeman
argues that this can only naturally occur if k = 3, 4, or 6. Specifically, we have the
following theorem:

Theorem 5.1 [30, Lemma 5.1]. Let k ∈ N, let t (x) ∈ Z[x], and let r(x) ∈ Z[x] be an
irreducible factor of Φk(t (x) − 1). Then ϕ(k) | deg r(x).

Thus, as degq(x) ≥ deg r(x), if ϕ(k) ≥ 4, then 4q(x) − t (x)2 typically is square
free and has degree at least 4. A quadratic right-hand side of the CM equation can be
obtained only if the high-order terms of 4q(x) and t (x)2 cancel out. The only case where
this has been achieved so far is for embedding degree k = 10; for any other embedding
degree, finding suitable (t (x), r(x), q(x)) remains an open problem.

5.1. MNT Curves

Miyaji, Nakabayashi, and Takano [64] were the first authors to propose ordinary
pairing-friendly curves, doing so for embedding degrees k = 3, 4, and 6. In fact, they
fully characterize ordinary curves of prime order with embedding degrees 3, 4, or 6 as
follows:

Theorem 5.2 [64]. Let q be a prime, and let E/Fq be an ordinary elliptic curve such
that r = #E(Fq) is prime. Let t = q + 1 − r .

(1) E has embedding degree k = 3 if and only if there exists x ∈ Z such that t =
−1 ± 6x and q = 12x2 − 1.

(2) E has embedding degree k = 4 if and only if there exists x ∈ Z such that t = −x

or t = x + 1, and q = x2 + x + 1.
(3) E has embedding degree k = 6 if and only if there exists x ∈ Z such that t =

1 ± 2x and q = 4x2 + 1.

In all three cases, the proof (of the “only if” part) of Theorem 5.2 starts out with the
condition r | Φk(q) and exploits the primality of the group order. All of the proofs are
entirely elementary. Miyaji et al. prove the theorem for q > 64; the remaining cases can
be demonstrated via a brute-force search.

Remark 5.3. Karabina and Teske [48,49] show that if r and q are both primes greater
than 3, then there is an elliptic curve E/Fq with embedding degree 6, discriminant D,
and #E(Fq) = r if and only if there is an elliptic curve E′/Fr with embedding degree 4,
discriminant D, and #E′(Fr ) = q .

In all three cases of Theorem 5.2, the CM equation Dy2 = 4q(x) − t (x)2 defines a
curve of genus zero, with the right-hand side being quadratic in x. In each case, by a
linear change of variables, the CM equation can be transformed into a generalized Pell
equation of the form X2 − SDY 2 = M . Specifically,
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(1) for k = 3, setting X = 6x ± 3 yields X2 − 3Dy2 = 24,
(2) for k = 4, setting X = 3x + 2 (if t = −x) or X = 3x + 1 (if t = x + 1) yields

X2 − 3Dy2 = −8, and
(3) for k = 6, setting X = 6x ∓ 1 yields X2 − 3Dy2 = −8.

(The signs in (1) and (3) are to match those in Theorem 5.2.)
The general strategy to find integer solutions to the generalized Pell equation

X2 − SDY 2 = M is to first find the minimal positive integer solution (U,V ) (that is,
U > 0, V > 0, and V minimal) to the Pell equation U2 − SDV 2 = 1, by computing the
simple continued fraction expansion of

√
SD. Then find a so-called fundamental solu-

tion (X0, Y0) to X2 − SDY 2 = M , for example, using one of the techniques described
by Matthews [58] or Robertson [73]. Such a solution may or may not exist. If a solution
exists, then for j ∈ Z, define (Xj ,Yj ) by

Xj + Yj

√
SD = (U + V

√
SD)j · (X0 + Y0

√
SD). (5.2)

This yields an infinite sequence of solutions to X2 − SDY 2 = M .
Now, the MNT strategy to generate ordinary elliptic curves of prime order with em-

bedding degree k = 3, 4, or 6 is the following: repeatedly select small discriminants
D and compute solutions (Xj ,Yj ) as in (5.2) (with S = 3, and M = 24 or M = −8)
until the corresponding q = q(x) and r = q(x) + 1 − t (x) are primes of the desired bit
length. Then there exists an elliptic curve over Fq with r points and embedding degree
3, 4, or 6, respectively, which can be constructed via the CM method.

The search for MNT curves can be sped up slightly by noting that if k = 3, it is
necessary that D ≡ 19 (mod 24) [64], and if k = 4,6, necessarily D ≡ 3 (mod 8) and
D �≡ 5 (mod 10). Also, in all three cases, M must be a quadratic residue modulo 3D.

The major downside of MNT curves is that the consecutive solutions (Xj ,Yj ) of the
generalized Pell equation grow exponentially, so that only very few x-values work, and
we obtain a sparse family in the sense of Definition 2.7. In fact, Luca and Shparlinski
[56] give a heuristic argument that for any upper bound D, there exist only a finite
number of MNT curves with discriminant D ≤ D, with no bound on the field size! On
the other hand, specific sample curves of cryptographic interest have been found, such
as MNT curves of 160-bit, 192-bit, or 256-bit prime order (see, for example, [69] and
[80]).

5.2. Extensions of the MNT Strategy

The MNT strategy has been extended by Scott and Barreto [81] and by Galbraith, Mc-
Kee, and Valença [36], by allowing a small constant-size cofactor h.

Starting out with (5.1), Scott and Barreto [81] fix small integers h and d and substitute
r = Φk(t − 1)/d and t = x + 1, to obtain the equation

Dy2 = 4h
Φk(x)

d
− (x − 1)2. (5.3)

As the right-hand side is quadratic in x for k = 3, 4, or 6, just as with MNT curves, we
can transform (5.3) into a generalized Pell equation by an appropriate linear substitution
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of x. Subsequently, the MNT strategy can be applied to find curves with embedding
degrees k = 3, 4, or 6 of almost-prime order.

Galbraith, McKee, and Valença [36] give a complete characterization of curves with
embedding degree 3,4, and 6 with cofactors 2 ≤ h ≤ 5. This is achieved by mimicking
the Miyaji–Nakabayashi–Takano proof of Theorem 5.2 but substituting hr for #E(Fq),
followed by an explicit (but tedious) analysis for h = 2,3,4,5. Just as in the prime-order
case, all resulting parameterizations for t are linear in x, and all resulting parameteriza-
tions for q are quadratic in x, so that the resulting CM equations Dy2 = 4q(x) − t (x)2

are quadratic in x and allow for a transformation into generalized Pell equations.
Given the nature of the solutions of Pell equations, we once again obtain sparse fam-

ilies.

5.3. Freeman’s Family for k = 10

As discussed above, if ϕ(k) > 2, it is extremely unlikely that the right-hand side of (5.1)
is quadratic. However, Freeman [30] discovered one example where this does occur for
k = 10. The construction uses the following factorization of Φ10(u(x)), discovered by
Galbraith, McKee, and Valença [36]. Let u(x) = 10x2 + 5x + 2; then

Φ10(u(x)) = (25x4 + 25x3 + 15x2 + 5x + 1)(400x4 + 400x3 + 240x2 + 60x + 11).

Using this factorization, Freeman observed that if we take r(x) to be the first factor,
t (x) = u(x) + 1, and q(x) = r(x) + t (x) − 1, that is,

t (x) = 10x2 + 5x + 3,

r(x) = 25x4 + 25x3 + 15x2 + 5x + 1,

q(x) = 25x4 + 25x3 + 25x2 + 10x + 3,

the two highest-order terms of the polynomial f (x) = 4q(x) − t (x)2 cancel out, which
results in the quadratic CM equation Dy2 = 15x2 + 10x + 3. Via the substitution X =
15x + 5, this CM equation is equivalent to the generalized Pell equation X2 − 15Dy2 =
−20. For any D for which the latter equation possesses an integer solution, this yields a
sparse family (t, r, q) with embedding degree 10, which can be computed by mimicking
the MNT strategy. In this case the search can be sped up by using the fact that any D

leading to a solution must satisfy D ≡ 43 or 67 (mod 120).

6. Complete Families of Pairing-Friendly Curves

Once again, we start out with the CM equation

Dy2 = 4q(x) − t (x)2 = 4h(x)r(x) − (
t (x) − 2

)2 (6.1)

and search for polynomials t (x), r(x), q(x) that satisfy certain divisibility conditions
and for which the CM equation has infinitely many solutions (x, y). The constructions
in this section work by choosing the parameters D, t(x), r(x), q(x) such that the right-
hand side of the CM equation is always D times the square of a polynomial y(x). These
constructions thus give complete families of curves in the sense of Definition 2.7.
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There are two principal strategies for constructing complete families, one due to
Scott and Barreto [81] and the other due originally to Barreto, Lynn, and Scott [5],
and in its fullest generality to Brezing and Weng [17]. Both start in the same way:
fix an embedding degree k, choose an irreducible polynomial r(x) ∈ Z[x] such that
K ∼= Q[x]/(r(x)) is a number field containing the kth roots of unity, and then choose
t (x) to be a polynomial mapping to 1 + ζk , where ζk is a primitive kth root of unity
in K .

At this point the two strategies diverge. Brezing and Weng use the fact that if K

contains a square root of −D, then since r(x) = 0 in K , we can factor the CM equation
(6.1) in K as

(
t (x) − 2 + y

√−D
)(

t (x) − 2 − y
√−D

) ≡ 0 mod r(x).

Since t (x) �→ ζk + 1 ∈ K , it now becomes clear that if we choose y(x) to be a polyno-
mial mapping to (ζk − 1)/

√−D in K , then the CM equation is automatically satisfied
for any x.

If we do not know that K contains an element of the form
√−D for some small

D, then we may apply the Scott–Barreto strategy. This strategy is to take the t (x) and
r(x) from above and search (usually via computer) for cofactors h(x) that make the
right-hand side of the CM equation (6.1) either a perfect square or a linear factor times
a perfect square. The CM equation then becomes

Dy2 = (ax + b)g(x)2.

If a = 0, then we take D = b and y = g(x). If a > 0, we may choose any D and make

the substitution x �→ Dz2−b
a

. If we then set y = zg(x), the CM equation is automatically
satisfied for any z.

In both cases, we finish by constructing q(x) as

q(x) = 1

4

(
t (x)2 + Dy(x)2).

If q(x) represents primes and r(x) has positive leading coefficient, then (t, r, q) para-
meterizes a complete family of pairing-friendly curves.

The success of either strategy depends heavily on the choice of number field K . The
obvious choice is to set K to be a cyclotomic field Q(ζ�) for some � that is a multiple
of k and define r(x) to be the �th cyclotomic polynomial Φ�(x). Then K contains the
kth roots of unity. Furthermore, it is a standard result of the theory of cyclotomic fields

that K contains
√−1 if 4 | �, K contains

√−2 if 8 | �, and K contains
√

(−1
p

)p for any

odd prime p dividing �. Thus, for any k and D, we can use a cyclotomic field in the
Brezing–Weng construction; see Murphy and Fitzpatrick’s work [66] for more details.
We call families constructed in this manner “cyclotomic families,” and we discuss some
of the most efficient constructions (i.e., those with smallest ρ-value) in Sect. 6.1 below.

We may achieve even better success by choosing K to be a (perhaps trivial) extension
of a cyclotomic field, with r(x) not a cyclotomic polynomial. There are two ways of
creating such an extension. The first is to evaluate the cyclotomic polynomial Φ� at some
polynomial u(x). If Φ�(u(x)) is irreducible, we have gained nothing, but if Φ�(u(x))
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factors as r1(x)r2(x) with r1 irreducible, then we may set K = Q[x]/(r1(x)). Then K is
a field containing the �th roots of unity, and u(x) maps to an �th root of unity in K . If we
know that

√−D ∈ Q(ζ�), then
√−D ∈ K as well, and we may use the Brezing–Weng

construction; otherwise we may apply the Scott–Barreto construction.
The second method, due to Kachisa, Schaefer, and Scott [47], is to find a non-

cyclotomic polynomial r(x) such that K = Q[x]/(r(x)) is isomorphic to the cyclotomic
field Q(ζ�). Such a polynomial r(x) can be computed as the minimal polynomial of a
randomly chosen element of Q(ζ�). Given this r(x), we can find a polynomial z(x)

mapping to ζ� in K and proceed as in the Brezing–Weng method.
Since nontrivial factorizations of Φ�(u(x)) are rare for random u(x) and, further-

more, the q(x) produced by the Kachisa–Schaefer–Scott technique do not usually rep-
resent primes, we will call families of curves obtained by either of these techniques
“sporadic” families; they are discussed in Sect. 6.2 below. Although such families are
rare, they may have better ρ-values than curves constructed using a cyclotomic field.
This was most spectacularly demonstrated by Barreto and Naehrig [4], who used the
first method to construct curves of prime order with embedding degree 12 (Example 6.8
below).

We have checked that all of the families we describe in this section can be used to
produce explicit examples of pairing-friendly elliptic curves and have confirmed that
for parameters of cryptographic size, the ρ-value of a curve is very close to the ρ-value
of its family. As listing examples of curves is beyond the scope of this paper, we either
refer the reader to the original papers describing the constructions or suggest trying
various values of x until a value is found such that q(x) is a prime of the desired size.

6.1. Cyclotomic Families

Barreto, Lynn, and Scott [5] and (independently) Brezing and Weng [17] both observed
that if we apply the Cocks–Pinch method but parameterize t, r, q as polynomials, then
we can improve on the ρ-value of 2 produced by the Cocks–Pinch method. Brezing
and Weng stated the construction in greatest generality; their theorem is below. An
alternative interpretation of the construction can be found in the paper of Freeman [32],
which generalizes the method to produce higher-dimensional abelian varieties.

Theorem 6.1 [17]. Fix a positive integer k and a positive square-free integer D. Exe-
cute the following steps.

(1) Find an irreducible polynomial r(x) ∈ Z[x] with positive leading coefficient such
that K = Q[x]/(r(x)) is a number field containing

√−D and the cyclotomic
field Q(ζk).

(2) Choose a primitive kth root of unity ζk ∈ K .
(3) Let t (x) ∈ Q[x] be a polynomial mapping to ζk + 1 in K .
(4) Let y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/

√−D in K .
(So, if

√−D �→ s(x), then y(x) ≡ (2 − t (x))s(x)/D mod r(x).)
(5) Let q(x) ∈ Q[x] be given by (t (x)2 + Dy(x)2)/4.

Suppose that q(x) represents primes and y(x0) ∈ Z for some x0 ∈ Z. Then the triple
(t (x), r(x), q(x)) parameterizes a complete family of elliptic curves with embedding
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degree k and discriminant D. The ρ-value of this family is

ρ(t, r, q) = 2 max{deg t (x),degy(x)}
deg r(x)

. (6.2)

Since we can always choose t (x) and y(x) to have degree strictly less than r(x), we
see that this method can produce families with ρ-values strictly less than 2. In general,
we expect the smallest possible degree for t (x) and y(x) to be deg(r) − 1, so ρ will not
be much less than 2. However, for certain clever choices of the number field K , we may
construct polynomials t and y with smaller degree, thus improving the ρ-value.

We now examine in detail some constructions that make use of Theorem 6.1. Here
and in the following examples, for α ∈ K and f (x) ∈ Q[x], we use the notation α �→
f (x) to mean that f (x) represents α in K = Q[x]/(r(x)).

Barreto, Lynn, and Scott [5] gave the first construction along the lines of Theorem 6.1.
They construct families by taking the polynomial r(x) defining the number field K to
be the kth cyclotomic polynomial, choosing ζk �→ x in K (so t (x) = 1 + x) and using
the fact that if k is divisible by 3, then

√−3 ∈ K . Brezing and Weng [17] give a more
general construction by setting r(x) to be a cyclotomic polynomial Φ�(x) for some
multiple � of the desired embedding degree k and choosing various representatives for
ζk in Q[x]/(r(x)). The discriminants D in these constructions are often taken to be 1
or 3, and any cyclotomic polynomial satisfies condition (2) of Definition 2.7(i). The
tricky part of most of these constructions is ensuring that the resulting q(x) represents
primes.

We begin with a construction given by Brezing and Weng, who state the construction
for prime embedding degrees k; we observe that the construction extends readily to all
odd k. We choose K to be a cyclotomic field containing a fourth root of unity

√−1, so
we may choose D = 1.

Construction 6.2 [17]. Let k be odd, k < 1000. Let

r(x) = Φ4k(x),

t (x) = −x2 + 1, (6.3)

q(x) = 1

4

(
x2k+4 + 2x2k+2 + x2k + x4 − 2x2 + 1

)
.

Then (t, r, q) parameterizes a complete family of pairing-friendly elliptic curves with
embedding degree k and discriminant 1. The ρ-value of this family is (k + 2)/ϕ(k).

Proof. We apply Theorem 6.1 with K = Q[x]/(r(x)) ∼= Q(ζ4k), which contains Q(ζk)

and
√−1. We choose ζk �→ −x2 and

√−1 �→ xk . Then y(x) = (x2 + 1)xk , giving
q(x) = 1

4 ((−x2 +1)2 + (x2 +1)2x2k), which simplifies to (6.3). Now, q(x) is an integer
whenever x is odd, and q(1) = 1. Thus if q is irreducible, then it represents primes.
Computations with Magma [15] show that q(x) is irreducible for all odd k < 1000.
(This pattern of irreducibility motivates us to conjecture that q(x) is indeed irreducible
for all odd k.) Lastly, y(x) ∈ Z for all x ∈ Z. The claimed ρ-value follows from (6.2) as
deg r = 2ϕ(k) and deg t < degy = k + 2. �
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We next observe that if k is odd, then ζ2k = −ζk . Thus if we change the sign of the
polynomials representing ζk in Construction 6.2, the same construction can be used to
create families with embedding degree 2k and the same ρ-values.

Construction 6.3. Let k be odd, k < 1000. Let

r(x) = Φ4k(x),

t (x) = x2 + 1,

q(x) = 1

4

(
x2k+4 − 2x2k+2 + x2k + x4 + 2x2 + 1

)
.

Then (t, r, q) parameterizes a complete family of pairing-friendly elliptic curves with
embedding degree k′ = 2k and discriminant 1. The ρ-value of this family is (k′/2 +
2)/ϕ(k′).

Proof. Again, we invoke Theorem 6.1, choosing r(x) as in Construction 6.2,
√−1 �→

xk , and ζ2k �→ x2. We obtain t (x) as stated and y(x) = (−x2 + 1)xk , giving the stated
q(x). Since q(x) is the reverse polynomial of (6.3), we have q(1) = 1 and q(x) ∈ Z

for all odd x. Further, q(x) is irreducible if and only if (6.3) is, that is, certainly for all
k < 1000 and conjecturally for all odd k. Just as in Construction 6.2, the ρ-value of this
family is (k + 2)/ϕ(k). �

With the same setup, using ζ4k = √
ζ2k gives the following construction.

Construction 6.4. Let k be odd, k < 1000. Let

r(x) = Φ4k(x),

t (x) = x + 1,

q(x) = 1

4

(
x2k+2 − 2x2k+1 + x2k + x2 + 2x + 1

)
.

Then (t, r, q) parameterizes a complete family of pairing-friendly elliptic curves with
embedding degree k′ = 4k and discriminant 1. The ρ-value of this family is (k′/2 +
2)/ϕ(k′).

Proof. We use Theorem 6.1 with r(x) as in the previous constructions,
√−1 �→ xk ,

and ζ4k �→ x. Then y(x) = (−x + 1)xk , from which we obtain q(x) as stated. Since
q(1) = 1, if q is irreducible, then it represents primes. Computations with Magma [15]
show that q(x) is irreducible for odd k < 1000 (and we conjecture once again that
q(x) is irreducible for all odd k). From (6.2) we obtain the ρ-value of this family as
(k + 1)/ϕ(k). �

For k = 10, Brezing and Weng achieve a better ρ-value than Construction 6.3.
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Example 6.5 [17]. Let

r(x) = Φ20(x) = x8 − x6 + x4 − x2 + 1,

t (x) = −x6 + x4 − x2 + 2,

q(x) = 1

4

(
x12 − x10 + x8 − 5x6 + 5x4 − 4x2 + 4

)
.

Then (t, r, q) parameterizes a complete family of pairing-friendly elliptic curves with
embedding degree 10 and discriminant 1. The ρ-value of this family is 3/2.

Proof. The field K = Q[x]/(r(x)) contains ζ10 and
√−1. We choose

√−1 �→ x5

and ζ10 �→ −x6 + x4 − x2 + 1 and use Theorem 6.1. Then ζ10 + 1 �→ t (x), and y(x) =
x5 − x3, giving q(x) as stated. Since q(x) is irreducible and q(0) = 1, it represents
primes. �

We now consider families constructed by choosing K to be a cyclotomic field con-
taining a cube root of unity. Such fields contain

√−3, so we may choose D = 3. Some
constructions of this form have been given by Barreto, Lynn, and Scott [5] and Brez-
ing and Weng [17] for certain values of k; we consider the construction for all k and
discover (potential) families in all cases where k is not divisible by 18.

Construction 6.6. Let k be a positive integer with k ≤ 1000 and 18 � k.

• If k ≡ 1 (mod 6), let

r(x) = Φ6k(x),

t (x) = −xk+1 + x + 1,

q(x) = 1

3
(x + 1)2(x2k − xk + 1

) − x2k+1.

• If k ≡ 2 (mod 6), let

r(x) = Φ3k(x),

t (x) = xk/2+1 − x + 1,

q(x) = 1

3
(x − 1)2(xk − xk/2 + 1

) + xk+1.

• If k ≡ 3 (mod 6), let

r(x) = Φ2k(x),

t (x) = −xk/3+1 + x + 1,

q(x) = 1

3
(x + 1)2(x2k/3 − xk/3 + 1

) − x2k/3+1.
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• If k ≡ 4 (mod 6), let

r(x) = Φ3k(x),

t (x) = x3 + 1,

q(x) = 1

3

(
x3 − 1

)2(
xk − xk/2 + 1

) + x3.

• If k ≡ 5 (mod 6), let

r(x) = Φ6k(x),

t (x) = xk+1 + 1,

q(x) = 1

3

(
x2 − x + 1

)(
x2k − xk + 1

) + xk+1.

• If k ≡ 0 (mod 6), let

r(x) = Φk(x),

t (x) = x + 1,

q(x) = 1

3
(x − 1)2(xk/3 − xk/6 + 1

) + x.

Then (t, r, q) parameterizes a complete family of pairing-friendly curves with embed-
ding degree k and discriminant 3.

Let � = lcm(6, k). Then the ρ-value of any such family is ρ = (�/3 + 6)/ϕ(�) if k ≡
4 (mod 6) and (�/3 + 2)/ϕ(�) otherwise. In particular, we have ρ ≤ 2 for all k ≤ 1000
except for k = 4 and ρ < 2 for all 5 ≤ k ≤ 1000 except for k = 6 and 10.

Proof. We use Theorem 6.1 with r(x) = Φ�(x), where � = lcm(k,6). That is, we
work in the field Q(ζk, ζ6) defined as K ∼= Q[x]/(Φ�(x)). In this field we have√−3 �→ 2x�/6 − 1. Our goal is to find a polynomial y(x) of small degree such that
(ζk − 1)/

√−3 �→ y(x). The degree of y(x) depends on our choice of polynomial z(x)

with ζk �→ z(x) The obvious choice is ζk �→ x�/k ; however, in many cases we can do
better by choosing ζk �→ xa with a only slightly larger than �/6 and reducing modulo
Φ�(x) to obtain z(x). Since x is a primitive �th root of unity, for xa to be a primitive kth
root of unity, we need a to be a multiple of �/k and relatively prime to k. The specific
choices for ζk �→ z(x) are given below.

For a given z(x), we let t (x) = z(x) + 1, and we compute y(x) by taking 1
3 (z(x) −

1)(1 − 2x�/6) and adding ± 2
3xΦ6(x

�/k) (a polynomial divisible by r(x)) to cancel out
the leading term if k (mod 6) ∈ {1,2,3,5}. Specifically,

• If k ≡ 1 (mod 6), then � = 6k. Since 2k + 1 ≡ 3 (mod 6), x2k+1 is a primitive
2kth root of unity. Since k is odd, −x2k+1 is a primitive kth root of unity. Thus
we choose ζk �→ −x2k+1 ≡ −xk+1 + x mod r(x), which gives t (x) as stated, and
y(x) = 1

3 (−xk+1 + 2xk − x − 1).
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• If k ≡ 2 (mod 6), then � = 3k. We have k + 1 ≡ 3 (mod 6), so we choose ζk �→
xk+1 ≡ xk/2+1 − x mod r(x). This gives t (x) as stated, and y(x) = 1

3 (xk/2+1 +
2xk/2 + x − 1).

• If k ≡ 3 (mod 6), then � = 2k. Since x2k/3 is a cube root of unity and 3 | k, we
need to multiply x2k/3 by a primitive kth root of unity. Since k is odd and x is a
2kth root of unity, −x is a kth root of unity. Thus we choose ζk �→ −x2k/3+1 ≡
−xk/3+1 + x mod r(x). Again, this gives t (x) as stated, and y(x) = 1

3 (−xk/3+1 +
2xk/3 − x − 1).

• If k ≡ 4 (mod 6), then � = 3k. Choose ζk �→ x3 = z(x). Then y(x) = 1
3 (−2xk/2+3

+ 2xk/2 + x3 − 1).
• If k ≡ 5 (mod 6), then � = 6k. We have k + 1 ≡ 0 (mod 6), so we choose ζk �→

xk+1 = z(x). Then y(x) = 1
3 (−xk+1 + 2xk + 2x − 1).

• If k ≡ 0 (mod 6), then � = k. Choose ζk �→ x = z(x). Then y(x) = 1
3 (−2xk/6+1 +

2xk/6 + x − 1).

By computing q(x) = 1
4 (t (x)2 + 3y(x)2) one can immediately verify that from these

t (x) and y(x) we obtain the polynomials q(x) as stated, Note that for small values of k,
some of the resulting t (x) and y(x) are not completely reduced modulo r(x); in these
cases we find that further reduction leads to a q(x) that does not represent primes.

It remains to consider whether q(x) represents primes. We can check conditions (4)
and (5) of Definition 2.5(i) simultaneously: If k is even, then q(1) = 1, if k ≡ 1 or
3 (mod 6), then q(−1) = 1, and if k ≡ 5 (mod 6), then q(−1) = 4 and q(2) is an odd
integer. Finally, computations with Magma [15] indicate that the appropriate q(x) is
irreducible for all k ≤ 1000, except when k is divisible by 18. (This pattern of irre-
ducibility motivates us to conjecture that the appropriate q(x) is irreducible for all k not
divisible by 18.)

As for the ρ-value, note that we have degq = �/3 + 2 in all cases except k ≡
4 (mod 6), in which case degq = �/3 + 6. �

Next, we consider families obtained by choosing K to be a cyclotomic field contain-
ing an eighth root of unity. Such fields contain

√−2, so we may choose D = 2. Murphy
and Fitzpatrick [66] give an example of the construction for k = 24; we describe the
construction for any k divisible by 3.

Construction 6.7. Let k be a positive integer with k < 1000 and 3 | k. Let � =
lcm(8, k) and

r(x) = Φ�(x),

t (x) = x�/k + 1,

q(x) = 1

8

(
2
(
x�/k + 1

)2 + (
1 − x�/k

)2(
x5�/24 + x�/8 − x�/24)2)

.

Then (t, r, q) parameterizes a complete family of curves with embedding degree k and
discriminant 2. The ρ-value of this family is ( 5k

6 +4)/ϕ(k) if k is odd and ( 5k
12 +2)/ϕ(k)

if k is even. (These ρ-values are less than 2 for all k ≤ 1000 except for k = 3, 6, or 15.)
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Table 3. Families with k ∈ {15,28,44} and D = 2.

k � t (x), r(x), q(x) ρ

15 120

t (x) = x28 + x24 − x16 − x12 − x8 + 1

r(x) = Φ120(x)

q(x) = 1
8 (2x56 + 4x52 + x50 + 2x48 + 2x46 − 4x44 + x42 − 6x40

− 4x36 − x30 + 12x28 − 2x26 + 14x24 − x22 + 2x20 − 10x16

− 10x12 + x10 − 8x8 + 2x6 + x2 + 8)

7/4

28 56
t (x) = −x2

r(x) = Φ56(x)

q(x) = 1
8 (2(x2 − 1)2 + x14(x2 + 1)2(x14 + 1)2)

23/12

44 88
t (x) = −x2

r(x) = Φ88(x)

q(x) = 1
8 (2(x2 − 1)2 + x22(x2 + 1)2(x22 + 1)2)

7/4

Proof. We apply Theorem 6.1, working in the field K = Q[x]/(Φ�(x)), which is
isomorphic to Q(ζk, ζ8). In this field, we have ζk �→ x�/k , and

√−2 = ζ8 + ζ 3
8 �→

x�/8 + x3�/8. We wish to compute y(x) such that (ζk − 1)/
√−2 �→ y(x). Explicitly,

we have
ζk − 1√−2

�→ 1

2

(
1 − x�/k

)(
x3�/8 + x�/8). (6.4)

Since k is a multiple of 3, we can use the relation x�/3 ≡ x�/6 − 1 mod Φ�(x) to reduce
the right-hand side of (6.4) further, obtaining

y(x) = 1

2

(
1 − x�/k

)(
x5�/24 + x�/8 − x�/24).

Choosing t (x) = x�/k + 1 gives q(x) as stated. Note that unless k = 3,6, or 15, we
have �

k
+ 5�

24 < ϕ(�), and thus y(x) is indeed the minimal-degree representative of
(ζk − 1)/

√−2 modulo Φ�(x) (see also below for the case k = 15).
To establish that q(x) represents primes, we first observe that q(1) = 1 for any k.

Computations with Magma [15] then show that q(x) is irreducible whenever 3 | k

and k < 1000. (This pattern of irreducibility motivates us to conjecture that q(x)

is irreducible for all k divisible by 3.) As for the ρ-value, it suffices to note that
degq(x) = ( 2�

k
+ 5�

12 ), and deg r(x) = ϕ(k)�/(2k) if k is odd and deg r(x) = ϕ(k)�/k if
k is even. �

Construction 6.7, while stated only for k divisible by 3, can be carried out for any pos-
itive integer k, setting y(x) to be the minimal-degree representative for (ζk − 1)/

√−2
in K . However, unlike the case of Construction 6.6, the expressions for q(x) when k is
not divisible by 3 become too complicated to enumerate explicitly in general. Further-
more, in some cases the construction may not give a family in the sense of Definition
2.7; for example, if k = 20, the q(x) given by the construction never takes integer val-
ues. Potential families for a few selected values of k are given in Table 3; here we
include the case k = 15 with y(x) completely reduced modulo Φ120(x).
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6.2. Sporadic Families of Brezing–Weng Curves

Brezing and Weng only consider cyclotomic polynomials r(x) for their constructions,
but in some cases using non-cyclotomic polynomials r(x) that define (perhaps trivial)
extensions of cyclotomic fields may turn out to be even more effective. One method for
constructing such extensions is to evaluate the cyclotomic polynomial Φ�(x) at some
polynomial u(x). If Φ�(u(x)) is irreducible, as is usually the case, going to the extension
field will give us no advantage, as we will just be evaluating t , r , and q at u(x). However,
if Φ�(u(x)) factors, we may gain some advantage.

Galbraith, McKee, and Valença [36] have analyzed the factorizations of Φ�(u(x))

when u is quadratic and Φ� has degree 4. For � = 8, there are no quadratic u such
that Φ8(u(x)) factors. For � = 5,10, there is a one-dimensional family of such u, pa-
rameterized by the rational points of a rank-one elliptic curve over Q. However, since
Q(ζ5) = Q(ζ10) has no quadratic imaginary subfields, we do not expect to find

√−D

in an extension of Q(ζ5).
Finally, for � = 12, there are two such u(x). Barreto and Naehrig constructed pairing-

friendly curves of prime order using one such factorization.

Example 6.8 (Barreto–Naehrig curves [4]). Let

r(x) = 36x4 + 36x3 + 18x2 + 6x + 1,

t (x) = 6x2 + 1,

q(x) = 36x4 + 36x3 + 24x2 + 6x + 1.

Then (t, r, q) parameterizes a complete family of curves with embedding degree k = 12,
discriminant 3, and ρ-value 1.

Proof. Galbraith, McKee, and Valença discovered that if u(x) = 6x2, and r(x) is as
stated above, then Φ12(u(x)) = r(x)r(−x). If K = Q[x]/(r(x)), then ζ12 �→ 6x2 in K ,
giving t (x) as stated above. Using

√−3 = 2ζ 2
12 − 1, we compute y(x) = 6x2 + 4x + 1,

giving q(x) as stated. It is immediately verified that q(x) represents primes. �

Note that since q(x) and r(x) have the same degree and leading coefficient, r(x) is
actually the number of points on the elliptic curve to be constructed. Thus if q(x) and
r(x) are both prime for some value of x, then the elliptic curve constructed will have
prime order. In addition, this family has the added benefit that curves with D = 3 have
twists of degree 6, and since k is divisible by 6, we may take advantage of these twists
to map points in E(Fq12) to points defined over Fp2 , which allow for much faster group
operations. (See Sect. 7.3 for further details).

Barreto and Naehrig present their construction as an MNT-type family (see Sect. 5)
in which the right-hand side of the CM equation happens to be a constant times a
perfect square polynomial. However, viewing the construction as we do in Exam-
ple 6.8 suggests that we can extend the construction to the other quadratic u(x) for
which Φ12(u(x)) factors. Namely, if u(x) = 2x2, then Φ12(u(x)) = r(x)r(−x) with
r(x) = 4x4 +4x3 +2x2 +2x +1. Again we have ζ12 �→ u(x) and

√−3 = 2ζ 2
12 −1. The

construction of q(x) for embedding degree 12 again gives a degree-four polynomial, but
this polynomial never takes integer values. Instead, let us look at ζ4 �→ u(x)3 mod r(x).
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Example 6.9. Let

t (x) = −4x3,

r(x) = 4x4 + 4x3 + 2x2 + 2x + 1,

q(x) = 1

3

(
16x6 + 8x4 + 4x3 + 4x2 + 4x + 1

)
.

Then (t, r, q) parameterizes a complete family of curves with embedding degree k = 4
and discriminant 3. The ρ-value of this family is 3/2.

Proof. If u(x) = 2x2 and r(x) is as above, then Φ12(u(x)) = r(x)r(−x). Now
ζ4 �→ u(x)3 mod r(x), that is, ζ4 �→ −4x3 − 1, so let t (x) = −4x3. Using

√−3 �→
8y3 + 4y2 + 4y + 3, we compute y(x) = 1

3 (4y3 + 4y + 2), giving q(x) as stated. Since
q(x) is irreducible and q(−1) = 7 and q(2) = 403 are relatively prime, q(x) represents
primes. �

A computer search for further factorizations of Φk(u(x)) for various values of k and
degrees of u found the following example for k = 8; Tanaka and Nakamula [84] have
given similar constructions using the same idea.

Example 6.10. Let k = 8. Let

r(x) = 9x4 + 12x3 + 8x2 + 4x + 1,

t (x) = −9x3 − 3x2 − 2x,

q(x) = 1

4

(
81x6 + 54x5 + 45x4 + 12x3 + 13x2 + 6x + 1

)
.

Then (t, r, q) parameterizes a complete family of curves with embedding degree k = 8
and discriminant 1. The ρ-value is 3/2.

Proof. Let u(x) = 9x3 +3x2 +2x+1. Then Φ8(u(x)) has an irreducible factor r(x) =
9x4 + 12x3 + 8x2 + 4x + 1. Setting D = 1, in the field K = Q[x]/(r(x)) we choose
ζ8 �→ −u(x) and

√−1 = ζ 2
8 �→ −18x3 − 15x2 − 10x − 4 mod r(x). From this we

compute t (x) as stated and y(x) = −3x − 1. Applying Theorem 6.1, we obtain q(x)

as stated. Since q(x) is irreducible and q(1) = 53 and q(−1) = 17 are distinct primes,
q(x) represents primes. �

Note that the ρ-value of this family is worse than the ρ-value 5/4 given by Construc-
tion 6.6. However, curves with D = 1 have a twists of degree 4, and since k is a multiple
of 4, we may take advantage of these twists to map points P ∈ E(Fq8) down to the field
Fq2 , thus speeding up the pairing computation. (See Sect. 7.3 for further details.)
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Our search also found the following factorization: If u(x) = x5 +2x4 +2x3 +2x2 +1,
then Φ12(u(x)) = r1(x)r2(x), where

r1(x) = x8 + 4x7 + 7x6 + 8x5 + 6x4 + 4x3 + 4x2 + 2x + 1,

r2(x) = x12 + 4x11 + 9x10 + 16x9 + 19x8 + 20x7 + 17x6 + 10x5

+ 10x4 + 4x2 − 2x + 1.

Each of these leads to a complete family of pairing friendly curves with D = 3, the
former with ρ = 5/4 and the latter with ρ = 7/6. These are both superior to Construc-
tion 6.6 for k = 12, which has ρ = 3/2, but they are clearly inferior to the ideal Barreto
and Naehrig construction (Example 6.8). However, the result does indicate that more
useful solutions may well exist.

Kachisa, Schaefer, and Scott [47], building on the work of Kachisa [46], give a differ-
ent strategy for constructing non-cyclotomic polynomials that define a cyclotomic field.
Their strategy is to choose elements β ∈ Q(ζ�) that can be written as an integer linear
combination of a power basis with small coefficients, and let r(x) be the minimal poly-
nomial of β . Since most elements of Q(ζ�) do not lie in a proper subfield, in most cases
we have Q[x]/(r(x)) ∼= Q(ζ�). We can then proceed as in the Brezing–Weng method.

Which β and which kth root of unity modulo r(x) to choose are determined by com-
puter search; the resulting polynomial q(x) should have a degree low enough such that
we obtain an attractive ρ-value. In practice one finds that most polynomials q(x) gen-
erated by the construction have large denominators, so it is rare for these polynomials
to take integer values. Yet favorable polynomials do exist, as the following examples
show. We give full details for the first example and give the polynomials t, r, q and the
relevant congruence classes of x for the others; full details can be found in [47].

Example 6.11 [47]. Let k = � = 16. Let

t (x) = 1

35

(
2x5 + 41x + 35

)
,

r(x) = x8 + 48x4 + 625,

q(x) = 1

980

(
x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x + 3125

)
.

Then (t, r, q) parameterizes a complete family of curves with embedding degree 16 and
discriminant 1. The ρ-value of this family is 5/4.

Proof. We set β = −2ζ 5
16 + ζ16 ∈ Q(ζ16), which has minimal polynomial r(x). We

apply Theorem 6.1, working in the field K = Q(ζ16) defined as Q[x]/(r(x)). We use
ζ16 �→ 1

35 (2x5 + 41x) in K , giving t (x) as stated. Now we use
√−1 �→ − 1

7 (x4 + 24),
from which we get y(x) = − 1

35 (x5 + 5x4 + 38x + 120) and q(x) as stated. The poly-
nomial q(x) is irreducible. We find that both q(x) and t (x) are integers if and only if
x ≡ 25 or 45 (mod 70). In addition, gcd({q(±25 + 70n) : n ∈ Z}) = 1, so q(x) repre-
sents primes. �
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Example 6.12 [47]. Let k = � = 18, D = 3. We set

t (x) = 1

7

(
x4 + 16x + 7

)
,

r(x) = x6 + 37x3 + 343,

q(x) = 1

21

(
x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401

)
.

We find that q(x) can take prime values for x ≡ 14 (mod 42). The ρ-value of this family
is 4/3.

Example 6.13 [47]. Let k = � = 32, D = 1. We set

t (x) = 1

3107

(−2x9 − 56403x + 3107
)
,

r(x) = x16 + 57120x8 + 815730721,

q(x) = 1

2970292

(
x18 − 6x17 + 13x16 + 57120x10 − 344632x9 + 742560x8

+ 815730721x2 − 4948305594x + 10604499373
)
.

We find that q(x) can take prime values for x ≡ ±325 (mod 6214). The ρ-value of this
family is 9/8.

Example 6.14 [47]. Let k = � = 36, D = 3. We set

t (x) = 1

259

(
259 + 757x + 2x7),

r(x) = x12 + 683x6 + 117649,

q(x) = 1

28749

(
x14 − 4x13 + 7x12 + 683x8 − 2510x7 + 4781x6 + 117649x2

− 386569x + 823543
)
.

We find that q(x) can take prime values for x ≡ ±49 (mod 259). The ρ-value of this
family is 7/6.

Example 6.15 [47]. Let k = � = 40, D = 1. We set

t (x) = 1

1185

(
2x11 + 6469x + 1185

)
,

r(x) = x16 + 8x14 + 39x12 + 112x10 − 79x8 + 2800x6 + 24375x4 + 125000x2

+ 390625,

q(x) = 1

1123380

(
x22 − 2x21 + 5x20 + 6232x12 − 10568x11 + 31160x10

+ 9765625x2 − 13398638x + 48828125
)
.
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We find that q(x) can take prime values for x ≡ ±20 (mod 1185). The ρ-value of this
family is 11/8.

6.3. Scott–Barreto Families

To employ the strategy of Scott and Barreto [81], we again take K to be an extension of a
cyclotomic field, but this time we do not assume that K contains an element

√−D. If we
choose t (x) to be any polynomial and r(x) to be an irreducible factor of Φk(t (x) − 1),
then Q[x]/(r(x)) defines an extension of a cyclotomic field. We then search for an h(x)

that makes the right-hand side of the CM equation

Dy2 = 4h(x)r(x) − (
t (x) − 2

)2
(6.5)

take the form of a linear factor times a perfect square. Once such an h(x) is found, we
can set x to be the linear function of Dz2 that makes the right-hand side of (6.5) D

times a square polynomial in z.
Below we give an example of this method that achieves ρ-values less than 2 with

(nearly) arbitrary D; this example was found by fixing k and executing a computer
search through the space of possible t (x) and h(x).

Example 6.16. Let k = 6. Let

t (x) = −4x2 + 4x + 2,

r(x) = 16x4 − 32x3 + 12x2 + 4x + 1,

q(x) = 4x5 − 8x4 + 3x3 − 3x2 + 17

4
x + 1.

Let D be a square-free positive integer not dividing 2 · 3 · 5 · 911. Then the triple
(t (Dz2), r(Dz2), q(Dz2)) parameterizes a complete family of curves with embedding
degree 6 and discriminant D. The ρ-value of this family is 5/4.

Proof. Note that r(x) = Φ6(t (x) − 1). Now let h(x) = x/4, which gives q(x) =
h(x)r(x) + t (x) − 1. Under the substitution x = Dz2, the CM equation (6.5) becomes

Dy2 = x
(
4x2 − 6x + 1

)2 = Dz2(4D2z4 − 6Dz2 + 1
)2

.

Since 4q(x) and r(x) are irreducible in Z[x], it follows from Proposition 6.22 below that
r(Dz2) is irreducible when D does not divide 16 disc r(x) = 22033, and q(Dz2) is irre-
ducible when D does not divide 64 disc 4q(x) = 22253911. Finally, since q(0) = 1 for
any value of D, we conclude that q(Dz2) represents primes whenever D � 2 · 5 · 911. �

We conclude this section with a construction, due to Koblitz and Menezes, that may
be viewed as an example of the Scott–Barreto construction with h(x) = Dl2 for any
square-free D and even l.
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Example 6.17 [51, Sect. 6]. Let l be an even integer, and let D be a positive square-free
integer. Define (t, r, q) by:

t (x) = 2,

r(x) = x,

q(x) = Dl2x2 + 1.

Then (t, r, q) parameterizes a complete family of elliptic curves with embedding degree
1 and discriminant D. The ρ-value of this family is 2.

Proof. It is clear that r(x) is irreducible and q(x) represents primes for any
positive l and D. Furthermore, r(x) divides both q(x) + 1 − t (x) = Dl2x2 and
Φ1(t (x) − 1) = 0. �

Koblitz and Menezes give two explicit elliptic curves with D = 1, with equations
y2 = x3 − x if lx ≡ 0 (mod 4) and y2 = x3 − 4x if lx ≡ 2 (mod 4). Both of these
curves have the special feature that E(Fq) ∼= Z/(lx)Z × Z/(lx)Z. Curves in this family
are equipped with distortion maps; see Sect. 7.2 for a more detailed discussion. The
advantage of this construction is the great freedom in the choice of x and l, which
allows us to choose r and q of low Hamming weight or some other special form.

There is some disagreement in the literature as to whether or not elliptic curves with
embedding degree 1 and only a single cyclic subgroup of order r are suitable for pairing-
based cryptography. While it is commonly believed that E(Fq)[r] must be isomorphic to
(Z/rZ)2 in order to guarantee a nontrivial Tate pairing (see, e.g., [44,45]), this condition
is in fact not necessary [76]. The confusion may result from the fact that on curves with
k > 1, all r-torsion points are defined over Fqk [3, Lemma 2]. In practice, however,
k = 1 curves constructed via the CM method do have all r-torsion points defined over
the base field. Specifically, we have the following:

Proposition 6.18. Let E/Fq be an ordinary elliptic curve that has embedding degree
1 with respect to a prime r . Suppose that E has CM discriminant D. Let O be the ring
of integers in Q(

√−D), and let C be the conductor [O : End(E)]. If r � 2CD, then
E[r] ⊂ E(Fq).

Proof. Since E has embedding degree 1 with respect to r , we have q ≡ 1 (mod r)

and t ≡ 2 (mod r). The fact that E has CM discriminant D means that we can write
4q − t2 = Dy2, and since r is prime to D, it follows that y ≡ 0 (mod r). If π ∈ O is the
Frobenius endomorphism of E, then π = 1

2 (t ± y
√−D). Since r is odd, we can write

π − 1 = αr for some α ∈ O. The conductor C necessarily divides [O : Z[π]], which is
equal to y if D ≡ 3 (mod 4) and y/2 otherwise. Since r � C, we see that C also divides
[O : Z[α]] = y/r or y/2r , respectively. It follows that Z[α] ⊂ End(E), and therefore α

corresponds to an endomorphism of E. We conclude that E[r] ⊂ E[αr] = E[π − 1] =
E(Fq). �
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6.4. More Discriminants in Cyclotomic Families

The examples given by Brezing and Weng and others assume that the CM discriminant
D is fixed in advance, so that all curves are constructed with the same D. In particular,
most of the examples given by Brezing and Weng and all of those given by Barreto,
Lynn, and Scott require that D = 3. Curves with D = 3 have the unusual property of
having an automorphism group of order 6, and while such curves are favorable for im-
plementation purposes (see Sect. 7.3), the extra structure may be used to aid a future (as
yet unknown) discrete logarithm attack. This is an example of the “hard-line” position
on security articulated by Koblitz [50]:

All parameters for a cryptosystem must always be chosen with the maxi-
mal possible degree of randomness, because any extra structure or deviation
from randomness might some day be used to attack the system.

Users taking this viewpoint will want families of pairing-friendly elliptic curves with
variable CM discriminant D.

Note that since D is square-free by definition, elliptic curves with different CM dis-
criminants are necessarily in different isogeny classes. Constructing elliptic curves in
the same isogeny class with different endomorphism rings provides no additional se-
curity, since the discrete logarithm problems on a pair of such curves can be reduced
to each other in less time than it takes to construct the curves themselves via the CM
method [16].

We now show that if the polynomials (t, r, q) that parameterize a complete family
of elliptic curves have a certain form, we may obtain families with (nearly) arbitrary
discriminant. In particular, this allows us to make D a parameter input at the time of
curve construction rather than at the time the polynomials t, r, q are computed.

Recall that a triple (t, r, q) parameterizes a potential family of elliptic curves if it
satisfies conditions (2)–(5) of Definition 2.7(i).

Theorem 6.19. Suppose that (t, r, q) parameterizes a complete potential family of
elliptic curves with embedding degree k and discriminant D. Let y(x) be as in Defini-
tion 2.7(iv). Suppose that t , r , and q are even polynomials and y is an odd polynomial.
Define t ′, r ′, q ′, y′ to be polynomials such that

t (x) = t ′
(
x2), r(x) = r ′(x2), q(x) = q ′(x2), y(x) = x · y′(x2).

Let α be a positive integer such that

(a) αD is square-free,
(b) r ′(αx2) is irreducible, and
(c) y′(αx2) is an integer for some integer x.

Then the triple (t ′(αx2), r ′(αx2), q ′(αx2)) parameterizes a complete potential family
of elliptic curves with embedding degree k, discriminant αD, and ρ-value equal to
ρ(t, r, q).

Proof. For any integer α > 0 satisfying conditions (a)–(c), we must verify conditions
(2)–(5) of Definition 2.7(i) for the triple (t ′(αx2), r ′(αx2), q ′(αx2)). If r ′(αx2) is irre-
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ducible, then condition (2) on r ′(αx2) follows from the same condition on r(x). Con-
ditions (3) and (4) are identities on the polynomials t, r, q , so they still hold when we
evaluate at

√
αx. Finally, evaluating the CM equation (6.1) at

√
αx gives the identity

4q ′(αx2) − t ′
(
αx2)2 = D · αx2 · y′(αx2)2

.

Since y′(αx2) is an integer for some x, it is an integer for infinitely many x, and condi-
tion (5) follows.

To prove the last statement, we observe that

ρ
(
t ′
(
αx2), r ′(αx2), q ′(αx2)) = 2 degq ′

2 deg r ′ = degq

deg r
= ρ(t, r, q). �

It follows from Theorem 6.19 that if t, r, q are even polynomials and
√−D mod r(x)

is an odd polynomial, then the substitution x2 �→ αx2 may give potential family of
curves with discriminant αD. The difficult part in obtaining a family in the sense of
Definition 2.7(i) is ensuring that q ′(αx2) represents primes; in particular, we often find
that gcd{q(x) : x, q(x) ∈ Z} > 1.

Our first application of Theorem 6.19 is to the following construction, which im-
proves on Construction 6.2 for certain odd values of k.

Construction 6.20. Let k be odd. Let

t (x) = 1 + (−1)(k+1)/2xk+1,

r(x) = Φ4k(x),

q(x) = 1

4

(
x2k+2 + x2k + 4(−1)(k+1)/2xk+1 + x2 + 1

)
. (6.6)

Then (t, r, q) parameterizes a complete potential family of pairing-friendly elliptic
curves with embedding degree k and discriminant 1. The ρ-value of this family is
(k + 1)/ϕ(k).

Proof. We apply Theorem 6.1 with K = Q[x]/(r(x)) ∼= Q(ζk,
√−1). We choose

ζk �→ (−1)(k+1)/2xk+1 and
√−1 �→ xk . Then

ζk − 1√−1
�→ (

1 − (−1)(k+1)/2xk+1)xk ≡ (−1)(k+1)/2x + xk mod r(x),

so we can choose y(x) = (−1)(k+1)/2x + xk . We may then compute

q(x) = 1

4

((
(−1)(k+1)/2x(k+1) + 1

)2 + (
(−1)(k+1)/2x + xk

)2)
,

which simplifies to (6.6). The ρ-value of (k + 1)/ϕ(k) follows from degq = 2k + 2 and
deg r = 2ϕ(k). �

When k ≡ 1 (mod 4) (i.e., when the middle term of q(x) is negative), q(x) has a factor
(x2 − 1)2, and thus we do not obtain a family of curves in the sense of Definition 2.7(i).
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On the other hand, computations with Magma [15] show that q(x) is irreducible for all
k < 1000 with k ≡ 3 (mod 4), and based on this evidence, we conjecture that q(x) is
irreducible for all k ≡ 3 (mod 4). In addition, q(x) is an integer whenever x is odd.
Unfortunately, we find that q(x) is always even when x is odd, so q fails condition (5)
of Definition 2.5 and thus does not represent primes.

But all is not lost! We note that t, r, q of Construction 6.20 are even polynomials and
y(x) is an odd polynomial, so for certain values of α, we may apply Theorem 6.19 to
make the substitution x2 �→ αx2 in t, r, q . We will use the following algebraic results
to show that in most cases the new triple (t ′(αx2), r ′(αx2), q ′(αx2)) parameterizes a
family of curves.

Lemma 6.21. Let L = Q(θ) be a number field, and let f (x) be the minimal polyno-
mial of θ . Then for any α ∈ L, f (αx2) is irreducible if and only if αθ is not a square
in L.

Proof. The proof follows exactly the proof of [36, Lemma 1]. We observe that the
argument holds regardless of whether L is Galois. �

Proposition 6.22. Let f (x) = ∑d
i=0 aix

i ∈ Z[x] be irreducible. Let α be a square-free
integer that does not divide a0ad discf . Then f (αx2) is irreducible.

Proof. Let θ be a root of f (x) in Q, and let L = Q(θ). If f (αx2) is reducible, then by
Lemma 6.21 the element αθ is a square in L, and therefore the fractional ideal (αθ) is a
square. Thus to prove the statement, it suffices to show that there is some prime p ⊂ OL

that divides the integral ideal (α) exactly and has exponent zero in the fractional ideal
decomposition

(θ) =
∏

p
ei

i . (6.7)

Now observe that any prime pi with nonzero exponent ei in (6.7) must lie over a prime
p with nonzero valuation in |NormL/Qθ | = |a0/ad |. The hypothesis α � a0ad discf thus
implies that there is some rational prime p | α that is unramified in L and whose factors
in L appear with exponent zero in (6.7). Since p is unramified and α is square free, any
prime p lying over p must divide (α) exactly, which completes the proof. �

Corollary 6.23. Let k be a positive integer, and let α be a square-free integer with
α � k. Then Φk(αx2) is irreducible.

Proof. We apply Proposition 6.22 with f (x) = Φk(x), using the fact that any prime
dividing discΦk also divides k. For k = 1 or 2, the result follows directly from the
square-free property of α. �

We now return to the task of applying Theorem 6.19 to Construction 6.20. Since k

is odd, the r(x) of Construction 6.20 is equal to Φ4k(x) = Φk(−x2). It thus follows
from Corollary 6.23 that (in the notation of Theorem 6.19) r ′(αx2) = Φk(−αx2) is ir-
reducible for any square-free α � k, so condition (b) of Theorem 6.19 is satisfied for
such α. Furthermore, condition (c) is clearly satisfied since y(x) = xk + (−1)(k+1)/2x
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has integer coefficients. Thus by Theorem 6.19, the substitution x2 �→ αx2 gives a po-
tential family of curves with discriminant α for any positive square-free α � k.

To obtain a family of curves in the sense of Definition 2.7(i), it remains only to check
that the new q , which we denote as

qα(x) = 1

4

(
αk+1x2k+2 + αkx2k + 4(−α)(k+1)/2xk+1 + αx2 + 1

)
,

represents primes. Since 4q1(
√

x) is a monic polynomial with constant term 1, it defines
a number field L = Q(θ) with θ a unit in OL. By Proposition 6.22 and the fact that
discf (x2) = (discf (x))2, we conclude that if k ≡ 3 (mod 4) and k < 1000, then for
any square-free α not dividing discq(x), the polynomial qα(x) is irreducible. Other
than by checking each value of α and k individually, we have no way of showing that
gcd({qα(x) : x, qα(x) ∈ Z}) = 1. In practice it appears that, for various k and square-
free α both congruent to 3 (mod 4), this condition does hold and therefore qα(x) does
indeed represent primes, but we cannot prove this result.

As in the derivation of Construction 6.3 from Construction 6.2, we may use the fact
that ζ2k = −ζk when k is odd to derive an analogous construction for embedding degrees
that are twice an odd number.

Construction 6.24. Let k be odd. Let

t (x) = 1 − (−1)(k+1)/2xk+1,

r(x) = Φ4k(x),

q(x) = 1

4

(
x2k+2 + x2k − 4(−1)(k+1)/2xk+1 + x2 + 1

)
.

Then (t, r, q) parameterizes a potential family of pairing-friendly elliptic curves with
embedding degree 2k, discriminant 1, and ρ-value (k + 1)/ϕ(k). In terms of the em-
bedding degree k′ = 2k, the ρ-value is thus (k′/2 + 1)/ϕ(k′).

Proof. With K = Q[x]/(r(x)) ∼= Q(ζ2k,
√−1), we choose ζ2k �→ −(−1)(k+1)/2xk+1.

The rest of the proof is identical to that of Construction 6.20. �

Computations with Magma [15] show that q(x) is irreducible for all k < 1000 with
k ≡ 1 (mod 4), and based on this evidence, we conjecture that q(x) is irreducible for all
k ≡ 1 (mod 4).

Substituting x2 �→ αx2, we get

qα(x) = 1

4

(
αk+1x2k+2 + αkx2k − 4(−α)(k+1)/2xk+1 + αx2 + 1

)
.

As in Construction 6.20, qα(x) is never an integer for even α, and qα(x) is even for
α ≡ 1 (mod 4). Thus we must choose k ≡ 1 (mod 4) and α ≡ 3 (mod 4) if we want
qα(x) to represent primes.

To conclude this section, we note that Constructions 6.2 and 6.3 satisfy the conditions
of Theorem 6.19 for any square-free α � k. We make the substitution x2 �→ αx2, where
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α is an odd square-free integer not dividing the embedding degree k. In both cases we
have k odd and r(x) = Φ4k(x) = Φk(−x2), so r ′(αx2) is irreducible by Corollary 6.23.
Furthermore by Proposition 6.22 q ′(αx2) is irreducible whenever q(x) is irreducible
and α � discq . If q ′(αx2) represents primes then Theorem 6.19 gives a family of pairing-
friendly curves with discriminant α.

We also note that Construction 6.7 satisfies the conditions of Theorem 6.19 when k

is not divisible by 8. Since r(x) = Φ�(x) = Φ�/2(x
2) for some � divisible by 8, Corol-

lary 6.23 implies that r ′(αx2) is irreducible for all square-free α not dividing k. Fur-
thermore by Proposition 6.22 q ′(αx2) is irreducible whenever q(x) is irreducible and
α � discq . Since D = 2 in Construction 6.7, if q ′(αx2) represents primes, then The-
orem 6.19 gives a family of pairing-friendly curves with discriminant 2α. If q ′(αx2)

represents primes, then α must be odd; if k is divisible by 4, then we must have
α ≡ 1 (mod 4).

We can also apply Theorem 6.19 to the cases presented in Table 3; we leave the
details to the reader.

Summary: Algorithm for Generating Variable-Discriminant Families

By combining the substitution x2 �→ αx2 from Theorem 6.19 (for some appropriate α)
with one of the basic constructions 6.2, 6.3, 6.7, 6.20, or 6.24, we can generate a
family of pairing-friendly curves with variable discriminant D for any k satisfying
gcd(k,24) ∈ {1,2,3,6,12}. We conclude this section with step-by-step instructions for
this procedure.

(1) Select an embedding degree k with gcd(k,24) ∈ {1,2,3,6,12}.
(2) Select a basic construction from the following list. (Some values of k may offer

more than one possibility; see Table 5 for the construction that minimizes ρ for
each k ≤ 50.)

• Construction 6.2 if k is odd.
• Construction 6.3 if k ≡ 2 (mod 4).
• Construction 6.7 if 3 | k.
• Construction 6.20 if k ≡ 3 (mod 4).
• Construction 6.24 if k ≡ 2 (mod 8).

(3) Use the selected basic construction to compute a triple (t, r, q) that parameterizes
a family of elliptic curves with embedding degree k.

(4) Let t ′, r ′, q ′ be polynomials such that t (x) = t ′(x2), r(x) = r ′(x2), and q(x) =
q ′(x2).

(5) Select a square-free positive integer α � k discq such that after the substitution
x2 �→ αx2, the resulting polynomial q ′(αx2) represents primes. (In each case,
r ′(αx2) is irreducible by Corollary 6.23, and q ′(αx2) is irreducible by Proposi-
tion 6.22.) This condition requires α to have the following form:

• α odd for Constructions 6.2, 6.3, and 6.7 with 4 � k.
• α ≡ 1 (mod 4) for Construction 6.7 with 4 | k.
• α ≡ 3 (mod 4) for Constructions 6.20 and 6.24.

(6) Let D = 2α if Construction 6.7 was used, and let D = α otherwise.
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Then (t ′(αx2), r ′(αx2), q ′(αx2)) parameterizes a family of elliptic curves with embed-
ding degree k and discriminant D. In particular, for values of α and x such that q ′(αx2)

is prime, there is an elliptic curve over Fq ′(αx2) with a subgroup of order r ′(αx2) and
embedding degree k. If D < 1012, the equation for this curve can be computed by the
CM method.

Note that the Cocks–Pinch method (Theorem 4.1) can be used to generate elliptic
curves with arbitrary CM discriminant for any embedding degree k. However, the ρ-
values of such curves will always be around 2. The advantage of the procedure outlined
above is that we can vary the CM discriminant and obtain ρ-values strictly less than 2
for many values of k.

7. Implementation Considerations

There are many factors to take into account when choosing an elliptic curve for use in a
pairing-based cryptosystem. To discuss each factor in detail would take us too far afield;
rather, our goal in this section is to mention the pertinent issues and refer the reader to
the literature for more detail.

Scott [79] has conducted an extensive survey of implementation considerations for
pairing-friendly elliptic curves. In addition, Page, Smart, and Vercauteren [69] give a
detailed comparison of MNT curves (Sect. 5.1) with supersingular curves (Sect. 3).

7.1. Balancing Security

When choosing an elliptic curve for pairing applications, one usually begins by fixing
in advance a desired bit size b1 for the prime-order subgroup of the elliptic curve and a
desired bit size b2 for the finite field in which the discrete logarithm must be infeasible.
To achieve these bit sizes exactly one must have b2/b1 = ρ · k. This relation may allow
a number of choices for curves with the desired security levels. In general, a smaller
ρ is desirable to minimize bandwidth requirements and the time necessary to perform
elliptic curve arithmetic. For example, a curve with k = 4 and ρ = 2 over a 320-bit field
provides the same security levels as a (hypothetical) curve with k = 8 and ρ = 1 over
a 160-bit field; however, points on the former curve generally require twice as much
storage space and base field operations take roughly four times as much time.

While in general choosing minimal ρ for the same security levels will optimize
performance, there are other factors that may affect performance, most notably twists
(Sect. 7.3 below). A (hypothetical) curve with k = 6 and ρ = 4/3 over a 214-bit field
Fq would provide the same security as the curves in the previous example, but if the
curve had a sextic twist, the group operations could be computed in Fq instead of Fqk .
Whether this would be faster than the k = 8, ρ = 1 curve would likely depend on the
specific implementation.

Furthermore, there is no reason that the subgroup and field sizes need to be exactly
the minimum necessary for desired security, and unbalancing one of the parameters
may in fact improve performance. To continue with our example, a curve with k = 6
and ρ = 2 over a 320-bit field overshoots our desired security level for discrete log in
the finite field, but such a curve may be advantageous if it has a sextic twist. (And such
curves do in fact exist!) In general, if ρ · k > b2/b1, then the finite field will be larger
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than required, and if ρ · k < b2/b1, then the elliptic curve subgroup will be larger than
required. We also note that curves with ρ > 2 could be chosen to balance ρ · k with
b2/b1, though such curves would in general have inefficient group operations.

7.2. Distortion Maps

Most pairings used in cryptography have the property that they are degenerate when the
inputs (P,Q) are linearly dependent. On the other hand, many protocols require that the
two inputs to the pairing be from the same cyclic group 〈P 〉. One way of getting around
this conflict is to use a distortion map, which is an efficiently computable endomorphism
φ such that φ(P ) �∈ 〈P 〉. A distortion map exists for a curve E with embedding degree
k > 1 if and only if E is supersingular [35,87]. For the k = 1 case, see Charles’ paper
[20] for a thorough discussion and Sect. 6.3 above for an example.

On ordinary elliptic curves there are other means of getting around the problem of
the degeneracy of pairings on linearly dependent points, and ordinary elliptic curves can
be used in almost all pairing-based protocols. However, the proofs of security for some
of these protocols rest on the existence of distortion maps, and thus for such protocols,
one must choose supersingular curves if “provable security” is desired. For a thorough
discussion of security assumptions and a categorization of the different types of groups
used in pairings, see the paper of Chen, Cheng, and Smart [21].

7.3. Twists and Compression

A twist of E/Fq is an elliptic curve E′/Fq that is isomorphic to E over Fq . The minimal
d for which E and E′ are isomorphic over Fqd is the degree of the twist. All elliptic
curves have quadratic (i.e., degree 2) twists. The only curves with higher-order twists are
those with CM discriminant 1 (defined by equations of the form y2 = x3 + ax), which
have quartic twists, and those with CM discriminant 3 (defined by equations of the form
y2 = x3 + b), which have cubic and sextic twists. (For a more theoretical description of
twisting, see [82, Chap. X]. Over fields of characteristic 2 or 3, the situation is slightly
more complicated, but the degree of a twist must still divide 6.)

In general, the points input into a pairing on a curve of embedding degree k take the
form P ∈ E(Fq), Q ∈ E(Fqk ). However, Barreto, Lynn, and Scott [7] use the quadratic
twist to show that when k is even, one can take Q to be a point on E′(Fqk/2), where E′
is a quadratic twist of E. In fact we usually prefer k to be even as this facilitates the
“denominator elimination” optimization of Barreto, Kim, Lynn, and Scott [6]. Barreto
and Naehrig [4] extend this idea to curves with sextic twists and embedding degree k

divisible by 6, showing that Q can be taken to be a point on E′(Fqk/6), where E′ is
a sextic twist of E. Hess, Smart, and Vercauteren [42, Sect. 5] unify these ideas in a
general framework that also takes into account cubic and quartic twists.

On any curve with embedding degree k that has a degree-d twist with d | k, the out-
put of the Tate pairing can be given as an element of Fqk/d instead of Fqk , with the
loss of �log2 d� bits of information. This “compression” technique was introduced for
quadratic twists by Scott and Barreto [80] and extended to sextic twists by Barreto and
Naehrig [4]; similar ideas apply to quartic and cubic twists. While these techniques ap-
ply only to the output of the pairing, Naehrig, Barreto, and Schwabe [67] give methods
for executing the entire pairing computation over a proper subfield of Fqk .
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A twist of degree k on a curve with embedding degree k would be ideal for imple-
mentation, as it would allow all curve points and pairing values to be given over the
base field Fq . Unfortunately, such a curve must either be supersingular or have ρ-value
nearly 2. The precise formulation of this statement and its proof were presented to us
by Frederik Vercauteren.

Proposition 7.1. Let E be an elliptic curve over Fq with a subgroup of prime order
r > 3 and embedding degree k > 1 with respect to r . If E has a twist E′/Fq of degree k

and r > 4
√

q , then E is supersingular.

Proof. By [42, Theorem 3] there is a unique degree-k twist of E such that r divides
#E′(Fq). We take E′ to be this twist. The hypothesis r > 4

√
q implies that there is at

most one multiple of r in the Hasse interval [q + 1 − 2
√

q, q + 1 + 2
√

q], and since
#E(Fq) and #E′(Fq) must both be in this interval by Hasse’s theorem, we conclude that
#E(Fq) = #E′(Fq). By Tate’s theorem [85, Theorem 1] there is an isogeny ψ : E → E′
defined over Fq .

The hypothesis that E′ is a twist of E of degree k > 1 tells us that E and E′ are
isomorphic over an extension field of Fq but are not isomorphic over Fq . Composing
this isomorphism with the isogeny ψ gives an endomorphism φ of E that is not defined
over Fq . Since φ is not defined over Fq , it does not commute with the Frobenius endo-
morphism of E. We conclude that End(E) is noncommutative, and therefore E must be
supersingular. �

As an immediate corollary, if E is an ordinary elliptic curve with embedding degree
k > 1 and a degree-k twist, then r ≤ 4

√
q , so ρ(E) ≥ 2 − 4 log 2

log r
. In particular, any

ordinary family with one of the of the following combinations of embedding degree
and discriminant must have ρ-value at least 2: embedding degree 6 and discriminant 3;
embedding degree 4 and discriminant 1; or embedding degree 2 and any discriminant
(cf. Proposition 2.9). Such families do exist: see, for example, Construction 6.4 for
k = 4, D = 1, or Construction 6.6 for k = 6, D = 3.

7.4. Extension Field Arithmetic

Arithmetic in the extension field Fqk can be implemented very efficiently if this field
can be built up as a “tower” of extension fields,

Fq ⊂ Fqd1 ⊂ Fqd2 ⊂ · · · ⊂ Fqk ,

where the ith extension field Fqdi is obtained by adjoining a root of a polynomial

xdi/di−1 + βi for some βi ∈ F
qdi−1 that are “small” in the sense that they can be rep-

resented using very few bits. This property is likely to apply if k = 2a3b for some a, b,
so pairings may be computed more quickly on curves with embedding degree of this
form.

Koblitz and Menezes [51, Sect. 5] show that if k = 2a3b and q ≡ 1 (mod 12), then Fqk

can be built in one step by adjoining a root of xk + β for some (not necessarily small)
β ∈ Fq . Barreto and Naehrig [4, Sect. 3] give a construction for k = 12 consisting of
adjoining a square root followed by a sixth root.
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7.5. Low Hamming Weight

The standard Miller algorithm for computing pairings [63] works by a double-and-add
iteration on the bits of the prime subgroup order r . The “add” part of the computation
is executed for each bit of r that is set to 1, so the pairing computation may be executed
more quickly if r has low Hamming weight. The constructions of supersingular curves
(Sect. 3.2) and Cocks–Pinch curves (Sect. 4.1) allow for r to be chosen arbitrarily, so
a prime of low Hamming weight can be chosen. If r is given by a polynomial r(x)

such as those in the constructions of Sect. 6.1, then choosing x of low Hamming weight
will often give low Hamming weight r as well. In general, the degree of control over
the Hamming weight depends roughly on the degree of the polynomial r(x), and this
control is much greater for complete families of curves than for sparse ones.

If the field size q is a prime of low Hamming weight, then field operations can be
computed more quickly. However, for such q , the discrete logarithm problem in F

×
q

becomes somewhat easier due to the better performance of the Number Field Sieve in
this case [77]. Thus q will have to be slightly larger to achieve the same level of security,
counteracting somewhat the performance boost for field operations.

8. Conclusion: Your One-Stop Shop for Pairing-Friendly Curves

The selection of a pairing-friendly elliptic curve for a given application depends on
many factors. The most important are the desired security levels in the elliptic curve
group E(Fq) and in the multiplicative group F

×
qk . However the choice of a curve may

also be influenced by the choice of pairing used, the need for speed in the pairing com-
putation, the level of precision necessary in the bit sizes, and doubts about the security
level of curves with “special” properties, such as supersingular curves, curves with extra
automorphisms, curves defined over very small fields (e.g., Koblitz curves), or curves
with extremely small CM discriminant. Thus in our quest to fulfill the title of this sec-
tion, we present several different options for choice of curves.

To implement pairing-friendly curves in real life, depending on the security level de-
sired, an administrator will choose (minimum) bit sizes desired for the prime-order
subgroup of the elliptic curve and of the extension field, and select a construction
method from our recommendations below. If the construction produces a sparse family
of curves, then to find explicit parameters one uses the MNT method as described in
Sect. 5. If the construction produces a complete family of curves (t (x), r(x), q(x)), to
compute parameters for a specific curve one then must loop through inputs x of the ap-
propriate size until an x0 is found such that q(x0) is a prime integer, t (x0) is an integer,
and r(x0) is prime or has a large prime factor. If the degrees of these polynomials are
too large relative to the desired security levels, finding such an x0 may be difficult.

Specifically, let g(x) be a polynomial of degree d . We approximate g(x) as xd and
compute the number of (b + 1)-bit numbers produced by g(x). This is the number of
x such that xd ∈ [2b,2b+1), which is 2b/d(21/d − 1). Since 21/d − 1 ≈ log(2)/d , the
number of such x is roughly 2b/d log(2)/d . Finally, by the prime number theorem, the
probability that a number of size around 2b is prime is approximately 1/(b log 2). Thus
the expected number of x such that g(x) is a (b + 1)-bit prime number is approximately
2b/d

bd
.
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Table 4. Maximum degree of r(x) for various security levels.

Security level (bits) r(x) (bits) max deg r(x)

80 160 10
112 224 12
128 256 16
192 384 20
256 512 24

The consequence of this heuristic result is that if we are using a family to generate
pairing-friendly curves and wish to specify precisely the field and subgroup sizes, the
degrees of the polynomials r(x) and q(x) cannot be too large. For example, if we were
trying to generate curves having a 512-bit subgroup with r(x) of degree 32, we would
expect to find only about four 512-bit prime values of r(x). The requirement that q(x)

is prime imposes even stricter conditions; if q(x) has degree ρd , then only around 1/ρb

of the x that give prime values for r will also give prime values for q .
Table 4 gives the maximum recommended values of deg r for various security levels

if strict control of the field and subgroup sizes is desired. For each bit size b + 1 of r(x),
we compute d such that 2b/d/(b2d log 2) = 1 and recommend max deg r(x) slightly
larger than this d .

If one is willing to be flexible about the bit sizes of the curve parameters, then one
may be able to increase x indefinitely until prime q(x) and r(x) are found, and in lucky
cases the first instance where this occurs will be near the desired bit size. For example,
let q(x) and r(x) be the polynomials given by Construction 6.6 with k = 32; these
polynomials have degrees 34 and 32, respectively. If we are looking for a 512-bit prime-
order subgroup to match the security level of 256-bit AES, choosing x = 66100 makes
q(x) a 543-bit prime and r(x) a 513-bit prime, which is very close to our specified bit
size.

Even so, if deg r(x) > 40, we expect to find very few prime values even of r(x) alone
that are as large as 512 bits. Therefore, we cannot recommend any families of curves
with deg r(x) so high.

Remark 8.1. If we can apply Theorem 6.19 to vary the CM discriminant as well as x,
then we will be able to generate more prime values of q(x) and r(x). In particular,
since the degrees of q ′(αx2) and r ′(αx2) in α are half the degrees in x, if we fix x and
vary the square-free part of the parameter α, we can expect to find more prime values
than if we fix α and vary x. This idea first appears in the paper of Comuta, Kawazoe,
and Takahashi [23], who independently demonstrated examples of this approach; their
construction is equivalent to applying Theorem 6.19 to our Constructions 6.3 and 6.24
and fixing x = 1. The restriction that the square-free part of α be (roughly) less than
1012 will not in general pose a problem, since even with x = 1 we may still find values
of r with as many as 20 · deg r(x) bits. Thus for constructions using Theorem 6.19, it is
perfectly acceptable to take deg r(x) as large as 80.

8.1. Our Recommendations: Curves with ρ ≈ 2

If minimizing ρ is not desired, we recommend the Cocks–Pinch method (Sect. 4.1). This
method has several advantages: it works for any embedding degree k, it works for any
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CM discriminant D (within the limits of the CM method, roughly D < 1012), and the
size r of the prime-order subgroup E(Fq) is chosen in advance. The only disadvantage
is that ρ is around 2, so the number of bits needed to specify a point on E will be about
twice the minimum number of bits needed to obtain a given level of security.

8.2. Our Recommendations: Curves with ρ < 2

In this section we assume that the user wishes to minimize the parameter ρ, for example,
to save bandwidth in applications. Table 5 gives the best known values of ρ for families
of curves with embedding degree k ≤ 50. These values of k should cover all desired
security levels for the foreseeable future.

For each embedding degree k, Table 5 gives the best ρ-value achieved by two differ-
ent constructions.

The first construction listed is the one that yields the smallest ρ-value when the CM
discriminant D is 1 or 3. The curve equations for these values of D are particularly easy
to compute; if q is prime to 6, the curves over Fq are given by

E1 : y2 = x3 + ax (D = 1),

E3 : y2 = x3 + b (D = 3).

By choosing a random point on E(Fq) and multiplying by the expected curve order
q + 1 − t , one can quickly determine the residue class of a mod (F×

q )4 (if D = 1) or

b mod (F×
q )6 (if D = 3) that gives the desired twist of E.

Curves with D = 1 or 3 have both low-degree endomorphisms and twists; the former
may be used to speed up elliptic curve arithmetic [38], while the latter can speed up
pairing computation for certain embedding degrees k (see Sect. 7.3). The table shows
that in a large majority of cases, the optimal ρ-value is achieved by Construction 6.6;
other constructions do better for some small k, k ≡ 4 (mod 6), and k divisible by 18.

However, there are known methods to improve the efficiency of Pollard’s rho algo-
rithm on curves with D = 1 or 3 [28]. These methods lead to a decrease in security of
only a few bits, but some users may take their existence as a warning that curves with
small CM discriminant are in some sense special and should be avoided. Therefore,
we also indicate the optimal ρ-values for families with variable CM discriminant, the
allowed discriminants D, and the constructions which produce these ρ-values. Here,
whenever we indicate (in the last column) a construction of the form 6.x+, this means
that the corresponding basic construction from Sect. 6 is combined with the substitution
x2 �→ αx2 (Theorem 6.19) to construct curves with variable D; see the algorithm on
p. 266 for details. Note that to date we know of no variable-discriminant construction
when k = 20 or when k is a multiple of 8; in these cases a family with D ≤ 3 or a
Cocks–Pinch curve must be used.

We have checked that all of the families listed in Table 5 can be used to produce
explicit examples of pairing-friendly elliptic curves and have confirmed that for para-
meters of cryptographic size, the ρ-value of a curve is very close to the ρ-value of its
family.

All families in the table except for one lead to curves over prime fields, and the min-
imum embedding field is Fqk for such curves. The lone exception is the supersingular
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Table 5. Best ρ-values for families of curves with k ≤ 50.
See Page 274 for explanations of the symbols and fonts.

fixed D ≤ 3 variable D

k ρ D deg r(x) Constr. ρ D deg r(x) Constr.

1 2.000 3 2 6.6 2.000 any 1 6.17
2 any# 1,3 – Sect. 3.2 any# 3 mod 4 – Sect. 3.2
3 1.000# 3 2 Sect. 3.3 1.000 some 2 Sect. 5.1-5.2
4 1.500 3 4 6.9 1.000 some 2 Sect. 5.1-5.2
5 1.500 3 8 6.6 1.750 any odd 8 6.2+
6 1.250 1 4 6.16 1.000 some 2 Sect. 5.1-5.2
7 1.333† 3 12 6.6, 6.20+ 1.333† 3 mod 4 12 6.20+
8 1.250 3 8 6.6 – – – –
9 1.333 3 6 6.6 1.833 any odd 12 6.2+
10 1.500 1,3 8 6.5, 6.24+ 1.000 some 4 Sect. 5.3

11 1.200† 3 20 6.6, 6.20+ 1.200† 3 mod 4 20 6.20+
12 1.000 3 4 6.8 1.750 2 mod 8 8 6.7+
13 1.167† 3 24 6.6 1.250 any odd 24 6.2+
14 1.333† 3 12 6.6 1.500 any odd 12 6.3+
15 1.500 3 8 6.6 1.750 any even 32 6.7*+
16 1.250 1 8 6.11 – – – –
17 1.125† 3 32 6.6 1.188 any odd 32 6.2+
18 1.333 3 6 6.12 1.583 2 mod 4 24 6.7+
19 1.111† 3 36 6.6 1.111† 3 mod 4 36 6.20+
20 1.375 3 16 6.6 – – – –

21 1.333 3 12 6.6 1.792 2 mod 4 48 6.7+
22 1.300† 1 20 6.3 1.300† any odd 20 6.3+
23 1.091† 3 44 6.6, 6.20+ 1.091† 3 mod 4 44 6.20+
24 1.250 3 8 6.6 – – – –
25 1.300† 3 40 6.6 1.350 any odd 40 6.2+
26 1.167† 3 24 6.6, 6.24+ 1.167† 3 mod 4 24 6.24+
27 1.111 3 18 6.6 1.472 2 mod 4 72 6.7+
28 1.333† 1 12 6.4 1.917 6 mod 8 24 6.7*+
29 1.071† 3 56 6.6 1.107 any odd 56 6.2+
30 1.500 3 8 6.6 1.813 2 mod 4 32 6.7+

31 1.067† 3 60 6.6, 6.20+ 1.067† 3 mod 4 60 6.20+
32 1.063† 3 32 6.6 – – – –
33 1.200 3 20 6.6 1.575 2 mod 4 80 6.7+
34 1.125† 3 32 6.24+ 1.125† 3 mod 4 32 6.24+
35 1.500† 3 48 6.6, 6.20+ 1.500† 3 mod 4 48 6.20+
36 1.167 3 12 6.14 1.417† 2 mod 8 24 6.7+
37 1.056† 3 72 6.6 1.083 any odd 72 6.2+
38 1.111† 3 36 6.6 1.167 any odd 36 6.3 +
39 1.167 3 24 6.6 1.521 2 mod 4 96 6.7+
40 1.375 1 16 6.15 – – – –

41 1.050† 3 80 6.6 1.075 any odd 80 6.2+
42 1.333 3 12 6.6 1.625 2 mod 4 48 6.7+
43 1.048† 3 84 6.6, 6.20+ 1.048† 3 mod 4 84 6.20+
44 1.150† 3 40 6.6 1.750 6 mod 8 40 6.7*+
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Table 5. (continued)

fixed D ≤ 3 variable D

k ρ D deg r(x) Constr. ρ D deg r(x) Constr.

45 1.333 3 24 6.6 1.729 2 mod 4 96 6.7+
46 1.136† 1 44 6.3 1.136† any odd 44 6.3+
47 1.043† 3 92 6.6 1.043† 3 mod 4 92 6.20+
48 1.125 3 16 6.6 – – – –
49 1.190† 3 84 6.6 1.214 any odd 84 6.2+
50 1.300† 3 40 6.6, 6.24+ 1.300† 3 mod 4 40 6.24+

family with k = 3. The minimum embedding field for a curve in this family is either
Fq3 or Fq3/2 ; see Sect. 3.3 for details.

Explanation of Symbols in Table 5

bold Entries in bold in the table indicate that curves of prime order can be con-
structed with the given embedding degree.

italic Entries in italic indicate that while the ρ-value achieved for the given family
may be optimal, the degrees of the polynomials involved are too high to make
the construction practical. For fixed-discriminant curves, we require deg r ≤ 40,
and for variable-discriminant curves, we require deg r ≤ 80; see Remark 8.1 and
the preceding discussion. In cases where deg r(x) is too large, if one is not will-
ing to allow for very little control over the bit sizes of r and q , the Cocks–Pinch
method should be used to achieve the desired embedding degree and discriminant,
constructing a curve with ρ ≈ 2.

† A ρ-value marked with a † is smaller than any ρ-value previously reported. In
particular, for k ∈ {7,11,13,14,17,19}, we achieve ρ-values smaller than those
reported by Brezing and Weng [17], who state that their ρ-values are “probably
optimal.”

# To achieve the ρ-values marked with a #, we recommend supersingular curves.
• k = 2: For both the small D and the variable D cases, arbitrary ρ-values can

be easily achieved with supersingular curves (see Sect. 3.2). Depending on the
residue class of q (mod 12), we can construct curves with D = 1, D = 3, or D ≡
3 (mod 4) with (−D

q
) = −1 (see Algorithm 3.3). As discussed in Remark 3.1,

we have no hesitation recommending supersingular curves over ordinary curves
with the same embedding degree.
For those who believe that supersingular curves must be avoided, we recommend
the Cocks–Pinch construction.

• k = 3, small D: We recommend a supersingular curve over Fp2 ; see Sect. 3.3.
The minimal embedding field (i.e., the field in which the Weil and Tate pairings
take values) will be Fp6 = Fq3 if t = p and Fp3 = Fq3/2 if t = −p. Since the
minimal embedding field—and not the embedding degree—determines discrete
log security in the finite field [43], users should be careful to choose curve para-
meters giving the desired security level.
If a curve over a prime field is required, Construction 6.6 gives a family with
ρ-value 2.
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Table 6. Families with efficient arithmetic.

k ρ D Twist order Construction

3 1.000 3 3 Sect. 3.3
4 2.000 1 4 6.4
6 2.000 3 6 6.6
8 1.500 1 4 6.10
9 1.333 3 3 6.6

12 1.000 3 6 6.8
16 1.250 1 4 6.11
18 1.333 3 6 6.12
24 1.250 3 6 6.6
27 1.111 3 3 6.6
32 1.125 1 4 6.13
36 1.167 3 6 6.14
48 1.125 3 6 6.6

+ A construction marked with a + indicates that the given basic construction is com-
bined with the substitution x2 �→ αx2 (Theorem 6.19) to construct families with
the given discriminant; see the algorithm on page 266 for details.

* For k = 15, 28, or 44 and variable D, we use the same technique as in Construc-
tion 6.7, the only difference being that y(x) �→ (ζk −1)/

√−2 reduces further mod-
ulo r(x). The polynomials for the basic constructions are given in Table 3.

− Entries missing from the table for a given embedding degree k indicate that there
is no known family of curves of the given type (i.e., small D or variable D) for that
particular k. In these cases the Cocks–Pinch method should be used to achieve the
desired embedding degree and discriminant, constructing a curve with ρ ≈ 2.

8.3. Our Recommendations: Curves with Efficient Arithmetic

In Sect. 7 we saw two general techniques for speeding up pairing computations that
depend on the embedding degree k: using twists to define elliptic curve points and
pairing values over smaller extension fields (Sect. 7.3), and constructing extension fields
in towers defined by simple polynomials (Sect. 7.4). Table 6 recommends curves that
can take advantage of both of these techniques. The embedding degrees we consider are
of the form k = 2a3b , as this choice allows for the construction of extension fields in
towers. If k is divisible by 4, then curves with CM discriminant 1 have twists that can
be used to work over Fqk/4 instead of Fqk . If k is divisible by 3, then curves with CM
discriminant 3 have twists that can be used to work over Fqk/3 (if k is odd) or Fqk/6 (if k

is even).
For each k = 2a3b less than 50, Table 6 lists the family with highest-order twists;

if more than one such construction exists, we choose the one with smallest ρ-value.
The entries for k = 3,4,6 reflect the result of Proposition 7.1: curves with embedding
degree k and a degree-k twist must either have ρ ≥ 2 or be supersingular.

8.4. Our Recommendations: Curves of Composite Order

Several recently proposed protocols require curves that have small embedding degree
with respect to a composite number r that is presumed to be infeasible to factor, such as
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an RSA modulus. Currently, the only effective means of generating such curves are to
construct supersingular curves over prime fields (Sect. 3.2) or to use the Cocks–Pinch
method (see Remark 4.3).

For pairing-based cryptosystems using elliptic curves of composite order to be se-
cure, three problems must be infeasible: the discrete logarithm on the elliptic curve
E(Fq), the discrete logarithm in the finite field F

×
qk , and factorization of the curve or-

der #E(Fq). Since there exist subexponential-time factorization algorithms but only
exponential-time elliptic curve discrete log algorithms, the size of the elliptic curve
group will be determined by the security level desired for the factoring problem. In par-
ticular, since factorization of a large composite number r takes roughly the same amount
of time as the discrete logarithm in a finite field of size around r (as both algorithms use
the Number Field Sieve), the parameters should ideally be chosen so that #E(Fq) ≈ qk .

We thus deduce that pairing-friendly curves of composite order should have ρ-values
and embedding degrees chosen to minimize ρ · k. By Remark 2.10 and the discussion
of Sect. 3.1, we see that the smallest possible ρ-value of a curve of cryptographic size
with embedding degree 1 and small CM discriminant is very close to 2. On the other
hand, supersingular curves over prime fields (Sect. 3.2) have embedding degree 2 and
can have ρ-values very close to 1 for any specified group order r .

We conclude that k = 1 ordinary curves (such as those given in Example 6.17) and
k = 2 supersingular curves both provide the minimum possible value for ρ · k and are
thus optimal for protocols requiring composite-order subgroups. For implementations,
we recommend the supersingular option, as these curves can take advantage of the com-
putational speedups of Sects. 7.3 and 7.4, while the k = 1 curves cannot.
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