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Abstract - Parallel prefix networks are widely used in high-
performance adders.  Networks in the literature represent 
tradeoffs between number of logic levels, fanout, and wiring 
tracks.  This paper presents a three-dimensional taxonomy 
that not only describes the tradeoffs in existing parallel pre fix 
networks but also points to a family of new networks.  Adders 
using these networks are compared using the method of 
logical effort.  The new architecture is competitive in latency 
and area for some technologies. 

I. INTRODUCTION 

A parallel prefix circuit computes N outputs {YN, …, 
Y1} from N inputs {XN, …, X1} using an arbitrary associative 
two-input operator o  as follows [13] 
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Common prefix computations include addition, 
incrementation, priority encoding, etc.  Most prefix 
computations precompute intermediate variables {ZN:N, …, 
Z1:1} from the inputs.  The prefix network combines these 
intermediate variables to form the prefixes {ZN:1, …, Z1:1}.  
The outputs are postcomputed from the inputs and prefixes.   
For example, adders take inputs {AN, …, A1}, {BN, …, B1} 
and Cin and produce a sum output {SN, …, S1} using 
intermediate generate (G) and propagate (P) prefix signals.  
The addition logic consists of the following calculations 
and is shown in   
Fig. 1. 

• Precomputation:  :

:

i i i i

i i i i

G A B

P A B

=
= ¯

i
; 0:0

0:0 0
inG C

P

=
=

 (2) 

• Prefix:  
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• Postcomputation: 1:0i i iS P G -= ¯  (4) 
 
There are many ways to perform the prefix 

computation. For example, serial-prefix structures like 
ripple carry adders are compact but have a latency O(N).  
Single-level carry lookahead structures reduce the latency 
by a constant factor.  Parallel prefix circuits use a tree 
network to reduce latency to  
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Fig. 1.  Prefix computation: 4-bit adder 

O(log N) and are widely used in fast adders, priority 
encoders [3], and other prefix computations.  This paper 
focuses on valency-2 prefix operations (i.e. those that use 
2-input associative operators), but the results readily 
generalize to higher valency [1]. 

Many parallel prefix networks have been described in 
the literature, especially in the context of addition.  The 
classic networks include Brent-Kung [2], Sklansky [11], and 
Kogge-Stone [8].  An ideal prefix network would have log2N 
stages of logic, a fanout never exceeding 2 at each stage, 
and no more than one horizontal track of wire at each stage.  
The classic architectures deviate from ideal with 2log2N 
stages, fanout of N/2+1, and N/2 horizontal tracks, 
respectively.  The Han-Carlson family of networks [5] offer 
tradeoffs in stages and wiring between Brent-Kung and 
Kogge-Stone.  The Knowles family [7] similarly offers 
tradeoffs in fanout and wiring between Sklansky and Kogge-
Stone and the Ladner-Fischer family [10] offers tradeoffs 
between fanout and stages between Sklansky and Brent-
Kung. The Kowalczuk, Tudor, and Mlynek prefix network 
[9] has also been proposed, but this network is serialized in 
the middle and hence not as fast for wide adders. 

This paper develops a taxonomy of parallel prefix 
networks based on stages, fanout, and wiring tracks.  The 
area of a datapath layout is the product of the number of 
rows and columns in the network.  The latency strongly 
depends on fanout and wiring capacitance, not just number 
of logic levels.  Therefore, the latency is evaluated using the 
method of logical effort [12, 6].  The taxonomy suggests 
new families of networks with different tradeoffs.  One of 
these networks has area comparable with the smallest 
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known network and latency comparable with the fastest 
known network. 

Section II reviews the parallel prefix networks in the 
literature.  Section III develops the taxonomy, which reveals 
a new family of prefix networks.  Performance comparison 
appears in Section IV and Section V concludes the paper. 

II. PARALLEL PREFIX NETWORKS  

Parallel prefix networks are distinguished by the 
arrangement of prefix cells.  Fig. 2 shows six such networks 
for N=16.  The upper box performs the precomputation and 
the lower box performs the postcomputation.  In the middle, 
black cells, gray cells, and white buffers comprise the 
prefix network.  Black cells perform the full prefix 
operation, as given in EQ (3).  In certain cases, only part of 
the intermediate variable is required.  For example, in many 
adder cells, only the Gi:0 signal is required, and the Pi:0 
signal may be discarded.  Such gray cells have lower input 
capacitance.  White buffers are used to reduce the loading 
of later non-critical stages on the critical path. The span of 
bits covered by each cell output appears near the output. The 
critical path is indicated with a heavy line.   

The prefix graphs illustrate the tradeoffs in each 
network between number of logic levels, fanout, and 
horizontal wiring tracks.  All three of these tradeoffs impact 
latency; Huang and Ercegovac [4] showed that networks with 
large number of wiring tracks increase the wiring 
capacitance because the tracks are packed on a tight pitch to 
achieve reasonable area. 

Observe that the Brent-Kung and Han-Carlson never 
have more than one black or gray cell in each pair of bits on 
any given row.  This suggests that the datapath layout may 
use half as many columns, saving area and wire length. 

III. TAXONOMY 

Parallel prefix structures may be classified with a 
three-dimensional taxonomy (l,f,t) corresponding to the 
number of logic levels, fanout, and wiring tracks.  For an N-
bit parallel prefix structure with L = log2N, l, f, and t are 
integers in the range [0, L-1] indicating: 
 

• Logic Levels:  L + l 
• Fanout:   2f+1 
• Wiring Tracks:  2t 

 
This taxonomy is illustrated in Fig. 3 for N=16.  The 

actual logic levels, fanout, and wiring tracks are annotated 
along each axis in parentheses.  The parallel prefix networks 
from the previous section all fall on the plane l + f + t = L-
1, suggesting an inherent tradeoff between logic levels, 
fanout, and wiring tracks.  The Brent-Kung (L-1,0,0), 
Sklansky (0,L-1,0), and Kogge-Stone (0,0,L-1) networks 
occupy vertices.  The Ladner-Fischer (L-2,1,0) network 
saves one  
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Fig. 2.  Parallel prefix networks 
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level of logic at the expense of greater fanout.  The Han-
Carlson (1,0,L-2) network reduces the wiring tracks of the 
Kogge-Stone network by nearly a factor of two at the 
expense of an extra level of logic.  In general, Han and 
Carlson describe a family of networks along the diagonal (l, 
0, t) with l + t = L-1. Similarly, the Knowles family of 
networks occupy the diagonal (0, f, t) with f + t = L-1 and 
Ladner-Fischer occupy the diagonal (l, f, 0) with l + f = L-1. 

Knowles networks are described by L integers 
specifying the fanout at each stage.  For example, the 
[8,4,2,1] and [1,1,1,1] network represents the Sklansky and 
Kogge-Stone extremes and [2,1,1,1] was shown in Fig. 2e.  
In general, a (0, f, t) network corresponds to the Knowles 
network [2f, 2f-1, …, 1, 1], which is the Knowles network 
closest to the diagonal. 

The taxonomy suggests yet another family of parallel 
prefix networks found inside the cube with l, f, t > 0.  Fig. 4 
shows such a (1,1,1) network.  For N=32, the new networks 
would include (1,1,2), (1,2,1), and (2,1,1). 

IV. RESULTS 

Table 1 compares the parallel prefix networks under 
consideration.  The delay depends on the number of logic 
levels, the fanout, and the wire capacitance.  All cells are 
designed to have the same drive capability; this drive is 
arbitrary and generally greater than minimum.  Networks 
with l > 0 are sparse and require half as many columns of 
cells. The wire capacitance depends on layout and process 
and can be expressed by w, the ratio of wire capacitance per 
column traversed to input capacitance of a unit inverter.  
Reasonable estimates from a trial layout in a 180 nm 
process are w = 0.5 for widely spaced tracks and w = 1 for 
networks with a large number of tightly spaced wiring 
tracks. 

The method of logical effort is used to estimate the 
latency adders built with each prefix network, following the 
assumptions made in [6]. Tables 2-4 shows how the latency 
depends on adder size, circuit family, and wire capacitance. 

V. CONCLUSION 

This paper has presented a three-dimensional taxonomy 
of parallel prefix networks showing the tradeoffs between 
number of stages, fanout, and wiring tracks.  The taxonomy 
captures the networks used in the parallel prefix adders 
described in the literature.  It also suggests a new family of 
parallel prefix networks inside the cube.  The new 
architecture appears to have competitive latency in many 
cases. 
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Architecture  Classification Logic 
Levels  

Max Fanout Track
s 

Col
s 

Brent-Kung (L-1, 0, 0) L + (L – 1) 2 1 N/2 
Sklansky (0, L-1, 0) L N/2 + 1 1 N 
Kogge-Stone  (0, 0, L-1) L 2 N/2 N 
Han-Carlson (1, 0, L-2) L + 1 2 N/4 N/2 
Knowles [2,1,…,1] (0, 1, L-2) L 3 N/4 N 
Ladner-Fischer (1, L-2, 0) L + 1 N/4 + 1 1 N/2 
(1, 1, 1) (1, 1, L-3) L + 1 3 N/8 N/2 

Table 1.  Comparison of parallel prefix network architectures 

 N = 16 N = 32 N = 64 N = 128 

Brent-Kung 10.4 / 9.9 13.7 / 13.0 18.1 / 17.4 24.9 / 24.2 

Sklansky 13.0 / 8.8 21.6 / 12.4 38.2 / 18.3 70.8 / 28.2 

Kogge-Stone  9.4 / 7.4 12.4 / 10.0 17.0 / 14.1 24.8 / 21.5 

Han-Carlson 9.9 / 7.7 12.1 /  9.4 15.1 / 12.0 19.7 / 16.1 

Knowles 
[2,1,…,1] 

9.7 / 7.9 12.7 / 10.3 17.3 / 14.5 25.1 / 21.8 

Ladner-Fischer 10.6 / 8.4 15.2 / 10.8 23.8 / 14.5 40.4 / 20.3 

(1, 1, 1) 10.7 / 8.1 12.9 /  9.8 15.9 / 12.4 20.5 / 16.5 

Table 2.  Adder delays: w=0.5; inverting static CMOS / footed domino 

 Inverting 
Static CMOS 

Noninverting 
Static CMOS 

Footed 
Domino 

Footless 
Domino 

Brent-Kung 13.7 / 18.1 16.8 / 21.8 13.0 / 17.4 10.7 / 14.6 

Sklansky 21.6 / 38.2 16.3 / 23.4 12.4 / 18.3 10.5 / 15.9 

Kogge-Stone  12.4 / 17.0 13.4 / 18.0 10.0 / 14.1  8.7 / 12.7 

Han-Carlson 12.1 / 15.1 13.3 / 16.4  9.4 / 12.0  7.9 / 10.3 

Knowles [2,1,…,1] 12.7 / 17.3 13.6 / 18.3 10.3 / 14.5 8.9 / 12.9 

Ladner-Fischer 15.2 / 23.8 14.5 / 19.1 10.8 / 14.5  8.9 / 12.1 

(1, 1, 1) 12.9 / 15.9 13.8 / 16.9 9.8 / 12.4 8.3 / 10.6 

Table 3.  Adder delays: w=0.5; N = 32/64 

 w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1 

Brent-Kung 11.4 / 13.4 12.5 / 15.7 13.7 / 18.1 14.8 / 20.4 15.9 / 22.7 

Sklansky 18.5 / 31.9 20.1 / 35.0 21.6 / 38.2 23.1 / 41.4 24.7 / 44.5 

Kogge-Stone   9.3 / 10.7 10.9 / 13.9 12.4 / 17.0 13.9 / 20.1 15.5 / 23.3 

Han-Carlson 10.5 / 11.9 11.3 / 13.5 12.1 / 15.1 12.9 / 16.7 13.7 / 18.3 

Knowles [2,1,…,1]  9.6 / 11.0 11.2 / 14.2 12.7 / 17.3 14.3 / 20.4 15.8 / 23.6 

Ladner-Fischer 13.6 / 20.6 14.4 / 22.2 15.2 / 23.8 16.0 / 25.4 16.8 / 27.0 

(1, 1, 1) 11.2 / 12.6 12.1 / 14.3 12.9 / 15.9 13.8 / 17.6 14.6 / 19.2 

Table 4.  Adder delays: inverting static CMOS; N = 32/64 
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