
A Taxonomy of Parallel Prefix Networks

David Harris
Harvey Mudd College / Sun Microsystems Laboratories

301 E. Twelfth St. Claremont, CA 91711
David_Harris@hmc.edu

Abstract - Parallel prefix networks are widely used in high-
performance adders. Networks in the literature represent
tradeoffs between number of logic levels, fanout, and wiring
tracks. This paper presents a three-dimensional taxonomy
that not only describes the tradeoffs in existing parallel pre fix
networks but also points to a family of new networks. Adders
using these networks are compared using the method of
logical effort. The new architecture is competitive in latency
and area for some technologies.

I. INTRODUCTION

A parallel prefix circuit computes N outputs {YN, …,
Y1} from N inputs {XN, …, X1} using an arbitrary associative
two-input operator o as follows [13]

1 1

2 2 1

3 3 2 1

1 2 1N N N

Y X
Y X X

Y X X X

Y X X X X-

=
=
=

=

o
o o

M
o oLo o

 (1)

Common prefix computations include addition,
incrementation, priority encoding, etc. Most prefix
computations precompute intermediate variables {ZN:N, …,
Z1:1} from the inputs. The prefix network combines these
intermediate variables to form the prefixes {ZN:1, …, Z1:1}.
The outputs are postcomputed from the inputs and prefixes.
For example, adders take inputs {AN, …, A1}, {BN, …, B1}
and Cin and produce a sum output {SN, …, S1} using
intermediate generate (G) and propagate (P) prefix signals.
The addition logic consists of the following calculations
and is shown in
Fig. 1.

• Precomputation: :

:

i i i i

i i i i

G A B

P A B

=
= ¯

i
; 0:0

0:0 0
inG C

P

=
=

 (2)

• Prefix:
: : : 1:

: : 1:

i j i k i k k j

i j i k k j

G G P G

P P P
-

-

= +
=

i
i (3)

• Postcomputation: 1:0i i iS P G -= ¯ (4)

There are many ways to perform the prefix

computation. For example, serial-prefix structures like
ripple carry adders are compact but have a latency O(N).
Single-level carry lookahead structures reduce the latency
by a constant factor. Parallel prefix circuits use a tree
network to reduce latency to

S1

B1A1

P1G1

G0:0

S2

B2

P2G2

G1:0

A2

S3

B3A3

P3G3

G2:0

S4

B4

P4G4

G3:0

A4 C in

G0 P0

Precomputation

Prefix Network

Postcomputation
C0C1C2C3

Cout

C4

Fig. 1. Prefix computation: 4-bit adder

O(log N) and are widely used in fast adders, priority
encoders [3], and other prefix computations. This paper
focuses on valency-2 prefix operations (i.e. those that use
2-input associative operators), but the results readily
generalize to higher valency [1].

Many parallel prefix networks have been described in
the literature, especially in the context of addition. The
classic networks include Brent-Kung [2], Sklansky [11], and
Kogge-Stone [8]. An ideal prefix network would have log2N
stages of logic, a fanout never exceeding 2 at each stage,
and no more than one horizontal track of wire at each stage.
The classic architectures deviate from ideal with 2log2N
stages, fanout of N/2+1, and N/2 horizontal tracks,
respectively. The Han-Carlson family of networks [5] offer
tradeoffs in stages and wiring between Brent-Kung and
Kogge-Stone. The Knowles family [7] similarly offers
tradeoffs in fanout and wiring between Sklansky and Kogge-
Stone and the Ladner-Fischer family [10] offers tradeoffs
between fanout and stages between Sklansky and Brent-
Kung. The Kowalczuk, Tudor, and Mlynek prefix network
[9] has also been proposed, but this network is serialized in
the middle and hence not as fast for wide adders.

This paper develops a taxonomy of parallel prefix
networks based on stages, fanout, and wiring tracks. The
area of a datapath layout is the product of the number of
rows and columns in the network. The latency strongly
depends on fanout and wiring capacitance, not just number
of logic levels. Therefore, the latency is evaluated using the
method of logical effort [12, 6]. The taxonomy suggests
new families of networks with different tradeoffs. One of
these networks has area comparable with the smallest

22130-7803-8104-1/03/$17.00 ©2003 IEEE

known network and latency comparable with the fastest
known network.

Section II reviews the parallel prefix networks in the
literature. Section III develops the taxonomy, which reveals
a new family of prefix networks. Performance comparison
appears in Section IV and Section V concludes the paper.

II. PARALLEL PREFIX NETWORKS

Parallel prefix networks are distinguished by the
arrangement of prefix cells. Fig. 2 shows six such networks
for N=16. The upper box performs the precomputation and
the lower box performs the postcomputation. In the middle,
black cells, gray cells, and white buffers comprise the
prefix network. Black cells perform the full prefix
operation, as given in EQ (3). In certain cases, only part of
the intermediate variable is required. For example, in many
adder cells, only the Gi:0 signal is required, and the Pi:0
signal may be discarded. Such gray cells have lower input
capacitance. White buffers are used to reduce the loading
of later non-critical stages on the critical path. The span of
bits covered by each cell output appears near the output. The
critical path is indicated with a heavy line.

The prefix graphs illustrate the tradeoffs in each
network between number of logic levels, fanout, and
horizontal wiring tracks. All three of these tradeoffs impact
latency; Huang and Ercegovac [4] showed that networks with
large number of wiring tracks increase the wiring
capacitance because the tracks are packed on a tight pitch to
achieve reasonable area.

Observe that the Brent-Kung and Han-Carlson never
have more than one black or gray cell in each pair of bits on
any given row. This suggests that the datapath layout may
use half as many columns, saving area and wire length.

III. TAXONOMY

Parallel prefix structures may be classified with a
three-dimensional taxonomy (l,f,t) corresponding to the
number of logic levels, fanout, and wiring tracks. For an N-
bit parallel prefix structure with L = log2N, l, f, and t are
integers in the range [0, L-1] indicating:

• Logic Levels: L + l
• Fanout: 2f+1
• Wiring Tracks: 2t

This taxonomy is illustrated in Fig. 3 for N=16. The

actual logic levels, fanout, and wiring tracks are annotated
along each axis in parentheses. The parallel prefix networks
from the previous section all fall on the plane l + f + t = L-
1, suggesting an inherent tradeoff between logic levels,
fanout, and wiring tracks. The Brent-Kung (L-1,0,0),
Sklansky (0,L-1,0), and Kogge-Stone (0,0,L-1) networks
occupy vertices. The Ladner-Fischer (L-2,1,0) network
saves one

1:03:25:47:69:811:1013:1215:14

3:05:27:49:611:813:1015:12

5:07:09:211:413:615:8

0123456789101112131415

15:0 14:0 13:0 12:0 11:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(a) Brent-Kung

(b) Sklansky

(c) Kogge-Stone

(d) Han-Carlson

(e) Knowles [2,1,1,1]

1:03:25:47:69:811:1013:1215:14

3:07:411:815:12

7:015:8

11:0

5:09:013:0

0123456789101112131415

15:014:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:0 14:0 13:0 12:0 11:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:0

2:03:0

3:25:47:69:811:1013:1215:14

6:47:410:811:814:1215:12

12:813:814:815:8

0123456789101112131415

15:014:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:03:25:47:69:811:1013:12

3:07:411:815:12

5:07:013:815:8

15:14

15:8 13:0 11:0 9:0

0123456789101112131415

15:014:0 13:0 12:0 11:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(f) Ladner-Fischer

Fig. 2. Parallel prefix networks

2214

level of logic at the expense of greater fanout. The Han-
Carlson (1,0,L-2) network reduces the wiring tracks of the
Kogge-Stone network by nearly a factor of two at the
expense of an extra level of logic. In general, Han and
Carlson describe a family of networks along the diagonal (l,
0, t) with l + t = L-1. Similarly, the Knowles family of
networks occupy the diagonal (0, f, t) with f + t = L-1 and
Ladner-Fischer occupy the diagonal (l, f, 0) with l + f = L-1.

Knowles networks are described by L integers
specifying the fanout at each stage. For example, the
[8,4,2,1] and [1,1,1,1] network represents the Sklansky and
Kogge-Stone extremes and [2,1,1,1] was shown in Fig. 2e.
In general, a (0, f, t) network corresponds to the Knowles
network [2f, 2f-1, …, 1, 1], which is the Knowles network
closest to the diagonal.

The taxonomy suggests yet another family of parallel
prefix networks found inside the cube with l, f, t > 0. Fig. 4
shows such a (1,1,1) network. For N=32, the new networks
would include (1,1,2), (1,2,1), and (2,1,1).

IV. RESULTS

Table 1 compares the parallel prefix networks under
consideration. The delay depends on the number of logic
levels, the fanout, and the wire capacitance. All cells are
designed to have the same drive capability; this drive is
arbitrary and generally greater than minimum. Networks
with l > 0 are sparse and require half as many columns of
cells. The wire capacitance depends on layout and process
and can be expressed by w, the ratio of wire capacitance per
column traversed to input capacitance of a unit inverter.
Reasonable estimates from a trial layout in a 180 nm
process are w = 0.5 for widely spaced tracks and w = 1 for
networks with a large number of tightly spaced wiring
tracks.

The method of logical effort is used to estimate the
latency adders built with each prefix network, following the
assumptions made in [6]. Tables 2-4 shows how the latency
depends on adder size, circuit family, and wire capacitance.

V. CONCLUSION

This paper has presented a three-dimensional taxonomy
of parallel prefix networks showing the tradeoffs between
number of stages, fanout, and wiring tracks. The taxonomy
captures the networks used in the parallel prefix adders
described in the literature. It also suggests a new family of
parallel prefix networks inside the cube. The new
architecture appears to have competitive latency in many
cases.

REFERENCES

1 A. Beaumont-Smith and C. Lim, “Parallel prefix
adder design,” Proc. 15th IEEE Symp. Comp. Arith.,
pp. 218-225, June 2001.

1:03:25:47:69:811:1013:1215:14

3:05:27:49:611:813:1015:12

5:07:09:211:413:615:8

0123456789101112131415

15:0 14:013:012:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0
Fig. 4. New (1,1,1) parallel prefix network

2 R. Brent and H. Kung, “A regular layout for parallel

adders,” IEEE Trans. Computers, vol. C-31, no. 3,
pp. 260-264, March 1982.

3 C. Huang, J. Wang, and Y. Huang, “Design of high-
performance CMOS priority encoders and
incrementer/decrementers using multilevel
lookahead and multilevel folding techniques,” IEEE
J. Solid-State Circuits, vol. 37, no. 1, pp. 63-76, Jan.
2002.

4 Z. Huang and M. Ercegovac, “Effect of wire delay on
the design of prefix adders in deep submicron
technology,” Proc. 34th Asilomar Conf. Signals,
Systems, and Computers, vol. 2, pp. 1713-1717,
2000.

5 T. Han and D. Carlson, “Fast area-efficient VLSI
adders,” Proc. 8th Symp. Comp. Arith., pp. 49-56,
Sept. 1987.

6 D. Harris and I. Sutherland, “Logical effort analysis
of carry propagate adders,” Proc. 37th Asilomar
Conf. Signals, Systems, and Computers, 2003.

7 S. Knowles, “A family of adders,” Proc. 15th IEEE
Symp. Comp. Arith., pp. 277-281, June 2001.

8 P. Kogge and H. Stone, “A parallel algorithm for the
efficient solution of a general class of recurrence
relations,” IEEE Trans. Computers, vol. C- 22, no. 8,
pp. 786-793, Aug. 1973.

9 J. Kowalczuk, S. Tudor, and D. Mlynek, “A new
architecture for an automatic generation of fast
pipeline adders,” Proc. European Solid-State
Circuits Conf., pp. 101-104, 1991.

10 R. Ladner and M. Fischer, “Parallel prefix
computation,” J. ACM, vol. 27, no. 4, pp. 831-838,
Oct. 1980.

11 J. Sklansky, “Conditional-sum addition logic,” IRE
Trans. Electronic Computers, vol. EC-9, pp. 226-
231, June 1960.

12 I. Sutherland, R. Sproull, and D. Harris, Logical
Effort, San Francisco: Morgan Kaufmann, 1999.

13 R. Zimmermann, Binary Adder Architectures for
Cell-Based VLSI and their Synthesis, ETH
Dissertation 12480, Swiss Federal Institute of
Technology, 1997.

2215

f (Fanout)

t (Wire Tracks)

l (Logic Levels)

0 (2)
1 (3)

2 (5)

3 (9)

0 (4)

1 (5)

2 (6)

3 (8)

2 (4)

1 (2)

0 (1)

3 (7)

Kogge-
Stone

Sklansky

Brent-
Kung

Han-
Carlson

Knowles
[2,1,1,1]

Knowles
[4,2,1,1]

Ladner-
Fischer

Han-
Carlson

Ladner-
Fischer

New
(1,1,1)

Fig. 3. Taxonomy of prefix graphs

2216

Architecture Classification Logic
Levels

Max Fanout Track
s

Col
s

Brent-Kung (L-1, 0, 0) L + (L – 1) 2 1 N/2
Sklansky (0, L-1, 0) L N/2 + 1 1 N
Kogge-Stone (0, 0, L-1) L 2 N/2 N
Han-Carlson (1, 0, L-2) L + 1 2 N/4 N/2
Knowles [2,1,…,1] (0, 1, L-2) L 3 N/4 N
Ladner-Fischer (1, L-2, 0) L + 1 N/4 + 1 1 N/2
(1, 1, 1) (1, 1, L-3) L + 1 3 N/8 N/2

Table 1. Comparison of parallel prefix network architectures

 N = 16 N = 32 N = 64 N = 128

Brent-Kung 10.4 / 9.9 13.7 / 13.0 18.1 / 17.4 24.9 / 24.2

Sklansky 13.0 / 8.8 21.6 / 12.4 38.2 / 18.3 70.8 / 28.2

Kogge-Stone 9.4 / 7.4 12.4 / 10.0 17.0 / 14.1 24.8 / 21.5

Han-Carlson 9.9 / 7.7 12.1 / 9.4 15.1 / 12.0 19.7 / 16.1

Knowles
[2,1,…,1]

9.7 / 7.9 12.7 / 10.3 17.3 / 14.5 25.1 / 21.8

Ladner-Fischer 10.6 / 8.4 15.2 / 10.8 23.8 / 14.5 40.4 / 20.3

(1, 1, 1) 10.7 / 8.1 12.9 / 9.8 15.9 / 12.4 20.5 / 16.5

Table 2. Adder delays: w=0.5; inverting static CMOS / footed domino

 Inverting
Static CMOS

Noninverting
Static CMOS

Footed
Domino

Footless
Domino

Brent-Kung 13.7 / 18.1 16.8 / 21.8 13.0 / 17.4 10.7 / 14.6

Sklansky 21.6 / 38.2 16.3 / 23.4 12.4 / 18.3 10.5 / 15.9

Kogge-Stone 12.4 / 17.0 13.4 / 18.0 10.0 / 14.1 8.7 / 12.7

Han-Carlson 12.1 / 15.1 13.3 / 16.4 9.4 / 12.0 7.9 / 10.3

Knowles [2,1,…,1] 12.7 / 17.3 13.6 / 18.3 10.3 / 14.5 8.9 / 12.9

Ladner-Fischer 15.2 / 23.8 14.5 / 19.1 10.8 / 14.5 8.9 / 12.1

(1, 1, 1) 12.9 / 15.9 13.8 / 16.9 9.8 / 12.4 8.3 / 10.6

Table 3. Adder delays: w=0.5; N = 32/64

 w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1

Brent-Kung 11.4 / 13.4 12.5 / 15.7 13.7 / 18.1 14.8 / 20.4 15.9 / 22.7

Sklansky 18.5 / 31.9 20.1 / 35.0 21.6 / 38.2 23.1 / 41.4 24.7 / 44.5

Kogge-Stone 9.3 / 10.7 10.9 / 13.9 12.4 / 17.0 13.9 / 20.1 15.5 / 23.3

Han-Carlson 10.5 / 11.9 11.3 / 13.5 12.1 / 15.1 12.9 / 16.7 13.7 / 18.3

Knowles [2,1,…,1] 9.6 / 11.0 11.2 / 14.2 12.7 / 17.3 14.3 / 20.4 15.8 / 23.6

Ladner-Fischer 13.6 / 20.6 14.4 / 22.2 15.2 / 23.8 16.0 / 25.4 16.8 / 27.0

(1, 1, 1) 11.2 / 12.6 12.1 / 14.3 12.9 / 15.9 13.8 / 17.6 14.6 / 19.2

Table 4. Adder delays: inverting static CMOS; N = 32/64

2217

