CHALMERS

UNIVERSITY OF TECHNOLOGY

A taxonomy of software engineering challenges for machine learning
systems: An empirical investigation

Downloaded from: https://research.chalmers.se, 2022-08-27 22:25 UTC

Citation for the original published paper (version of record):

Lwakatare, L., Munappy, A., Bosch, J. et al (2019). A taxonomy of software engineering challenges
for machine learning systems: An empirical

investigation. Lecture Notes in Business Information Processing, 355: 227-243.
http://dx.doi.org/10.1007/978-3-030-19034-7 14

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

®

Check for
updates

A Taxonomy of Software Engineering
Challenges for Machine Learning
Systems: An Empirical Investigation

Lucy Ellen Lwakatare' ™) Aiswarya Raj', Jan Bosch!,
Helena Holmstrom Olsson?, and Ivica Crnkovic!

! Department of Computer Science and Engineering,
Chalmers University of Technology, Horselgangen 11, 412 96 Gothenburg, Sweden
{1lucy,aiswarya, jan.bosch,ivica.crnkovic}@chalmers.se
2 Department of Computer Science and Media Technology, Malmé University,
Nordenskidldsgatan, 211 19 Malmd, Sweden
helena.holmstrom.olsson@mau.se

Abstract. Artificial intelligence enabled systems have been an
inevitable part of everyday life. However, efficient software engineering
principles and processes need to be considered and extended when devel-
oping Al- enabled systems. The objective of this study is to identify
and classify software engineering challenges that are faced by different
companies when developing software-intensive systems that incorporate
machine learning components. Using case study approach, we explored
the development of machine learning systems from six different com-
panies across various domains and identified main software engineering
challenges. The challenges are mapped into a proposed taxonomy that
depicts the evolution of use of ML components in software-intensive sys-
tem in industrial settings. Our study provides insights to software engi-
neering community and research to guide discussions and future research
into applied machine learning.

Keywords: Artificial intelligence + Machine learning -
Software engineering + Challenges

1 Introduction

Artificial intelligence (AI) has gained much attention in recent years. Software-
intensive companies, such as Facebook [5], are increasingly employing machine
learning techniques in development of intelligent applications. Machine learning
(ML), as a rapidly developing branch of AI, provides the companies with key
capabilities for improving and accelerating innovation in their offerings based on
operational system data. The application areas of ML to real-world problems
are vast and range from large use in recommendation systems of social [9] and e-
commerce [10] services, to highly regulated products, such as autonomous vehicle
prototypes. The development of Al-enabled applications in real-world settings is

© The Author(s) 2019
P. Kruchten et al. (Eds.): XP 2019, LNBIP 355, pp. 227-243, 2019.
https://doi.org/10.1007/978-3-030-19034-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19034-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-19034-7_14

228 L. E. Lwakatare et al.

non-trivial and the development process differs from that of traditional software.
At present, there is a growing interest and need to understand how Al-enabled
applications are developed, deployed and maintained over-time in real world
commercial settings.

It is observed that three distinct approaches, namely requirements-driven,
out-come driven and Al-driven, are used to create software [3]. Al-driven app-
roach in operational commercial software is the least covered approach in lit-
erature. The development process of Al-enabled applications that employ ML
techniques, including its subset deep learning (DL), involve creation of ML mod-
els based on data. When creating ML models, typically several experiments are
conducted prior to selecting the final ML model. During ML model creation,
learning algorithms are applied to a dataset to train and evaluate the accu-
racy and performance of created ML models. Although in academia much focus
is given to theoretical breakthroughs of learning algorithms, empirical studies
show that they constitute only a small part of the operational ML system [20].
As a consequence, several challenges are encountered in practice during devel-
opment and maintenance of ML systems [6]. To address the problem, emerging
evidence highlights the need to take into consideration and extend established
software engineering (SE) principles, approaches and tools in development of ML
systems [11,19].

The main objective of this study is to identify and classify engineering chal-
lenges for developing and deploying ML systems in real world commercial set-
tings. Using a multiple-case study approach, we explore the development of seven
ML components of commercial software-intensive systems. The main contribu-
tions of the paper are threefold. First, the paper provides a description of the
development process of six Al-enabled applications across various domains. Sec-
ond, it presents a taxonomy to depict evolution in the use of ML components
in commercial software-intensive systems. Third, using the taxonomy a classifi-
cation of most important challenges at each stage of the evolution in the use of
ML components in software-intensive systems is presented.

2 Background and Related Work

The research area of this study is applied ML, wherein the focus is to create
verifiable knowledge pertaining to the design of software systems that incorpo-
rate ML techniques [14]. In our study, the considered software systems not only
incorporate ML techniques to real world problems but are in operational use
in commercial settings. This is in contrast to application of ML techniques to
activities of software development process in field of SE [23], such as fault pre-
diction and localization in software testing, which also gives numerous benefits
in practice [16].

There exists empirical studies [6] and experience reports [7,15,19,21] pub-
lished across different disciplines that present an end-to-end development process
and challenges of operational Al-enabled applications. In a field study of how
intelligent systems are developed, Hill et al. [6] describe a high-level process

SE Challenges for AI-Enabled Systems 229

that includes the following activities that are not necessarily sequential: defining
problem, collecting data, establishing ground truth, selecting algorithm, selecting
features and creating and evaluating ML model. Most of the challenges identi-
fied by the authors [6] at each activity of the ML process as well as cross-cutting
issues are reported in other empirical reports [1,19]. For instance, the use of infor-
mal methods to manage dataset and common artifacts (trained models, feature
sets, training jobs) during ML model selection experiments is a challenge that
is commonly observed and presents difficulties to quickly reproduce and com-
pare different experiments [18]. In addition to using agile approach for quick
iterations [19], among the solutions proposed include using versioning in ML
pipelines [22] and automating tracking of metadata and provenance information
of the common artifacts [18]. However, some challenges are yet to be addressed,
such as tracking provenance of complex final model that combines variety of mod-
els trained on different dataset [18] and data generated and processed through
highly-heterogeneous infrastructure [13]. Concerning ML infrastructure several
challenges are encountered, such as the ability to train models with large data
volumes [5].

Using technical debt metaphor of SE, Sculley et al. [20] bring to awareness
the different trade-offs involved, and require careful consideration, when main-
taining ML systems overtime in real-world industrial settings. According to the
authors [20], technical debt in real-world ML systems is attributed to main-
tenance problems of application code and issues specific to ML, such as data
dependencies. ML systems have various sources of variability that need to be
stabilized otherwise they can cause significant differences between ML models
[8]. On the other hand, difficulties in debugging DL systems is currently one of
the challenging topic that is gaining much focus in research [4]. Our study seeks
to provide a taxonomy that can be used to consolidate the different challenges
reported in prior empirical reports.

3 Research Method

For the purpose of this study we conducted an interpretive multiple-case study,
following the guidelines by Runeson and Hést [17], to provide a deeper under-
standing of SE challenges for developing and operating ML systems in real-world
commercial settings. The overall research design and process is described below.

3.1 Multiple-case Study Design

The multiple-case study research method was selected because it allowed us to
explore SE challenges for developing ML systems in real-world settings both
within and between cases. A case in our study pertains to a software-intensive
system that incorporates ML component(s) developed at an organization.
Primarily we used semi-structured interviews to collect qualitative data. At
the initial phase, we planned the study by describing the kind of data and prac-
titioners that are relevant to the study. Based on the research objective and

230 L. E. Lwakatare et al.

Table 1. Description of domain of studied software-intensive systems, ML components,
and roles of interviewees (*previous work)

Case|Domain Use case of ML components Interviewed experts
ID |Role
A |Automotive|Interpreting sensor data to understand the P1 |Manager of DL
contained information at a high level organisation
B Web (i) Automating tagging of sentiments in online |P2 |Data scientist
music library (ii) predicting quality of end P3 |Head of data
product based on different measurements from science team

machines, IoT devices of pulp processing and

lit P4 |Data scientist
quality measures

P5 |UX lead
C |Web Collaborative annotation of training data and |P6 |Co-founder
predicting quality of annotations P7 |ML engineer

D |Telecom Predicting failures at site to give insights into |P8 |Project Tech lead

mobile network operations P9 |Senior researcher

P10 |Researcher
E |Web Automating information extraction from P11 VP data science

out-of-office reply to optimize communication
between sales reps and prospects

F Web Models of ML components of e.g., web search |P12 |Data scientist,
engine, are compared using important measures experimentation
through A/B tests P11*|Principal data

scientist

preliminary literature review, an interview guide was developed and reviewed in
two iterations by the authors. The interview guide had a total of 18 questions
structured in six sections. Background and context information of interviewee
and ML system were inquired in the first two sections. Section three focused on
the general development process of ML system. Sections four and five inquired in
detail about data management, feature engineering, model building and deploy-
ment. Section six focused explicitly on perceived challenges of SE for ML systems.
The interview guide was piloted with an external researcher prior to data collec-
tion. For the actual data collection, practitioners with experiences in developing
real-world ML systems were sought from different organizations.

3.2 Data Collection

Our primary qualitative data collection process started by sending e-mails con-
taining a short description of study’s objective to different company represen-
tatives of Software Center! and others based on authors’ personal networks.
The email requested for their company’s participation in the study and select-
ing suitable persons for the interview. Semi-structured interviews were conducted

! Software Center: https://www.software-center.se/.

https://www.software-center.se/

SE Challenges for AI-Enabled Systems 231

with practitioners between August and December 2018. Altogether 15 interviews
were carried out with professionals and allowed researchers to reach saturation
of knowledge. Considering acknowledgment in literature (and our experiences
when soliciting interviewees) that there are few experienced practitioners skilled
in the area of intersection between ML and SE, the vast experience of our inter-
viewees from different companies across multiple domains as shown in Table 1 is
of great advantage to this study.

Three interviews were excluded from the study as they focused on the appli-
cation of ML to the activities of software development process (see Sect.2 for
this study’s research area). All interviews were face-to-face except for two inter-
views, which were done via teleconference. The duration of each interview ranged
between 45 to 70 min. All interviews were recorded with interviewees’ approval
and were later transcribed for analysis. An opportunity for the follow-up ques-
tions was also agreed at the end of all interviews. After each interview session, a
summary was written and discussed among authors. Secondary qualitative data
was collected at a workshop held in December 2018 with practitioners where our
initial research results were shared. Excluding researchers, the workshop had
an attendance of 10 practitioners from different companies in automotive and
telecommunications fields. Notes were taken by authors during workshop.

3.3 Data Analysis

Thematic analysis was used to analyse qualitative interview data. Interview tran-
scripts were coded in NVivo by two researchers in two iterations. First coding
iteration was done by coding the challenges using a set of six predefined high-level
themes that depict the development of ML system. The six high-level themes
were: (1) data management and pre-processing, (ii) create model, (i) train and
evaluate model, (iv) model deployment, and (v) organizational issues. First, the
two researchers familiarized with the data and discussed the coding procedure
at high level themes. Thereafter, the researchers coded separately a similar tran-
script in order to determine inter-rater reliability measure. A good agreement
level was determined (overall Kappa value =0.72)? and the researchers discussed
disagreements when reviewing outputs of code comparison in NVivo. Coding
for the rest of the transcripts proceeded by having each transcript coded by
one researcher. Second iteration of the coding involved identifying challenges at
each high-level theme. This was done through joint discussion between the two
researchers. The notes taken during the workshop were reviewed and important
aspects were taken into consideration in the reported taxonomy.

4 Case Study Findings

An overview of the cases and findings of the challenges from each case are pre-
sented. Several dimensions, such as learning task and source of training dataset

2 Interpretation of kappa value in NVivo: Poor agreement (Below 0.40), Good agree-
ment (0.40-0.75), Excellent agreement (Over 0.75).

232 L. E. Lwakatare et al.

[23], can be used to describe and differentiate ML systems. For each case, descrip-
tion of the software-intensive system incorporating ML component(s) is pre-
sented first and then followed by descriptions of the ML use case, source of
training data, training and deployment of ML models. The ending paragraph of
each case description presents a summary of the main challenges for developing
ML system as perceived by the interviewed practitioners.

4.1 Case A: Software for Automated Driving

A joint venture company established by two large companies in automotive
domain is developing software for automated driving (AD). DL models are used
in development of software for AD where the main use case is perception. Per-
ception is interpretation of sensor (e.g., camera and LIDAR) data to understand
at a high level the contained information, such as presence of objects (e.g., pedes-
trians and vehicles) among other. DL organization consists of about 50 persons
software engineers and ML experts responsible for training DL models, develop-
ing DL infrastructure and managing large data storage.

Large amounts of data are collected from the fleet of vehicles going on expe-
ditions in different parts of the world. The collected data is transported and
stored at a big data center where pre-processing methods are used to extract
images that are to be annotated by an external company. ML experts use anno-
tated data to train offline DL models. To quickly train DL models and rapidly
iterate product development cycle, several graphics processing units (GPUs) are
used. Software engineers develop different tool-chains, such as schedulers for
training jobs, diagnostic and monitoring tools to the highly scalable DL infras-
tructure. Perception inference serves as a foundation and input to other layers
of the system with decision and control are developed by other teams. These
teams together with other stakeholders of DL organisation have specifications
that give inputs to key performance indicators (KPI) used in model evaluations.
The primary target for deployment of DL model in AD vehicle was GPUs, like
the NVIDIA Drive Xavier [12].

While Case A poses issues and extreme requirements for storage and pre-
processing of large data sets for creating DL models in automotive domain,
one main engineering challenge perceived by the DL organization manager was
difficulty in building DL infrastructure, as expressed below. This is in addition
to problems related evolving requirement definition for AD vehicles, which affect
model training and evaluations. At the time of the interview, there was limited
support for quickly recreating the different training results.

There are no tool-chains you can download in an infrastructure with deep
learning like this. And we realized after the mistakes and discussions with
our new IT that they didn’t really have the expertise to be able to deliver
this to us. So we had to create new teams, which took the responsibility of
creating both the infrastructure, but also the software tool-chain to be able
to train deep learning networks within a reasonable amount of time.

SE Challenges for AI-Enabled Systems 233

4.2 Case B: AI Web Platform

AT web platform is developed by a company that simplifies the development of
ML applications. At the time of interview, the beta version of the platform had
active customers using the platform from various industries. Two main use cases
of ML focused on our study were for: (i) automatic tagging of sentiments in online
music catalogue, and (ii) predicting quality of manufactured products (e.g., car-
ton, cardboard, paper) based on measurements from different machines, IoT
devices and microscopic images of wood fibres for pulp processing. Al platform
clients typically know beforehand their ML use cases and have data available.
Software developers in product team are developing the platform in collabora-
tion with a data science team. The data science team, consisting of eight persons,
communicate requirements to the product team, provides internal Al education
and uses the platform to do projects with external companies.

In the studied ML use cases, a data scientist receives a training dataset, which
is uploaded onto the Al platform. The training dataset is explored, curated and
checked for quality on the platform. In the training set, tags initially applied by
humans’ (e.g., content managers) are assumed to be satisfactory to the client.
Since the customer in the paper mill industry had efficient data pipelines for
collecting various measurements from pulp processing and quality, data science
team were able to get data from past several years. Using the training dataset,
different ML models are built, trained and evaluated offline on the platform.
For automatic sentiment tagging, the selected final DL model is deployed to
a Kubernetes cluster in cloud infrastructure allowing among other, scaling. It
exposes a REST API that can be called via JavaScript fetch from the online
music catalogue application. At the time of interview, trained ML models of
the output quality predictions of pulp processing had not been deployed in pro-
duction but yielded feedback in form of report given to clients about features
indicative of quality. The later was among factors considered in decision to buy
a new machine.

In addition to challenges of developing Al platform, such as managing design
trade-offs in customization of platform functionalities, other challenges con-
cerned handling of data drifts in uploaded data, invalidation of models e.g.,
due to changes in data sources, and the need to monitor models in production
for staleness.

You’re trying to simultaneously build reproducibility, collaboration and ease
of use at the same time you’re trying to give people as much customization
as possible. It’s the difference between giving somebody a notebook where
they can do anything they want and giving a higher level tool that has a
lot of built-in functionality. It’s there that I see most challenges

4.3 Case C: Collaborative Annotation Web Platform

The collaborative annotation web platform is for creating training dataset of
supervised learning used in the development process of customers’ ML systems.

234 L. E. Lwakatare et al.

The company’s clients are mostly automotive OEM companies. In addition, the
platform incorporates ML model to predict reliability of an annotations. An
annotation process designed by the company is collaborative through iterative
development of annotation guideline that incorporates quick feedback between
human annotators and the customer’s stakeholders. Through the annotation
guideline, customers express the desired outcome at an acceptable standard and
level of error tolerance. At the time of the interviews, the company had seven
employees.

The dataset from the customer is uploaded on the platform and a sample
of it is given to both the customer and human annotators to annotate. This is
done to determine uncertainty level using for example heat maps. Depending on
the results, the customer gets an opportunity to improve annotation guideline
thereby shortening the feedback-loop between customer and human annotators.
Human annotators use the improved guideline to annotate dataset on the plat-
form. While doing the annotations, meta-data is recorded e.g., time taken to
annotate, number of clicks etc. From this data and reviews given by peers, a
detailed Bayesian model is developed for each annotator to estimate the qual-
ity of the annotations and predict the probability that an annotator is able
to produce what the customer wants. The model is running in a Google cloud
environment and hooked to the platform through client calls that get executed
whenever human annotators finish annotations.

Main SE challenges identified from Case C is the need for processes and tools
for forming accurate and consistent annotations in large dataset, especially when
the system has no self-labelling instrumentation. Furthermore, there are difficul-
ties in negotiating interpretations and dealing with poor inter-rater agreement
across a large group of annotators. Customers using the annotated dataset, often
do not have other mechanisms to know if the annotations were done correctly.

“So the challenging part of creating large amounts of examples is that it’s
usually ambiguous. You have a distributed group of people and you need
very low error tolerance, because if you’re going to have production grade
machine learning systems, their performance will be governed by the quality
of the data”

4.4 Case D: Mobile Network Operations

A large telecommunication company is enabling intelligent operations of net-
works by introducing ML techniques that help to predict issues at a source.
For network operations centre (NOC) personnel, this allows them to automate
and proactively evaluate, prioritize and take preventative actions on issues that
might arise. ML use cases focused in this study are those from a project where
a research team doing thought leadership at the company is involved and the
main goal is to predict what can go wrong at a site (i.e., a building that has
base stations, antennas, auxiliary power sources etc). Example of specific ML
use cases, include predicting degradation of KPI e.g., latency and throughput,
to facilitate remote troubleshooting; and predicting site’s sustenance to power

SE Challenges for AI-Enabled Systems 235

outage from auxiliary power e.g., using frequency of battery charging as input
data. NOCs that are operated by the company are for about 400 client operator
companies distributed in different locations.

Depending on the use case, and whether the team is allowed to move data,
datasets of varying sizes are used to train models. In extreme scenario with a
datasets of 3TB per day and where data is not allowed to be moved outside
a country, federated learning is used. In federated learning an initial model is
built locally and then it gets trained and improved at the edge. The training
dataset is curated and features engineered by data scientists prior to training. ML
models are trained while also residing in the CI-CD pipeline since the company
supports many customers across different locations. When training the models
care is taken not to mix data of different clients. The ML models are packaged
as Docker images that are deployed on Kubernetes in the cloud and monitored
for model usage and accuracy, in addition to CPU usage and memory, using a
tool called Prometheus.

The main engineering challenges for Case D are related to data collection and
model localization particularly in areas where data movement is constrained, as
elaborated in quote below by the Tech Lead.

I think really the challenge is actually getting data and that is why we are
inwvesting so much in federated learning because in some cases the data
cannot leave the country. And also in some cases the links that you have
are not strong enough to carry the data that you want because they are used
by other things. So that is really the key challenge here and that is why we
are looking into the techniques such as federated learning and reinforcement
learning so that we can improve on it.

4.5 Case E: Sales Engagement Platform

Sales engagement platform primarily enables and optimizes communication
between sales representatives (henceforth sales reps) and potential prospects.
Sales communication occurs in natural language via different communication
channels, including emails. The ML use case of focus was concerned with extract-
ing automatically entities, such as date, using natural language processing (NLP)
techniques from out-of-office emails. Specifically, for information extraction,
emails are parsed and processed to understand the contained information, such as
people, dates and best contact information from out-of-office emails. The infor-
mation allows sales reps to take relevant actions, such as pausing sequences of
automated steps. The data science team at the company consists of ten persons
responsible for data analysis, ML, A/B testing and insights reporting.

All email communication done by sales reps is stored in a communication
database out of which a few of these are labelled and form the validation dataset.
Due to some factors, such as limited labelled data to train models, open sourced
pre-trained models are used. Prior to extraction of entities, pre-processing steps,
such as handling of different encoding, are conducted to get the email text. The

236 L. E. Lwakatare et al.

step is followed by the entity extraction, which applies different pre-trained mod-
els to extract entities as well as construct relationship tree around the entities, for
example to suggest the person with whom the phone number left in out-of-office
email belongs. The pre-trained models are evaluated using the validation dataset
and tuned to improve their accuracy in consideration of company’s dataset. In
addition, measures of actual user experience through A/B testing are gathered
to provide feedback into the training of the model. Databricks tool is used to
build and deploy the models, which are typically saved as a single library and
are version controlled.

Prior to their recent use of the Databricks tool, the team faced challenges
related to the lack of standardized approaches for reproducing model selection
experiments quickly and scaling models in production.

We also needed to worry about scaling because the volume of messages
differs a lot with time. Generally, on Monday sales people send hundreds
of thousands of emails to new prospects. We had to either do it manually
by deploying more copies of the model, and then bringing them down to
not use-up resources, or leave the model and then there will be a queue.
We did not do this manual approach and the queue would get to almost 24
hours long. So those emails will only get processed on Tuesday because of
the volume.

4.6 Case F: Online Experimentation Platform

An experimentation platform is developed by a large company to support vari-
ous product teams in running trustworthy experiments, such as A /B tests. While
the platform is also used by applications that do not incorporate ML/DL com-
ponents, those that do use, such as web search engine, use it to compare trained
models with important measures through A/B tests. The team in charge of the
platform provide training and support to product teams to set-up, run experi-
ments in addition to developing and maintaining the platform. The team consists
of about consists of about one hundred persons, who among them are data sci-
entists and software developers.

Experimentation platform consists of mainly four components namely experi-
mentation portal, experiment execution service, log processing service, and anal-
ysis service. A good logging system that captures correct events, at correct time
and identify targets is important for running experiments on the platform. This
is because every product user is every single point in time in several experiments
and logs need to be annotated with information of which experiments users in
addition to using the data to (re)train models. Users can run their experiments
on platform as per their requirement either with the help of some predefined
templates or without templates by which they can eventually find a better per-
forming trained model. This is important because the models are compared using
measures that the business care for because users are using system functionality
and not the models.

SE Challenges for AI-Enabled Systems 237

Among the challenges identified from practitioners of Case E are difficulties
with complex and poor logging mechanisms as well as in designing experiments,
including interleaving experiments often done in ML components and interpret-
ing experiment results.

If product teams want to have good informative experiments they need to
log the correct things. Logging in the past was done to understand if a
product has crashed or not, or why it has crashed. This is not sufficient if
you want to compute good business metrics in the end of the day

5 A Taxonomy of SE Challenges for ML Systems

In this section, insights into SE challenges for ML system are presented using a
taxonomy that depicts evolution of use of MLL components in software-intensive
system in industrial settings. The insights are based on the findings of our cross-
case analysis and the literature presented in Sect. 2.

Based on the study, we have identified five evolution stages of the use of
ML component(s) in software systems that follow a pattern wherein they are
initially deployed for experimental (or research) purposes until maturing to
function autonomously. This progression of stages in the taxonomy occurs at
component basis. Essentially, model life-cycle activities (assemble dataset, cre-
ate model, (re)train and evaluate, deploy) are performed at all maturity stages.
The taxonomy is visualised in Fig.1 and a summary of the challenges is given
in Table 2.

Case B
(client in
music
industry)

Case B

(client in

= ‘ Autonomous ML
‘ components
Cascading

deployment of
Critical ML components
deployment of
Non-critical ML components
deployment of
Experimentation ML components
& Prototyping

paper-
mill
industry)

Fig. 1. Evolution of use of ML in commercial software-intensive systems

5.1 Experimentation and Prototyping

Initial application of ML techniques and creation of ML models in industrial
settings is often for experimentation and prototyping. At this first step, dif-
ferent innovations and improvements to existing software-intensive systems are

238 L. E. Lwakatare et al.

hypothesized through the use of ML techniques. There exists a vague description
of ML problem or use case. However, critical decisions are made by designers
about the learning algorithm, representation and training dataset. Decisions have
profound effects on the success, or appropriateness, of ML components. In our
studied cases, Case B’s client from paper-mill industry belongs to this stage.

Existing data collection mechanisms and storage of software-intensive sys-
tem are originally not set-up for ML systems. For example, poor logging and
limited data cleaning mechanisms exist prior to the ML initiative. As a result,
potentially large efforts are spent on data exploration, in addition to determin-
ing and formulating the problem of ML in the respective application domain.
Difficulty in formulating the problem for ML is accounted for, among other, by
the need to determine beforehand a benchmark or baseline against which ML
model will be evaluated for accuracy and performance optimizations. While a
variety of big data tools are used in data aggregation and structuring, different
design decisions and trade-offs in model creation rely on inputs from domain
experts, such as useful features. At this stage, models are not deployed but do
provide valuable feedback to the experts about the direct impact of suggested
features.

5.2 Non-critical Deployment

After gaining experience with initial use of ML techniques in respective appli-
cation domain, ML model prototypes, or their revisions, are deployed on non-
critical functions of the software-intensive system. Alternatively, inferences of
ML components are inspected by human expert. At this stage, the hypothesized
improvements through the use of ML are quantified in a production environ-
ment. As data pipelines for ML are being initiated, scarcity of labelled data and
imbalanced training dataset challenge the creation of models. This is in addition
to legal and privacy protection requirement challenges of accessing data. From
our studied cases, Case B’s client in music industry and Case D belong to this
stage.

Data analysis and validation is an initial and critical activity for designers of
ML components. Absence of critical analysis on training data results to train-
ing and serving skew, which describes differences in performance of ML model
at training and deploy. The discrepancies are largely caused by differences in
the handling of data distributions and pipelines during training and operations.
Data sources or different fields in data e.g., in logs, may come from different
components owned by other teams. Major changes to the values invalidate mod-
els trained on older data. Techniques and tools for monitoring and tracking data
are crucial for developing ML systems, as supported in literature.

5.3 Critical Deployment

Successfully quantified improvements in stage 2 drive deployment of ML models
to critical functions of the software-intensive system. For each critical function

SE Challenges for AI-Enabled Systems 239

implementing ML component, designers take a separate account to their differ-
ences in system architecture and data distributions both at training and serving.
At this stage, there is typically a co-existence of ML components with other soft-
ware components developed using traditional techniques, as observed in Case A.
Since ML components are developed at the same time as the product definition
of the software-intensive system is evolving, the ability to track and adapt to the
system changes and optimization objectives is necessary at training and evalu-
ation. There is need to have an effective end-to-end ML pipeline that simplify
and make it possible to quickly compare and reliably reproduce different results
of model creation, training and evaluations. Case A, Case C and Case F belong
to this stage.

For critical deployment of ML components, challenges in the implementation
of the end-to-end ML pipeline comes with the need and difficulty in implementing
an effective experimentation infrastructure. The experimentation infrastructure
is used to evaluate performance improvements and effects of ML models with
the use of metrics that are business-centric rather than algorithmic-centric. The
ability to design and conduct several experiments on continuous basis is non-
trivial. While experiments that are conducted online are exploring and exploiting
the models, end-users are not to be affected and need to adhere to the stringent
requirements of latency and throughput.

5.4 Cascading Deployment

At the next step is a software system that has cascading ML, models whereby
outcome(s) of one or more ML components serve as inputs to subsequent ML
component. Cascading deployment of ML components was used in [10] to enable
the elimination of irrelevant data items in earlier stages and discern relevant
ones in later stages. According to the authors [10], the cascading deployment
strategy achieves a balance, rather than a trade-off, with respect to effective
ranking results from a large number of data items of Alibaba e-commerce and
efficiency in terms of good user experience and savings in computational costs.
From our cases, Case E, in addition to the studied use case, has models that
detect the intent from prospect’s email replies.

For the final model in the cascading deployment strategy, the challenge comes
from the difficulty in tracking changes in models giving the input features and in
performing a sliced analysis to the evaluation results. It is apparent that as the
system scales to handle more models, it becomes difficult to identify the cause
of poor performance for final system, for example due to undeclared consumers
[20]. When final model performance results are not sliced, such as merely focus
on accuracy on validation training set, according to [15] important effects are
masked and can result in quality improving in one part but degrading in another.

5.5 Autonomous ML Components

At the final step is a system that incorporates ML components that have auto-
matic processes (or minimal human intervention) of ensuring fail-safe outcomes,

240

Table 2. Summary of the challenges in evolution of use of ML components in com-

L. E. Lwakatare et al.

mercial software-intensive systems

Experiment Non-critical Critical deployment Cascading
prototyping deployment deployment
Assemble |Issues with Data silos, Limitations in techniques | Complex and
dataset | problem scarcity of for gathering training effects of data
formulation and |labelled data, data from large-scale, dependencies
specifying imbalanced non-stationary data
desired outcome |training set streams
Create Use of non- No critical Difficulties in building Entanglements
model representative | analysis of highly scalable ML causing
dataset, data training data pipeline difficulties in
drifts isolating
improvements
Train Lack of No evaluation |Difficulties in reproducing | Need of
and well-established |of models with |models, results and techniques for
evaluate |ground truth business-centric |debugging DL models sliced analysis
model measures in final model
Deploy No deployment |Training- Adhering to stringent Hidden
model mechanism serving serving requirements e.g., | feedback-loops
skew of latency, throughput and undeclared
consumers of
the models

retraining and scalability of ML models. While we did not experience a case at
this stage besides being expressed by practitioners as a future direction, con-
crete work in this direction is presented in existing literature, such as in online
targeted-display advertising systems [15]. This stage also considers other learn-
ing strategies, such as active learning and reinforcement learning. Case A of our
case study findings was considering active learning for automatic selective acqui-
sition of training data and Case D was looking to explore reinforcement learning
to eliminate efforts associated with model training and retraining.

For the alternative learning methods, such as active learning, some of the
challenges are attributed to the lack of sufficient practical guidance for imple-
menting the learning strategies [2]. Although, successful implementations have
been demonstrated to obtain data and annotations automatically through the
use of active learning, there remains great need to incorporate practices and
tools for monitoring data sources and monitoring different sources of variability.

6 Conclusion

Developing, evolving and operating ML systems in real-world commercial set-
tings is non-trivial. This paper explored engineering challenges for developing
and operating supervised ML systems in real-world commercial settings. Multiple
cases of ML systems from different application domain are presented, including
description of their development process and perceived engineering challenges.

SE Challenges for AI-Enabled Systems 241

In an effort to energize and focus the discussion of ML systems on SE aspects

besides the algorithmic issues, we have presented a taxonomy that depicts matu-
rity stages of use of ML components in commercial software system and mapped
the challenges at each stage. The challenges we have identified as most important
require a lot of efforts to be managed, and in the future work we will refine the
challenges with additional cases and explore possible solutions as well as provide
guidance on how to move from one maturity stage to another. Furthermore, we
acknowledge that our study has narrowly focused on the development process
of ML components and that research into other SE topics, such as challenges
related to software architecture are still of great interest and needed.

References

10.

. Arpteg, A., Brinne, B., Crnkovic-Friis, L., Bosch, J.: Software engineering chal-

lenges of deep learning. In: 44th Euromicro Conference on Software Engineer-
ing and Advanced Applications, pp. 50-59. IEEE (2018). https://doi.org/10.1109/
SEAA.2018.00018

Attenberg, J., Provost, F.: Inactive learning? Difficulties employing active learning
in practice. ACM SIGKDD Explor. Newsl. 12(2), 36-41 (2011)

Bosch, J., Olsson, H.H., Crnkovic, I.: It takes three to tango: requirement, out-
come/data, and AI driven. In: International Workshop on Software-Intensive Busi-
ness: Start-Ups, Ecosystems and Platforms, pp. 177-192 (2018)

Hains, G., Jakobsson, A., Khmelevsky, Y.: Towards formal methods and software
engineering for deep learning: security, safety and productivity for dl systems devel-
opment. In: 2018 Annual IEEE International Systems Conference, pp. 1-5. IEEE,
April 2018. https://doi.org/10.1109/SYSCON.2018.8369576

Hazelwood, K., et al.: Applied machine learning at Facebook: a datacenter infras-
tructure perspective. In: International Symposium on High Performance Com-
puter Architecture, pp. 620-629. IEEE (2018). https://doi.org/10.1109/HPCA.
2018.00059

Hill, C., Bellamy, R., Erickson, T., Burnett, M.: Trials and tribulations of develop-
ers of intelligent systems: a field study. In: Symposium on Visual Languages and
Human-Centric Computing, pp. 162-170. IEEE (2016). https://doi.org/10.1109/
VLHCC.2016.7739680

Kumar, R.S.S., Wicker, A., Swann, M.: Practical machine learning for cloud intru-
sion detection: challenges and the way forward. In: 10th Workshop on Artifi-
cial Intelligence and Security, pp. 81-90. ACM (2017). https://doi.org/10.1145/
3128572.3140445

Lefortier, D., Truchet, A., de Rijke, M.: Sources of variability in large-scale machine
learning systems. In: Machine Learning Systems (NIPS 2015 Workshop) (2015)
Lin, J., Kolcz, A.: Large-scale machine learning at Twitter. In: SIGMOD Interna-
tional Conference on Management of Data, pp. 793-804. ACM (2012). https://doi.
org/10.1145/2213836.2213958

Liu, S., Xiao, F., Ou, W., Si, L.: Cascade ranking for operational e-commerce
search. In: International Conference on Knowledge Discovery and Data Mining,
pp. 1557-1565. ACM (2017). https://doi.org/10.1145/3097983.3098011

https://doi.org/10.1109/SEAA.2018.00018
https://doi.org/10.1109/SEAA.2018.00018
https://doi.org/10.1109/SYSCON.2018.8369576
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/VLHCC.2016.7739680
https://doi.org/10.1109/VLHCC.2016.7739680
https://doi.org/10.1145/3128572.3140445
https://doi.org/10.1145/3128572.3140445
https://doi.org/10.1145/2213836.2213958
https://doi.org/10.1145/2213836.2213958
https://doi.org/10.1145/3097983.3098011

242

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

L. E. Lwakatare et al.

Murphy, C., Kaiser, G.E., Arias, M.: An approach to software testing of machine
learning applications. In: 19th International Conference on Software Engineering
and Knowledge Engineering, pp. 167-172. Knowledge Systems Institute Graduate
School (2007)

NVIDIA: Nvidia drive hardware for self-driving cars. https://www.nvidia.com/en-
us/self-driving-cars/drive-platform/hardware/. Accessed 11 Jan 2019

Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data management challenges
in production machine learning. In: International Conference on Management of
Data, pp. 1723-1726. ACM (2017). https://doi.org/10.1145/3035918.3054782
Provost, F., Kohavi, R.: Guest editors’ introduction: on applied research in
machine learning. Mach. Learn. 30(2), 127-132 (1998). https://doi.org/10.1023/
A:1007442505281

Raeder, T., Stitelman, O., Dalessandro, B., Perlich, C., Provost, F.: Design princi-
ples of massive, robust prediction systems. In: International Conference on Knowl-
edge Discovery and Data Mining, pp. 1357-1365. ACM (2012)

Rana, R., Staron, M., Hansson, J., Nilsson, M., Meding, W.: A framework for
adoption of machine learning in industry for software defect prediction. In: 9th
International Conference on Software Engineering and Applications, pp. 383—-392.
IEEE (2014)

Runeson, P., Host, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), (2008)

Schelter, S., Bose, J.H., Kirschnick, J., Klein, T., Seufert, S.: Automatically track-
ing metadata and provenance of machine learning experiments. In: NIPS Workshop
on Machine Learning Systems (2017)

Schleier-Smith, J.: An architecture for agile machine learning in real-time applica-
tions. In: International Conference on Knowledge Discovery and Data Mining, pp.
2059-2068. ACM (2015). https://doi.org/10.1145/2783258.2788628

Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Cortes,
C., Lawrence, N.D.; Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 28, pp. 2503—2511. Curran Associates, Inc.
(2015)

Tata, S., et al.: Quick access: building a smart experience for Google drive. In: 23rd
International Conference on Knowledge Discovery and Data Mining, pp. 1643—
1651. ACM (2017). https://doi.org/10.1145/3097983.3098048

van der Weide, T., Papadopoulos, D., Smirnov, O., Zielinski, M., van Kasteren, T.:
Versioning for end-to-end machine learning pipelines. In: 1st Workshop on Data
Management for End-to-End Machine Learning, pp. 2:1-2:9. ACM (2017). https://
doi.org/10.1145/3076246.3076248

Zhang, D., Tsai, J.J.: Machine learning and software engineering. Softw. Qual. J.
11(2), 87-119 (2003). https://doi.org/10.1023/A:1023760326768

https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/
https://doi.org/10.1145/3035918.3054782
https://doi.org/10.1023/A:1007442505281
https://doi.org/10.1023/A:1007442505281
https://doi.org/10.1145/2783258.2788628
https://doi.org/10.1145/3097983.3098048
https://doi.org/10.1145/3076246.3076248
https://doi.org/10.1145/3076246.3076248
https://doi.org/10.1023/A:1023760326768

SE Challenges for AI-Enabled Systems 243

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	A Taxonomy of Software Engineering Challenges for Machine Learning Systems: An Empirical Investigation
	1 Introduction
	2 Background and Related Work
	3 Research Method
	3.1 Multiple-case Study Design
	3.2 Data Collection
	3.3 Data Analysis

	4 Case Study Findings
	4.1 Case A: Software for Automated Driving
	4.2 Case B: AI Web Platform
	4.3 Case C: Collaborative Annotation Web Platform
	4.4 Case D: Mobile Network Operations
	4.5 Case E: Sales Engagement Platform
	4.6 Case F: Online Experimentation Platform

	5 A Taxonomy of SE Challenges for ML Systems
	5.1 Experimentation and Prototyping
	5.2 Non-critical Deployment
	5.3 Critical Deployment
	5.4 Cascading Deployment
	5.5 Autonomous ML Components

	6 Conclusion
	References

