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Abstrat. In 1990 Manber & Myers proposed suÆx arrays as a spae-saving

alternative to suÆx trees and desribed the �rst algorithms for suÆx array

onstrution and use. Sine that time, and espeially in the last few years, suf-

�x array onstrution algorithms have proliferated in bewildering abundane.

This survey paper attempts to provide simple high-level desriptions of these

numerous algorithms that highlight both their distintive features and their

ommonalities, while avoiding as muh as possible the omplexities of imple-

mentation details. We also provide omparisons of the algorithms' worst-ase

time omplexity and use of additional spae, together with results of reent

experimental test runs on many of their implementations.

1 Introdution

SuÆx arrays were introdued in 1990 by Manber & Myers [MM90, MM93℄, along

with algorithms for their onstrution and use as a spae-saving alternative to suÆx

trees. In the intervening �fteen years there have ertainly been hundreds of researh

artiles published on the onstrution and use of suÆx trees and their variants. Over

that period, it has been shown that

� pratial spae-eÆient suÆx array onstrution algorithms (SACAs) exist that

require worst-ase time linear in string length [KA03, KS03℄;

� SACAs exist that are even faster in pratie, though with supralinear worst-ase

onstrution time requirements [LS99, BK03, MF04, M05℄;

�

Supported in part by grants from the Natural Sienes & Engineering Researh Counil of

Canada and the Australian Researh Counil.
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� any problem whose solution an be omputed using suÆx trees is solvable with

the same asymptoti omplexity using suÆx arrays [AKO04℄.

Thus suÆx arrays have beome the data struture of hoie for many, if not all, of

the string proessing problems to whih suÆx tree methodology is appliable.

In this survey paper we do not attempt to over the entire suÆx array literature.

Our more modest goal is to provide an overview of SACAs, in partiular those modeled

on the eÆient use of main memory | we exlude the substantial literature (for

example, [CF02℄) that disusses strategies based on the use of seondary storage.

Further, we deal with the onstrution of ompressed (\suint") suÆx arrays only

insofar as they relate to standard SACAs. For example, algorithms suh as those of

Grossi et al. and referenes therein [GGV04℄ are not overed.

Setion 2 provides an overview of the SACAs known to us, organized into a \tax-

onomy" based primarily on the methodology used. As with all lassi�ation shemes,

there is room for argument: there are many ross-onnetions between algorithms

that our in disjoint subtrees of the taxonomy, just as there may be between speies

in a biologial taxonomy. Our aim is to provide as omprehensive and, at the same

time, as aessible a desription of SACAs as we an.

Also in Setion 2 we present the voabulary to be used for the strutured desrip-

tion of eah of the algorithms that will be given in Setion 3. Then in Setion 4, we

report on the results of experimental results on many of the algorithms desribed and

so draw onlusions about their relative speed and spae-eÆieny.

2 Overview

We onsider throughout a �nite nonempty string x = x[1::n℄ of length n � 1,

de�ned on an indexed alphabet �; that is,

� the letters �

j

; j = 1; 2; : : : ; � of j�j are ordered: �

1

< �

2

< � � � < �

�

;

� an array A[�

1

::�

�

℄ an be de�ned in whih, for every j 2 1::�, A[�

j

℄ is aessible

in onstant time;

� �

�

��

1

2 O(n).

Essentially, we assume that � an be treated as a sequene of integers whose range is

not too large. Typially, the �

j

may be represented by ASCII odes 0::255 (English

alphabet) or binary integers 00::11 (DNA) or simply bits, as the ase may be. We

shall generally assume that a letter an be stored in a byte and that n an be stored

in one omputer word (four bytes).

The use of terminology not de�ned here follows [S03℄.

We are interested in omputing the suÆx array of x, whih we write SA

x

or

just SA; that is, an array SA[1::n℄ in whih SA[j℄ = i i� x[i::n℄ is the j

th

suÆx of

x in (asending) lexiographial order (lexorder). For simpliity we will frequently

refer to x[i::n℄ simply as \suÆx i"; also, it will often be onvenient for proessing to

inorporate into x at position n an ending sentinel $ assumed to be less than any �

j

.

Then, for example, on alphabet � = f$; a; b; ; d; eg:

2
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1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a  a d a b e a $

SA = 12 11 8 1 4 6 9 2 5 7 10 3

Thus SA tells us that x[12::12℄ = $ is the least suÆx, x[11::12℄ = a$ the seond least,

and so on (alphabetial ordering of the letters assumed). Note that SA is always a

permutation of 1::n.

Often used in onjuntion with SA

x

is the lp array lp[1::n℄: for every j 2 2::n,

lp[j℄ is just the longest ommon pre�x of suÆxes SA[j�1℄ and SA[j℄. In our

example:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a  a d a b e a $

SA = 12 11 8 1 4 6 9 2 5 7 10 3

lp = � 0 1 4 1 1 0 3 0 0 0 2

Thus the longest ommon pre�x of suÆxes 11 and 8 is 1, that of suÆxes 8 and 1

is 4. Sine lp an be omputed in linear time from SA

x

[KLAAP01, M04℄, also as a

byprodut of some of the SACAs disussed below, we do not onsider its onstrution

further in this paper. However, the average lp | that is, the average lp of the

n�1 integers in the lp array | is as we shall see a useful indiator of the relative

eÆieny of ertain SACAs, notably Algorithm S.

We remark that both SA and lp an be omputed in linear time by a preorder

traversal of a suÆx tree.

Many of the SACAs also make use of the inverse suÆx array, written ISA

x

or ISA: an array ISA[1::n℄ in whih

ISA[i℄ = j () SA[j℄ = i:

ISA[i℄ = j therefore says that suÆx i has rank j in lexorder. Continuing our example:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a  a d a b e a $

ISA = 4 8 12 5 9 6 10 3 7 11 2 1

Thus ISA tells us that suÆx 1 has rank 4 in lexorder, suÆx 2 rank 8, and so on. Note

that ISA is also a permutation of 1::n, and so SA and ISA are omputable, one from

the other, in �(n) time:

for j  1 to n do

SA

�

ISA[j℄

�

 j

As shown in Figure 1, this omputation an if required also be done in plae.

Many of the algorithms we shall be desribing depend upon a partial sort of some

or all of the suÆxes of x, partial beause it is based on an ordering of the pre�xes

of these suÆxes that are of length h � 1. We refer to this partial ordering as an

h-ordering of suÆxes into h-order, and to the proess itself as an h-sort. If two

or more suÆxes are equal under h-order, we say that they have the same h-rank

and therefore fall into the same h-group; they are aordingly said to be h-equal.

Usually an h-sort is stable, so that any previous ordering of the suÆxes is retained

within eah h-group.
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for j  1 to n do

i SA[j℄

| Negative entries already proessed

if i > 0 then

j

0

; j

0

 j

repeat

temp  SA[i℄; SA[i℄ �j

0

j

0

 i; i temp

until i = j

0

SA[i℄ �j

0

else

SA[j℄ �i

Figure 1: Algorithm for omputing ISA from SA in plae

The results of an h-sort are often stored in an approximate suÆx array, written

SA

h

, and/or an approximate inverse suÆx array, written ISA

h

. Here is the result of

a 1-sort on all the suÆxes of our example string:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a  a d a b e a $

SA

1

= 12 (1 4 6 8 11) (2 9) 5 7 (3 10)

ISA

1

= 2 7 11 2 9 2 10 2 7 11 2 1

or 6 8 12 6 9 6 10 6 8 12 6 1

or 2 3 6 2 4 2 5 2 3 6 2 1

The parentheses in SA

1

enlose 1-groups not yet redued to a single entry, thus not

yet in �nal sorted order. Note that SA

h

retains the property of being a permutation of

1::n, while ISA

h

may not. Depending on the requirements of the partiular algorithm,

ISA

h

may as shown express the h-rank of eah h-group in various ways:

� the leftmost position j in SA

h

of a member of the h-group, also alled the head

of the h-group;

� the rightmost position j in SA

h

of a member of the h-group, also alled the tail

of the h-group;

� the ordinal left-to-right ounter of the h-group in SA

h

.

Compare the result of a 3-sort:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a  a d a b e a $

SA

3

= 12 11 (1 8) 4 6 (2 9) 5 7 10 3

ISA

3

= 3 7 12 5 9 6 10 3 7 11 2 1

or 4 8 12 5 9 6 10 4 8 11 2 1

or 3 6 10 4 7 5 8 3 6 9 2 1

Observe that an (h+1)-sort is a re�nement of an h-sort: all members of an (h+1)-

group belong to a single h-group.

4



A Taxonomy of SuÆx Array Constrution Algorithms

We now have available a voabulary suÆient to haraterize the main speies of

SACA as follows.

(1) Pre�x-Doubling

First a fast 1-sort is performed (sine � is indexed, buket sort an be used);

this yields SA

1

/ISA

1

. Then for every h = 1; 2; : : :, SA

2h

/ISA

2h

are omputed

in �(n) time from SA

h

/ISA

h

until every 2h-group is a singleton. The time

required is therefore O(n logn). There are two algorithms in this lass: MM

[MM90, MM93℄ and LS [S98, LS99℄.

(2) Reursive

Form strings x

0

and y from x, then show that if SA

x

0

is omputed, therefore

SA

y

and �nally SA

x

an be omputed in O(n) time. Hene the problem of

omputing SA

x

0

reursively replaes the omputation of SA

x

. Sine jx

0

j is

always hosen so as to be less than 2jxj=3, the overall time requirement of these

algorithms is �(n). There are three main algorithms in this lass: KA [KA03℄,

KS [KS03℄ and KJP [KJP04℄.

(3) Indued Copying

The key insight here is the same as for the reursive algorithms | a omplete sort

of a seleted subset of suÆxes an be used to \indue" a omplete sort of other

subsets of suÆxes. The approah however is nonreursive: an eÆient suÆx

sorting tehnique (for example, [BM93, MBM93, M97, BS97, SZ04℄) is invoked

for the seleted subset of suÆxes. The general idea seems to have been �rst

proposed by Burrows & Wheeler [BW94℄, but it has been implemented in quite

di�erent ways [IT99, S00, MF04, SS05, BK03, M05℄. In general, these methods

are very eÆient in pratie, but may have worst-ase asymptoti omplexity

as high as O(n

2

logn).

The goal is to design SACAs that

� have minimal asymptoti omplexity �(n);

� are fast \in pratie" (that is, on olletions of large real-world data sets suh

as [H04℄);

� are lightweight | that is, use a small amount of working storage in addition

to the 5n bytes required by x and SA

x

.

To date none of the SACAs that has been proposed ahieves all of these objetives.

Figure 2 presents our taxonomy of the fourteen speies of SACA that have been

reognized so far; Table 1 summarizes their time and spae requirements.
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Figure 2: Taxonomy of suÆx array onstrution algorithms

Table 1: Performane summary of the onstrution algorithms. Speed is relative to

MF, the fastest in our experiments, and Memory is given in the number of bytes

required inluding spae required for the suÆx array and input.

Algorithm Worst Case Speed Memory

Pre�x-Doubling

MM [MM93℄ O(n logn) 16 8n

LS [LS99℄ O(n logn) 1.7 8n

Reursive

KA [KA03℄ O(n) 2.2 13-14n

KS [KS03℄ O(n) 2.8 10-13n

KSPP [KSPP03℄ O(n) � {

HSS [HSS03℄ O(n) � {

KJP [KJP04℄ O(n log logn) 2.1 13-16n

Indued Copying

IT [IT99℄ O(n

2

logn) 4 5n

S [S00℄ O(n

2

logn) 2.1 5n

BK [BK03℄ O(n logn) 2.1 5-6n

MF [MF04℄ O(n

2

logn) 1 5n

SS [SS05℄ O(n

2

) 1 9-10n

M [M05℄ O(n

2

logn) 1 5-7n

SuÆx Tree

K [K99℄ O(n log�) 4 15-20n
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3 The Algorithms

3.1 Pre�x-Doubling Algorithms [KMR72℄

Here we onsider algorithms that, given an h-order SA

h

of the suÆxes of x, h � 1,

ompute a 2h-order in O(n) time. Thus pre�x-doubling algorithms require at most

log

2

n steps to omplete the suÆx sort and exeute in O(n logn) time in the worst

ase.

Normally pre�x-doubling algorithms initialize SA

1

for h = 1 using a linear-time

buket sort. The main idea [KMR72℄ is as follows:

Observation 1. Suppose that SA

h

and ISA

h

have been omputed for some h > 0,

where i = SA

h

[j℄ is the j

th

suÆx in h-order and h-rank[i℄ = ISA

h

[i℄. Then a sort

using the integer pairs

�

ISA

h

[i℄; ISA

h

[i+h℄

�

as keys, i+h � n, omputes a 2h-order of the suÆxes i. (SuÆxes i > n�h are

neessarily already fully ordered.)

The two main pre�x-doubling algorithms di�er primarily in their appliation of

this observation:

� Algorithm MM does an impliit 2h-sort by performing a left-to-right san of

SA

h

that indues the 2h-rank of SA

h

[j℄�h, j = 1; 2; : : : ; n;

� Algorithm LS expliitly sorts eah h-group using the ternary-split quiksort

(TSQS) of Bentley & MIlroy [BM93℄.

Manber & Myers [MM90, MM93℄

Algorithm MM employs Observation 1 as follows:

If SA

h

is sanned left to right (thus in h-order of the suÆxes), j =

1; 2; : : : ; n, then the suÆxes

i�h = SA

h

[j℄�h > 0

are neessarily sanned in 2h-order within their respetive h-groups in SA

h

.

After the buket sort that forms SA

1

, MM omputes ISA

1

by speifying as the h-rank

of eah suÆx i in SA

1

the leftmost position in SA

1

(the head) of its group:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a  a d a b e a $

SA

1

= 12 (1 4 6 8 11) (2 9) 5 7 (3 10)

ISA

1

= 2 7 11 2 9 2 10 2 7 11 2 1

To form SA

2

, we onsider positive values of i�1 = SA

1

[j℄�h for j = 1; 2; : : : ; n:

� for j = 1; 7; 8; 9; 10, identify in 2-order the suÆxes 11; (1; 8); 4; 6 beginning

with a;

7
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� for j = 11; 12, identify in 2-order the 2-equal suÆxes (2; 9) beginning with b;

� for j = 3; 6, identify in 2-order the 2-equal suÆxes (3; 10) beginning with e.

Of ourse groups that are singletons in SA

1

remain singletons in SA

2

, and so, after

relabeling the groups, we get

1 2 3 4 5 6 7 8 9 10 11 12

SA

2

= 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)

ISA

2

= 3 7 11 5 9 6 10 3 7 11 2 1

To form SA

4

, we onsider positive values of i�2 = SA

2

[j℄�h for j = 1; 2; : : : ; n:

� for j = 11; 12, we identify in 4-order the 4-equal suÆxes (1; 8) beginning with ab;

� for j = 2; 5, we identify in 4-order the 4-distint suÆxes 9; 2 beginning with be;

� for j = 1; 9, we identify in 4-order the 4-distint suÆxes 10; 3 beginning with ea.

Hene:

1 2 3 4 5 6 7 8 9 10 11 12

SA

4

= 12 11 (1 8) 4 6 9 2 5 7 10 3

ISA

4

= 3 8 12 5 9 6 10 3 7 11 2 1

The �nal SA = SA

8

and ISA = ISA

8

are ahieved after one further doubling that

separates the abea's (1; 8) into 8; 1.

AlgorithmMM is ompliated by the requirement to keep trak of the head of eah

h-group, but an nevertheless be implemented using as few as 4n bytes of storage, in

addition to that required for x and SA. It an be represented oneptually as shown

in Figure 3.

A time- and spae-eÆient implementation of MM is available at [M97℄.

h 1

initialize SA

1

, ISA

1

while some h-group not a singleton

for j  1 to n do

i SA

h

[j℄�h

if i > 0 then

q  head

�

h-group[i℄

�

SA

2h

[q℄ i

head

�

h-group[i℄

�

 q+1

ompute ISA

2h

| update 2h-groups

h 2h

Figure 3: Algorithm MM
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Larsson & Sadakane [S98, LS99℄

After using TSQS to form SA

1

, Algorithm LS omputes ISA

1

using the rightmost

(rather than, as in Algorithm MM, the leftmost) position of eah group in SA

1

to

identify h-rank[i℄.

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a  a d a b e a $

SA

1

= 12 (1 4 6 8 11) (2 9) 5 7 (3 10)

ISA

1

= 6 8 12 6 9 6 10 6 8 12 6 1

In addition to identifying h-groups in SA

h

that are not singletons, LS also identi�es

runs of onseutive positions that are singletons (fully sorted). For this purpose an

array L = L[1::n℄ is maintained, in whih L[j℄ = ` (respetively, �`) if and only if j

is the leftmost position in SA

h

of an h-group (respetively, run) of length `:

1 2 3 4 5 6 7 8 9 10 11 12

L = �1 5 2 �2 2

Left-to-right proessing of L thus allows runs to be skipped and non-singleton h-groups

to be identi�ed, in time proportional to the total number of runs and h-groups. TSQS

is again used to sort the suÆxes i in eah of the identi�ed h-groups aording to keys

ISA

h

[i+h℄, thus yielding, by Observation 1, a olletion of subgroups and subruns in

2h-order. A straightforward update of L and ISA then yields stage 2h:

1 2 3 4 5 6 7 8 9 10 11 12

SA

2

= 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)

ISA

2

= 4 8 12 5 9 6 10 4 8 12 2 1

L = �2 2 �2 2 �2 2

A further doubling yields

1 2 3 4 5 6 7 8 9 10 11 12

SA

4

= 12 11 (1 8) 4 6 9 2 5 7 10 3

ISA

4

= 4 8 12 5 9 6 10 4 7 11 2 1

L = �2 2 �8

and then the �nal results SA

8

and ISA

8

are ahieved as for Algorithm MM, with

L[1℄ = �12.

Observe that, like MM, LS maintains ISA

2h

[i℄ = ISA

h

[i℄ for every suÆx i that is

a singleton in its h-group. However, unlike MM, LS avoids having to proess every

position in SA

h

(see the for loop in Figure 3) by virtue of its use of the array L |

in fat, one for some h, i is identi�ed as a singleton, SA

h

[i℄ is never aessed again.

We now remark that in fat L an be eliminated! L is not required to determine

non-singleton h-groups beause for every suÆx i in suh a group, ISA

h

[i℄ is by de�ni-

tion the rightmost position in the group. Thus, in partiular, at the leftmost position

j of the h-group, where i = SA

h

[j℄, we an ompute the length ` of the group from

` = ISA

h

[i℄�j+1. Of ourse L also keeps trak of runs of fully sorted suÆxes in SA

h

,

9
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but, as just remarked, positions in SA

h

orresponding to suh runs are thereafter un-

used | it turns out that they an be reyled to perform the run-traking role. This

implementation requires that SA

h

be reonstruted from ISA

h

in order to provide the

�nal output, a straightforward proedure (see Setion 2).

Algorithm LS thus requires 4n additional bytes of storage (the integer array ISA),

just like MM. As shown in [LS99℄, LS exeutes in O(n logn) time, again the same as

MM; however, in pratie its running time is usually several times faster.

3.2 Reursive Algorithms [F97℄

In this setion we onsider a family of algorithms that were all disovered in 2003

or later, that are reursive in nature, and that generally exeute in worst-ase time

linear in string length. All are based on an idea �rst put forward by Farah [F97℄ for

linear-time suÆx tree onstrution of strings on an indexed alphabet: they depend on

an initial assignment of type to eah suÆx (position) in x that separates the suÆxes

into two or more lasses. Thus the reursion in all ases is based on a split of the

given string x = x

(0)

into disjoint (or almost disjoint) omponents (subsequenes)

that are transformed into strings we all x

(1)

and y

(1)

, hosen so that, if SA

x

(1)

is

(reursively) omputed, then in linear time

� SA

x

(1)

an be used to indue onstrution of SA

y

(1)

, and furthermore

� SA

x

(0)

an then also be omputed by a merge of SA

x

(1)

and SA

y

(1)

.

Thus the omputation of SA

x

(0)

(in general, SA

x

(i)

) is redued to the omputation

of SA

x

(1)

(in general, SA

x

(i+1)

). To make this strategy eÆient and e�etive, two

requirements need to be met.

1. At eah reursive step, ensure that

jx

(i+1)

j

Æ

jx

(i)

j � f < 1;

thus the sum of the lengths of the strings proessed by all reursive steps is

jxj(1+f+f

2

+: : :) < jxj=

�

1�f):

In fat, over all the algorithms proposed so far, f � 2=3, so that the sum of the

lengths is guaranteed to be less than 3jxj | for most of them � 2jxj.

2. Devise an approximate suÆx-sorting proedure, semisort say, that for some

suÆiently short string x

(i+1)

will yield a omplete sort of its suÆxes and thus

terminate the reursion, allowing the suÆxes of x

(i)

;x

(i�1)

; : : : ;x

(0)

all to be

sorted in turn. Ensure moreover that the time required for semisort is linear in

the length of the string being proessed.

Clearly suÆx-sorting algorithms satisfying the above desription will ompute SA

x

(or equivalently ISA

x

) of a string x = x[1::n℄ in �(n) time. The struture of suh

algorithms is shown in Figure 4.

All of the algorithms disussed in this subsetion ompute x

0

(that is, x

(1)

) and y

(that is, y

(1)

) from x (that is, x

(0)

) in similar ways: the alphabet of the split strings

10
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proedure onstrut(x; SA)

split(x; x

0

;y)

semisort(x

0

; ISA

0

)

if ISA

0

ontains dupliate ranks then

onstrut(ISA

0

; SA

x

= SA

0

)

else

invert(ISA

x

= ISA

0

; SA

x

0

)

indue(SA

x

0

; ISA

x

0

; SA

y

)

merge(SA

x

0

; SA

y

; SA

x

)

Figure 4: General algorithm for reursive SA onstrution

is in fat the set of suÆxes (positions) 1::n in x, so that x

0

and y together form a

permutation of 1::n.

Attention then fouses on omputing the ranks of the suÆxes (positions) i of x that

our in x

0

: we all this sequene (string) of ranks ISA

x

0

, where for j = 1; 2; : : : ; jx

0

j,

ISA

x

0

[i℄ gives the rank of suÆx i = x

0

[j℄ of x.

Proedure semisort omputes an approximation ISA

0

of ISA

x

0

that ultimately, at

some level of reursion, beomes exat | and so we may write ISA

x

0

= ISA

0

, then

invert ISA

x

0

to form SA

x

0

.

If however ISA

0

is not exat, then it is used as the input string for a reursive

all of the onstrut proedure, thus yielding the suÆx array, SA

0

say, of ISA

0

| the

key observation made here, ommon to all the reursive algorithms, is that sine SA

0

is the suÆx array for the (approximate) ranks of the suÆxes identi�ed by x

0

, it is

therefore the suÆx array for those suÆxes themselves. We may aordingly write

SA

x

0

= SA

0

.

In our disussion below of these algorithms, we fous on the nature of split and

semisort and their onsequenes for the indue and merge proedures.

Ko & Aluru [KA03℄

Algorithm KA's split proedure assigns suÆxes i < n in left-to-right order to a se-

quene S (respetively, L) i� x[i::n℄ < (respetively, >) x[i + 1::n℄. SuÆx n ($) is

assigned to both S and L. Sine x[i℄ = x[i+1℄ implies that suÆxes i and i+1 belong

to the same sequene, it follows that the KA split requires time linear in x.

Then x

0

is formed from the sequene of suÆxes of smaller ardinality, y from the

sequene of larger ardinality. Hene for KA, jx

0

j � jxj=2.

For example,

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a   a $

type = L S L L S L L S L L L S=L

yields jSj = 4, jLj = 9, x

0

= 2 5 8 12, y = 1 3 4 6 7 9 10 11 12.

For every j 2 1::jx

0

j, KA's semisort proedure forms i = x

0

[j℄, i

1

= x

0

[j+1℄

(i

1

= x

0

[j℄ if j = jx

0

j), and then performs a radix sort on the resulting substrings

x[i::i

1

℄, a alulation that requires �(n) time. The result of this sort is a ranking ISA

0

11
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of the substrings x[i::i

1

℄, hene an approximate ranking of the suÆxes (positions)

i = x

0

[j℄. In our example, semisort yields

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a   a $

x

0

= 2 5 8 12

ISA

0

= 3 3 2 1

If after semisort the entries (ranks) in ISA

0

are distint, then a omplete ordering

of the suÆxes of x

0

has been omputed (ISA

0

= ISA

x

0

); if not, then as indiated in

Figure 4, the onstrut proedure is reursively alled on ISA

0

. In our example, one

reursive all suÆes for a omplete ordering (12; 8; 5; 2) of the suÆxes of x

0

, yielding

ISA

x

0

= 4321.

At this point KA deviates from the pattern of Figure 4 in two ways: it ombines the

indue and merge proedures into a single KA-merge (see Figure 5), and it omputes

SA

x

diretly without referene to ISA

x

1

.

initialize SA SA

1

, head[1::�℄, tail[1::�℄

for i jx

0

j downto 1 do

� x

�

x

0

[i℄

�

SA

�

tail[�℄

�

 x

0

[i℄

tail[�℄ tail[�℄�1

for j  1 to n do

i SA[j℄

if type[i�1℄ = L then

� x[i�1℄

SA

�

head[�℄

�

 i�1

head[�℄ head[�℄+1

Figure 5: Algorithm KA-merge

First SA

1

is omputed, yielding 1-groups for whih the leftmost and rightmost

positions are spei�ed in arrays head[1::�℄ and tail[1::�℄, respetively. Sine in eah 1-

group all the S-suÆxes are lexiographially greater than all the L-suÆxes, and sine

the S-suÆxes have been sorted, KA-merge an plae all the S-suÆxes in their �nal

positions in SA | eah time this is done, the tail for the urrent group is deremented

by one. (In this desription, we assume that jSj � jLj; obvious adjustments yields a

orresponding approah for the ase jLj < jSj.)

The SA at this stage is shown below, with \�" denoting an empty position:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (� 8 5 2) (�) (� �) (� � � �)

type = S L S S S L L L L L L L

To sort the L-suÆxes, we san SA left to right. For eah suÆx position i = SA[j℄

that we enounter in the san, if i�1 is an L-suÆx still awaiting sorting (not yet

plaed in the SA), we plae i�1 at the head of its group in SA and inrement the

1

In [KA03℄ it is laimed that the ISA must be built in unison with the SA for this proedure to

work, but we have found that this is atually unneessary.

12
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head of the group by one. SuÆx i�1 is now sorted and will not be moved again. The

orretness of this proedure depends on the fat that when the san of SA reahes

position j, SA[j℄ is already in its �nal position. In our example, plaements begin

when j = 1, so that i = SA[1℄ = 12. Sine suÆx i�1 = 11 is type L, it is plaed at

the front of the a group (of whih it happens to be the only member):

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (11 8 5 2) (�) (� �) (� � � �)

type = S L S S S L L L L L L L

Next the san reahes j = 2, i = SA[2℄ = 11, and we plae i�1 = 10 at the front

of the  group at SA[7℄ and inrement the group head.

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (11 8 5 2) (�) (10 �) (� � � �)

type = S L S S S L L L L L L L

The san ontinues until �nally

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 1 10 9 7 4 6 3

Algorithm KA an be implemented to use only 4n bytes plus 1:25n bits in addition

to the storage required for x and SA.

K�arkk�ainen & Sanders [KS03℄

The split proedure of AlgorithmKS �rst separates the suÆxes i of x into sequenes S

1

(every third suÆx in x: i � 1 mod 3) and S

02

(the remaining suÆxes: i 6� 1 mod 3).

Thus in this algorithm three types 0; 1; 2 are identi�ed: x

0

is formed from S

02

by

x

0

= (i � 2 mod 3) (i � 0 mod 3);

while y is formed diretly from S

1

. For our example string

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a   a $

we �nd x

0

= (2 5 8 11)(3 6 9 12), y = 1 4 7 10. Note that jx

0

j � b2jxj=3.

Constrution of ISA

0

using semisort begins with a linear-time 3-sort of suÆxes

i 2 S

02

based on triples t

i

= x[i::i+2℄. Thus a 3-order of these suÆxes is established

for whih a 3-rank r

i

an be omputed, as illustrated by our example:

i 2 3 5 6 8 9 11 12

t

i

add dda add dda a a a$� $��

r

i

4 6 4 6 3 5 2 1

These ranks enable ISA

0

to be formed for x

0

:

1 2 3 4 5 6 7 8

ISA

0

= (4 4 3 2) (6 6 5 1)

13
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As with Algorithm KA, one reursive all on x

0

= 44326651 suÆes to omplete

the ordering, yielding ISA

x

0

= 54328761 | this gives the ordinal ranks in x of the

suÆxes x

0

= 2 5 8 11 3 6 9 12.

The indue proedure sorts the suÆxes spei�ed by y based on the ordering ISA

x

0

.

First SA

x

0

= 12 11 8 5 2 9 6 3 is formed by linear-time proessing of ISA

x

0

. Then a

left-to-right san of SA

x

0

allows us to identify suÆxes i � 2 mod 3 in inreasing order

of rank and thus to selet letters x[i�1℄, i�1 � 1 mod 3, in the same order. A stable

buket sort of these letters will then provide the suÆxes of y in inreasing lexorder.

In our example SA

x

0

[2::5℄ = 11 8 5 2, and so we onsider x[10℄ = , x[7℄ = x[4℄ = d,

x[1℄ = b. A stable sort yields bdd orresponding to SA

y

= 1 10 7 4.

Thus we may suppose that SA

x

0

and SA

y

are both in sorted order of suÆx. The

KS merge proedure may then be thought of as a straightforward merge of these two

strings into the output array SA

x

, where at eah step we need to deide in onstant

time whether suÆx i

02

of SA

x

0

is greater or less than suÆx i

1

of SA

y

. Observing

that i

1

+1 � 2 mod 3 and i

1

+2 � 0 mod 3, we identify two ases:

� if i

02

� 2 mod 3, i

02

+1 � 0 mod 3, and so it suÆes to ompare the pairs

�

x[i

02

℄; rank(i

02

+1)

�

and

�

x[i

1

℄; rank(i

1

+1)

�

;

� if i

02

� 0 mod 3, i

02

+2 � 2 mod 3, and so it suÆes to ompare the triples

�

x[i

02

::i

02

+1℄; rank(i

02

+2)

�

and

�

x[i

1

::i

1

+1℄; rank(i

1

+2)

�

.

We now observe that eah of the ranks required by these omparisons is available in

onstant time from ISA

x

0

! For if i � 2 mod 3, then

rank(i) = ISA

x

0

�

b(i+1)=3

�

;

while if i � 0 mod 3, then

rank(i) = ISA

x

0

�

b(n+1)=3+bi=3

�

:

Thus the merge of the two lists requires �(n) time.

Exluding x and SA, Algorithm KS an be implemented in 6n bytes of working

storage. A reent variant of KS [N05℄ permits onstrution of a suint suÆx array

in O(n) time using only O(n log� log

q

�

n) bits of working memory, where q = log

2

3.

Kim, Jo & Park [KSPP03, HSS03, KJP04℄

The KJP split proedure adopts the same approah as Farah's suÆx tree onstrution

algorithm [F97℄: it forms x

0

, the string of odd suÆxes (positions) i � 1 mod 2 in x,

and the orresponding string y of even positions. ISA

x

0

is then formed by a reursive

sort of the suÆxes identi�ed by x

0

. Algorithm KJP is not quite linear in its operation,

running in O(nloglogn) worst-ase time.

For KJP we modify our example slightly to make it more illustrative:

1 2 3 4 5 6 7 8 9 10 11

x = b a d d d d a   a $

yielding x

0

= 1 3 5 7 9 11, y = 2 4 6 8 10.

The KJP semisort 2-sorts pre�xes p

i

= x[i::i+1℄ of eah odd suÆx i and assigns

to eah an ordinal rank r

i

:

14
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i 11 7 1 9 3 5

p

i

$� a ba a dd dd

r

i

1 2 3 4 5 5

As in the other reursive algorithms, a new string ISA

0

is formed from these ranks;

in our example,

1 2 3 4 5 6

ISA

0

= 3 5 5 2 4 1

As with the other reursive algorithms, one reursive all suÆes to �nd ISA

x

0

=

365241 orresponding to x

0

= 1 3 5 7 9 11. At this point KJP omputes the inverse

array SA

x

0

= 11 7 1 9 5 3. The KJP indue proedure an now ompute SA

y

, the

sorted list of even suÆxes, in a straightforward manner: �rst set SA

y

[i℄ SA

x

0

[i℄�1,

and then sort SA

y

stably, using x

�

SA

y

[i℄

�

as the sort key for suÆx SA

y

[i℄:

1 2 3 4 5 6

SA

x

0

= 11 7 1 9 5 3

SA

y

= 10 2 8 6 4

The KJP merge is more omplex. In order to merge SA

x

0

and SA

y

eÆiently, we

need to ompute an array C

�

1::dn=2e

�

, in whih C[i℄ gives the number of suÆxes in

SA

x

0

that lie between SA

y

[i℄ and SA

y

[i�1℄ in the �nal SA (with speial attention

to end onditions i = 1 and i = jyj+1). In [KJP04℄ it is explained how C an be

omputed in log jx

0

j time using a suÆx array searh (pattern-mathing) algorithm

desribed in [SKPP03℄. We omit the details, however, for our example we would �nd

1 2 3 4 5 6

C = 0 1 1 0 1 1

With C in hand, merging is just a matter of using eah C[i℄ to ount how many

onseutive SA

x

0

entries to insert between onseutive SA

y

entries.

There are two other algorithms whih, like KJP, perform an odd/even split of the

suÆxes. Algorithm KSPP [KSPP03℄ was the �rst of these, and although its worst-ase

exeution time is �(n), it is generally onsidered to be of only theoretial interest,

mainly due to high memory requirements. On the other hand, AlgorithmHSS [HSS03℄

uses \suint data strutures" [M99℄ e�etively to onstrut a (suint) suÆx array

in O(n log log�) time with only �(n log �) bits of working memory. (Compare the

variant [N05℄ of Algorithm KS mentioned above.) It is not lear how pratial these

lightweight approahes are, sine their suintness may well adversely a�et speed.

3.3 Indued Copying Algorithms [BW94℄

The algorithms in this lass are arguably the most diverse of the three main divi-

sions of SACAs disussed in this paper. They are united by the idea that a (usually)

omplete sort of a seleted subset of suÆxes an be used to indue a fast sort of

the remaining suÆxes. This indued sort is similar to the indue proedures em-

ployed in the reursive SACAs; the di�erene is that some sort of iteration is used in

plae of the reursion. This replaement (of reursion by iteration) probably largely

explains why several of the indued opying algorithms are faster in pratie than
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any of the reursive algorithms (as we shall disover in Setion 4), eventhough none

of these algorithms is linear in the worst ase. In fat, their worst-ase asymptoti

omplexity is generally O(n

2

logn). In terms of spae requirements, these algorithms

are lightweight: for many of them, use of additional working storage amounts to less

than n bytes.

We begin with brief outlines of the indued opying algorithms:

� Itoh & Tanaka [IT99℄ selet suÆxes i of \type B" | those satisfying x[i℄ �

x[i+1℄ | for omplete sorting, thus induing a sort of the remaining suÆxes.

� Seward [S00℄ on the other hand sorts ertain 1-groups, using the results to

indue sorts of orresponding 2-groups, an approah that also forms the basis

of Algorithms MF [MF04℄ and SS [SS05℄.

� A third approah, due to Burkhardt & K�arkk�ainen, uses a small integer h to

form a \sample" S of suÆxes that is then h-sorted; using a tehnique reminisent

of the reursive algorithms, the resulting h-ranks are then used to indue a

omplete sort of all the suÆxes.

� Finally, the as-yet-unpublished algorithm of Manisalo [M05℄ omputes ISA

x

using an iterative tehnique that, beginning with 1-groups, uses h-groups to

indue the formation of (h+1)-groups.

Itoh & Tanaka [IT99℄

Algorithm IT lassi�es eah suÆx i of x as being type A if x[i℄ > x[i + 1℄ or type B

if x[i℄ � x[i + 1℄ (ompare types L and S of Algorithm KA). The key observation of

Itoh and Tanaka is that one all the groups of type B suÆxes are sorted, the order

of the type A suÆxes is easy to derive. For example:

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a   a $

type = A B B A B B A B B A A B

To form the full SA, we begin by omputing the 1-group boundaries, noting the

beginning and end of eah 1-group with arrays head[1::�℄ and tail[1::�℄ (reall � =

j�j). Eah 1-group is further partitioned into two portions, so that in the �rst portion

there is room for the type A suÆxes, and in the seond for the type B suÆxes. For

eah group the position of the A=B partition is reorded. Observe that within a

1-group, type A suÆxes should always ome before type B suÆxes. The SA at this

stage is shown below, with \�" denoting an empty position:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (� 2 5 8) (�) (� 9) (� � 3 6)

type = B A B B B A A B A A A A

Algorithm IT now sorts the B suÆxes using a fast string sorting algorithm. In

[IT99℄ multikey quiksort (MKQS) [BS97℄ is proposed, but any other fast sort, suh as

burst sort [SZ04℄ or the elaborate approah introdued in Algorithm MF (see below),

ould be used:
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1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (� 8 5 2) (�) (� 9) (� � 6 3)

type = B A B B B A A B A A A A

To sort the A-suÆxes, and omplete the SA, we san SA left to right, j =

1; 2; : : : ; n. For eah suÆx position i = SA[j℄ that we enounter in the san, if i�1 is

an A-suÆx still awaiting sorting (that is, it has not yet been plaed in the SA), then

we plae i�1 at the head of its group in SA and inrement the head of the group by

one. SuÆx i�1 is now sorted and will not be moved again. Like Algorithm KA, the

orretness of this proedure depends on SA[j℄ already being in its �nal position when

the san of SA reahes position j. In our example, plaements begin when j = 1,

i = SA[1℄ = 12. SuÆx i�1 = 11 is type A, so we plae 11 at the front of the a group

(of whih it happens to be the only unsorted member), and it is now sorted:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 (�) (� 9) (� � 6 3)

type = B A B B B A A B A A A A

Next the san reahes j = 2, i = SA[2℄ = 11, and so we plae i�1 = 10 at the

front of its  group at SA[7℄ and inrement the group head, ompleting that group:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 (�) 10 9 (� � 6 3)

type = B A B B B A A B A A A A

The san ontinues, eventually arriving at the �nal SA :

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 1 10 9 7 4 6 3

Figure 6 gives an algorithm apturing these ideas. The attentive reader will note

the similarity between it and Algorithm KA (Subsetion 3.2). In fat, the set of B-

suÆxes used in Algorithm IT is a superset of the S-suÆxes treated in Algorithm KA.

initialize SA SA

1

| head[1::�℄ and tail[1::�℄ mark 1-group boundaries

| part[1::�℄ marks A=B partition of eah 1-group

for h 1 to � do

suÆxsort

�

SA

�

part[h℄

�

; SA

�

part[h℄+1

�

; : : : ; SA

�

tail[h℄

�

�

for j  1 to n do

i SA[j℄

if type[i�1℄ = A then

� x[i�1℄

SA

�

head[�℄

�

 i�1

head[�℄ head[�℄+1

Figure 6: Algorithm IT
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Clearly IT exeutes in time linear in n exept for the up to � suÆx sorts of the

possibly �(n) B-suÆxes in eah 1-group; these sorts may require O(n

2

logn) time

in pathologial ases. In pratie, however, IT is quite fast. It is also lightweight:

with areful implementation (for example, both head and tail arrays do not need to

be stored, and suÆxsort an be exeuted in plae), IT requires less than n bytes of

additional working storage when n is large (megabytes or more) with respet to �.

Seward [S00℄

Algorithm S begins with a linear-time 2-sort of the suÆxes of x, thus forming SA

2

in

whih the boundaries of eah 2-group are identi�ed by the head array | also used to

mark boundaries between the 1-groups. Therefore in this ase head = head[1::�; 1::�℄,

allowing aess to every boundary head[�; �℄ for every �; � 2 �. For our example the

result of the 2-sort ould be represented as follows:

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a   a $

SA

2

= 12

�

11 8 [2 5℄

�

1 (10 9)

�

[4 7℄ [3 6℄

�

where () enloses non-singleton 1-groups, [ ℄ enloses non-singleton 2-groups.

Now onsider a 1-group G

�

orresponding to a ommon single-letter pre�x �.

Suppose that the suÆxes of G

�

are fully sorted, yielding a sequene G

�

�

in asending

lexorder. Imagine now that G

�

�

is traversed in lexorder: for every suÆx i > 1, the

suÆx i�1 an be plaed in its �nal position in SA

x

at the head of the 2-group for

x[i�1℄� | provided head

�

x[i�1℄; �

�

is inremented by one after the suÆx is plaed

there, thus allowing for orret plaement of any other suÆxes in the same 2-group.

The lexorder of G

�

�

ensures that the suÆxes i�1 also our in lexorder within eah

2-group.

This is essentially the strategy of Algorithm S: it uses an eÆient string sort

[BM93℄ to sort ompletely the unsorted suÆxes in a 1-group that urrently ontains

a minimum number of unsorted suÆxes, then uses the sorted suÆxes i to indue

a sort of suÆxes i�1. Thus all suÆxes an be ompletely sorted at the ost of a

omplete sort of only half of them.

The proess an be made still more eÆient by observing that when G

�

is sorted,

the suÆxes with pre�x �

2

an be omitted, provided the 2-group orresponding to

�

2

is traversed after the traversal of G

�

�

. To see this, suppose there exists a suÆx

�

k

�v in G

�

, k � 2; � 6= �. Then the suÆx ��v will have been sorted into G

�

�

and

already proessed to plae suÆx x[i::n℄ = �

2

�v at head[�; �℄. Thus when �

2

�v is

itself proessed, suÆx x[i�1℄�

2

�v will be plaed at head

�

x[i�1℄; �

�

| this will again

be (the now inremented) head[�; �℄ if k � 3 (x[i�1℄ = �).

We an apply Algorithm S to our example string:

Iteration 1 The 1-group orresponding to � = $ ontains only the singleton unsorted

suÆx i = 12. Thus the sort is trivial: 12 is already in its �nal position in SA,

and suÆx i�1 = 11 is put in �nal position at head[a; $℄ = 2.

Iteration 2 The minimum 1-group orresponding to b ontains only suÆx i = 1,

whih is therefore in �nal position. Sine i�1 = 0, there is no further ation.
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Iteration 3 The minimum 1-group orresponds to � = ; it again has only one entry

to be sorted, sine one of the 2-groups represented is . Thus suÆx i = 10

is in �nal position at head[; a℄ = 7, and determines the �nal position of suÆx

i�1 = 9 at head[; ℄ = 8. Then �nally for i = 9, the �nal position of suÆx

i�1 = 8 is �xed at head[a; ℄ = 3.

Iteration 4 The 1-group for � = a now ontains only the two unsorted suÆxes 2

and 5, sine 11 and 8 have been put in �nal position by previous iterations. The

sort yields SA[4℄ = 5, SA[5℄ = 2, so that the ompletely sorted 1-group beomes

SA[2::5℄ = 11 852. For i = 11, suÆx i�1 = 10 is already in �nal position; for

i = 8, suÆx i�1 = 7 is plaed in �nal position at head[d; a℄ = 9; then, for

i = 5, after head[d; a℄ is inremented, suÆx i�1 = 4 is plaed in �nal position

at head[d; a℄ = 10; for i = 2, i�1 = 1 is already in �nal position.

Iteration 5 The �nal group orresponds to � = d; by now its only unsorted suÆxes,

3 and 6, belong to the 2-group dd and so do not require sorting. As a result

of Iteration 4, SA[9::10℄ = 74. Thus, for i = 7, suÆx i� 1 = 6 is plaed

at head[d; d℄ = 11, while for i = 4, the �nal suÆx i� 1 = 3 is plaed at

head[d; d℄ = 12.

For this example, only one simple sort (of suÆxes 2 and 5 in Iteration 4) needs to be

performed in order to ompute SA

x

!

Algorithm S shares the O(n

2

logn) worst ase time of other indued opying algo-

rithms, but is nevertheless very fast in pratie. However, its running time sometimes

seems to degrade signi�antly when the average lp, lp, is large, for reasons that are

not quite lear. This problem is addressed by a variant, Algorithm MF, disussed

next. Like IT, Algorithm S an run using less than n bytes of working storage.

Manzini & Ferragina [MF04℄

AlgorithmMF is a variant of Algorithm S that replaes TSQS [BM93℄, used to sort the

2-groups within a seleted 1-group, by a more elaborate and sophistiated approah

to suÆx-sorting. This approah is two-tiered, depending initially on a user-spei�ed

integer lp

�

, the longest lp of a group of suÆxes that will be sorted using a standard

method. (Typially, for large �les, lp

�

will be hosen in the range 500::5000.) Thus,

if a 2-group of suÆxes is to be sorted, then MKQS [BS97℄ (rather than TSQS) will be

employed until the reursion of MKQS reahes depth lp

�

: if the sort is not omplete,

this de�nes a set I

m

= fi

1

; i

2

; :::; i

m

g, m � 2, of suÆxes suh that

lp(i

1

; i

2

; : : : ; i

m

) � lp

�

:

At this point, the methodology used to omplete the sort of these m suÆxes is hosen

depending on whether m is \large" or \small".

If m is small, then a sorting method alled blind sort [FG99℄ is invoked that

uses at most 36m bytes of working storage. Therefore, if blind sort is used only for

m � n=Q, its spae overhead will be at most (36=Q)n bytes; by hoosing Q � 1000,

say | and thus giving speial treatment to ases where \not too many" suÆxes share
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a \long" lp | it an be ensured that for small m, the spae used is a very small

fration of the 5n bytes required for x and SA

x

.

Blind sort of I

m

depends on the onstrution of a blind trie data struture

[FG99℄: essentially the strings

x[i

j

+lp

�

::n℄; j = 1; 2; : : : ; m

are inserted one-by-one into an initially empty blind trie; then, as explained in [FG99℄,

a left-to-right traversal of the trie obtains the suÆxes in lexorder, as required.

If m is large (> n=Q), Algorithm MF reverts to the use of a slightly modi�ed

TSQS, as in Algorithm S; however, whenever at some reursive level of exeution of

TSQS a new set of suÆxes I

0

m

is identi�ed for whih m � n=Q, then blind sort is

again invoked to omplete the sort of I

0

m

.

Following the initialMKQS sort to depth lp

�

, the dual strategy (blind sort/TSQS)

desribed so far to omplete the sort is atually only one of two strategies employed

by Algorithm MF. Before resorting to the dual strategy, MF tries to make use of

generalized indued opying, as we now explain.

Suppose that for i

1

2 I

m

and for some least ` 2 1::lp

�

�1,

x[i

1

+`::i

1

+`+1℄ = ��;

where [�; �℄ identi�es a 2-group that as a result of previous proessing has already

been fully sorted. Sine the m suÆxes in I

m

share a ommon pre�x, it follows that

every suÆx in I

m

ours in the same 2-group [�; �℄. Sine moreover the m suÆxes

in I

m

are idential up to position `, it follows that the order of the suÆxes in I

m

is

determined by their order in [�; �℄. Thus if suh a 2-group exists, it an be used to

\indue" the orret ordering of the suÆxes in I

m

, as follows:

(1) Buket-sort the entries i

j

2 I

m

in asending order of position (not suÆx), so

membership in I

m

an be determined using binary searh (step (3)).

(2) San the 2-group [�; �℄ to identify a math for suÆx i

1

+`, say at some position q.

(3) San the suÆxes (positions) listed to the left and to the right of q in 2-group

[�; �℄; for eah suÆx i, use binary searh to determine whether or not i�` ours

in (the now-sorted) I

m

. If it does our, then mark the suÆx i in [�; �℄.

(4) When m suÆxes have been marked, san the 2-group [�; �℄ from left to right:

for eah marked suÆx i, opy i�` left-to-right into I

m

.

Step (2) of this proedure an be time-onsuming, sine it may involve a �(n)-time

math of two suÆxes; in [MF04℄ an eÆient implementation of step (2) is desribed

that uses only a very small amount of extra spae.

Of ourse if no suh `, hene no suh 2-group, exists, then this method annot be

used: the dual strategy desribed above must be used instead.

In pratie Algorithm MF runs faster than any of Algorithms KS, IT or S; in

ommon with other indued opying algorithms, it uses less than n bytes of additional

working storage but an require as muh as O(n

2

logn) time in the worst ase.
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Sh�urmann & Stoye [SS05℄

Algorithm SS ould arguably be lassi�ed as a pre�x-doubling algorithm. Certainly

it is a hybrid: it �rst applies a pre�x-doubling tehnique to sort individual h-groups,

then uses Seward's indued opying approah to extend the sort to other groups of

suÆxes.

For SS, the integer h is atually a user-spei�ed parameter, hosen to satisfy

h < log

�

n. First a radix sort is performed to ompute SA

h

, then the orresponding

ISA

h

, in whih the h-rank of eah h-group is formed from the tail of the h-group

in SA

h

(the same system used in Algorithm LS). Thus, for example, using h = 2,

the result of the �rst phase of proessing would be just the same as after the seond

iteration of LS:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a  a d a b e a $

SA

2

= 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)

ISA

2

= 4 8 12 5 9 6 10 4 8 12 2 1

In its seond phase, SS onsiders h-groups in SA

h

that are not singletons. Let H

be one suh h-group. The observation is made that sine every suÆx i in H has the

same pre�x of length h, therefore the order of eah i in H is determined by the rank

of suÆx i+h; that is, by ISA

h

[i+h℄. A sort of all the non-singleton h-groups in SA

h

thus leads to the onstrution of SA

2h

and ISA

2h

:

1 2 3 4 5 6 7 8 9 10 11 12

SA

4

= 12 11 (1 8) 4 6 9 2 5 7 10 3

ISA

4

= 3 8 12 5 9 6 10 3 7 11 2 1

Observe that as a result of the pre�x-doubling, the h-groups (2 9) and (3 10) have

beome ompletely sorted.

To entries in h-groups that beome ompletely sorted by pre�x-doubling, SS ap-

plies Algorithm S: if suÆx i is in �xed position in SA, then the �nal position of suÆx

i�1 an also be determined. Thus, in our example, the sort of the h-group (2 9) that

yields 2h-order 9; 2 indues a orresponding sorted order 8; 1 for the 2h-group (1 8),

ompleting the sort.

Algorithm SS iterates this seond phase { pre�x-doubling followed by indued

opying { until all entries in SA are singletons. Note that after the �rst iteration, the

indued opying will as a rule re�ne the h-groups so that they break down into (h+k)-

groups for various values of k � 0; thus, after the �rst iteration, the pre�x-doubling

is approximate.

Algorithm SS has worst-ase time omplexity O(n

2

) and appears to be very fast

in pratie, ompetitive with Algorithm MF. However, it is not quite lightweight,

requiring somewhat more than 4n bytes of additional working storage.

Burkhardt & K�arkk�ainen [BK03℄

In a similar way to the reursive algorithms of Setion 3.2, Algorithm BK omputes

SA

x

by �rst ordering a sample of the suÆxes S. The relative ranks of the suÆxes in
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S are then used to aelerate a basi string sorting algorithm, suh as MKQS [BS97℄,

applied to all the suÆxes.

Central to BK is a mathematial onstrut alled a di�erene over, whih de�nes

the suÆxes in S. A di�erene over D

h

is a set of integers in the range 0::h� 1 suh

that for all i 2 0::h�1, there exist j; k 2 D

h

suh that i � k�j(mod h). For a hosen

D

h

, S ontains the suÆxes of x beginning at positions i suh that i mod h 2 D

h

.

For example D

7

= f1; 2; 4g is a di�erene over modulo 7. If we were to sample

aording to D

7

then for the string

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x = b a d d a d d b a d d a d d b a d d $

we would obtain S = f1; 2; 4; 8; 9; 11; 15; 16; 18; 22; 23; 25g. Observe for every i 2 S

that i mod 7 is in D

7

.

In pratie, only overs D

h

with jD

h

j 2 �(

p

h) are suitable. However, for the

hosen D

h

a funtion Æ(i; j) must also be preomputed. For any integers i; j, Æ(i; j)

is the smallest integer k 2 0::h � 1 suh that (i + k) mod h and (j + k) mod h are

both in D

h

. A lookup table allows onstant time evaluation of Æ(i; j) | we omit the

details here.

Algorithm BK onsists of two main phases. The goal of the �rst phase is to

ompute a data struture ISA

x

0

allowing the lexiographial rank of i 2 S, relative

to the other members of S, to be omputed in onstant time. To this end, BK �rst

h-sorts S using MKQS (or alternative) and then assigns eah suÆx its h-rank in the

resulting h-ordering. For our example the h-ranks are:

i 2 S 1 2 4 8 9 11 15 16 18

h-rank 3 6 4 3 6 4 2 5 1

These ranks are then used to onstrut a new string x

0

(ompare to x

0

for Algo-

rithm KS) as follows

i 2 S 1 8 15 2 9 16 4 11 18

x

0

= (3 3 2) (6 6 5) (4 4 1)

The struture of x

0

is deeptively simple. The h-ranks, r

i

, appear in jD

h

j groups

in x

0

(indiated above with ()) aording to i modulo h. Then, within eah group,

ranks r

i

are sorted in asending order aording to i. Beause of this struture in

x

0

, its inverse suÆx array, ISA

x

0

, an be used to obtain the rank of any i 2 S in

onstant time. To ompute ISA

0

, BK makes use of Algorithm LS as an auxiliary

routine (reall that LS omputes both the ISA and the SA). Although LS is probably

the best hoie, any SACA suitable for bounded integer alphabets an be used.

With ISA

x

0

omputed, onstrution of SA

x

an begin in earnest. All suÆxes are

h-ordered using a string sorting algorithm, suh as MKQS, to arrive at SA

h

. The

sorting of non-singleton h-groups whih remain is then ompleted with a omparison

based sorting algorithm using ISA

x

0

[i + Æ(i; j)℄ and ISA

x

0

[j + Æ(i; j)℄ as keys when

omparing suÆxes i and j.

In [BK03℄ it is shown that by hoosing h = log

2

n an overall worst ase running

time of O(n logn) is ahieved. Another attrative feature of BK is its small working

spae { less then 6n bytes { made possible by the small size of S relative to x and by

use of inplae string sorting.
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Finally, we remark that the ideas of Algorithm BK an be used to ensure any of

the indued opying algorithms desribed in this setion exeute in O(n logn) worst

ase time.

Manisalo [M05℄

Algorithm M di�ers from the other algorithms in this setion in that it diretly

omputes ISA

x

and then transforms it into SA

x

inplae. At the time of writing,

Algorithm M is published as C++ ode on the Internet [M05℄, the details of whih

are examined in [P05℄.

At the heart of Algorithm M is an eÆient buket sorting regime. Most of the

work is done in what is eventually ISA

x

, with extra spae required for a few staks.

The buket sorting begins by linking together suÆxes that are 2-equal, to form hains

of suÆxes. For example, the string

0 1 2 3 4 5 6 7

x a a a b a b a a $

would result in the reation of the following hains

7 6,1,0 4,2 5,3

a$ aa ab ba

We de�ne an h-hain in the same way as an h-group { that is, suÆxes i and j are in

the same h-hain i� they are h-equal. Thus, the hains above are all 2-hains, and

the hain for a$ is a singleton.

The spae alloated for the ISA provides a way to eÆiently manage hains.

Instead of storing the hains expliitly as above, AlgorithmM omputes the equivalent

array

0 1 2 3 4 5 6 7

x a a a b a b a a $

ISA ? 0 ? ? 2 3 1 ?

in whih ISA[i℄ is the largest j < i suh that x[j::j + 1℄ = x[i::i+ 1℄ or ? if no suh j

exists. In our example, the hain of all the suÆxes pre�xed with aa ontains suÆxes

6, 1 and 0 and so we have ISA[6℄ = 1, ISA[1℄ = 0 and ISA[0℄ = ?, marking the end

of the hain. Observe that hains are singly linked, and are only traversable right-

to-left. We keep trak of h-hains to be proessed by storing a stak of integer pairs

(s; h), where s is the start of the hain (its rightmost index), and h is the length of

the ommon pre�x. Chains always appear on the stak in asending lexiographial

order, aording to x[s::s+ h� 1℄. Thus for our example, initially (7; 2) for hain a$

is atop the stak, and (5; 2) for hain ba at the bottom.

Chains are popped from the stak and progressively re�ned by looking at further

pairs of haraters. So long as we proess the hains in lexiographial order, when we

pop a singleton hain, the suÆx ontained has been di�erentiated from all others and

an be assigned the next lexiographi rank. Elements in the ISA whih are ranks are

di�erentiated from elements in hains by setting the sign bit, that is, if ISA[i℄ < 0,

then the rank for suÆx i is �ISA[i℄. The evolution of the ISA of our example string

subsequent sorting rounds proeed as follows.
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formInitialChains()

repeat

(h; `)  hainStak.pop()

if ISA[h℄ = ? then

ISA[h℄  nextRank()

else

while h 6= ? do

sym  getSymbol(h+ `)

updateSubChain(sym,h)

h  ISA[h℄

sortAndPushSubChains()

until hainstak is empty

Figure 7: Buket sorting of Algorithm M

0 1 2 3 4 5 6 7

x a a a b a b a a $

ISA ? 0 ? ? 2 3 1 ? Initial hains (7; 2)

a$

(6; 2)

aa

(4; 2)

ab

(5; 2)

ba

ISA ? 0 ? ? 1 2 1 -1 Pop (7; 2)

a$

and assign rank

ISA ? ? ? ? 1 2 ? Split hain (6; 2)

aa

into (6; 4)

aa$

(0; 4)

aaab

(1; 4)

aaba

ISA -3 -4 ? ? 1 2 -2 Pop (6; 4)

aa$

(0; 4)

aaab

(1; 4)

aaba

, assign ranks

ISA ? ? ? 2 Split hain (4; 2)

ab

into (4; 4)

abaa

(2; 4)

abab

ISA -6 ? -5 2 Pop (4; 4)

abaa

(2; 4)

abab

, assign ranks

ISA ? ? Split hain (5; 2)

ba

into (5; 4)

baa$

(3; 4)

baba

ISA -8 -7 Pop (5; 4)

baa$

(3; 4)

baba

, assign ranks

ISA

x

3 4 6 8 5 7 2 1 Completed Inverse SuÆx Array

When the value in a olumn beomes negative, the suÆx has been assigned its

(negated) rank and is e�etively sorted. We reiterate here that when a hain is

split, the resulting subhains must be plaed on the stak in lexiographial order for

the subsequent assignment of ranks to singletons to be orret. This is illustrated in

the example above when the hain for aa is split, and the next hain proessed is the

singleton hain for aa$. An algorithm embodying these ideas is listed in Figure 7.

AlgorithmM adds two powerful heuristis to the string sorting algorithm desribed

in Figure 7. We disuss only the �rst (and more important) of these heuristis here

and refer the reader to [M05, P05℄ for details of the seond.

The proessing of hains in lexiographial order allows for the possibility to use

previously assigned ranks as sort keys for some of the suÆxes in a hain. To eluidate

this idea we �rst need to make some observations about the way hains are proessed.

When proessing an h-hain, suÆxes an be lassi�ed into three types: suÆx i is

of type X if the rank for suÆx i + h � 1 is known, and is of type Y if the rank for

suÆx i+ h is known. If i is not of type X or type Y , then it is of type Z. Any suÆx

an be lassi�ed to its type in onstant time by virtue of the fat we are building the

ISA (we inspet ISA[i+ h� 1℄ or ISA[i+ h℄ and a heked sign bit indiates a rank).

Now onsider the following observation: lexiographially, type X suÆxes are smaller

than type Y suÆxes, whih in turn are smaller than type Z suÆxes.
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To use this observation, when we re�ne a hain, we plae only type Z suÆxes into

subhains and plae type X and type Y suÆxes to one side. Now, the order of the m

suÆxes of type X suÆxes an be determined via a omparison based sort, using for

suÆx i the rank of suÆx i+h�1 as the sort key. One sorted, the type X suÆxes an

be assigned the next m ranks by virtue of the fat that hains are being proessed in

lexiographial order. Type Y suÆxes are treated similarly, using the rank of j + h

as the sort key for suÆx j. Manisalo refers to the sorting of suÆxes in this way as

indution sorting

2

.

Loosely speaking, as the number of assigned ranks inreases, the probability that

a suÆx an be sorted using the rank of another also inreases. In fat, every hain

of suÆxes with pre�x �

1

�

2

suh that �

2

< �

1

will be sorted entirely in this way.

Clearly, indution sorting will lead to a signi�ant redution in work for many texts.

One ould onsider the indution sorting of Algorithm M an extension of the ideas

in Algorithm IT. As noted above, suÆxes in a 2-hain with ommon pre�x �

1

�

2

and

�

1

> �

2

are sorted entirely by indution (like the type A suÆxes of Algorithm IT.

However the lexiographial proessing of suÆxes in AlgorithmMmeans this property

an be applied to suÆxes at deeper levels of sorting (when h > 2).

The omplexity of AlgorithmM is likely to be O(n

2

logn) in the worst ase, though

on average it is usually as fast as Algorithm MF. By arefully using the spae in the

ISA, and onverting it to the SA inplae, it also ahieves a small memory footprint

| rarely requiring more than n bytes of additional working spae.

4 Experimental Results

To gauge the performane of the SACAs in pratie we measured their runtimes and

peak memory usage for a seletion of �les from the Canterbury orpus

3

and from the

orpus ompiled by Manzini

4

and Ferragina [MF04℄. Details of all �les tested are

given in Table 2.

We implemented Algorithm IT as desribed in [IT99℄ and Algorithm KS with

heuristis desribed in [PST05℄. The implementation of Algorithm KA tested was

that of [LP04℄. Implementations of all other algorithms were obtained either online

or by request to respetive authors. For ompleteness we also tested a tuned suÆx tree

implementation [K99℄. AlgorithmMF was run with default parameters and Algorithm

SS with parameter h=7 for genomi data and h=3 otherwise, as per testing in [SS05℄.

Algorithm BK used parameter h=32, as per [BK03℄.

All tests were onduted on a 2.8 GHz Intel Pentium 4 proessor with 2Gb main

memory. The operating system was RedHat Linux Fedora Core 1 (Yarrow) running

kernel 2.4.23. The ompiler was g++ (g version 3.3.2) exeuted with the -O3 option.

Running times, shown in Table 3, are the average of four runs and do not inlude time

spent reading input �les. Times were reorded with the standard unix time funtion.

Memory usage, shown in Table 4, was reorded with the memusage ommand available

with most Linux distributions.

Results are summarized in Figure 8. Algorithm MF is the fastest algorithm on

2

In fat, we an sort the type X and Y suÆxes in the same sort all by using as a key for a type

X suÆx i the rank of i+ h� 1 and for a type Y suÆx the negated rank of i+ h.

3

http://www.os.anterbury.a.nz/orpus/

4

http://www.mfn.unipmn.it/~manzini/lightweight/orpus/
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Table 2: Desription of the data set used for testing. LCP refers to the Longest

Common Pre�x amongst all suÆxes in the string.

String

Mean Max Size

� Desription

LCP LCP (bytes)

E.oli 17 2; 815 4; 638; 690 4 Esherihia oli genome

hr22.dna 1; 979 199; 999 34; 553; 758 4 Human hromosome 22

bible 14 551 4; 047; 392 63 King James bible

world192 23 559 2; 473; 400 94 CIA world fat book

sprot34 89 7; 373 109; 617; 186 66 SwissProt database

rf 93 3; 445 116; 421; 901 120 Conatenated IETF RFC �les

howto 267 70; 720 39; 422; 105 197 Linux Howto �les

reuters 282 26; 597 114; 711; 151 93 Reuters news in XML format

jdk13 679 37; 334 69; 728; 899 113 JDK 1.3 doumentation

etext99 1; 108 286; 352 105; 277; 340 146 Texts from Gutenberg projet

average, narrowly shading algorithms M and SS. These three algorithms (MF,M,SS)

outperform the next fastest algorithm, LS, by roughly a fator of 2. Note that for

�le jdk13 it is the suÆx tree whih is fastest | leaving room for at least some

improvement in the SACAs.

When testing algorithm M, we observed that the �nal step of transforming the

ISA into the SA onstituted 20-30% of the overall runtime. For some appliations

though (most notably the BWT [BW94℄), this transformation is not required, making

M signi�antly faster than MF { see experiments in [P05℄.

The speed of MF and M is partiularly impressive given their small working mem-

ory 5:01n and 5:49n bytes on average respetively. The lightweight nature, of these

algorithms separates them from SS whih requires slightly more than 9n bytes on

average. We also remark that while Algorithm BK is not amongst the fastest algo-

rithms tested the ideas in it are important beause they ould be used to guarantee

aeptable worst ase behavior of algorithms MF and M, without adversely a�eting

the speed or spae usage of those algorithms.

Times in Table 3 for Algorithm SS versus Algorithm MF seem to run ontrary to

results published in [SS05℄, however our experiment is di�erent. In [SS05℄, �les were

bounded to at most 50,000,000 haraters, making many test �les shorter than their

original form. We suspet the full length �les are harder for Algorithm SS to sort.

The large variation in performane of Algorithm KS an be attributed to the

oasional ine�etiveness of heuristis desribed in [PST05℄. Of interest also is the

general poor performane of the reursive algorithms KS, KA and KJP. These algo-

rithms have superior asymptoti behaviour, but for many �les run several times slower

than the other algorithms and often onsume more memory than the suÆx tree (KJP

in partiular). Memory pro�ling reveals that the reursive algorithms su�er form

very poor ahe behaviour, whih largely nulli�es their asymptoti advantage. These

results leave open the question: is there a pratially fast �(n) time suÆx array

onstrution algorithm whih is also lightweight?
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Table 3: CPU time (seonds) on test data. Minimum is shown in bold for eah string.

E.oli hr22 bible world sprot rf howto reuters jdk13 etext

M 2 20 2 1 90 89 25 99 60 75

SS 2 25 2 1 99 93 22 133 64 92

MF 2 16 2 1 74 65 18 147 82 76

IT 2 416 1 1 125 108 38 278 286 331

S 3 29 2 1 126 110 37 258 217 290

BK 4 40 3 2 200 171 43 280 152 141

LS 4 35 3 2 144 154 40 183 105 146

KA 6 47 5 3 183 179 63 185 98 202

KS 5 57 4 2 306 288 55 377 204 219

KJP 4 31 4 3 183 189 61 192 102 179

Tree 6 51 5 3 183 193 80 141 52 226

Table 4: Peak Memory Usage (Mbs)

E.oli hr22 bible world sprot rf howto reuters jdk13 etext

M 32 205 29 13 547 599 197 572 357 542

SS 40 297 36 24 942 1; 006 368 988 604 915

MF 22 165 19 12 524 557 188 548 333 503

IT 22 165 19 12 523 555 188 547 332 502

S 22 165 19 12 523 555 188 547 332 502

BK 26 194 23 14 614 652 221 643 391 590

LS 35 264 31 19 836 888 301 875 532 803

KA 58 429 50 31 1; 359 1; 443 526 1; 422 864 1; 406

KS 43 334 37 23 1; 279 1; 230 389 1; 434 870 1; 071

KJP 58 427 58 36 1; 574 1; 673 571 1; 645 1; 000 1; 509

Tree 74 541 54 32 1; 421 1; 554 526 1; 444 931 1; 405
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