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Abstract Task-based programming models for shared memory—such as Cilk Plus
and OpenMP 3—are well established and documented. However, with the increase in
parallel, many-core, and heterogeneous systems, a number of research-driven projects
have developed more diversified task-based support, employing various programming
and runtime features. Unfortunately, despite the fact that dozens of different task-based
systems exist today and are actively used for parallel and high-performance comput-
ing (HPC), no comprehensive overview or classification of task-based technologies for
HPC exists. In this paper, we provide an initial task-focused taxonomy for HPC tech-
nologies, which covers both programming interfaces and runtime mechanisms. We
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demonstrate the usefulness of our taxonomy by classifying state-of-the-art task-based
environments in use today.

Keywords High-performance computing · Task-based parallelism · Taxonomy ·
API · Runtime system · Scheduler · Monitoring framework · Fault tolerance

1 Introduction

A large number of task-based programming environments have been developed over
the past decades, and the task-basedparallelismparadigmhas provenwidely applicable
for consumer applications. Conversely, in high-performance computing (HPC), loop-
based and message-passing paradigms are still dominant. In this work, we specifically
aim to categorize task-based parallelism technologies which are in use in HPC.

For the purpose of this work, we define a task as follows

A task is a sequence of instructions within a program that can be processed
concurrently with other tasks in the same program. The interleaved execution of
tasks may be constrained by control- and data-flow dependencies.

Many programming languages support task-based parallelism directly without
external dependencies. Examples include the C++11 thread support library, Java via
its concurrency API, or Microsoft TPL for .NET. Except for C++, we do not study
these languages in detail in this paper, since they are not common in the HPC domain.
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1424 P. Thoman et al.

The Cilk language1 [5] allows task-focused parallel programming and is an early
example of efficient task scheduling via work stealing. OpenMP [10], which we con-
sider a language extension, integrates tasks into its programming interface since
version 3.0. In addition to languages and extensions, industry-standard and well-
supported parallel libraries based on task parallelism have emerged, such as Intel Cilk
Plus [23] or Intel TBB [28]. There are also runtimes specifically designed to improve
shared memory performance of existing language extensions, such as Qthreads [27]
or Argobots [24]; this topic is of significant importance, considering the increase in
many-core processors in recent years and, consequently, the importance of efficient
lightweight runtimes. Task-based environments for heterogeneous hardware have also
naturally developed with the emergence of accelerator and GPU computing; StarPU
[2] is an example of such an environment.

In addition, task-based parallelism is increasingly employed on distributedmemory
systems, which constitute the most important target for HPC. In this context, tasks are
often combinedwith a global address space (GAS) programmingmodel such asGASPI
[25] and scheduled across multiple processes, which together form the distributed
execution of a single task-parallel program. While some examples of global address
space environments with task-based parallelism are specifically designed languages
such as Chapel [7] and X10 [8], it is also possible to implement these concepts as a
library. For instance, HPX [17] and Charm++ [18] are asynchronous GAS runtimes.

This already very diverse landscape is made even more complex by the recent
appearance of task-based runtimes using novel concepts, such as the data-centric
programming language Legion [3]. Many of these task-based programming environ-
ments are maintained by a dedicated community of developers and are often research
oriented. As such, there might be relatively little accessible documentation of their
features and inner workings.

Crucially, at this point, there is noup-to-date and comprehensive taxonomyandclas-
sification of existing common task-based environments. Consequently, researchers and
developers with an interest in task-based HPC software development cannot obtain a
concise picture of the alternatives to the omnipresent MPI programmingmodel. In this
work, we attempt to address this issue by first providing a taxonomy of task-based par-
allel programming environments. The applicability of this taxonomy is then validated
by applying it to classify a number of task-based programming environments. While
not all of these environments are equally mature and stable, they build an important
snapshot of the task-based APIs and runtimes in use in HPC today. We consider that
each task-based environment has two central components: a programming interface
(API) and a runtime system; the former is the interface that a given environment pro-
vides to the programmer, while the latter encompasses the underlying implementation
mechanisms.

The remainder of this article is organized as follows. In Sect. 2, we present a
set of API characteristics allowing meaningful classification. For discussing the more
involved topic of runtimemechanisms, in Sect. 3, we further structure our analysis into
the overarching topics of scheduling (Sect. 3.1), performance monitoring (Sect. 3.2),

1 Note that we use the term “language” for Cilk and Cilk Plus, even though they build on C/C++. The
reasoning is that a Cilk Plus compiler is strictly required for compilation (unlike, for example, OpenMP).
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and fault handling (Sect. 3.3). Based on the taxonomy introduced, we classify and
categorize existing APIs and runtimes in Sect. 4. Finally, Sect. 5 concludes the article.

2 Task-parallel programming interfaces

The application programming interface (API) of a given task-parallel programming
environment defines the way an application developer describes parallelism, depen-
dencies, and in many cases other more specific information such as the work mapping
structure or data distribution options. As such, finding a way to concisely characterize
APIs from a developer’s perspective is crucial in providing an overview of task-parallel
technologies.

In this work, we define a set of characterizing features for such APIs which encom-
passes all relevant aspects while remaining as compact as possible; Fig. 1 presents
our API taxonomy. A subset of these features was adapted from previous work by
Kasim et al. [19]. To these existing characteristics, we added additional information
of general importance—such as technological readiness levels—as well as features
which relate to new capabilities particularly relevant for modern HPC like support for
heterogeneity and resilience management.

We have grouped these aspects in four broad categories: those describing the archi-
tectural aspects targeted by an environment; those that summarize the task system
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Fig. 1 Taxonomy of APIs
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offered by an API; aspects related to the management of work; and finally engi-
neering information. For many of these characteristics, explicit (e) support refers to
features which require extra effort or implementation by the developer, while implicit
(i) support means that the toolchain manages the feature automatically.

We list below these four categories with the corresponding aspects.

2.1 Architectural

Communication model Either shared memory (smem), message passing (msg),
or a global address space (gas).

Distributed memory Whether targeting distributed memory systems is sup-
ported. Options are no support, explicit support, or implicit
support. explicit refers to, for example, message passing
between address spaces, while automatic data migration
would be an example of implicit support.

Heterogeneity This indicates whether tasks can be executed on accel-
erators (e.g. GPUs). Explicit support indicates that the
application developer has to actively provision tasks to run
on accelerators, using a distinct API.

2.2 Task system

Graph structure The type of task graph dependency structure supported by the
given API. Possibilities include a tree structure, an acyclic
graph (dag), or an arbitrary graph.

Task partitioning This feature indicates whether each task is atomic—can, thus,
only be scheduled as a single unit—or can be subdivided/split.

Result handling Whether the tasking model features explicit handling of
the results of task computations. For example, return types
accessed as futures.

Task cancellation Whether the tasking model supports cancellation of tasks.
Options are no cancellation support; cancellation is supported
either cooperatively (only at task scheduling points) or pre-
emptively.

2.3 Management

Worker management Whether the worker threads and/or processes need to be
started andmaintained by the user (explicit) or are provided
automatically by the environment (implicit).

Resilience management This feature describes whether the API has support for
task resilience management, e.g. fine-grained checkpoint-
ing and restart.
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A taxonomy of task-based technologies for HPC 1427

Work mapping This feature describes theway tasks aremapped to the exist-
ing hardware resources. Possibilities include explicit work
mapping, implicit work mapping (e.g. stealing), or pattern-
based work mapping.

Synchronization Whether tasks are synchronized in an implicit fashion, e.g.
by regions or the function scope, or explicitly by the appli-
cation developer.

2.4 Engineering

Technology readiness The technology readiness of the given API according to the
European Commission definition.2 If an API has multiple
implementations, the most mature one is used to assess this
metric.

Implementation type How the API is implemented and addressed from a pro-
gram. A tasking API can be provided either as a library,
a language extension, e.g. pragmas, or an entire language
with task integration.

3 Many-task runtime systems

Many-task runtime systems serve as the basis for implementing the APIs described
in Sect. 2 and are considered a promising tool in addressing key issues associated with
Exascale computing. In this section, we provide a taxonomy of many-task runtime
systems, which is illustrated in Fig. 2.

A crucial difference among various many-task runtime systems is their target
architecture. The evolution of many-task runtime systems started from homogeneous
shared memory computers with multiple cores and continued towards runtimes for
heterogeneous shared memory and distributed memory platforms. Support for dis-
tributed memory architectures varies significantly across different systems: in case of
implicit data distribution, data distribution is handled by the runtime, without putting
any burden on the application developer; on the other hand, explicit data distribution
means that distribution across nodes is explicitly specified by the programmer.

Modern HPC systems require efficiency not only in execution times, but also in
power and/or energy consumption. Thus, whether the runtime provides scheduling
targets (Sect. 3.1.1) other than the execution time is another important distinction
between different runtimes. At the same time, the runtime can achieve its schedul-
ing target by using different scheduling methods (Sect. 3.1.2). We divide them into
three categories, namely static, dynamic, and hybrid scheduling methods. Some of
them provide automatic scheduling within a single shared memory machine, while
the application developer needs to handle distributed memory execution explicitly,
whereas others provide uniform scheduling policies across different nodes.

2 https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-
annex-g-trl_en.pdf. Accessed: 2017-12-16.
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Task-parallel Runtime Characteristics
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Fig. 2 Taxonomy of many-task runtime systems

Many-task runtimes may require performance introspection and monitoring
(Sect. 3.2) to facilitate the implementation of different scheduling policies, that is,
using online performance information to assist the decision making process of the
scheduler. Fault tolerance is another key factor that is important in many-task run-
time systems in the context ofExascale requirements.As detailed inSect. 3.3, a runtime
may have no resilience capabilities, or it may target task faults or even process faults.

3.1 Scheduling in many-task runtime systems

3.1.1 Scheduling targets

Depending on the capabilities of the underlyingmany-task runtime system, its schedul-
ing domain is usually limited to a single shared memory homogeneous compute node,
a heterogeneous compute node with accelerators, homogeneous distributed memory
systems of interconnected compute nodes, or in a most generic form to heterogeneous
distributed memory systems. By supporting different types of heterogeneous archi-
tectures, the runtime can facilitate source code portability and support transparent
interaction between different types of computation units for application developers.

Traditionally, execution time has been the main objective to minimize for different
scheduling policies. However, the increasing scale of HPC systemsmakes it necessary
to take the energy and power budgeting of the target system into account as well.
Therefore, some many-task runtime systems have already started providing energy-
aware [20] scheduling policies.3 In a simple scenario, it is assumed that the application
can provide an energy consumption model which can be used by a scheduling policy
as part of its objective function. In more advanced cases, the runtime provides offline
or online profiling data. These data are used to build a look-up table that maps each

3 http://starpu.gforge.inria.fr/doc/html/Scheduling.html#Energy-basedScheduling.
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frequency settingwith profiling data and the number of active cores. Then, a scheduling
decision is made based on this information.

In addition, recent research projects such as AllScale4 focus on multi-objective
scheduling policies trying to find promising trade-off solutions among conflicting
optimization objectives like execution time, energy consumption, and/or resource uti-
lization.

3.1.2 Scheduling methods

Extensive research has been conducted in task scheduling methodologies. We simply
highlight the state-of-the-art scheduling methods used in many-task runtime systems,
without providing an exhaustive overview. The distribution of work at compile time
is static scheduling, while the distribution of work at runtime is dynamic scheduling.

For static scheduling, depending on the decision function, either one or more of the
following inputs are known in advance: execution timeof each task, inter-dependencies
between tasks, task precedence, resource usage of each task, location of the input data,
task communications, and synchronization points. Static scheduling algorithms used
in many-task runtime systems are based on distributing a global task list to different
compute units; a typical example is a round-robin distribution.

On the other hand, dynamic scheduling is used if the requested information is not
available before execution, or obtaining such information is too complex. Possibly, the
most important choice for dynamic scheduling is load balancing; its use is a complex
trade-off between its cost and its benefits. Work stealing [4] can be considered the
most widely used load balancing technique in task-based runtime systems. The main
concept in work stealing is to distribute tasks in per-processor work queues, where
each processor operates on its local queue. The processors can steal tasks from other
queues to perform load balancing. Another approach to dynamic scheduling for many-
task runtime systems is the work sharing strategy. Unlike work stealing, it schedules
each task onto a processor when it is spawned and it is usually implemented by using
a centralized task pool. In work sharing, whenever a worker spawns a new task, the
scheduler migrates it to a new worker to improve load balancing. As such, migration
of tasks happens more often in work sharing than in work stealing.

Combinations between static and dynamic scheduling are possible. Static schedul-
ing can be adapted and used for dynamic scheduling by re-computing and re-
sequencing the list of tasks. Indeed, heuristic policies based on list scheduling and
performance models are employed in some many-task runtime systems [2]. Addition-
ally, hybrid policies, which integrate static and dynamic information, are possible.

3.2 Performance monitoring

The high concurrency and dynamic behaviour of upcoming Exascale systems poses
a demand for performance observation and runtime introspection. This performance
information is very valuable to dynamically steer many-task runtime systems in their

4 The AllScale EC-funded FET-HPC project: allscale.eu.
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execution and resource adaption, thereby improving application performance, resource
utilization, or energy consumption.

When targeting performance observation, performance monitoring software is
either generating data to be used online [1,3,14,15,22] or offline [2,3,11,14]. In other
words, whether the collected data are going to be used, while the application still runs
or after its execution. Furthermore, this taxonomy can be extended with respect to
who is consuming data—either the end user (performance analysis) or the runtime
itself (introspection and historical data). Real-time performance data (introspection
and performance models from historical data) will play an important role in Exascale
for runtime adaptation and optimal task scheduling.

3.3 Fault tolerance

In order to detail what level of fault tolerance a runtime may have, we need to identify
what types of faults we anticipate. For this topic, we extend a taxonomy [13] from the
HPC domain to include the concept of task faults. We retain detectability of faults as
the main criterion, but distinguish three levels of the system: distributed execution,
process, and task. Each of these levels may experience a fault, and each of them
has a different scope. Only task faults and process faults can possibly be detected
from within an application. Moreover, only for these types of faults some recovery
mechanisms can be implemented at the task or process level inside a runtime system.

3.3.1 Task faults

Tasks have the smallest scope of the three; still, a failure of a task may affect the result
of a process and subsequently of a distributed run. A typical example is undetected
errors in memory. The process which runs a task is generally capable of detecting task
faults. There are several examples of shared memory runtimes which are capable of
detecting and correcting task faults within parallel regions [16,26].

3.3.2 Process faults

A process may also fail, which leads to the termination of all underlying tasks. For
example, a node crash can lead to a process failure. In such a scenario, a process cannot
detect its failure; however, in a distributed run, another process may detect the failure
and trigger a recovery strategy across all processes. A recovery strategy in this case
may rely on one of two redundancy techniques: checkpoint/restart or replication.

3.3.3 System faults

On the last level, a distributed system execution may fail in cases of severe faults
like switch failure or power outage. While failure detection such as power outage
detection can be placed at the system level, most of them cannot be detected directly
by the runtime. Recovery mechanisms can take the form of a global checkpoint restart
of the entire application.
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Table 1 Feature comparison of APIs for task parallelism
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4 Classification

Following the API taxonomy defined in Sect. 2, Table 1 classifies existing task-parallel
APIs. Note that for an API to qualify as supporting a given feature, this API must not
require the user to resort to third-party libraries or implementation-specific details of
the API. For instance, some APIs offer arbitrary task graphs via manual task reference
counting [12]. This does not qualify as support in our classification. Also note that all
APIs marked as featuring task cancellation do so in a non-preemptive manner due to
the absence of OS-level preemption capabilities.

Some entries require additional clarification. In C++ STL, we consider the entity
launched by std::async to represent a task. At the same time, HPX is an imple-
mentation of the C++ tasking API providing additional features such as distributed
memory support and task dependencies. Also,while StarPUoffers sharedmemory par-
allelism, it is capable of generating MPI communication from a given task graph and
data distribution [2]; hence, it is marked with explicit support for distributed memory
using a message-based communication model. Furthermore, PaRSEC includes both
a task-based runtime that works on user-specified task graph and data distribution
information, as well as a compiler that accepts serial input and generates this data. As
the latter is limited to loops, we only consider the runtime in this work.

Several observations can be made from the data presented in Table 1. First, all
APIs targeting distributed memory also support heterogeneity in some form. APIs
offering implicit distributed memory support generally employ a global address space
and implement task partitioning. Second, among APIs lacking distributed memory,
only OmpSs offers resilience (via its Nanos++ runtime), and distributed memory APIs
only recently started to include resilience support [9]—likely driven by the continuous
increase in machine sizes and, hence, decreased mean time between failures. Finally,
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Table 2 Feature comparison of runtimes for task parallelism
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(*) Such as Intel OpenMP, GOMP, Qthreads, and Argobots

some form of heterogeneity support is provided in almost all modern APIs, though it
often requires explicit heterogeneous task provisioning by the programmer.

Table 2 provides the corresponding classification with respect to the runtime system
and its subcomponents taxonomy, introduced in Sect. 3. It is important to note that an
API always translates into at least one runtime implementation, but is not always lim-
ited to one such implementation. The most diverse example is offered by the OpenMP
API,which hasmany runtime implementations.Wehave grouped togethermost shared
memory OpenMP implementations, due to them offering the same feature set in terms
of our classification. However, Nanos++ is listed separately, since it goes beyond that,
both in supported pragmas and in its support for distributed execution. Other runtimes
with shared memory and distributed memory support (e.g. HPX) can also run as back-
ends to OpenMP programs, but we do not detail these features in relation to OpenMP
further. For the majority of cases, except for the OpenMP API and the Cilk API, there
is a 1:1 mapping between API and runtime.

We refrain from using the scheduling targets in the runtime table and only include
the schedulingmethods. This decision is driven by the fact that energy has only recently
become an important factor for scheduling, and energy-driven scheduling targets, or
multi-objective scheduling targets, are only now starting to emerge. We list separately
the scheduling methods for shared memory, and distributed memory, since these can
be implemented in different ways. Indeed, most of the listed runtimes have similar-
ities in scheduling within a single node; work stealing is the most common method
of scheduling in this case. On the other hand, there is no established method for
inter-node scheduling. For instance, ParSEC [6] only provides a limited inter-node
scheduling based on remote completion notifications, while Legion uses distributed
work stealing. AllScale is also designed to support distributed work stealing, but as
its current implementation is incomplete it is marked as supporting limited inter-node
scheduling.
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Again, as for the APIs, we note that there are various contributions extending
runtime features, but if these contributions are not part of the main release, they are
not considered in our taxonomy. For instance, recent work in X10 [21] extends the
X10 scheduler with distributed work stealing algorithms across nodes; however, we
classify X10 as not (yet) having a distributed scheduler. The same applies to StarPU
and OmpSs. New distributed memory scheduling policies are being developed for
these runtimes, but they are not part of their main release yet.5 Also, for Chapel, X10,
and HPX, there is automatic data distribution support (runtime feature); however,
these runtimes require explicit work mapping in distributed memory environments
(API feature).

5 Conclusions

The shift in HPC towards task-based parallel programming paradigms has led to a
broad ecosystem of different task-based technologies. With such diversity, and some
degree of isolation between individual communities of developers, there is a lack of
documentation and common classification, thus hindering researchers who wish to
obtain a comprehensive view of the field. In this paper, we provide an initial attempt
at establishing a common taxonomy and providing the corresponding categorization
for many existing task-based programming environments suitable for HPC.

We divided our taxonomy into two broad categories: APIs, which define how the
programmer interacts with the system, and many-task runtime systems, covering the
underlying technologies and implementation mechanisms. For the former, we identify
four broad categories of features exposed to the programmer: architectural characteris-
tics; those related to the task generation and handling; system-level management; and
finally engineering aspects. For the latter, we analyse the types of scheduling policies
and goals supported; online and offline performance monitoring integration; as well
as the level of resilience and detection provided for task, process, and system faults.

We believe that this paper provides a useful basis to describe task-based parallel
programming technologies and to select, examine, and compare APIs and runtime
systems with respect to their capabilities. This serves as a foundation to both classify
additional APIs and runtime systems using our definitions as well as to allow for
a better overview and comparative basis for newly implemented features within the
ever-expanding, diverse field of task-based parallel programming environments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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