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Abstract—Self-reconfiguration enables a dynamically adap-
tive system (DAS) to satisfy requirements even as detrimental
system and environmental conditions arise. A DAS, especially
one intertwined with cyber-physical elements, must increas-
ingly reason about and cope with unpredictable events in its
execution environment. Unfortunately, it is often infeasible for
a human to exhaustively explore, anticipate, or resolve all
possible system and environmental conditions that a DAS will
encounter as it executes. While uncertainty can be difficult
to define, its effects can hinder the adaptation capabilities
of a DAS. The concept of uncertainty has been extensively
explored by other scientific disciplines, such as economics,
physics, and psychology. As such, the software engineering
DAS community can benefit from leveraging, reusing, and
refining such knowledge for developing a DAS. By synthesizing
uncertainty concepts from other disciplines, this paper revisits
the concept of uncertainty from the perspective of a DAS,
proposes a taxonomy of potential sources of uncertainty at
the requirements, design, and execution phases, and identifies
existing techniques for mitigating specific types of uncertainty.
This paper also introduces a template for describing different
types of uncertainty, including fields such as source, occurrence,
impact, and mitigating strategies. We use this template to
describe each type of uncertainty and illustrate the uncertainty
source in terms of an example DAS application from the
intelligent vehicle systems (IVS) domain.
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I. INTRODUCTION

Self-reconfiguration enables a dynamically-adaptive sys-
tem (DAS) to satisfy requirements even as detrimental
system and environmental conditions arise [1]. A DAS
achieves this objective by measuring properties about itself
and its execution environment, analyzing this monitoring
information to detect conditions that can obstruct the sat-
isfaction of requirements, and, if necessary, deciding how
to safely reconfigure itself. As DASes grow in complexity,
they must increasingly reason about and cope with events
that can arise from unpredictable environments. While such
uncertainty can be difficult to define, its effects can limit
the adaptation capabilities of a DAS. This paper revisits
the concept of uncertainty from the perspective of a DAS,
introduces a taxonomy of common design- and run-time
sources of uncertainty, and identifies a preliminary set of
promising techniques that can mitigate different types of
uncertainty.

For many application domains it may be infeasible for
a human to exhaustively explore, anticipate, or resolve all
possible system and environmental conditions that a DAS
will encounter. The shared boundary [2] between a software
system and its execution environment exposes a DAS to
a myriad of possible inputs that can prevent the system
from delivering services to its stakeholders. Recently, the
software engineering research community introduced various
techniques for documenting, reasoning about, and resolving
the threat that uncertainty poses to the adaptation capabilities
of a DAS [3]–[14]. While a step in the right direction,
these techniques tend to focus on resolving disparate aspects
and concerns of uncertainty. For instance, while Welsh et
al. [13] explored uncertainty from the perspective of what
assumptions are embedded upon a soft goal’s contribution
link, Jensen et al. [9], [10] explored uncertainty from the
perspective of what latent or unknown properties a soft-
ware system might also exhibit in addition to its known
requirements. These disparate views within the software
engineering DAS community highlight the lack of consensus
regarding the definition and different types, sources, and
effects of uncertainty.

The concept of uncertainty has been extensively explored
by other scientific disciplines, such as physics, economics,
and psychology. The software engineering DAS community
can benefit from leveraging, reusing, and refining such
knowledge for the purpose of developing a DAS. Establish-
ing a common vocabulary and taxonomy of uncertainty from
the perspective of a DAS should enable this community to
leverage existing results from other disciplines and facilitate
a more coherent dialogue among researchers. Moreover, a
common vocabulary and taxonomy of uncertainty should
also facilitate the analysis, comparison, and perhaps inte-
gration of different techniques and approaches for dealing
with uncertainty in a DAS. Ideally, such information should
be organized into a catalogue, akin to the concept of design
patterns [15], not only to raise awareness about how un-
certainty affects a DAS, but also to guide DAS developers
towards existing techniques that can handle specific sources
of uncertainty.

This paper presents the concept of uncertainty from the
perspective of a DAS, proposes a taxonomy of potential
sources of uncertainty at the requirements, design, and



execution phases, and identifies existing techniques for
mitigating specific types of uncertainty. First, we explore
how other science disciplines define, represent, analyze, and
resolve sources of uncertainty. We then combine, generalize,
and recast these definitions to suit the needs, constraints,
and properties of DASes. Based on this definition, we then
propose a taxonomy of sources of uncertainty by identifying
the most common sources of uncertainty documented in
published work on adaptive systems. For each source of
uncertainty, we present the context in which it occurs, its
consequences, and known mitigation strategies for resolving
the uncertainty.

This paper also introduces a template to facilitate the
organization and reuse of the proposed taxonomy of uncer-
tainty. The proposed template, loosely based on the template
used by Gamma et al. [15] to catalogue their collection
of object-oriented design patterns, includes fields such as
classification, context, consequences, mitigation strategies,
and related sources of uncertainty, among others. We use this
template to describe each type of uncertainty and illustrate
the uncertainty source in terms of an example DAS applica-
tion from the intelligent vehicle systems (IVS) domain. The
remainder of this paper is organized as follows. Section II
provides background information on the IVS application.
Section III introduces our definition, template, and taxonomy
of uncertainty from the perspective of a DAS. Section IV
overviews current techniques for handling uncertainty in
a DAS. Lastly, Section V summarizes and discusses our
findings and presents future directions.

II. BACKGROUND

An IVS provides autonomous navigation features by per-
forming adaptive cruise control, lane keeping, and collision
avoidance. These complex tasks require an IVS to balance
requirements of passenger safety and comfort, reasonable
energy usage, low error rate, and interaction with other
vehicles, whether intelligent or not. Based on input from
industrial collaborators, the IVS application used in this pa-
per has the following two functional invariant requirements:

R1: The IVS shall maintain the vehicle within lane boundaries.
R2: The IVS shall maintain a safe minimum distance between
the vehicle and other obstacles on the road.

In addition, the IVS application also has the following
non-invariant functional requirements that may become tem-
porarily unsatisfied by the IVS if necessary:

R3: The IVS shall maintain a speed equal to a target speed.
R4: If an obstacle in its path is detected, then the IVS shall
maintain a speed equal to the target vehicle’s speed.
R5: If the obstacle moves out of range, then the IVS shall
resume the previously set cruise control speed.
R6: The adaptive cruise control module shall disengage and
alert the driver if it is incapable of satisfying R2.
R7: The IVS shall provide automated steering correction to
maintain the vehicle in the center of the lane.

Lastly, the IVS also has the following non-functional
requirements to satisfy:

NFR1: The IVS shall minimize abrupt changes in speed and
heading.
NFR2: The IVS shall be as energy efficient as possible.

III. UNCERTAINTY IN THE CONTEXT OF A DAS

This section presents a definition and taxonomy of un-
certainty from the perspective of a DAS. First, we review
definitions of uncertainty proposed by other scientific disci-
plines, comparing them to the uncertainty that bears upon
the design and operation of a DAS. Next, we introduce a
template that facilitates the organization and description of
how uncertainty affects a DAS. Using this template, we then
introduce a taxonomy of common sources of uncertainty in a
DAS organized according to whether a source of uncertainty
arises at the requirements, design, or run-time level.

A. Defining Uncertainty

Uncertainty is a topic frequently studied in eco-
nomics [16], usually in the context of risk, expected utility,
and rational decision-making. To an economist, uncertainty
typically describes a process or situation with a stochastic or
probabilistic component. For example, the unpredictable na-
ture of weather (e.g., a hurricane) can introduce uncertainty
into the economy by devastating the agricultural output of a
nation. Thus, within the field of economics, the concept of
uncertainty is interpreted literally: we are simply not certain
about the occurrence or outcome of an event or decision.
Furthermore, uncertainty in economics may also include
situations where the probability of an event or outcome is
neither known nor computable in any objective sense [17].

In contrast, the discipline of classical physics considers
uncertainty to be an artifact introduced by imperfect mea-
surements [18]. Every measurement of a physical entity or
phenomenon is inherently uncertain either by limitations in
the measuring equipment or by the application of ad hoc
experimental techniques. In general, measuring equipment
suffers from limitations in precision and accuracy. A lack of
numerical precision or inaccuracy in a physical measurement
can lead to ambiguity. Even with precise and accurate
measurement tools, conducting an experiment with ad hoc
experimental techniques can also limit the reproducibility of
results and thus lead to inconsistent conclusions.

While uncertainty plays a significant role in classical
physics, its effects are even more pronounced in the sub-
discipline of quantum physics. For instance the uncertainty
principle [19] in quantum physics states the existence of
a limit upon the precision with which two or more phys-
ical properties of the same subject can be simultaneously
measured. This principle implies that the act of measuring
somehow disturbs other properties of the subject being
measured. Both classical and quantum physics often rely



on uncertainty analysis to estimate the extent to which
uncertainty in one measurement affects other measurements
and decisions.

Uncertainty is also inherent in everyday psychology and
human behavior, most notably in decision-making tasks. In
psychology, uncertainty often refers to the ability of human
beings to make judgments in the presence of incomplete
information [20]. In general, incomplete information occurs
when a dimension of data, such as the outcome of an action,
is unknown at the present time. Despite a lack of sufficient
and reliable information, humans are often able to make
reasonable judgements based on past experience.

The preceding definitions present distinct yet related
concepts of uncertainty. That is, uncertainty is inherent in
stochastic processes, the precision and accuracy of mea-
surement tools, and in the complexity of decision-making
tasks. A DAS also encounters all of these situations. For
instance, a DAS may attempt to satisfy infeasible require-
ments, interact with unpredictable and adverse environments,
inadvertently disturb its environment when using unreliable
sensors to measure properties about itself and its environ-
ment, and perform decision-making tasks with incomplete
and inconsistent information. Based on these definitions and
observations, we now propose a definition of uncertainty
specific to a DAS:

Definition of Uncertainty for a DAS. Uncertainty is a state
of incomplete or inconsistent knowledge such that it is not
possible for a DAS to know which of two or more alternative
states is true. This state of uncertainty can occur in a DAS
due to missing or ambiguous requirements, false assumptions,
unpredictable entities or phenomena in its execution environ-
ment, and unresolvable conditions caused by incomplete and
inconsistent information obtained by potentially imprecise,
inaccurate, and unreliable sensors in its monitoring infras-
tructure.

This definition of uncertainty for a DAS implicitly dis-
tinguishes between sources of uncertainty that occur either
at the requirements, design, or execution phases. At each
of these phases, uncertainty can be introduced into the DAS
either by the DAS itself or its execution environment. Specif-
ically, system and environmental uncertainty refer to a state
of limited knowledge where two or more alternative states
of the system or its execution environment, respectively,
are possible. Note that sources of uncertainty can crosscut
multiple phases. For example, if a source of uncertainty
at the requirements level is not resolved before the design
phase begins, then that source of uncertainty will necessarily
propagate throughout the design of the DAS. Any source of
uncertainty that is not resolved before the DAS is deployed
must therefore be addressed by the DAS at run time.

B. Template for Describing Uncertainty

In addition to revisiting the concept of uncertainty from
the perspective of an adaptive system, this paper also pro-
poses a taxonomy of potential sources of uncertainty that
can affect a DAS. In order to facilitate the organization and
reuse of this taxonomy, this paper introduces a template for
uniformly describing different types and sources of uncer-
tainty. Ideally, this template, and other instances of it that
might follow, will facilitate a more structured and coherent
dialogue between researchers in the software engineering
DAS community on the challenges that uncertainty poses to
adaptive systems.

Figure 1 presents the proposed template for describing
uncertainty and briefly describes the intent of each field.
The proposed template is loosely based on the template used
by Gamma et al. [15] for presenting and organizing their
catalogue of object-oriented design patterns. In particular,
the intent of the Name, Classification, Context, Sample
Illustration, Related Sources, and Also Known As fields
are similar to those used in Gamma et al.’s template. In
addition, the proposed template also includes a Mitigation
Strategy field that lists existing techniques for either resolv-
ing or mitigating the respective source of uncertainty. Lastly,
the Impact field specifies how a source of uncertainty affects
the design or execution of a DAS.

Name: A unique term for identifying a type or source of
uncertainty in a DAS.
Classification: Organizes a source of uncertainty according
to the phase at which it occurs.
Context: Defines the source of uncertainty and presents the
conditions under which it occurs.
Impact: Describes how a source of uncertainty affects the
design or execution of a DAS.
Mitigation Strategies: Lists existing techniques that can
resolve this source of uncertainty.
Sample Illustration: Presents an example of how a source of
uncertainty occurs and affects a DAS.
Related Sources: Additional sources of uncertainty that com-
monly occur in conjunction.
Also Known As: Other terms often used to describe the same
source of uncertainty.

.

Figure 1. Template for describing sources of uncertainty.

As shown in Figure 1, the proposed template does not
include fields such as Structure, Participants, or Col-
laboration. In the template used by Gamma et al., these
fields collectively represent the structure and behavior for a
reusable design that can be instantiated to solve the recurring
problem identified by the design pattern. In contrast, we
are using the template to describe sources and impacts
of uncertainty. As applicable, the proposed template also
identifies existing resolution or mitigation techniques under
the Mitigation Strategies field.



C. Overview of Taxonomy

Table I provides an overview of the various sources
of uncertainty that can affect a DAS. This table, and
the subsequent discussion of the proposed taxonomy, is
organized according to whether a source of uncertainty
arises predominantly at the requirements, design, or run-
time levels. This table also identifies candidate resolution
techniques previously proposed by the software engineering
DAS community to mitigate the corresponding source of
uncertainty. Each item in the table is accompanied by a
number, and this number is given along with the item when
it is referenced in subsequent sections.

D. Taxonomy of Uncertainty at the Requirements Level

In general, the development process for adaptive systems
begins with the elicitation of functional and non-functional
requirements [21]. Such requirements are often idealized,
misunderstood, and incomplete [22]. Figure 2 presents a
dependency graph with the various root sources of uncer-
tainty at the requirements level: missing requirements [4],
[23], ambiguous requirements [4], [13], [24], and falsifi-
able assumptions [13], [25]. Each directed arrow in this
graph represents a dependency between the two sources
of uncertainty. In particular, a missing requirement refers
to an incomplete specification that does not cover all the
requirements the DAS needs to satisfy. As the name implies,
an ambiguous requirement is a specification or satisfaction
criteria that can be interpreted in different ways. Lastly,
a falsifiable assumption is a statement used to support a
requirement but may itself become invalid.

Ambiguous
Requirements

Falsifiable
Assumptions

Missing
Requirements

Unsatisfiable
Requirements

Requirements
Interactions

Doubt Claim Changing
Requirements

Figure 2. Taxonomy of Uncertainty at the Requirements Level.

These sources of uncertainty at the requirements level
can result in unsatisfiable requirements [3], [5], [14], re-
quirements interactions [10], [11], [26], which can then lead
to doubts about the requirements and scope of the system,
and, in the case of non-functional requirements, unproven
contribution links [13], [25]. Naturally, such uncertainty at
the requirements level causes requirements engineers and
developers to express both concerns and doubts about the
set of elicited requirements. Furthermore, this uncertainty
can easily propagate to the design and run-time phases of a
DAS if a requirements engineer does not document doubts
and concerns in the set of requirements. To this end, a

requirement may formally state a claim, or a subjective
rationale, behind an uncertain decision. Though not always
possible, uncertainty at the requirements level should be
resolved by adding previously missing requirements, refining
ambiguous requirements, or showing an assumption always
holds true.

We now present one source of uncertainty at the require-
ments level in template form below.

Name: Missing Requirements
Classification: Requirements
Context: A missing requirement occurs when the specifica-
tion of a DAS is incomplete and does not cover all functional
and non-functional requirements that the system is expected
to satisfy at run time. This source of uncertainty often arises
during the requirements elicitation process.
Impact: Missing requirements can lead to unsatisfiable re-
quirements, requirements interactions, and changing require-
ments. Specifically, it is unlikely that a DAS will of satisfy
a requirement for which it was not designed. Similarly, a
missing requirement may cause requirements engineers to
interpret relationships between identified requirements in
different ways, possibly introducing complex requirements
interactions. Lastly, once a missing requirement is identified,
the specification of the DAS must be changed to incorporate
the missing requirement.
Sample Illustration: An important, yet missing, require-
ment can be identified by considering IVS requirement R6
(see Section II). In particular, requirement R6 specifies that
the adaptive cruise control module should disengage and
alert the driver if it is unable to maintain a minimum safe
distance between the IVS and nearby vehicles. The current
set of requirements, however, does not specify whether the
lane keeping module should continue to operate or disengage
in the same situation. As such, it is uncertain how the
lane keeping module should behave in this situation as both
behaviors are possible.
Mitigation Strategies: KAOS Obstacle and Threat Mod-
eling [23] and Partial Goal Satisfaction Framework [27],
Loki [11], Marple [9], [10], Requirements Reflection [4].
Related Sources: Unsatisfiable Requirements (4), Require-
ments Interactions (5), Changing Requirements (8).
Also Known As: Incomplete requirements [26].

E. Taxonomy of Uncertainty at the Design Level
Even under the assumptions that requirements have been

completely and unambiguously identified, several sources of
uncertainty can arise at the design level. Figure 3 shows
a dependency graph of various sources of design-time un-
certainty and how they can result in an inadequate design



Table I
TABLE SUMMARIZING TAXONOMY OF UNCERTAINTY IN A DAS.

Id Term Definition Mitigation Techniques

1 Missing Requirement The specification is incomplete and does not cover all requirements.
KAOS Obstacle Threat Modeling [22], Partial Goal 
Satisfaction [27], Loki [11], Marple [10], 
Requirements Reflection [4]

2 Ambiguous Requirement The specification or evaluation criteria can be interpreted in different ways. Claims [13,25], Requirements Reflection [4]
3 Falsifiable Assumption A possibly false statement used to support the validity of a requirement Claims [13,25]

4 Unsatisfiable Requirements A requirement that cannot be satisfied by the DAS. FLAGS [3], RELAX [5, 14]

5 Requirements Interactions Two or more requirements that inadvertently interfere with each other. Loki [11], Marple [10]
6 Doubt A concern about a statement or requirement. Claims [13,25]
7 Claim A subjective rationale that forms the basis of a decision. Claims [13,25]
8 Changing Requirements Requirements that do not reflect the needs and constraints of the system. Feedback Loop [33], Requirements Reflection [4]

9 Unexplored Alternatives When not all different design options are considered. Avida-MDE [8],   FORMS [31],    Partial          
Models [28],  Marple [10]

10 Untraceable Design Irrelevant design decisions from the perspective of requirements.
11 Risk An exposure to danger or loss.

12 Misinformed Tradeoff 
Analysis Design decisions based on misguided and subjective preferences.

13 Inadequate Design Requirements cannot be fully satisfied or include latent behaviors. FLAGS [3], RELAX [5, 14], Loki [11], Marple [10]
14 Unverified Design Lack of proof that shows a design satisfies its requirements Partial Models [28]
15 Inadequate Implementation An implementation that contains errors or faults. C2 [34], Feedback Loop [33], Rainbow [35]
16 Latent Behavior An unknown behavior that should be disallowed. Loki [11], Marple [10]
17 Effector An adaptation that alters the execution environment in unanticipated ways.
18 Sensor Failure When a sensor cannot measure or report the value of a property. C2 [34], Feedback Loop [33], Rainbow [35]
19 Sensor Noise Random and persistent disturbances that reduce the clarity of a signal.
20 Imprecision A lack of repeatability in a given measurement.
21 Inaccuracy A divergence between a measured value and its real value.

22 Unpredictable Environment Events and conditions in the environment that cannot be anticipated. C2 [34], Feedback Loop [33], FLAGS [3],  Loki 
[11], Rainbow [35], RELAX [5,14], Softure [36]

23 Ambiguity A lack of numerical precision and accuracy in a measurement.
24 Non-Specificity A property whose value is only known within a certain range of values.
25 Inconsistency Two or more values of the same property that disagree with each other.
26 Incomplete Information A missing or unknown dimension of data. RELAX [5,14], Requirements Reflection [4]
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that does not satisfy the intended set of requirements. As
this figure illustrates, the two primary sources of design-
time uncertainty are unexplored alternatives [28] and an
untraceable design [23]. Unexplored alternatives occur when
it is infeasible for developers to consider all possible design
alternatives for satisfying a given set of requirements, and an
untraceable design occurs design decisions are made without
addressing and documenting the specific requirements they
are supposed to satisfy.

Unexplored
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Misinformed
Tradeoff 
AnalysisUntraceable

Design 

Risk

Inadequate
Design
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Design
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Figure 3. Taxonomy of Uncertainty at the Design Level.

Faced with design-time uncertainty, developers often ac-
cept risk, or an exposure to danger or loss, depending on the
severity of the repercussions if a requirement is violated.
Risk is inherently uncertain as it implies not knowing
which of two or more possible outcomes will occur for
a given event, condition, or decision. While risk crosscuts
uncertainty at the requirements and run-time levels, it is
particularly problematic at the design level because it can
lead to a misinformed tradeoff analysis that provides the

rationale for selecting, perhaps incorrectly, one design or
development technique over another. An inadequate design
often leads to an implementation that can contain errors,
due to an unverified design, or comprise an inadequate
architecture or set of enabling technologies. Combined,
these sources of design-time uncertainty can prevent an
implementation from satisfying its intended requirements.

We now present one source of uncertainty at the design
level in template form below.

Name: Unexplored Alternatives
Classification: Design
Context: An unexplored alternative occurs when developers
are either unwilling or unable (i.e., due to constraints upon
development time, budget, and resources) to consider all
possible designs and tradeoffs for satisfying a given set of
requirements.
Impact: This source of uncertainty can result in a design
that is sub-optimal, does not satisfy all functional and non-
functional requirements, and exhibits latent behaviors.
Sample Illustration: We reused McUmber and Cheng’s [29]
adaptive cruise control design since they applied formal
model-checking techniques to guarantee it satisfied require-
ments R2 through R6. Their adaptive cruise control design
was based on minimum safe distance standards set by



industry. While reusing their design enabled us to reduce
implementation efforts, it also implied that we did not
explore alternate designs. In particular, we did not consider
designs that increased the minimum safe distance between
the IVS and another vehicle. Such an alternate design may
improve the safety and reliability of the overall IVS by
providing additional room for the IVS to maneuver.
Mitigation Strategies: Avida-MDE [30], Claims [13], [25],
FORMS [31], Partial Models [28].
Related Sources: Risk (11), Misinformed Tradeoff Analysis
(12), Inadequate Design (13).
Also Known As: To be determined.

F. Taxonomy of Run-Time Uncertainty

Sources of run-time uncertainty occur primarily from
interactions between the DAS and its unpredictable environ-
ment. In particular, the execution environment of a DAS can
threaten its adaptation capabilities [3]–[5], [11], [13], [14].
This uncertainty arises specifically at the shared boundary
between a software system and its environment [2]. Un-
fortunately, in the case of a DAS, it is often infeasible
for a developer to enumerate or anticipate all possible
combinations of environmental conditions that the DAS will
encounter throughout its lifetime [5], [14]. As a result, the
environment adds a dimension of unpredictability in the
sense that it can introduce events or conditions that a DAS
might be unable to interpret or handle because they were
unforeseeable at design time.

A DAS uses sensors in its monitoring infrastructure to
measure observable events in its environment. This depen-
dency, captured in Figure 4, implies that a DAS is capable of
adapting only in response to those conditions it detects and
deems likely to obstruct the satisfaction of a requirement.
Nevertheless, an unpredictable environment can introduce
uncertain sensor inputs in the form of events and conditions
that the DAS is incapable of interpreting. For example,
adverse weather conditions, such as dense fog, could alter
how the IVS perceives its environment and reacts to it. Since
a DAS detects these unanticipated events and conditions
through its monitoring infrastructure, run-time uncertainty
originates not only from inherent limitations in the precision,
accuracy, and reliability of its monitoring infrastructure, but
also from environmental inputs it is unable to interpret and
reason about.

As Figure 4 illustrates, the monitoring infrastructure in-
troduces three root sources of run-time uncertainty: sensor
imprecision, sensor noise, and sensor failures. Imprecision
can adversely affect the ability of a DAS to consistently
reproduce a given measurement [32]. Orthogonal to the con-
cept of imprecision, sensor noise is a random and persistent
disturbance that can reduce the clarity of a given signal.

Incomplete
Information

Non-Specificity

Ambiguity Inconsistency

Sensor
Noise Inaccuracy

Sensor
Imprecision

Sensor
Failure

Uncertain
Sensory Inputs

Unpredictable
Environment

Incorrectly
Interpreted

Events

Effectors

Figure 4. Taxonomy of Run-Time Uncertainty Sources.

When dealing with large quantities of data, sensor noise can
also refer to irrelevant and meaningless data. Lastly, a sensor
failure occurs when a sensor is unable to either measure or
report the value of a given property. As Figure 4 shows, each
of these three sources of uncertainty can occur independently
since they do not have any incident arrows.

Neither hardware nor software sensors are perfectly pre-
cise, accurate, and reliable. As Figure 4 also illustrates,
sensor imprecision, inaccuracy, and failure can introduce
ambiguity. As previously described, ambiguity occurs due
to a lack of numerical precision or inaccuracy in a mea-
surement [32]. An imprecise sensor can prevent a DAS
from differentiating between two otherwise seemingly equal
values. For example, if the precision of a temperature sensor
is limited to one degree Celsius, then the values of 37.0◦C
and 37.9◦C would be indistinguishable. 1 An inaccurate sen-
sor, on the other hand, reports values that are considerably
different from the real value of what is being measured.
Similarly, a failed sensor can either report nonsensical values
or fail to report the value of such a measurement. In all three
cases, ambiguity limits the ability of a DAS to reliably detect
and reconfigure from conditions that warrant adaptation.

Ambiguity can also lead to inconsistency and non-
specificity. Inconsistency occurs when two or more mea-
surements disagree with each other. Although not always
feasible, redundancy may resolve inconsistency in certain
situations. For instance, a DAS can select the statistical mode
of multiple and independent measurements to determine the
most likely value of a property. Without additional informa-
tion, inconsistency can lead to uncertainty in the form of
incomplete information and non-specificity. Non-specificity
refers to the value of a property lying within a certain range
of possible values [32]. Unlike inconsistency, to resolve non-
specificity, a DAS must selectively discard measurements
to converge upon a specific value. Combined, incomplete
information and non-specificity leads to uncertain sensory
inputs.

As Figure 4 also illustrates, both effectors and uncertain
sensory inputs can hinder a DAS’s ability to correctly
interpret and analyze system and environmental conditions
at run time. In particular, an effector can either fail during

1Though seemingly irrelevant, the difference between these values re-
flects a normal body temperature and a fever.



an adaptation or inadvertently introduce adverse effects upon
the execution environment of the DAS. In both situations,
the DAS may be unable to assess the outcome of the
adaptation. Similarly, an uncertain sensory input corresponds
to monitoring information that a DAS is not intended to
interpret or analyze, and can cause the DAS to incorrectly
assess its state.

We now present one of the sources of uncertainty at the
run-time level in template form below.

Name: Incomplete Information
Classification: Run-Time
Context: Incomplete information refers to a missing or
unknown dimension of data.
Impact: Without additional information, this source of un-
certainty can create an unresolvable state in a DAS that
hinders it either from detecting when adaptation is necessary,
or selecting the most appropriate reconfiguration strategy.
Sample Illustration: In a related case study [11], we
explored the effects of various system and environmental
conditions upon the adaptation capabilities of the IVS. In
that example, the monitoring infrastructure of the IVS was
unreliable and subject to different types and degrees of
sensor noise. Collectively, these conditions introduced un-
certainty, in the forms of inconsistencies and non-specificity,
into the monitoring data of the IVS such that the IVS was
unable to accurately compute its velocity and distance to
another vehicle. Since the IVS did not possess additional
information to resolve this uncertainty, in certain scenarios,
both vehicles collided.
Mitigation Strategies: FLAGS [3], RELAX [5], [14], Re-
quirements Reflection [4].
Related Sources: Inconsistency (25), Non-Specificity (24),
Inadequate Design (13).
Also Known As: Unmonitorable [5], [14], known un-
known [4].

IV. RELATED WORK

This section presents related work on managing uncer-
tainty at the requirements, design, and run-time levels. For
each of these related works, we identify the source(s) of
uncertainty that it can mitigate.

A. Managing Uncertainty at the Requirements Level
Fuzzy logic has been used as the formal foundation for

languages used to represent uncertainty. Whittle et al. [14]
developed RELAX, a textual requirements language that pro-
vides fuzzy logic–based temporal, ordinal, and modal oper-
ators to facilitate the specification of sources and impacts of
uncertainty in self-adaptive systems. Subsequently, Cheng et

al. [5] introduced a goal–oriented, model–based process
for identifying non-invariant requirements that should be
RELAXed due to an unpredictable environment (20). In a
similar approach, Baresi et al. [3] introduced the FLAGS
language to specify, via fuzzy logic function shapes, the
satisfaction criteria of adaptation–oriented goals. RELAX
and FLAGS, and their corresponding model-based processes,
are most suited for identifying, explicitly representing, and
reasoning about sources of uncertainty and how they might
affect the extent to which a DAS satisfies its requirements.

In a different approach, Welsh et al. [13], [25] introduced
Claims (7) to explicitly represent and document the set of
assumptions that enable requirements engineer to differen-
tiate and resolve how two seemingly equal designs can
affect a soft goal’s contribution link. Furthermore, Claims
facilitates the evaluation of falsifiable assumptions (3) in
subsequent stages of the development process when new
information about the system and its environment might
be available. Within the proposed taxonomy of uncertainty,
Claims are most suited for mitigating sources of uncertainty
that occur due to falsifiable assumptions (3) and ambiguous
requirements (2) by documenting the rationale for selecting
a particular design over another.

Letier and Van Lamsweerde [27] developed a probabilistic
framework for reasoning about and evaluating the partial
satisfaction of goals and requirements. Each goal is asso-
ciated with a probability that represents the likelihood of
it being satisfied at run time. These probabilities can be
derived by analyzing existing systems and how they satisfy
requirements. Based on these probabilities, a requirements
engineer can not only identify goals that frequently become
unsatisfied at run time, but also explore and revise the set of
goals to handle conditions leading to these requirements vio-
lations. In this manner, their probabilistic framework can be
applied to identify falsifiable assumptions (7), unsatisfiable
requirements (4), and requirements interactions (5).

In certain situations, the requirements that a DAS must
satisfy are not always known until the system is executing.
To address these concerns, Bencomo et al. [4] proposed
the concept of requirements reflection that enables a DAS
to modify and re-prioritize requirements at run time. In
addition, their work also discusses challenges when deal-
ing with uncertainty from the stochastic nature of physi-
cal environments, practical limitations of sensors, and the
unpredictability of how an adaptation may affect another
agent’s behavior and system goals. Within the taxonomy
of uncertainty presented in this paper, this technique could
resolve missing requirements (1) and changing requirements
(8).

B. Managing Uncertainty at the Design Level
Certain sources of uncertainty at the requirements level

are difficult to identify and resolve before the design phase
begins. Weyns et al. [31] introduced FORMS, a formal



reference model for self-adaptation that builds upon feed-
back loops and reflection to enable the description and
evaluation of alternative design choices for a DAS. In a
different approach, Chechik et al. [28] presented a model
checking–based approach for quantifying the uncertainty and
potential tradeoffs inherent in a partial model that comprises
certain design decisions that are finalized and others that
are changeable due to uncertainty. Both approaches can be
applied to resolve uncertainty from unexplored alternatives
(9) at the design level.

Esfahani et al. [7] proposed a framework for handling un-
certainty in a DAS. Specifically, instead of evaluating adap-
tation decisions on a single value, their framework leverages
information from a range of values, some of which may be
inherently uncertain. In addition, their framework proposes
incorporating uncertainty analysis into the decision-making
process of a DAS in order to efficiently address sources of
uncertainty at run time. Their framework can be used to
mitigate incomplete information (26) and uncertain sensory
inputs (18, 19) by incorporating additional, albeit possibly
imperfect, information.

Goldsby and Cheng [8] developed Avida-MDE, an ap-
proach that generates software system models that represent
target systems suitable for dealing with an unpredictable
environment (20). Avida-MDE enables developers to identify
tradeoffs between generated models and identify the most
appropriate target system for a given application. In subse-
quent work, Goldsby and Cheng [9] introduced Marple, a
tool for identifying latent properties for a given behavioral
system model. Jensen et al. [10] built a toolchain around
Marple to identify common model defects, such as syntax
errors and unreachable states, and detect structural and
behavioral latent properties in embedded system models.
These evolutionary computation-based techniques can be
applied to resolve requirements interactions (5) and latent
behaviors (16).

In a complementary approach, Ramirez et al. [11] devel-
oped Loki, an approach for automatically identifying inter-
esting combinations of system and environmental conditions
conducive to requirements violations and latent behaviors in
a DAS. To achieve this objective, Loki introduces different
types and degrees of sensor-based uncertainty and then
evaluates how it affects the behavior of a DAS. Loki can be
applied to discover falsifiable assumptions (3), unsatisfiable
requirements (4), and requirements interactions (5).

C. Managing Uncertainty at Run Time
Several dimensions of uncertainty at the requirements and

design levels can be addressed via run-time adaptation tech-
niques. In particular, Brun et al. [33] proposed engineering
adaptive systems with feedback loops to deal with changing
environments and emerging requirements by incorporating
new environmental information into the decision-making
process of a DAS that might not have been available at

design time. Feedback loops are inherent in the C2 [34] and
Rainbow [35] architecture-based adaptation frameworks that
enable a DAS to self-reconfigure in response to changing
system and environmental conditions. These techniques can
specifically address several sources of design-time uncer-
tainty at run time, such as revising a misinformed tradeoff
analysis (12) by modifying the architecture of the application
to better address non-functional concerns, and correcting an
inadequate implementation (15) (e.g., a software bug) by
unloading a faulty component and loading a verified one.

In a different approach, Bertolino et al. [36] proposed
Softure, an approach to assist in the development of generic
applications that can be adapted while explicitly addressing
dynamic contexts. These frameworks and approaches are
primarily concerned with performance-based adaptations
that ensure non-functional requirements, such as quality of
service constraints, are satisfied. These approaches are most
suited for mitigating the effects of changing requirements
(8) and unpredictable environment (22).

V. CONCLUSIONS

In this paper we presented a definition and taxonomy of
uncertainty within the context of a DAS. The proposed tax-
onomy describes common sources of uncertainty and their
effects upon the requirements, design, and run-time phases
of a DAS. For each identified source of uncertainty, we also
listed existing techniques for resolving or mitigating that
respective type of uncertainty. We illustrated the proposed
taxonomy by presenting several examples of how uncertainty
affects an intelligent vehicle system. Lastly, to facilitate the
organization and reuse of the proposed taxonomy, we also
introduced a template for describing sources of uncertainty.

Perhaps the most manageable sources of uncertainty orig-
inate at the requirements level. Nevertheless, these sources
of uncertainty often go unresolved during the design phase
and therefore remain present even as the DAS executes.
These sources of uncertainty at the requirements level can
lead to changing requirements that are inherently difficult to
assess, evaluate, and integrate within the existing design and
implementation of a DAS. Existing techniques [3], [5], [7],
[13], [14], [25], [28] can be applied to not only formally
document doubts, concerns, and claims about requirements,
but to also reason about the possible impact they may have
upon the DAS. Raising the awareness of these sources of
uncertainty during requirements engineering may enable de-
velopers to address them in subsequent development phases
when additional information about the system design and its
environment becomes available.

Even if complete and unambiguous requirements sup-
ported by valid assumptions are available, and the design of
the system guarantees to satisfy such requirements, a DAS
may still have to interact with unpredictable environments
through a monitoring infrastructure that, due to physical and
practical limitations, cannot be perfectly precise, accurate,



and reliable. Furthermore, the act of adapting itself can
introduce uncertainty into the execution environment via
the DAS’s effectors. As a result, for many application
domains, it may be impossible to fully resolve all sources of
uncertainty at the requirements, design, and execution phases
of a DAS. To some degree, other scientific disciplines,
such as physics and economics, have embraced this fact
and developed both theoretical and practical frameworks
for managing uncertainty. Recent vision papers have begun
to address and incorporate elements of uncertainty analysis
at the design [7], [13], [28], [37] and run-time [4], [7],
[25] levels. As Table I illustrates, challenging sources of
uncertainty at the design- and run-time levels still remain.

Based on the proposed taxonomy, we also observe that ex-
isting techniques for mitigating uncertainty in a DAS appear
to be complementary. As a result, future directions include
integrating these techniques for resolving combinations of
uncertainty, as well as further investigations into avoidance
and/or mitigation strategies for those types of uncertainty
that have not been as extensively studied. Furthermore, this
paper is intended only to be a first step towards cataloguing
and synthesizing different approaches that deal with uncer-
tainty in a DAS. The interested reader can find an entirely
separate treatment on how models at run time can be applied
to address uncertainty in an upcoming Dagstuhl Seminar
roadmap [38]. Lastly, our template and taxonomy can be
expanded to include newly identified sources of uncertainty
and developed resolution techniques, or specialized to better
capture the needs of domain-specific uncertainty.
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