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Abstract This paper introduces a taxonomy of vision
systems for ground mobile robots. In the last five years,
a significant number of relevant papers have contributed
to this subject. Firstly, a thorough review of the papers
is proposed to discuss and classify both past and the most
current approaches in the field. As a result, a global picture
of the state of the art of the last five years is obtained.
Moreover, the study of the articles is used to put forward
a comprehensive taxonomy based on the most up-to-date
research in ground mobile robotics. In this sense, the
paper aims at being especially helpful to both budding
and experienced researchers in the areas of vision systems
and mobile ground robots. The taxonomy described is
devised from a novel perspective, namely in order to
respond to the main questions posed when designing
robotic vision systems: why?, what for?, what with?,
how?, and where? The answers are derived from the
most relevant techniques described in the recent literature,
leading in a natural way to a series of classifications
that are discussed and contextualized. The article offers
a global picture of the state of the art in the area and
discovers some promising research lines.

Keywords Ground Mobile Robots, Vision Systems,
Taxonomy, Review

1. Introduction

A mobile robot is an automatic machine that is
capable of movement in any given environment. Unlike
industrial robots, which usually consist of a jointed arm
(multi-linked manipulator) and a gripper assembly (or
end-effector) that is attached to a fixed surface, mobile
robots are able to move around in their environment.
Therefore, they are not fixed to one physical location.
Specifically, a ground mobile robot (GMR) is a robotic
platform that operates while being in contact with the
ground and which does not rely upon on-board human
presence. GMRs are used in many applications where
the presence of a human operator may be inconvenient,
dangerous or even impossible. Generally, the robot
incorporates a set of sensors to perceive the environment
and either makes decisions autonomously or pass the
information on to a remote human operator who controls
the robot via teleoperation. In both cases (autonomous
and teleoperated GMRs), the more information that is
provided, the better the decisions that are made.

While a teleoperated GMR relies on humans for
decision-making, autonomous robots need to incorporate
artificial intelligence (AI) capabilities to perform this
process. In this sense, AI has been roughly divided into
two schools of thought since its beginnings: symbolic
and sub-symbolic. These two approaches have also had
a strong influence on the robotics field [1]. For robotic
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systems to navigate through an environment, autonomous
planning and deliberation offer a number of examples.
In these kinds of tasks, an accurate environmental
representation is needed. The representation can be
adequately obtained using a computer or machine vision
system, which provides the robot with the relevant
information about the environment and its current
state. Visual perception plays a fundamental role in the
behaviour of human beings. Unfortunately, robots still do
not ’see’ as humans do. To date, no robot has been able
to replicate any of the fundamental human abilities. For
example, jointly coordinating ’eyes’ and ’hands’, which
provides flexibility, dexterity and strength in movement,
is not yet possible in robotics at present. Moreover,
humans usually rely upon their sense of sight to locate,
identify (both static and moving) and follow objects (or
even track extremity movements). Vision is also crucial in
grabbing and manipulating objects, allowing these tasks
to be performed quickly and reliably. As a consequence,
these capabilities are especially helpful when developing
robotic systems able to successfully address the types of
tasks mentioned above.

In general, vision in robotics primarily refers to the ability
of a robot to visually perceive the environment. Compared
to the classical definition of computer visions, robotic
vision has to go further in order to accomplish tasks
entrusted to robotic platforms. These tasks typically
involve: navigating to a specific location while avoiding
obstacles; finding agents (either humans or other robots)
while interacting with them; locating, classifying and
manipulating objects in the scene, and so on. Thus, the
goal of robot vision is to exploit the power of visual
perception to adequately perceive the environment aimed
at while being able to properly react to it. In contrast to
computer vision, where sensing is an isolated task and
most efforts focus on the scene comprehension and object
recognition, robot vision involves dealing with all the
internal components/modules available in the platform.
In other words, in robot vision, sensing is driven by global
tasks where all the system modules play their part [2]. This
allows the robot to perceive the environment in order to
interact with it appropriately.

Vision has been used in robotics applications for more than
30 years. Some examples include applications in industrial
settings, services, medicine and underwater robotics, to
name a few. In this paper, the proposals for robot vision
from the last five years for GMRs are reviewed. Moreover,
a taxonomy of vision systems for GMRs is proposed in
studying the most recent journal articles. In this sense, the
following main questions addressed in this paper have led
to the proposed taxonomy (see Fig. 1): (a) ’why’ is a vision
system incorporated into a GMR?, (b) ’what’ physical
components are needed in such a vision system?, (c) ’for
what purpose’ are vision systems used in GMRs?, (d)
’how’ is a vision system for GMRs to be developed?, and
(e) ’where’ should a vision system for GMRs be exploited?
All these questions are answered by discussing some of the
most influential examples from the last few years.

The rest of the article is organized as follows. Section
2 provides an overview of the reasons behind the use

of vision systems for GMRs. In Section 3, the resources
available for building vision systems are presented and
classified. A review of the different applications of these
systems is provided in Section 4. Next, the internal
parameters on their application to GMRs are described in
Section 5. Section 6 discusses the different environments
where GMRs are used to work, as well as their influence
in the development of vision systems. Finally, some
conclusions are drawn in Section 7.

2. Why incorporate a vision system into a GMR?

Autonomous robots need to have a set of capabilities that
allows them to move and interact with the environment.
Among all the skills needed, perception constitutes one
of the cornerstones. The word ’perception’ refers to,
among other things, sensory awareness. Historically, the
human sensory system has been used as inspiration to
build autonomous vehicles or mobile robots. From the
five different senses that humans have, vision is arguably
the most important for safely moving and interacting with
the world. Fundamental things such as sense of direction,
obstacle avoidance and object recognition mainly rely
upon the use of the visual system.

In the case of a GMR, it should be able to perceive its
own state as well as the state of the environment where
it moves around. In this regard, there are different tasks
to be performed in which vision plays a crucial role [2].
Self-localization is a good example of this. GPS-based
systems are not accurate enough to provide a global
solution to the localization problem in most cases. Vision
is usually irreplaceable, since a visual recognition of the
place where the robot is turns out to be, in many cases, the
only suitable solution to this problem.

We can also cite the navigation problem. Although
tools like infrared sensors or lasers are employed here
to some extent, there are some limitations that restrict
their use to low-range obstacle detection only. Cameras
provide a global picture of the environment where the
destination and near- or mid-range obstacles can be
identified. The previous discussion is also applicable to
mapping. Building a map entails identifying points of
interest within the environment. Such points are usually
static objects and rigid structures that are appropriately
(and often solely) described by means of their visual
features. Actually, self-localization and mapping are
usually addressed as a single problem, under the approach
known as ’SLAM’. Despite the fact that non-visual sensors
are used here, these are typically employed to complement
the information given by the vision system. In fact, the
SLAM problem is usually solved by relying only upon
visual sensors and odometry, and much effort has been
made in this direction (e.g., [3], [4], [5]).

Apart from the problems described above, autonomous
robots usually have to perform some kind of interaction
with different types of objects. Computer vision is by
far the most suitable way to address the problem of
identifying the objects to interact with while recognizing
those to be avoided by the robot (dangerous objects or
sensitive/fragile items). Usually, these two categories
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Figure 1. A taxonomy of vision systems for GMRs

of objects are characterized by features like size, shape
and colour, which makes visual recognition the most
appropriate way to perceive them. Vision is not only
useful in this scenario to identifying objects but also to
approaching them effectively, in order to grab them or
else to carry out any other kind of operation. Grabbing
objects requires a detailed visual inspection of the object
along with its close environment in order to determine
the best way to go near to the object and manipulate it.
Besides, identifying objects is not only useful to interacting
with them but also to solving other problems, such as
place-classification (e.g., [6], [7], [8]).

In social robotics [9], vision also plays an important role.
A social robot has to be able to detect humans [10] and, in
many cases, to identify them. Face recognition [11] is by
far the best method to recognizing a person and, hence,
it is widely used in tasks related to care, rehabilitation,
surveillance and personal assistance [12]. In addition,
gestures or postures [13] are sometimes required to be
recognized.

Decision-making and planning also require an appropriate
interpretation of the scene around the robot [14]. Deciding
the best way to perform a specific operation (for instance,
delivering an object) depends heavily upon having an
accurate representation of the proximate environment.
On the other hand, in some situations the robot could
be forced to change its operational mode if there are
humans around so as to prevent accidents or other kinds
of situations that could cause harm. Although there can
be different data sources in appropriately interpreting the
environment, a visual description is typically the most
useful way to extract relevant information from the outside
world. Therefore, if the robot is required to behave
autonomously and to make decisions at a high-level of
abstraction, the use of a precise vision system seems to be
essential.

3. Vision sensors in GMR: what with?

As mentioned above, perception is one of the most
important tasks of an autonomous mobile system, which
serves as an interface between the robot and the
environment. Perception basically works by taking
measurements using different sensors and then extracting
meaningful information from those measurements. In
general, the data extracted by the robot’s sensor are used
to predict or to model the internal state of the robot,
as well as the state of the environment in which the
robot is to operate. In particular, this information is
used to perform more complex tasks, such as localization,
navigation, mapping and human-robot interaction.

Despite the fact that this work is centred on robot vision,
most of the perception systems implemented today in real
GMRs make use of different sources of information by
fusing the measurements provided by different types of
sensors. Therefore, we can proceed with a short review
of the most widely-used sensors in the majority of GMRs.
• Tactile sensors: one of the simplest and most important

sensors as regards safety is the tactile sensor. A tactile
sensor (also called a ’bumper’) is typically used to
detect proximity to or contact with different objects -
even people - in order to prevent any damage to them
or else to the robot itself.

• Wheel encoders: an encoder is an electromechanical
device that converts the angular position of a shaft into
a digital signal. It is used to count the number of turns
of the wheels of GMRs, and then to estimate the motion
of the robot or else to measure the position of a joint of
a robotic manipulator (e.g., arms or legs).

• Global positioning systems (or GPS): these are today
mainly used for autonomous outdoor navigation,
relying upon the information provided by at least three
satellites.

• Heading sensors: these are sensors that determine
the robot orientation and inclination with respect to
a given reference. Some examples are gyroscopes
or compasses. Together with appropriate velocity
information, they allow the integration of the
movement to a position estimate. This procedure
is called ’deduced reckoning’ and it used in navigation
tasks.

• Accelerometers: an accelerometer is a device used to
measure all the external forces acting upon it, including
gravity. Conceptually, an accelerometer is a spring
mass damper system, in which the three-dimensional
positions of the proof mass relative to the accelerometer
casing are measured with some mechanism. When
an external force is applied, the proof mass deflects
from its natural position; depending upon the physical
principle used to measure this deflection, there are
different types of accelerometers, such as capacitive or
piezoelectric accelerometers.

• Inertial measurement unit (or IMU): an IMU uses
gyroscopes and accelerometers to estimate the relative
position, velocity and acceleration of a GMR. To
estimate the velocity, the initial speed of the vehicle
must be known.

• Ranging finder sensors: this type of sensor includes
the most popular sensors used today in GMRs. Among
these, we have sonars (or ultrasonic sensors) to detect
and avoid close objects, and laser range-finders (with
a higher sensing range), which are used today for
obstacle avoidance, scene interpretation and mapping.

• Digital cameras: which are also used to complement
lasers (or other sensing modalities) with intensity,
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Figure 2. Two examples of social robots: the PR2 robot
developed at Willow Garage (right), and the Loki social
robot developed at the universities of Castilla-La Mancha and
Extremadura (left)

texture and colour information. Cameras are the most
important vision sensors used in autonomous mobile
systems today.

In Figure 2 and Figure 3, two examples of GMRs are
shown: two humanoid prototypes and two autonomous
cars, all of them including most of these types of sensors.

Most of the research works published today in the field
of robot vision present fusion techniques from camera
sensors and other types of sensor to improve their
performance and functionality (see, for example, [15],
[16]).

We can classify sensors into two main groups according
to their functional properties: proprioceptive or
exteroceptive, and passive or active. Proprioceptive
sensors measure a value internal to the system which is
related to the internal state to the robot. Some examples of
proprioceptive sensors are motor speed, wheel load, robot
arm joint angles and battery voltage. Exteroceptive sensors
acquire information from the robot’s environmental state.
Some examples are distance measurements, light intensity
and sound amplitude. We can say that exteroceptive
sensor measurements are interpreted by the robot in order
to extract meaningful information from the environment.
Examples of exteroceptive sensors are tactile sensors,
compasses, GPSs, lasers and camera sensors.

Passive sensors measure ambient environmental energy
entering into the sensor. Examples of passive sensors
include temperature probes, microphones and cameras.
On the other hand, active sensors emit energy into the
environment. Hence, they measure the environmental
reaction to its actions. Since active sensors can manage
more controlled interaction with the environment, they
often achieve superior performance over passive ones.
However, active sensing introduces several risks. The
outbound energy may affect the very characteristics that
the sensor is attempting to measure. For example, signals
emitted by other, nearby, robots, or similar sensors on the
same robot, may influence the resulting measurements.
Examples of active sensors include wheel encoders,
ultrasonic sensors and laser range-finders.

3.1. Vision sensor taxonomy

The use of vision sensors can be classified according to
different criteria ([17], [18]), but we here focus only on the
most widely used vision sensors, i.e, cameras. A camera
is an optical instrument that records images that are stored
and/or transmitted to another location. The term ’camera’
comes from the phrase camera obscura (a Latinism for ’dark
chamber’), an early mechanism for projecting images.
Modern cameras have evolved from the camera obscura
device, and its functionality is now very similar to the
functionality of the human eye, i.e., taking photographic
images or moving images, such as videos and movies.
The term ’camera’ is also used for devices producing
images (or image sequences) from measurements of the
physical world, even when the image formation cannot be
described as ’photographic’.

According to the type of information that GMRs cameras
capture from the environment, we can roughly classify
them according to three main categories: colour, thermal
and range cameras (see Figure 4).

Colour cameras produce images that are comprehensible
to humans, and their most important internal parameter
is the colour space. RGB (red, green and blue) might
be considered the most standard parameter, but it is not
appropriate for dealing with lighting changes. This is
because it uses three chromatic components where the
luminance is present. Therefore, lighting changes would
result in variations for the three R, B and G components. In
order to cope with such challenging scenarios, some colour
spaces where the luminance is concentrated in just a single
component have been proposed, such as YUV or YCbCr.
YCbCr and YUV are colour spaces used interchangeably.
Y is the luminance component and Cb and Cr are the
blue-difference and red-difference chroma components.

While most colour cameras present a directional field of
view, omnidirectional cameras are widely used in robotics.
An omnidirectional camera is characterized by a very
large field of view - ultimately, a spherical field of view.
This type of camera can be classified according to three
different categories: dioptric cameras, which are formed
by a system of lenses to achieve a very large field of
view, typically a hemispherical field of view; catadioptric
cameras, which use a combination of lenses and mirrors;
and polydioptric cameras, which consist of a system of
multiple, overlapping cameras, such as those used today
in Google Street View cars.

Thermal cameras are the second type of vision cameras
considered in this ’what with?’ taxonomy. Thermal
cameras capture the infrared radiation emitted by any
object with a temperature greater than zero. Although they
are not very common for general purpose GMRs, their
use in specific applications becomes essential [19]. These
applications include surveillance [20], fire control [21] and
a wide range of medical analysis applications [22, 23].

Finally, the third family of cameras comprises range
cameras, which produce images of the distance to each
point in the scene. They are one of the most important
sensing modalities in the field of GMRs, up to the point
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Figure 3. Two examples of autonomous self-driving car prototypes: the Smarter Car developed at ETHL Zurich (left), and the Junior Car
developed at Stanford University (right)

Figure 4. A ’what with’ taxonomy

whereby range imaging has become one of the most
important fields of research in recent years, not only in
the specific case of robotic vision but also in computer
vision. Taking this into account, we describe the main
range imaging techniques in the following.

3.2. Range imaging techniques

’Range imaging’ is the name for a collection of techniques
used to produce a 2D images representing the distance
to points in a scene from a specific point, normally
associated with some types of sensor device. This is
broadly referred to as a ’range camera’. The resulting
image, the range image, stores pixel values corresponding
to these distances.

Range cameras operate according to a number of different
techniques. Below, a taxonomy of range cameras
according to these criteria is presented (see [24], [25], [26],
[27], [28]):

• Stereo vision. A stereo camera system can be used
to determine the depth of points in the scene, for
example, from the centre point of the line between
their focal points. In order to solve the depth
measurement problem using a stereo camera system,
it is necessary to find corresponding points in the two
images. Solving the correspondence problem is one of
the main problems when using this type of technique,
up to the point whereby range imaging based on stereo

triangulation usually produces reliable depth estimates
only for a subset of all the points visible for the cameras.

• Structured light. Structured light is the projection of
a light pattern (a plane, grid or more complex shape,
typically named ’structured light’) at a known angle
onto an object. This technique is very useful for
imaging and acquiring dimensional information. The
most commonly used light pattern is generated by
fanning out a light beam into a sheet-of-light. When the
sheet-of-light intersects with an object, a bright line of
light can be seen on the object surface. By viewing this
line of light from an angle, the observed distortions in
the line are translated into height variations. Scanning
the object with the light, by moving either the light
source (and normally also the camera) or the scene in
front of the camera, a sequence of depth profiles of the
scene is generated. As a result, 3D information about
the shape of the object can be obtained.

• Time-of-flight (ToF). Depth can also be measured using
the standard ToF technique, similar to radar or lidar.
In this technique, a light pulse is used instead of a
radio frequency pulse. For instance, a scanning laser
(as a rotating laser head) is employed to obtain a
depth profile for points which lie in the scanning plane.
This approach also produces a type of range image
similar to a radar image. ToF cameras are devices
that capture a whole scene in three dimensions with a
dedicated image sensor, and therefore moving parts are
not needed.

• Structure from motion. ’Structure from motion’
refers to the process of estimating three-dimensional
structures from two-dimensional image sequences
which may be coupled with local motion signals. This
technique presents the same problem as a structure
from the stereo technique: the correspondence between
images and the reconstruction of a 3D object needs to
be found. To find correspondences between images,
features such as corner points (edges with gradients in
multiple directions) need to be tracked from one image
to the next. The feature trajectories over time are then
used to reconstruct their 3D positions and the camera
motion.

Some specific types of cameras include ToF cameras, like
the SwissRanger or the Kinect version 2, and structured
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Figure 5. A ’what for’ vision system taxonomy

light cameras, like the Kinect version 1. Most range
sensors, such as sonars, laser range finders, and the
SwissRanger or the Kinect 2, work by measuring the ToF
that it takes for an emitted signal to return back to the
source emission sensor. In general, the travel distance of
a sound or electromagnetic wave is given by the product
of the speed and the ToF.

Nowadays, 3D scanners have become very popular, and
their use is irreplaceable in autonomous self-driving cars
or for tasks such as 3D SLAM. One of the most popular
current 3D scanners is the Velodyne sensor. This sensor
is a 3D lidar that employs 64 laser emitters instead of the
single sensor used in common laser range finders. This
device spins at rates of 5 to 15 hertz and delivers more than
1.3 million data points per second.

Structured light sensors rely upon an emitter to project a
known pattern or structured light onto the environment.
They either project light textures or emit collimated light
by means of a rotating mirror. Yet another popular
alternative is to project a laser stripe by turning a laser
beam into a plane, thanks to the use of a prism. However,
new possibilities for applications in robotics have recently
been opened up by Kinect, a sensor released in 2010 as
a part of the Microsoft Xbox 360 video games console,
and produced by Prime Sense. Kinect is a very cheap
range camera that relies upon the structured light principle
explained above. An infrared laser emitter is used to make
the projected pattern invisible to the human eye.

4. What should a vision system in GMRs be used for?

Robot vision-based mobility has been the source of
countless research contributions within the domains
of both vision and control. Vision is becoming
increasingly common in applications such as localization,
automatic map construction, autonomous navigation, path
following, inspection, monitoring and risky situation
detection [29]. Figure 5 shows the taxonomy described
in this section. The ’what for’ vision system taxonomy
proposes a decomposition into six classes: sensing and
perception; mapping and self-localization; recognition
and localization; tracking; navigation and planning; and
servoing.

Figure 6. A visual sensing and perception taxonomy

4.1. Visual sensing and perception

There are four specific classes that have been identified as
part of visual sensing and perception: calibration, early
vision, active vision and fusion (see Figure 6). These are
discussed next.

4.1.1. Calibration

Camera calibration is one of the most important
components of computer vision. Indeed, the intrinsic
and extrinsic parameters of cameras are obtained from
camera calibration. Intrinsic parameters encompass focal
length, image format and principal point. Extrinsic
parameters denote the coordinate system transformations
from 3D world coordinates into 3D camera coordinates.
Equivalently, the extrinsic parameters define the position
of the camera’s centre and its heading in world
coordinates. Camera calibration is a necessary step in
3D computer vision in order to extract metric information
from 2D images. It has been extensively studied in
computer vision and photogrammetry.

Some relevant examples of the need for accurate camera
calibration are described next. For instance, in [30]
a classification of visual servos is presented and used
to derive their possible structures. An important cue
in this approach is the analysis of the influence of
robot-model and robot-camera calibration on the derived
control structures. Furthermore, the use of ToF cameras
in mobile robotics is suitable for real-time 3D tasks, such
as tracking, visual servoing or object pose estimation.
Obviously, their usability mainly depends upon accurate
camera calibration. A calibration process for ToF cameras
with respect to intrinsic parameters, depth measurement
distortion and the pose of the camera relative to a
robot’s end-effector has been described in [31]. Lastly,
hand-eye calibration has emerged as a hot topic. In
this sense, a very recent paper considers conventional
techniques for vision robot system calibration where the
camera and robot hand-eye parameters are computed
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separately, i.e., first performing camera calibration and
then carrying out hand-eye calibration based upon the
calibrated parameters of the cameras [32]. A joint
algorithm is proposed, combining camera and hand-eye
calibration. The proposed algorithm gives the solutions of
the camera and hand-eye parameters simultaneously by
using nonlinear optimization.

According to the dimensions of the calibration objects,
calibration techniques are roughly classified into three
categories [33]. (a) In 3D reference object-based
calibration, camera calibration is performed by observing
a calibration object whose geometry in 3D space is
known with very high precision. (b) Techniques in
2D plane-based calibration require the observation of
a planar pattern shown at a few different orientations.
Such a method for camera calibration is described in
an approach which describes how to obtain the position
of a chequerboard corner at sub-pixel accuracy from
digital images [34].(c) In 1D line-based calibration, the
calibration objects used are composed of a set of collinear
points. (d) Lastly, self-calibration techniques do not
use any calibration object and can be considered as 0D
approach because only image point correspondences are
required. A prototypical paper introduces the widespread
application of camera calibration in robot navigation,
three-dimensional reconstruction, bio-medicine, virtual
reality and visual surveillance [35]. The paper summarizes
the methods in different applications, such as traditional
calibration, self-calibration and active vision calibration.

Let us also highlight the importance of providing data
sets for calibration purposes. An example is the data set
collected by the MIT autonomous vehicle Talos during
the 2007 DARPA Urban Challenge [36]. Data from a
high-precision navigation system, five cameras, 12 SICK
planar laser range scanners and a Velodyne high-density
laser range scanner were synchronized and logged to disk
for 90 km of travel. In addition to documenting a number
of large loop closures useful for developing mapping and
localization algorithms, this data set also records the first
robotic traffic jam and two autonomous vehicle collisions.
In a more recent paper, large, accurately calibrated
and time-synchronized data sets, gathered outdoors in
controlled and variable environmental conditions, using
an GMR and equipped with a wide variety of sensors, are
presented [37]. These include four 2D laser scanners, a
radar scanner, a colour camera and an infrared camera.

4.1.2. Early vision

The first processing stage in computational vision, also
called ’early vision’, consists of decoding two-dimensional
images in terms of the properties of 3D surfaces.
Perceiving the environment is crucial in any application
related to mobile robotics research. Early vision includes
problems such as the recovery of motion and optical
flow, shape from shading, surface interpolation and
edge detection. The results of this processing stage
are used for higher-level tasks such as navigation in
the environment, the manipulation of objects and, of
course, object recognition, as well as reasoning about
objects. Conventionally, vision is said to be early when

it implies little or no semantic interpretation of the
scene. Therefore, early vision excludes higher cognitive
aspects like object recognition and event interpretation
[38]. Unlike high-level vision, early vision is mostly
considered as a set of bottom-up processes that do not rely
upon specific high-level information about the scene to be
analysed.

Early vision faces new challenges due to new imaging
techniques and algorithms. For instance, log-polar
imaging consists of a type of method that represents
visual information with a space-variant resolution inspired
by the visual system of mammals. It has been
studied for about three decades, and has surpassed
conventional approaches in robotics applications [39].
Moreover, real-time human detection through processing
video-captured by a thermal infrared camera mounted
on an autonomous mobile platform has been introduced
[40]. A big challenge arises with multi-sensor systems.
Multi-sensor systems consist of several types of sensors,
which are installed on fixed or mobile devices. These
components provide a huge quantity of information that
has to be contrasted, correlated and integrated in order to
recognize and react on special situations [41].

4.1.3. Active vision

An area of computer vision is active vision, sometimes
also called ’active computer vision’. An active vision
system is one that manipulates the viewpoint of the
camera in order to investigate the environment and
acquire better information from it. Examples of active
vision systems usually involve a robot-mounted camera,
and applications include automatic surveillance, SLAM,
route planning, and so on. Active vision is based
on the controlled movement of the viewpoint of the
imaging camera as an integral part of the image-processing
task. Previously in computer vision research, fixed
camera geometry and static images have been beneficial
in constraining and simplifying image-processing tasks
in order to reduce the enormous complexity of visual
data. Active vision takes a different approach and, by
analogy with animal vision, does not avoid movement but
rather gains information from the dynamics of changing
viewpoints to resolve ambiguities, gain depth information
and establish relationships between visual sensing and
action [42]. Active vision has the goal of improving visual
perception; therefore, the investigation of ocular motion
strategies must play an important role in the design of
robot eyes [43].

Due to its inherent interest, developments in active vision
in robotic applications over the last 15 years have been
surveyed in [44]. A major challenge to the widespread
deployment of mobile robots is the ability to function
autonomously, learning useful models of environmental
features, recognizing environmental changes and adapting
the learned models in response to such changes. The
main contribution of [45] is a survey of vision algorithms
that are potentially applicable to colour-based mobile
robot vision. A first example of a general system for
autonomous localization using active vision was described
over 10 years ago [3]. It is enabled by a high-performance
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stereo head, addressing such issues as uncertainty-based
measurement selection, automatic map-maintenance and
goal-directed steering.

Visual attention is a complex phenomenon. A particular
example of a practical robotic vision system that employs
certain attentive processes is presented in [46]. In
addition, the problem of actively searching for an object
in a 3D environment is studied under the constraint
of a maximum search time using a visually guided
humanoid robot with 26 degrees of freedom [47]. Another
study follows the standard pattern recognition approach
based on four main steps [48]: (i) preprocessing to
achieve colour constancy and stereo pair calibration; (ii)
segmentation using depth-continuity information; (iii)
feature extraction based on visual saliency; and (iv)
classification using a neural network. The main novelty
of the approach lies in the feature extraction step, where
the authors propose novel features derived from a visual
saliency mechanism. Moreover, in [49] the results of
an investigation and pilot study into an active binocular
vision system that combines binocular vergence, object
recognition and attention control in a unified framework
are presented. The prototype developed is capable of
identifying, targeting, verging on and recognizing objects
in a cluttered scene without the need for calibration or
other knowledge of the camera geometry.

Lastly, Kalman filters have received much attention with
the increasing demand for robotic automation. The recent
developments in robot vision are briefly surveyed in
[50]. Among the many factors that affect the performance
of a robotic system, Kalman filters have made great
contributions to vision perception. Kalman filters solve
uncertainties in robot localization, navigation, following,
tracking, motion control, estimation and prediction, visual
servoing and manipulation, and structure reconstruction
from a sequence of images.

4.1.4. Multi-sensor data fusion

Cameras are one of the most relevant sensors in
autonomous robots. One challenge with them is to manage
the small field of view of regular cameras. A method
of coping with this, similar to the attention systems in
humans, is to use mobile cameras to cover all the robot
surroundings and to perceive all the objects of interest
to the robot tasks, even if they do not lie in the same
snapshot [51]. Data fusion is the process of the integration
of multiple data and knowledge representing the same
real-world object in a consistent, accurate and useful
representation. Data fusion processes are often categorized
as ’low’, ’intermediate’ or ’high’, depending upon the
processing stage at which fusion takes place. Low-level
data fusion combines several sources of raw data to
produce new raw data. The expectation is that fused data
is more informative and synthetic than the original inputs.
For example, sensor fusion is also known as ’multi-sensor’
data fusion. Multi-sensor data fusion is the process
of combining observations from a number of different
sensors to provide a robust and complete description of
an environment or process of interest. Data fusion finds

wide application in many areas of robotics, such as object
recognition, environment mapping and localization [52].

There exists the possibility of fusing data from cameras
alone. In this sense, the possibilities of using monocular
SLAM algorithms in systems with more than one camera
are explored [53]. The idea is to combine, within
a single system, the advantages of both monocular
vision (bearings-only, infinite range observations but no
3D instantaneous information) and stereo vision (3D
information up to a limited range). A recent paper [54]
proposes an approach to combine data from multiple
low-cost sensors to detect people in a mobile robot. The
work is based on the fusion of Kinect and a thermal sensor
mounted on top of a mobile platform.

Due to their wide field of view, omnidirectional
cameras are becoming ubiquitous in many mobile robotic
applications. A challenging problem consists of using
these sensors, mounted on mobile robotic platforms, as
visual compasses to provide an estimate of the rotational
motion of the camera/robot from the omnidirectional
video stream. In this sense, [55] presents a multiple-view
geometry constraint for paracatadioptric views of lines in
3D, that are used to design a visual compass algorithm
that does not require either the knowledge of the camera
calibration parameters or the 3D scene geometry.

Camera information can be fused with other sensor data.
The work proposed in [56] suggests how to improve the
accuracy of a mobile robot’s localization by using the
sensor network information, which fuses the machine
vision camera, an encoder and an IMU sensor. In another
work [57], a context-based multi-sensor system applied to
pedestrian detection in urban environments is presented.
The proposed system comprises three main processing
modules: (i) a lidar-based module acting as the primary
object detector, (ii) a module which supplies the system
with contextual information obtained from a semantic
map of the roads, and (iii) an image-based detection
module, using sliding window detectors, with the role
of validating the presence of pedestrians in the regions
of interest generated by the lidar module. A Bayesian
strategy is used to combine information from sensors
on-board the vehicle with information contained in a
digital map of the roads.

4.2. Visual mapping and self-localization

In this subsection, we distinguish between mapping and
self-localization when both are applied independently
as well as when they are applied simultaneously (see
Figure 7). Here, the term ’self-localization’ is used
instead of ’localization’ in order to differentiate it from the
localization of a given object of the robot’s environment.

4.2.1. Self-localization

Localization (self-localization) is the process of
determining the robot’s location within its environment.
More precisely, it is a procedure which takes as input a
geometric map, a current estimate of the robot’s pose and
sensor readings, and produces as output an improved
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Figure 7. A visual mapping and self-localization taxonomy

estimate of the robot’s current pose (position and
orientation) [58]. Indeed, the analysis and classification
of places, and the ability to actively collect information,
are necessary to realizing the autonomous navigation of
intelligent robots in a variety of settings. For instance,
visual data are organized into an orientation histogram
to roughly express input images by extracting and
cumulating straight lines according to a direction angle
[59]. In addition, behavioural data are organized into a
histogram by cumulating motions performed to avoid
obstacles encountered while the robot is executing
specified behavioural patterns. The location of the robot
is classified by merging the probabilities for visual and
behavioural data.

Identifying the location of unmanned vehicles is a very
important task for automatic navigation, as described in
[60]. Conventional positioning sensors may fail to work
properly in some real-world situations due to internal and
external interference. Given a digital surface map, the
location of the vehicle is estimated by the registration of
the map and multi-view range images obtained from the
vehicle. In [61], environmental information acquired from
two sensors is combined and fused by a Bayesian sensor
fusion technique based on the probabilistic reliability
function of each sensor predefined through experiments
for the self-localization of a mobile robot with a monocular
camera and a laser-structured light sensor. In [62], the
authors describe a system for mobile robot localization in
an indoor environment, using concepts like homography
and matching borrowed from the context of stereo- and
content-based image retrieval techniques. A group of
points of interest (POIs) is extracted to represent the image
for robust matching in order to deal with variations with
respect to viewpoint and camera positions.

The work presented in [5] is related to the application
of a visual odometry approach to estimate the location
of mobile robots operating under off-road conditions.
The visual odometry approach is based on template
matching, which deals with the estimation of the robot’s
displacement through a matching process between two
consecutive images. Standard visual odometry has been
improved using the visual compass method for orientation

estimation. For this purpose, two consumer-grade
monocular cameras have been employed. One camera
is pointed at the ground underneath the robot, while the
other is looking at the surrounding environment. In [63],
a more natural approach is presented which dynamically
determines a subset of images that best describes the
complete image data in the space of all previously seen
images. The actual problem of finding such a subset is
called the ’connected dominating set’, which has been
well-studied in the field of graph theory. Lastly, in [64],
features extracted from omnidirectional panoramic images
are used in a method for the localization of a mobile robot
equipped with an omnidirectional camera. Nodes around
the robot are extracted by the correlation coefficients of
a circular horizontal line between the landmark and the
current captured image.

4.2.2. Mapping

Robotic mapping addresses the problem of acquiring
spatial models of physical environments through mobile
robots [65]. Obviously, mapping is performed in both 2D
and 3D, depending upon the camera technologies used.

As regards 2D mapping, there is, for instance, an
autonomous navigation system for an indoor mobile robot
based on monocular vision [66]. The navigation system is
composed of online and offline stages. During the offline
learning stage, the robot records an image frame sequence.
From this sequence, a hybrid environment map is built
with Rao-Blackwell particle filters. The map is partitioned
into topological locations characterized by a set of
geometrical scale-invariant key-points. During the online
navigation stage, the robot recognizes the most likely
location through a robust location recognition algorithm,
estimates the relative pose between the locations, and
then navigates the environment autonomously. In another
approach [67], the environment is represented as a
collection of modular occupancy grids which are added to
the map as far as the mobile robot finds objects outside
the existing grids. Under this approach, a ToF camera is
exploited as a range sensor for mapping.

A 3D mapping technique that learns high-fidelity models
for a geo-specific lidar simulation directly from pose
tagged lidar data has been introduced in [68]. The
approach introduces a stochastic, volumetric model that
captures and reproduces the statistical interactions of
lidar with the terrain. The model is automatically
learnt from 3D mapping data collected by a GMR in the
target environment. On the other hand, RGB-D cameras
(such as the Microsoft Kinect) are quite novel sensing
systems that capture RGB images along with per-pixel
depth information. Of course, such cameras are used
for building dense 3D maps of indoor environments
[69]. Such maps have applications in robot navigation,
manipulation, semantic mapping and telepresence. The
authors present RGB-D mapping, a full 3D mapping
system that utilizes a novel joint optimization algorithm
combining visual features and shape-based alignment.
Visual and depth information are also combined for
view-based loop-closure detection, followed by pose
optimization, to achieve a globally consistent maps.
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4.2.3. Simultaneous localization and mapping

An autonomous mobile robot must have the ability to
navigate in an unknown environment. The simultaneous
localization and mapping (SLAM) problem is related to
this autonomous ability. SLAM is a technique used by
autonomous robots to build up a map within an unknown
environment (i.e., without a priori knowledge) or else to
update a map within a known environment (i.e., with a
priori knowledge from a given map), while at the same
time keeping track of their current location.

Visual SLAM (VSLAM) is probably still one of the most
challenging problems in mobile robotics. Since 2005, there
has been intense research into VSLAM, using primarily
visual sensors, because of the increasing ubiquity of
cameras such as those in mobile devices [4]. Here,
we cite some recent work using different visual sensors.
In [70] a SLAM method is proposed that uses vertical
lines extracted from an omnidirectional camera image
and horizontal lines from range sensor data. Due to
the large field of view of the omnidirectional camera,
features remain in the image for a length of time sufficient
to estimate the pose of the robot and the features
accurately. A real-time hierarchical (topological/metric)
VSLAM system focuses on the localization of a vehicle
in large-scale outdoor urban environments in [71]. It is
exclusively based on the visual information provided by
a cheap wide-angle stereo camera. Additionally, in [72]
a successful real-world implementation of an extended
Kalman filter-based (EKF-based) SLAM algorithm for
indoor environments uses two web-cam based stereo
vision-sensing mechanisms. Lastly in [73], a system called
’continuous appearance-based trajectory simultaneous
localization and mapping’ (CAT-SLAM) is proposed.
The system augments sequential appearance-based place
recognition with local metric pose filtering to improve
the frequency and reliability of appearance-based loop
closure.

The 3D information provided by range sensors has often
been introduced in SLAM solutions, where we can find
scan-matching [74] and probabilistic approaches [75].
These solutions have to cope with a large amount of
data to be processed and stored. Therefore, compact
map representations are also proposed in conjunction with
SLAM solutions [76].

4.3. Visual recognition and localization

As represented in Figure 8, four different fields of
application are identified within the recognition
and localization taxonomy: feature detection and
segmentation, recognition and classification, localization
and pose estimation and, finally, inspection.

4.3.1. Feature detection and segmentation

In computer vision, ’feature detection’ refers to methods
that seek to compute abstractions of image information.
These abstractions are then classified as certain types of
pre-defined features. Feature detection is a low-level
image-processing operation - that is, it is usually
performed as the first operation on an image, examining

Figure 8. A visual recognition and localization taxonomy

every pixel to see if there is a feature present at that pixel.
If this is part of a larger algorithm, then the algorithm
will typically only examine the image within the region
of interest of the features. The goal of segmentation is
to simplify and/or change the representation of an image
into something that is more meaningful and easier to
analyse. Image segmentation is typically used to locate
objects and boundaries (lines, curves, etc.) in images.

In general terms, there are numerous approaches to object
segmentation using robot visual sensors. As an example,
consider a paper in which a simultaneous 3D volumetric
segmentation and reconstruction method, based on the
so-called ’generic fitted shapes’ method, proposed [77].
The aim of this work is to cope with the lack of
volumetric information encountered in visually controlled
mobile manipulation systems equipped with stereo or
RGB-D cameras. Another work [78] introduces a novel
probabilistic method for robot based object segmentation.
The method integrates knowledge of the robot’s motion to
determine the shape and location of objects. This allows
a robot without prior knowledge of its environment to
isolate objects from their surroundings by moving them
and observing the visual feedback. It is also worthwhile
noting point cloud feature extraction algorithms which are
currently being used for the perception to filter outliers
from noisy data, stitch 3D point clouds together, segment
relevant parts of a scene, extract key points and compute
descriptors to recognize objects in the world based on
their geometric appearance, and create surfaces from point
clouds (e.g., [79] and [80]).

In recent years, the spaces where robots work have
generally been expanding into human spaces (traditional
industrial robots aside, which work only at fixed positions
apart from humans). When a robot vision system
is being employed to monitor humans for surveillance
applications, each person in the scene has to be identified.
Humans, however, often move together, and occlusions
between them occur frequently. A probabilistic neural
network is employed to learn the patterns of the best
dividing-position along the top pixels of an image region
of partly occluded people [81]. Furthermore, an in-depth
study has been carried out regarding the possibilities
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of a colour camera placed on top of a robot in order
to discriminate between humans and thus achieve more
reliable person-following behaviour with the robot. In
particular, the authors have reviewed and analysed the
possibility of using the most popular colour and texture
features used in object and texture recognition, to identify
and model the target [82]. At present, real-time human
detection through processing video captured by a thermal
infrared camera is also being considered. A usual
approach starts with a phase of static analysis for the
detection of human candidates through some classical
image processing techniques, such as image normalization
and thresholding. Next, the proposal uses Lucas and
Kanade optical flow without the pyramids algorithm
to filter moving foreground objects from moving scene
backgrounds [83].

In addition, face detection and recognition have wide
applications in robot vision and intelligent surveillance.
However, face identification at a distance is very
challenging because long-distance images are often
degraded by low resolution, blurring and noise. A
person-specific face detection method uses a nonlinear
optimum composite filter and subsequent verification
stages [84]. The filter’s optimum criterion minimizes the
sum of the output energy generated by the input noise
and the input image. In another paper [11], an efficient
facial-feature detection approach based on local image
region and direct pixel-intensity distributions is presented.
Furthermore, an algorithm based on fuzzy rough-sets is
proposed for the recognition of hand postures and faces in
[13].

4.3.2. Recognition and classification

Pattern recognition is the assignment of a label to a given
input value. Object recognition, in computer vision,
comprises the tasks of finding and identifying objects in
an image or video sequence. An example of pattern
recognition is classification, which attempts to assign each
input value to one of a pre-defined set of classes. However,
this set of pre-defined classes can suffer variations (e.g.,
the introduction of new objects into the environment), and
novel categories should be discovered, as is the case in the
proposal presented in [85].

Let us start with some articles related to recognition.
Firstly, there is object recognition for use in mobile
robotics. Deformable models have been studied in image
analysis over the last decade and have been used for the
recognition of flexible or rigid templates under diverse
viewing conditions. The work in [86] addresses the
question of how to define a deformable model for a
real-time colour vision system for mobile robot navigation.
Instead of receiving the detailed model definition
from the user, the algorithm extracts and learns the
information from each object automatically. The resulting
perception module has been integrated successfully into
a complex navigation system. Additionally, in [87],
an image-understanding system and methods targeting
automatic, lighting-independent and reliable colour-based
object recognition under real-time conditions is presented.
Its application test bed is global vision robot soccer,

but it has many other applications in the colour-based
supervision of moving objects. Another work, [88],
presents a systematic approach to the problem of
autonomous 3D object searches in indoor environments
using a two-wheeled non-holonomic robot fitted with an
actuated stereo-camera head and with processing done
on a single laptop. A probabilistic grid-based map
encodes the likelihood of an object’s existence in each
cell and is updated after each sensing action. The
updating schema incorporates characteristic parameters
modelled after the robot’s sensing modalities and allows
for sequential updating via Bayesian recursion methods.

Another challenging proposal explores the concept
of interactive perception - in which sensing guides
manipulation - in the context of extracting and classifying
unknown objects within a cluttered environment [89].
Under the proposed approach, a pile of objects lies on
a flat background and the goal of the robot is to isolate,
interact with and classify each object so that its properties
are obtained. The algorithm considers each object to be
classified using colour, shape and flexibility.

On the other hand, place recognition and environmental
reconstruction are hot topics. For instance, a method
is proposed for visual place recognition using a bag
of words obtained from an accelerated segment to test
so-called ’(FAST)+BRIEF’ features [90]. With this method,
a vocabulary tree that discretizes a binary descriptor space
is built and is used to speed up correspondences for
geometrical verification. Environmental 3D reconstruction
is a strategic task in many contexts, above all, in
infrastructure inspection and automatic vehicular motion.
In [91], a sensor is presented that is capable of recovering
3D data with a very high profile acquisition rate and which
performs omnidirectional, highly accurate environmental
reconstruction: these skills are allowed by a profilometric
laser approach coupled to a catadioptric system.

Lastly, the automatic detection and description of events,
particularly human behaviour, is one of the most
challenging issues, as event interpretation is highly
dependent upon the subject of the robot’s attention, which
is not uniquely specified. To tackle this problem, the
concept of cognitive ontology as a framework for a system
that automatically decides upon the attentive focus and
which describes the events for a robot has been introduced
in [14].

4.3.3. Localization and pose estimation

In computer vision and robotics, a typical task is to
identify specific objects in an image and to determine each
object’s position and orientation relative to some reference
coordinate system. This information is then used, for
example, to allow a robot to manipulate an object or to
avoid moving into the object. The combination of position
and orientation is referred to as the ’pose’ of an object.
The specific task of determining the pose of an object in an
image (or stereo images or image sequence) is referred to
as ’pose estimation’. The pose estimation problem may be
solved in different ways depending upon the image sensor
configuration and choice of methodology.
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Object localization is probably the simplest and most
widespread problem in robot visual localization. Consider,
for instance, a landmark detection and localization
approach using an integrated laser-camera sensor [92].
Another paper presents a combined machine learning and
computer vision approach for robots to localize objects.
It allows a humanoid robot to quickly learn to provide
accurate 3D position estimates of objects seen [93]. In
addition, the approach localizes objects robustly when
utilized in a robot’s workspace at arbitrary positions, even
while the robot is moving its torso, head and eyes.

The problem of estimating the position and orientation
(pose) of an object in real-time constitutes an important
issue for the vision-based control of robots. Many
vision-based pose-estimation schemes in robot control rely
upon an EKF that requires the tuning of filter parameters.
A new algorithm, namely an iterative adaptive EKF, is
proposed by integrating mechanisms for noise adaptation
and iterative-measurement linearization [94]. A recent
paper describes a binary search pose estimation technique
for poses constrained to three degrees of freedom (DOF)
[95]. The technique requires three fiduciary marker
points and operates by minimizing the angular DOF
through a binary search-driven algorithm. The aim of
[96] is to improve the skills of robotic systems in their
interaction with nearby objects. The basic idea is to
enhance the visual estimation of objects in the world
through the merging of different visual estimators of the
same stimuli. A neuroscience-inspired model of stereoptic
and perspective orientation estimators, merged according
to different criteria, is implemented on a robotic setup
and tested in different conditions. In a similar manner,
[97] presents a version of the camera-space manipulation
method (CSM). The set of nonlinear view parameters of
the classic CSM is replaced with a linear model.

Place and scene recognition comprise the next relevant
problem. Although, mobile robotics has achieved notable
progress in increasing the complexity of the tasks that
mobile robots perform in natural environments, we need
to provide them with a greater semantic understanding
of their surroundings. As a distinguishing feature, [8]
uses common objects, such as doors and furniture, as
a key intermediate representation to recognize indoor
scenes. The authors frame the method as a generative
probabilistic hierarchical model, whereby they use object
category classifiers to associate low-level visual features
with objects, and contextual relations to associate objects
with scenes. Another work [98] presents a technique
for place categorization from visual cues called ’place
labelling’ through image sequence segmentation. It uses
change point detection to temporally segment image
sequences which are subsequently labelled. Change
point detection and labelling are performed inside a
systematic probabilistic framework. In addition, [99]
proposes a robust real-time camera pose and a scene
structure estimation system. First, the pose of the camera
is estimated through the analysis of the so-called ’tracks’.
The tracks include key features from the imaged scene and
geometric constraints which are used to solve the pose
estimation problem. Second, based on the calculated pose

of the camera, the scene is analysed via a robust depth
segmentation and object classification approach.

4.3.4. Inspection

In engineering activities, inspection involves the
measurements, tests and gauges applied to certain
characteristics with regard to an object or activity. The
results are usually compared to specified requirements
and standards for determining whether the item or
activity is in line with these targets. The use of image
processing systems in industrial manufacturing and
assembly has significantly increased in recent years. Used
as inspection systems, they enhance product quality and
minimize loss through waste [100].

Three representative examples of visual inspection are
presented. In the first place, a vision-based crack detection
system and algorithm to inspect the base side of bridges
has been developed [101]. After a human operator makes
a decision based on the vision images captured, if the
lines on the base side are cracks or dirt, the algorithm
automatically finds the length, the width and the shape
of the cracks. Another paper [102] describes a mobile
inspection robot with an automatic pipe-tracking system
for feeder pipe inspection. An automatic pipe-tracking
system is proposed based on machine vision techniques to
make the mobile robot follow an exact outer circumference
of a curved feeder pipe as closely as possible, which is one
of the requirements of a thickness measurement system for
a feeder pipe. Lastly, a mobile robot equipped with two
lasers and a charge-coupled device (CCD) camera for pipe
inspection is proposed in [103]. Circular laser streaks that
appeared on the inner surface of the pipe reveal the shape
of the pipe. The 3D shape of a sewer pipe is reconstructed
considering the movement of the mobile robot along the
pipe. Since the tilt of the mobile robot with respect to
the axis of the pipe appears as the deformation between
two circular streaks, the shape of a sewer pipe is measured
accurately, regardless of the tilt of the robot.

4.4. Visual navigation and planning

The fourth ’what for?’ taxonomy is devoted to applications
within the field of navigation and path planning (see
Figure 9), and we identify three different families:
path planning and exploration, trajectory estimation, and
motion planning.

4.4.1. Path planning and exploration

Path planning is the act of finding a path to go from
one location to another one. Exploration occurs when a
robot is placed in an unknown environment and is asked
to construct a map, which will be used for subsequent
navigation, as it moves through the world. The decision as
to where to go next is informed only by data contained in
the partially complete map. Path finding is a key element
in the navigation of a mobile robot. To find a path, a robot
should know its position exactly, since the position error
exposes a robot to many dangerous conditions.
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Figure 9. A visual navigation and planning taxonomy

In relation to path planning, one approach considers
planning paths that are within the sensing and actuation
limits of industrial hardware and software [104]. Building
upon recent advances in path planning, the planner
augments probabilistic road maps with vision-based
constraints. The resulting planner finds collision-free
paths that simultaneously avoid occlusions of an image
target and keep the target within the field of view of the
camera. In addition, virtual reality has been considered for
path planning. In this sense, the localization of a mobile
robot in its working environment is performed using
a vision system and virtual reality modelling language
(VRML) [105]. The robot identifies landmarks located in
the environment. Image processing and neural network
pattern-matching techniques are applied to find location
of the robot. After the self-positioning procedure, the 2D
scene of the vision is overlaid onto a VRML scene.

As regards exploration, in [106] a technique is presented
for mobile robot exploration in unknown indoor
environments using just a single forward-facing camera.
Rather than processing all of the data, the method
intermittently examines only small greyscale images.
The method keeps the robot centred in the corridor by
estimating two state parameters: the orientation within
the corridor and the distance to the end of the corridor.
Furthermore, a novel and efficient auto-navigation system
based on machine vision for an unknown environment
has been developed in [107]. A 3D model using only
the measurements of just a single image is implemented
for 3D object measurement and map building. For path
planning, the well-known A* algorithm is combined with
Floyd’s shortest path to determine the optimal sub-goals
within the image sensing range.

4.4.2. Trajectory estimation

Considering obstacle avoidance for mobile robots, it
is useful to estimate/generate an optimal trajectory
dynamically in terms of safety and efficiency [108].

The work presented in [109] addresses a local environment
recognition system for obstacle avoidance. In vision

systems, obstacles that are located beyond the field of
view (FOV) cannot be detected accurately. To deal
with the FOV problem, the authors propose a 3D
panoramic environment map using a modified SURF
algorithm. Moreover, in order to determine the avoidance
direction and motion automatically, they also propose
a complexity measure (CM) and a fuzzy logic-based
avoidance motion selector (FL-AMS). The CM is utilized to
decide an avoidance direction for obstacles. The avoidance
motion is determined using FL-AMS, which considers
environmental conditions such as the size of obstacles
and the available space. Another paper [110] presents
an obstacle avoidance method for a scout robot or an
industrial robot in an unknown environment using an IR
sensor and a vision system. In the proposed method,
robots share information as to where the obstacles are
located in real-time; thus, the robots choose the best path
for obstacle avoidance.

4.4.3. Motion planning

Motion planning is a term used in robotics for the process
of detailing a task into discrete motions. Motion planning
for GMRs constitutes a domain of research in which
several disciplines meet, ranging from AI and machine
learning to robot perception and computer vision [111].
A basic motion planning problem looks to produce a
continuous motion that connects a start configuration and
a goal configuration, while avoiding collisions with known
obstacles. The robot and obstacle geometries are described
in a 2D or a 3D workspace, while the motion is represented
as a path within the configuration space.

A novel variable, multi-baseline, omnidirectional, stereo
vision system for outdoor mobile robot navigation
is presented in [112]. The proposed algorithm is
implemented on a GPU based on the Nvidia CUDA
libraries. Another paper presents a vision- and lidar-based
approach to autonomous driving on rural and desert
roads that has been tested extensively in a closed-loop
system [113]. The vision component uses Gabor wavelet
filters for texture analysis to find ruts and tracks from
which the road vanishing point is inferred via Hough-style
voting, yielding a direction estimate for steering control.
In a different work, a vision-based control interface for
commanding a robotic wheelchair is presented [114]. The
interface estimates the orientation angles of the user’s
head and it translates these parameters into commands for
manoeuvres for different devices.

4.5. Visual tracking

Three different types of applications are considered as
regards visual tracking purposes (Figure 10): feature
tracking, target tracking and, finally, path following and
tracking.

4.5.1. Feature tracking

Feature tracking is one of the most fundamental operations
in computer vision. It is probably the most popular
means of extracting motion information from a sequence
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Figure 10. A visual tracking taxonomy

of images. Robust feature tracking is a requirement
for many computer vision tasks, such as indoor robot
navigation. However, indoor scenes are characterized
by poorly localizable features. As result of this, indoor
feature tracking without artificial markers is challenging
and remains an attractive problem. The work presented
in [115] proposes to solve this problem by constraining
the locations of a large number of non-distinctive features
by several planar homographies which are strategically
computed using distinctive features.

Key point detection and matching is of fundamental
importance for many applications in computer and robot
vision. The association of points across different views is
problematic due to image features that undergo significant
changes in appearance. Unfortunately, state of the art
methods (like SIFT) are not resilient to the radial distortion
that often arises in images acquired by cameras with
micro-lenses and/or a wide field of view. In [116],
modifications to the SIFT algorithm are proposed to
substantially improve the repeatability of detection and
the effectiveness of matching under radial distortion while
preserving the original invariance to scale and rotation.
The scale-space representation of the image is obtained
using adaptive filtering that compensates for the local
distortion, and the key point description is carried after
implicit image gradient correction.

4.5.2. Target tracking

Target tracking is the process of locating a moving object
(or multiple objects) over time using a camera. The
objective of target tracking is to associate target objects in
consecutive images.

A general approach is proposed for the simultaneous
tracking of multiple moving targets using a generic active
stereo setup in [16]. The problem is formulated on a plane,
in which cameras are modelled as line scan cameras and
targets are described as points with unconstrained motion.
Another paper [117] presents the implementation of a
real-time tracking algorithm in following and evaluating
the 3D position of a generic spatial object. The key issue

of our approach is the development of a new algorithm
for pattern recognition in machine vision - the least
constrained square-fitting of ellipses.

Human tracking is considered as a particular application
area for target tracking. In this sense, [118] introduces a
multi-agent system approach using the detailed process
provided by the Prometheus methodology for the design
of a moving robot application for the detection and
following of humans. Another article proposes an
efficient system which integrates multiple vision models
for robust multi-person detection and tracking, used
for both service and social mobile robots in public
environments. The core technique is a novel maximum
likelihood based algorithm which combines multi-model
detection in mean-shift tracking [10]. Lastly, a paper
addresses the problem of real-time vision-based human
tracking to enable mobile robots to follow a human
co-worker [119]. Here, an approach to combine stereo
vision-based human detection with human tracking using
a modified Kalman filter is presented. Stereo vision-based
detection combines features extracted from 2D stereo
images with reconstructed 3D object features to detect
humans in a robot’s environment.

4.5.3. Path following and tracking

The path following and tracking problems are chiefly
concerned with providing stable motion along a given
path with no a priori time parametrization associated with
movement along a path. More specifically, the control
objective is to drive the output of a control system to the
path in such a way that the path is traversed in the desired
direction [120].

A recent paper presents a novel line of sight control
system for a robot vision tracking system which uses a
position feedforward controller to preposition a camera
and a vision feedback controller to compensate for the
positioning error [121]. The camera is rotated in the
direction opposite to the motion of the robot. The
disturbance compensator consists of two EKFs and a
slip detector. A simple approach for vision-based path
following for a mobile robot is presented in [122].
Based upon a novel concept called the ’funnel lane’,
the coordinates of feature points during a replay phase
are compared with those obtained during a teaching
phase in order to determine the turning direction. The
algorithm is qualitative in nature, requiring no map of
the environment, no image Jacobian, no homography, no
fundamental matrix and no assumption of a flat ground
plane.

A proposal to confront the challenge of designing a
high-performance dynamic visual servo control scheme
is introduced in [123]. Two versatile control laws are
developed: a position-based dynamic visual servoing
and an image-based dynamic visual servoing. Both
control laws are designed to compute the control torques
exclusively from a sequential acquisition of regions of
interest containing the visual features and in order to
achieve accurate trajectory tracking.
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4.6. Visual servoing

Visual servoing, also known as ’vision-based robot
control’, is a technique which uses feedback information
extracted from a vision sensor to control the motion
of a robot. Visual servoing consists primarily of two
techniques. One involves using information from the
image to directly control the degrees of freedom of
the robot, and is thus referred to as ’image-based
visual servoing’ (IBVS). The other involves the geometric
interpretation of the information extracted from the
camera, such as estimating the pose of the target and the
parameters of the camera.

A novel approach for the IBVS of a robot manipulator with
an eye-in-hand camera is presented in [124]. The camera
parameters are not calibrated and the 3D coordinates
of the features are not known. Both point and line
features are considered. In another paper [125], the
image-based regulation control of a robot manipulator
with an uncalibrated vision system is discussed. To
achieve the control objectives, a Lyapunov-based adaptive
control strategy is employed. Another paper proposes
an optimal three-dimensional coordinate implementation
of a vision sensor using two CCD cameras [126].
Position-based visual servoing is implemented using
the positional information obtained from images. The
IBVS is also implemented using the difference between
the reference and the obtained images. Lastly, [127]
presents an image-based visual servoing strategy for the
autonomous navigation of a mobile holonomic robot from
a current pose towards a desired pose, specified only
through a current image and a desired image acquired
by the on-board central catadioptric camera. This kind of
vision sensor combines lenses and mirrors to enlarge the
field of view.

5. How are vision systems applied in GMRs?

There exist several viewpoints as to how to approach
vision in GMRs. In most of them, we can identify the two
main stages that are depicted in the following: perception
and problem modelling. The perception stage receives
as input the data provided by robot sensors and extracts
relevant information for the problem being solved. This
information is then processed to devise models able to
solve the task at hand. Figure 11 shows this ’how’
taxonomy.

5.1. Perception

Perception in vision-based systems can be defined as the
process of extracting information from sensed data. This
information can be then sent to the next processing stages.
As a first alternative, images that directly encode colour
or depth information can be used. These original images
are organized as isolated images [128] or video sequences
[129] with temporal continuity. The second alternative is
related to the use of specific features extracted from the
acquired images. The three main points that affect the
perception process are shown in Figure 12.

Figure 11. A ’how’ taxonomy

Figure 12. A perception taxonomy

5.1.1. Feature extraction

The main advantage of extracting features from the input
images is that redundant or non-relevant information can
be removed or properly reduced. This removal allows for
a decrease in the amount of data sent to classifiers, which
would reduce processing times. However, in some cases it
may be necessary to choose some features based on their
distinctiveness despite the fact that the new features are
larger than the input images.

Feature extraction is performed using general or specific
approaches. In other words, this problem is addressed
by either relying or not relying upon the intrinsic
characteristics of the task environment. The use of
such knowledge is especially interesting for places with
artificial landmarks or previously defined colour-coded
objects, such as the RoboCup competition [130]. There
are several examples of the application of this specific
knowledge in RoboCup (e.g., [87], [131]). Here,
explicit information about players’ marks or localization
landmarks is introduced into the vision systems aimed at
enabling player-localization. Artificial markers (such as
ArToolkit [132] and AprilTags [133]) can also be physically
attached to the robot, which has proved to be extremely
useful for obtaining the real robot position from external
cameras [134].

Regarding the use of standard features, there are two main
alternatives: local features and global features. Local
features are based on extracting information from specific
regions of interest (ROIs) or (previously detected) points
in the image. The number of ROIs varies from one image
to another. Therefore, the number of features and the
dimensionality of the descriptor obtained is not fixed.
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Global features can be seen as a single local feature where
the entire image is always represented as a ROI.

Most global features are based on the use of histograms or
vocabularies which are built from colour [135], gradients
[136] or more complex information, such as composed
receptive field histograms [137]. Since spatial information
is completely removed, global features perform better for
scene recognition [138] than for object detection.

Local features are expected to present several properties:
repeatability, distinctiveness, locality, accuracy and
efficiency [139]. Briefly, local features should generate
similar descriptors for different visualizations of the same
object (people or a scene), but different descriptors for
other objects. Some of the most common local features are
summarized in the following:
• Harris Laplace Corner Detector [140].
• Local Binary Patterns [141].
• Scale Invariant Feature Transform (SIFT) [142].
• Speed-up Robust Features (SURF) [143].
• Fast Corner Detector (FAST) [144].
• Binary Robust Independent Elementary Features

(BRIEF) [145].
• Binary Robust Invariant Scalable Key points (BRISK)

[146].
• Oriented Fast and Rotated Brief (ORB) [147].

Scan lines [148] are also considered as a local feature-based
approach. This technique is useful in estimating the real
distance to colour-coded elements by computing the size
of the object projected onto an image. It was widely
employed in the Standard Platform League (a former
four-legged league) of the RoboCup competition [130],
where AIBO robots were fitted with hardware colour
filters [149].

The feature extraction process can be also applied to 3D
point cloud files instead of visual images. In [150], the
authors present a 3D registration procedure that is based
on the use of fast point features histograms (FPFHs), which
can be considered global features. With respect to the
extraction of 3D local features, a remarkable goal was
achieved with the release of the normal aligned radial
feature (NARF) descriptor [151].

5.1.2. Spatial pyramid

There is an intermediate proposal for generating global
features encoding spatial information. It was introduced
in 2006 [152] and consists of creating a spatial pyramid
where each level corresponds to a new spatial partition
of the original image. A histogram is then computed for
each one of these regions and, finally, all the histograms
are concatenated to produce the global feature. Figure 13
shows an example of a spatial pyramid with two levels
and a partition in both the x and y axes. Hi(j) denotes
the histogram computed for the ith level and subregion j.

In the example shown in Figure 13, the final features
consist of five histograms (of the same size) concatenated
together. Although this technique has proven to
be optimal for several tasks [153] [154], [155], the

Figure 13. Spatial pyramid encoding with two levels

Figure 14. Problem modelling taxonomy

large dimensionality of the final descriptor (increasing
exponentially with level) constitutes its main drawback.
However, the dimensionality of the extracted features can
be reduced in an additional step. This step helps to
increase the speed of future learning and the classification
stages at the expense of deteriorating the performance of
those stages.

5.1.3. Dimensionality reduction

Principal component analysis (PCA) [156] is a common
technique for reducing the large size of pyramidal visual
features. Locality-preserving projections [157] are an
alternative to PCA whereby the neighbourhood structure
of the data set is maintained. Thanks to these approaches, a
features dimensionality is reduced with minimal precision
loss using an unsupervised method. The dimensionality
reduction problem with application to vision systems is
exhaustively studied in [158].

5.2. Problem modelling

The second ’how to?’ taxonomy is devoted to describing
how the vision-based problem is modelled. This stage
maps the specific task into a machine learning approach.
In this way, we have to firstly identify both the number of
classes and the labels for the classes to work with. Next,
it is necessary to construct an appropriate classification
model for the task to be solved. Figure 14 shows the
sub-taxonomy for problem modelling.

5.2.1. Types of classification

There are two main classification types. The first one
corresponds to a standard classification problem - that is,
the problem is concerned with learning from instances
associated with a single label or class. Several robotic
applications fit this approach - some of them in the
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field of semantic scene classification [159]. The class
can be binary (e.g., an indoor/outdoor image classifier)
or multi-label (an sunny/cloudy/night image classifier).
Binary classifiers can be used to create multi-label
classifiers by using one-versus-all or one-versus-one
strategies [160].

Multi-label classification [161] is the second type of
classification problem. In multi-label classification,
instances are linked to two or more classes. This
classification type is motivated by problems such as
image annotation [162] and object recognition [163], where
images present the appearance of several objects (e.g.,
a bird, clouds and a mountain) or annotations (e.g.,
music, indoor, classic). Images with multiple labels
or tags are nowadays easy to collect through social
networks. A good example is the MIR Flickr data-set
[164], which was released in 2008 and contains 25,000
annotated images with 1,386 different classes. The classes
in this kind of classification can be either binary (as in
previous examples) or multi-label. Multi-label classes
are used to solve multi-proposal tasks like global scene
comprehension [6], where there is a list of objects to be
recognized (n binary classes), and the semantic category
of the room has to be detected (multi-label class) as well.

5.2.2. Classifier selection

Once the classification problem has been identified, an
appropriate classification model has to be adopted. In
most cases, such models are trained from a set of samples
in an initial stage (a training stage) to be posteriorly
used during the robot operation mode to identify visual
elements (a classification or recognition stage). In
some cases, however, the information extracted during
perception or feature extraction explicitly encodes the
solution, and no proper classification models are actually
needed (e.g., the use of scan lines for distance estimation
problems).

The first family of models are denoted as ’lazy classifiers’.
The word ’lazy’ comes from the fact that no actions are
performed until a test instance (an image) is present. We
can informally say that the training samples themselves
constitute the classification model. Classification is then
carried out by computing the similarity between the image
to be classified and the set of training instances. K-nearest
neighbours [165] is arguably the simplest lazy classifier.
More complex approaches include locally weighted
regression [166]. Lazy classifiers, despite being simple
and having quite reasonable results for categorization
tasks [167], present one important drawback: the large
amount of data to be stored in memory (the complete
training data sets) during the classification stage as well as
the computational complexity associated with processing
every training sample.

Bayesian classifiers [168] are an alternative. Bayesian
approaches have proven to be optimal for information
fusion [169], which make them appropriate for working
with multiple sources of information (e.g., with several
cameras). Two examples of algorithms coming from the
family of recursive Bayesian estimators are Kalman filters

Figure 15. A ’where’ taxonomy

[170] and the Monte Carlo method [171]. Both algorithms
are standard solutions for solving some of the most
common vision-related robotics challenges, such as SLAM
[172] and object tracking [173]. Bayesian approaches have
also been successfully used in object recognition [174] and
navigation [175].

The third family of classifiers considered in this
sub-taxonomy are support vector machines [176].
This supervised method is widely used for classification
and regression analysis, and it has multiple applications
for robotic vision systems. Some examples include object
manipulation [177], people detection and tracking [178] or
place recognition [179].

6. Where are camera-fitted mobile robots used?

There are two main considerations concerning the location
at which a mobile robot should work. First, environmental
settings determine whether the robot is located indoors or
outdoors. Second, there is additional information given to
the vision system through artificial or natural landmarks
within the scene. A schema of these types of classification
is presented in Figure 15.

These classifications are non-exclusive, as landmarks are
situated in either outdoor or indoor scenes. In this section,
we will review the specific characteristics of outdoor and
indoor environments. We will also see how to use different
types of landmarks - as codes or detected objects - to
provide additional information to the vision system.

6.1. Environment

The environment for a mobile robot is closely related to
its application. It provides useful information for different
tasks, such as localization, mapping and navigation.
Figure 16 shows the three types of environments
considered in this taxonomy.

6.1.1. Indoor locations

The main characteristic of indoor locations is the
geometrical distribution of its elements. This helps to find
geometric models to represent the information provided
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Figure 16. An environment taxonomy

by the vision system and interpret it. Taking advantage
of this geometrical distribution, [180] proposes a position
recognition system based on the straight lines at the sides
of a corridor. A similar approach can be found where
an obstacle distance estimation for corridor navigation is
introduced [181]. Based on a related idea, ceiling vision is
widely used for SLAM applications. The parallel lines and
corners on the ceiling serve can be easily detected and are
relatively useful in localizing an indoor mobile robot, as in
[15] and [182].

Moreover, it might be interesting for a GMR to
identify structured building elements (e.g., ceilings,
walls, columns, and so on). In [183], the structure
of the environment is partially reconstructed with the
edge-information extracted from the image. This
information is then used to detect and track obstacles. In
[184], the authors benefit from the shape of the doors to
develop door detection used to detect room transition in a
localization application. There are several novel examples
of vision systems for GMRs in indoor environments. A
vision system for manipulation is presented in [185], an
obstacle avoidance system is shown in [186], and the
authors in [187] exhibit a vision-based people-tracking
system.

Despite the fact that lighting conditions are not as extreme
as for outdoor environments, vision-based systems have
to be prepared to cope with changing conditions, such
as sunny or cloudy days and even artificial illumination.
This is clearly represented in the RobotVision@ImageCLEF
competition [188], where participant proposals [7] have to
deal with these conditions.

6.1.2. Outdoor locations

Outdoor locations are characterized by irregular terrains
as well as by a high variability in conditions. Terrain
irregularities must be correctly detected to avoid the
mobile robot becoming involved in dangerous situations.
Besides, environmental changes caused by the weather
can have an extreme impact on the vision system due
to illumination variations. On account of this, vision
systems have to be aware of lighting conditions in
order to minimize performance degradation. Given the
irregularities of outdoor locations, terrain classification is
an important task in order for the robot to avoid moving
away from the path [189]. In [190], the authors present
an image-based path planning method for outdoor terrain
environments. Moving objects (e.g., animals, pedestrians

Figure 17. A landmarking taxonomy

and cars) are also something to consider in these kinds of
environments.

To cope with all these different challenges (and also to find
standard vision-based solutions), general feature-based
approaches are commonly used for SLAM, as in [191]
and [71], and also for navigation applications [112]. In
[192], an algorithm for adaptive image segmentation is
proposed. This vision-based solution is used to robustly
identify plants from images captured with a GMR under
uncontrolled outdoor lighting conditions.

6.1.3. Hybrid scenarios

Finally, there exist some GMRs required to work in both
indoor and outdoor locations. In this case, the vision
system must be adaptive enough to properly cope with
both situations. Generally, vision systems for these types
of approaches are based on local feature detection. In
[193], an approach to learning efficient navigation policies
for mobile robots is introduced. It is based on using
SURF visual features for localization. These policies
are applied both to indoor and outdoor scenarios. For
instance, a monocular navigation system based on a map
and replay technique is presented in [194]. This system
allows the robot to navigate in large outdoor and indoor
environments simply by detecting natural landmarks.
In this work, the navigation systems have proven to
be robust when facing real-world conditions, such as
indoor/outdoor changes, changing illumination, minor
environmental changes and partial occlusions.

6.2. Landmarking

In addition to the information provided by the
environment and its structure, the robot acquires
information from landmarks. In order to achieve this
goal, the vision system has to recognize these tags in the
scene. In this subsection, we will define a sub-taxonomy
(see Figure 17) that reviews three of the most common
landmarks used in robotic vision systems: codes, markers
and detected objects and points.

6.2.1. Information codes

Information codes provide additional information along
with the location as which they were extracted. This
type of landmark is easily detected because it is
specifically designed for it. There are different types of
codes to be used, depending upon the information to
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represent. Barcodes are one-dimensional representations
of data with spaces and lines of variable width that
translate into characters. Quick response (QR) codes are
two-dimensional codes that allow the representation of
more data than linear barcodes. For instance, a QR code
with information about its own position and the position
of nearby landmarks is used in [195], while in [196],
two-dimensional barcodes encode their absolute position.

ARTag markers [197] are a new type of landmarking code.
They consist of a pattern with a square border and they
are used in [198] to accurately obtain a mobile robot pose
estimation. Similar to this concept is the AprilTag marker
[133], a visual fiducial system that uses a 2D barcode-style
’tag’, allowing for the full six-DOF localization of features
from a single image. In addition to these examples, specific
landmark codes are designed by using standard shapes.
For instance, a new landmark code based on circles to be
placed in ceilings and employed to identify position and
direction has been presented [199].

6.2.2. Markers

There are some environments where the addition of
landmarks is not necessary, because of their specific
configuration. These environments present inherent
markers that usually consist of geometrical forms at fixed
positions in the scene. Inherent markers do not include any
additional information beyond its localization, but they are
useful for robot localization and navigation.

Some markers are used to limit parts of the scene, as is
the case with the well-known colour lines adopted to limit
robot tracks [200]. Other markers are utilized to obtain
more accurate localization according to the position at
which they are found, such as scattered checker boards
that form a unique map [185].

6.2.3. Detected objects and points

The last approach in landmark usage is based on taking
advantage of fixed objects within the scene and using
them as landmarks. This involves an early step whereby
the robot performs a training stage. During this stage,
the robot recognizes different objects and points (or even
regions or areas) and stores this information for later use.
These landmarks are based on non-moving (and easily
seen) elements within the scene and, therefore, they are
often known as ’natural’ landmarks.

Natural landmark detection is usually performed by using
several descriptors and features [201]. The detection is
carried out from a single location and even from multiple
viewpoints. A fleet of GMRs was used for mapping an
office-like indoor environment - each robot had its own
sensor and all the measurements were fused to create a
global single map in [202].

Another popular approach is the use of ceiling landmark
positions. This method takes advantage of objects like
corners, lamps and doors, and uses its information to
perform localization and mapping [203]. Other objects
like car wheels are also used as landmarks for pose

estimation [68]. For instance, natural landmarks are
matched to salient regions (areas of the environment that
are easily detected) [204]. The landmarks database is
built by moving the robot through the entire path in the
environment while storing the salient regions and robot
location.

7. Conclusions

In this paper we have presented a novel taxonomy of
vision systems for GMRs. The goal of this paper was not
only to describe some of the relevant work and advances
in robotics vision systems, but also to propose a clear
categorization of their internal aspects. The taxonomy
proposed is intended to facilitate the identification of
the main topics related to robotic vision systems. The
questions to be answered (why?, what with?, what for?,
how?, and where?) have been thoroughly discussed
while describing novel and outstanding proposals in the
literature. Thanks to this taxonomy, heterogeneous GMR
vision systems can be more easily classified in order to
compare them better.

While the ’why?’ and ’what for?’ questions can be helpful
in determining the proper application of a GMR vision
system (or an event to discard its use), the remaining
questions are useful when addressing the development
of such systems. Specifically, ’what with?’ deals with
the advantages and disadvantages of a wide range of
alternatives for vision sensors. The ’how?’ argumentation
depicts several solutions to the most common vision
system problems, whereas the ’where?’ question discusses
where to exploit the potential of GMR vision systems.

The importance of robotic vision systems as well as some
of the most promising current research areas have been
detailed and discussed in this paper. It is intended to build
a novel taxonomy that can help to effectively organize and
classify the significantly numerous scientific papers on this
topic written in recent years.
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