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There is a massive transformation in the traditional healthcare system from the specialist-centric approach to the patient-centric
approach by adopting modern and intelligent healthcare solutions to build a smart healthcare system. It permits patients to
directly share their medical data with the specialist for remote diagnosis without any human intervention. Furthermore, the
remote monitoring of patients utilizing wearable sensors, Internet of Things (IoT) technologies, and artificial intelligence (AI)
has made the treatment readily accessible and affordable. However, the advancement also brings several security and privacy
concerns that poorly maneuvered the effective performance of the smart healthcare system. An attacker can exploit the IoT
infrastructure, perform an adversarial attack on AI models, and proliferate resource starvation attacks in smart healthcare
system. To overcome the aforementioned issues, in this survey, we extensively reviewed and created a comprehensive
taxonomy of various smart healthcare technologies such as wearable devices, digital healthcare, and body area networks
(BANs), along with their security aspects and solutions for the smart healthcare system. Moreover, we propose an AI-based
architecture with the 6G network interface to secure the data exchange between patients and medical practitioners. We have
examined our proposed architecture with the case study based on the COVID-19 pandemic by adopting unmanned aerial
vehicles (UAVs) for data exchange. The performance of the proposed architecture is evaluated using various machine learning
(ML) classification algorithms such as random forest (RF), naive Bayes (NB), logistic regression (LR), linear discriminant
analysis (LDA), and perceptron. The RF classification algorithm outperforms the conventional algorithms in terms of accuracy,
i.e., 98%. Finally, we present open issues and research challenges associated with smart healthcare technologies.

1. Introduction

Over the past decade, the healthcare industry has witnessed
a drastic improvement in treatment procedures and meth-
odologies. It majorly comprises healthcare professionals,
medical equipment, laboratories, etc., to provide appropriate

medical facilities for the patients [1, 2]. In the traditional
healthcare system, patients have to be present physically to
interact with doctors for their treatment [3]. But, as esti-
mated in [4], it is getting challenging for the traditional
healthcare system to monitor a huge number of patients
with chronic diseases. Especially, approximated in the
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research study [4], with the increase in population, senior
citizens are going to be most affected by a serious illness in
the next 20 years. Due to this, they have to regularly get their
checkup done or meet doctors, which involve the endurance
of high costs for the medical treatments. As predicted from
the year 2017 to 2027, costs involved in healthcare in the
USA are going to witness a huge increase from 17.9% to
19.4% of the GDP [5]. Therefore, healthcare systems have
to monitor patients to handle a huge number of patients
with chronic diseases and make the treatment affordable
and easily accessible to them. Otherwise, due to delay in
treatment or cost issues, patient may not get the required
medical treatment for their illness [1–6].

Therefore, the traditional healthcare system is gradually
digitizing into the smart healthcare system with the advance-
ment in the Internet of Things (IoT), smart devices, and
emerging information technology (IT) [7]. A smart
healthcare system helps doctors to monitor patients
remotely. As mentioned earlier, patients have to meet or
get an appointment to communicate with the doctors
depending on their illness regularly. It can be difficult for a
person with a physical disability to depend on someone to
get their checkup done by the doctors. So, smart healthcare
systems help to keep track of patients’ health with early iden-
tification of illness, reduced traveling, lowered hospital costs,
less burden on hospital staff, etc., with the help of emerging
technologies [8]. According to [9], smart healthcare can be
defined as communication between patients and doctors to
monitor patient’s health regularly. The smart healthcare sys-
tem can observe patients’ health at a distance based on the
two principles using various technologies and smart devices.
One such principle is using wearable and implantable
devices (WID) combined with sensors, IoT, and artificial
intelligence (AI) which can be used to communicate a
patient’s body symptoms or traits wirelessly [9]. Nowadays,
doctors are utilizing wireless sensor networks such as wire-
less body area networks (WBAN) to monitor patients’ health
and provide them reliable and efficient treatment [8, 10].

Another principle can be the utilization of advanced IT
techniques such as IoT, cloud, and big data to process and
extract the filtered data about the patient’s health and illness
symptoms from the WID with the help of WBAN [11]. This
data can be further transmitted to the healthcare profes-
sionals or staff to monitor the patient’s health accordingly.
For example, if a patient is suffering from an incurable dis-
ease, they can be immediately admitted to the hospital by
informing their staff about the situation. But, if the patient
can be treated remotely by providing them with some pre-
scription, then it can reduce the burden on medical staff
and also reduce the costs for patients traveling, leading to a
decrease in their overall costs [12].

Therefore, smart healthcare and its advanced technolo-
gies completely digitize the traditional healthcare industry
so that healthcare professionals can keep track of patients’
body symptoms to cure the disease accordingly. Many
researchers have surveyed various smart healthcare technol-
ogies using different wearable sensors and devices. For
example, Balakrishnan [13] presents a brief survey on IoT-
based frameworks to monitor patients’ health using edge

or fog computing technologies for intelligent healthcare.
Sadawi et al. [14] conducted a survey on IoT and
blockchain-based architecture to ensure the security and effi-
ciency in the system using dew and cloudlet computing. It
mainly focuses on providing privacy and efficiency for the
healthcare or supply chain management sector [15, 16].

Later, Dong and Yao [17] also presented an extensive
IoT-based survey to control and prevent COVID-19
combined with fog-cloud platform. They have reviewed the
various technologies such as AI, big data, and fog computing
to prevent the effect of COVID-19. The authors in [18] pres-
ent a comprehensive survey on machine learning-based big
data analytics for IoT smart healthcare systems to overcome
the challenges of the traditional healthcare system. Sobhan
et al. [19] also surveyed machine learning techniques
integrated with various sensors and their technologies to
monitor patients remotely if they are suffering from heart
or breathing-related diseases.

Now, most researchers have presented architecture to
overcome the security and privacy issues of the smart
healthcare system for remote patient monitoring. But, they
have not discussed the latency and various security attacks in
their surveys such asmodification attack, integrity attack, tam-
pering with data, DDoS attack, and single point of failure that
can occur in transmitting the data of patient’s health and their
private information to the healthcare professionals. Therefore,
an AI-based architecture integrated with a 6G communication
network is proposed for smart healthcare technologies to
mitigate the aforementioned issues. We have conducted a
comprehensive survey on smart healthcare technologies such
as wearable devices, body area networks, and digital healthcare
systems that can remotely monitor patients. We have intro-
duced an AI-based architecture to enable the secure, efficient,
and reliable processing of patients’ health data using the RF
classification method. The incorporated 6G communication
network with its features of low latency ð<1msÞ and high
availability ð<99:99999%Þ ensures efficient and reliable com-
munication between patients and doctors. This helps get the
healthcare staff the required information about the patient’s
health to give them prescriptions accordingly.

Figure 1 presents the technological revolutions in smart
healthcare technologies, which initiates from 2001 in which
first telesurgery was performed. After that, several technolo-
gies were introduced in smart healthcare, with the emer-
gence of telemedicine and AI in 2020 and 2021. In the
future, advancements in smart healthcare technologies can
introduce virtual medical centers with the assisting robots
for remote monitoring of patients.

1.1. Scope of the Survey. Smart wearable technology requires
observing the activities of the human body continuously.
The BANs consisting of human movement detection
systems, body sensors, devices, and sensor networks for
monitoring human activities along with its challenges are
presented in [20]. A remote IoT-driven health monitoring
system for ill patients is required in times of emergency. In
this aspect, Shaikh et al. [21] presented several healthcare
strategies and challenges using IoT. Medical data is complex
and analyzing big data for predicting required results is even
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more difficult. Saranya and Asha [22] discussed various
machine learning algorithms used in big data analytics, the
importance of big data analytics in healthcare, and charac-
teristics features of big data.

Cloud of Things (CoT) is aimed at providing extensive
computing comprising IoT capabilities in an on-demand
fashion. Mahmoud et al. [23] surveys CoT architectures
and their application in healthcare and emphasizes energy-
efficient solutions, in which quality of service and perfor-
mance is considered. E-healthcare, U-healthcare, wireless
health checking, etc., are different healthcare techniques
used in IoT. Diwaker et al. [24] focuses on the same along
with security and privacy methods for healthcare applica-
tions. Multimodal data-driven methods have been a driving
force for smart healthcare systems with various applications
from disease prediction to diagnosis and treatment. Cai et al.
[25] proposes types of decision-making processes, multi-
modal association mining, and multimodal data fusion that
have been employed in healthcare systems.

Mobile-healthcare devices play a significant role in
exchanging data between doctor and patient. So, blockchain
technology proposed in [26] protects data using consensus
algorithms and smart contracts to provide design for an
attack-free secure model. Cyber-Physical Systems (CPS)
have diverse applications in healthcare, Amin et al. [27]
presented a survey of state-of-the-art applications for moni-
toring and medication intake along with challenges like
security, system usability, heterogeneous data management,
and energy consumption. The context-awareness feature
deals with users’ contextual information based on current
situations. Due to its importance, Vahdat-Nejad et al. [28]
classified several context-aware healthcare systems along
with their advanced techniques and shortcomings. Fog com-
puting is aimed at providing services with less latency and
high data security. Shakir and Karimpour [29] presented
various fog computing platforms to perform balancing of
the load in smart healthcare applications.

Recognizing patients’ emotions using deep learning algo-
rithms helps build efficient healthcare surveillance systems.
Dhuheir et al. [30] presented a neural network-based
healthcare monitoring system using speech, facial, and
audio-visual emotion recognition. Yang et al. [31] reviewed
IoT-enabled mobile healthcare technologies along with
studying detailed smart health monitoring systems and types
of sensor devices used along with IoT. Kadu and Singh [32]
surveyed e-Healthcare telemedicine systems based on the
Internet of Medical Things (IoMT) and AI, which facilitates
in managing information creating significant improvements

in the global health sector, especially telemedicine. Balakrish-
nan [13] presented a survey on IoT-based intelligent frame-
work for healthcare. They studied the hybrid model of cloud
and IoT design and AI used for wearable sensor networks
and real-time applications, providing early medical care
designs to the most recent fog computing smart healthcare
frameworks [33]. Zhang et al. [34] deliver a comprehensive
analysis of security and privacy risks, requirements, and solu-
tions using blockchain applications in healthcare.

Table 1 shows the comparative analysis of various state-
of-the-art smart healthcare surveys with the proposed
survey. All these surveys conducted by the researchers have
not included the security and privacy issues of patients’
health data in smart healthcare systems. To fill this gap, we
have presented an exhaustive survey on smart healthcare
technologies, including wearable devices, BANs, and the dig-
ital healthcare system. An AI-based architecture is proposed
to secure the patients’ privacy data while transmitting it to
medical staff for prescription or treatment.

1.2. Motivation

(i) As per the literature, most researchers have sur-
veyed the smart healthcare technologies for remote
monitoring of patients, but they have not consid-
ered all the smart technologies, including wearable
devices, body area networks, and digital healthcare

(ii) The existing literature mainly emphasizes monitoring
patients using smart healthcare technologies such as
IoT and cloud for smart healthcare, which is vulnera-
ble to latency, reliability, and various security attacks.
Also, there is no discussion on a case study for smart
healthcare technologies to ensure patient data privacy

(iii) Motivated from this, we have presented a compre-
hensive survey on smart healthcare technologies
such as wearable devices, body area networks, and
digital healthcare to monitor patients’ health with
security, efficiency, and reliability. We have also
studied a case study based on the UAV-assisted
secure healthcare for the COVID-19 outbreak

1.3. Research Contributions. The major research contribu-
tions are listed as follows.

(i) We presented an exhaustive survey on smart
healthcare technologies, including wearable devices,
BANs, and the digital healthcare system

First telesurgery
performed

Adaptive
artificial knee

3d-printed
body parts

Nerve controlled
artificial limbs

Transplanted
womb

Telemedicine
adoption

AI in
healthcare

Virtual medical
centres

Future
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2004

2013

2016
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Figure 1: Timeline of smart healthcare technologies.
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(ii) We proposed an AI-based healthcare architecture
incorporated with 6G networks to enable secure
and transparent real-time data transmission
between doctors and patients

(iii) We presented a case study on UAV-assisted secure
healthcare for the COVID-19 outbreak

(iv) Finally, we highlighted various open issues and future
research directions in smart healthcare technologies

1.4. Methods and Materials. This paper is aimed at providing
a deep understanding of smart and secure healthcare by
adopting AI and a 6G network. The authors started with a

Table 1: Comparative analysis of various state-of-the-art smart healthcare surveys with the proposed survey.

Author Year Purpose Pros Cons

[21] 2018
Survey of smart healthcare

systems using IoT

Improved safety for patients, better
decisions related to patient’s health, easy
access to information, and resources

Data integrity, reliability, trust management
issues, security issues with sensor data, and

no focus on efficient communication

[22] 2019
Survey on big data analytics

in healthcare
Better EHR maintenance, efficient, and
emergency prediction for patients health

No consideration of security attacks such as
modification attack, integrity attack, and
DDoS attacks against patients health data

[23] 2019
CoT for healthcare, a survey

on energy efficiency
perspective

Investigated solutions to deal with energy
efficiency issues

Scalability issues, quality of service, and
performance issues

[24] 2019
Survey on IoT healthcare

techniques
A feasible solution to monitor patients

remotely
Security and privacy issues in IoT-based

devices

[25] 2019

Survey of multimodal data
driven-smart healthcare

systems, its approaches and
applications

Intelligent decision making and interactive
decision support using healthcare devices

Challenges in big data utilization and no
discussion of various security and

malicious attacks

[26] 2020

Survey on consensus
algorithms for mobile-
healthcare in blockchain

network

Security against 51% attack and double-
spending attack

Attacks on the network in healthcare
devices, no process discussed to update the
data during failure time in blockchain

[27] 2020
CPS and smart homes in
healthcare, its current state

and challenges

Medication reminder systems in smart
homes, detection of pill ingestion, an

improved system for people with cognitive
impairment, and medical status monitoring

in smart homes

Security and privacy issues, no method for
heterogeneous data management, no focus

to reduce energy consumption, and
collaboration between different systems are

the significant issues with the safe
integration of CPS

[28] 2021
Survey on context-aware

healthcare systems

Improved assisted living for patients, a
better quality of contextual information,

better management in emergency situations

Focuses only on a few diseases and
particular contextual information, no effort

to categorize new types of illness

[29] 2021
Survey on load balancing in
fog computing in smart

healthcare systems

Reduced access time, low energy
consumption, improved accuracy, and high

productivity

No consideration of transmission cost of
data, degradation in performance in data

transmission

[30] 2021

Survey on emotion
recognition for healthcare
surveillance systems using

neural networks

Help detect depression and stress early in
order to start medication and monitor

patients

Facial and speech recognition can be
misleading in monitoring a patients’ health

[34] 2021
Survey on security and
privacy for healthcare

blockchain

Provides security and privacy risks,
requirements, technologies, applications,

and solutions for the same

Only focus on security leads to less
advancements in smart healthcare

technologies and functions

[35] 2021
Survey on integration of
blockchain and AI in EHR

sharing

Increased efficiency, service, personalization
by integrating technologies, and solutions

for improving healthcare ecosystem

Highly prone to security breaches and
various malicious attacks

[31] 2022
Survey on IoT-enabled

mobile healthcare
technologies and challenges

Combine different techniques to support
professional and commercial health

monitoring IoT networks
Security and privacy issues on patient data

The
proposed
survey

2022
Survey on smart healthcare
technologies using AI-based

secure architecture
Secure against various attacks —
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literature review to form a concrete taxonomy on various
smart healthcare technologies and different attacks possible
on those technologies. The authors have explored different
research articles from reputed research databases such as
IEEEXplore, Springer Nature, Science Direct, Elsevier, MDPI,
ACM digital, IET, Wiley, and technical research blogs from
the Internet. The keywords used in traversing this topic were
smart healthcare, smart and secure healthcare, wearable tech-
nologies, wireless body area network, IoT sensors in smart
healthcare, AI/ML techniques in smart healthcare, and open
issues and challenges in smart healthcare.

1.5. Organization. The organization of the rest of the paper is
as follows. Section 2 presents a taxonomy of smart
healthcare technologies. Section 3 provides the security
aspects of smart healthcare. Section 4 discusses the proposed
approach for smart healthcare. Section 5 elaborates the case
study of our proposed architecture for the COVID-19 out-
break based on UAVs. Section 6 provides the various open
issues and research challenges in smart healthcare. Finally,
Section 7 concludes the paper.

2. Taxonomy on Smart
Healthcare Technologies

Smart healthcare technologies have gradually developed.
These technologies use the IoT, big data analytics, ML,
blockchain, and AI to make healthcare more approachable,
efficient, and personalized. We present some key technolo-
gies and applications of smart healthcare like wearable
devices, body area networks, and digital healthcare as shown
in Figure 2. These can be presented as follows.

2.1. Wearable Devices. Wearable devices in healthcare facili-
tate a patient to maintain their health actively. To be diag-
nosed early for timely treatment, patients can keep track of
their body symptoms, such as heart rate monitoring and
any chronic disease symptoms. This helps doctors to use this
data to provide personalized healthcare plans. Table 2 shows
the analysis of various state-of-the-art smart healthcare
schemes for wearable devices. We can classify these wearable
devices into five categories, which are mentioned as follows.

2.1.1. Head-Mounted. It consists of devices worn over the
head/neck area. They are mainly used to assist surgeons,
provide valuable solutions to patients, and improve the pop-
ulation’s overall health. We identified five subcategories
within head-mounted, which are mentioned as follows.

(1) Smart Eyewear. Smart glasses have gained popularity due
to virtual reality and augmented reality advancements. The
features of smart glasses are Bluetooth, focus camera, photo,
video viewer, microphone, Global Positioning System (GPS),
information storage, gyroscopic sensors, accelerometer,
communication-notification, gaming, etc. Smart eyewear
has real-time applications in many sectors, as mentioned in
[47]. In an atmospheric study, in the chemical industry to
sense harmful gases, in the food sector to scan food packets
and quality check, virtual gaming, in healthcare, smart

glasses are used to provide voice-enabled instruction to blind
patients and varied applications. Kim et al. [48] proposed
unique smart glasses for human visual augmentation based
on human intention and scene and converting the view into
speech. Later, the authors in [49] presented a smart eyewear
for free walking using spatial mapping, mixed reality, and
motion tracking. Even after having many features, smart
eyewear’s industrial usage is less due to safety issues, privacy
issues, and less awareness of usage.

(2) Headphones. Bluetooth headsets were among the first
wearable devices designed to make hands-free calls, play
music, take voice commands, make customized settings on
the mobile, provide sensors for activity detection, real-time
language translation, and real-time noninvasive feedback.
Due to these features, it can offer great competition to the
wrist bands if issues like lower battery life and other lower
processing capacities are solved [50]. Rosa and Yang in
[36] discussed that headphones could also be used for
cardiovascular and stress management with the ECG,
impedance, and acceleration monitors. Then, Baumgartner
et al. [51] proposed a self-fitting headphone for mild-to-
moderate hearing loss with features to adjust the volume of
acoustic signals as well as the dynamics.

(3) Hearing Aids. People having hearing loss have increased
in the past decade, leading to the eventual increase in the
usage by the suffering ones. Hearing aids provide hearing
solutions and perform personalized functions. Previously,
hearing aids had different problems like the poor sound
quality and background noises. The advancement in digital
signal processing has improved the performance of hearing
aids and Bluetooth low energy protocol, enabling it to
answer phone calls, provide voice assistance, listen to music,
launch apps on smartphones, etc. A hearing aid can be intel-
ligently used for audio noise cancellation, creating personal
sound zones, specific audio broadcast, public audio alerts,
and customized sound streaming for objects using Bluetooth
low-energy-enabled hearing devices as presented in [52].
The traditional hearing aids amplify multisource sound,
which leads the wearer to be unable to abstract the exact
information conveyed when the source objects are television
or mobile phone. Rajan et al. [53] proposed an IoT-based
secured and efficient hearing aid based on chip property of
microcontrollers that helps in the separation of acoustic
sounds. Then, Han et al. [54] presented a system based on
deep neural networks to reduce environmental noises and
provide real-time speech enhancement.

(4) Immersive Helmets. These are virtual reality helmets
having a small optic display in the front. They have many
features like 3D video gaming. In medicine, during opera-
tions, they facilitate a surgeon with X-ray data andMRI imag-
ining along with the real view of the patient. It helps in
aviation by including protective visors and night vision
devices. In themilitary, it helps by displaying information like
maps and thermal imagining data, and in engineering to view
3D views of computer-aided designs, in the entertainment
industry by providing virtual cinema and much higher
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resolution. These helmets are also used in training like driv-
ing, shooting, welding, and medical training, where the real-
life training is either too costly or life-threatening [55, 56].

(5) Neural Interfaces. These devices interact with the nervous
system to stimulate or record activities. These devices are
either placed internally in the brain, externally connected,
or inserted in the nervous system to guide an activity or
record movements. They are currently used to treat brain
tremors and Parkinson’s disease as movement simulators
and cochlear implants to covey speech to people with hear-
ing loss. It can be used to boost memory or concentration
by transcranial stimulation and by the gamer to control
digital objects and play without any physical contact as
discussed in [57]. In the future, the neural interface devices
have a high scope of development in fields like direct
brain-to-brain communication, monitoring activities to sup-
port good health, and enhancing human concentration
power and memory. But, due to critical issues such as pri-
vacy, human rights, and autonomy, neural interface devices
are not used popularly.

2.1.2. Wrist/Handheld. Wrist-held smart devices’ main
application is fitness tracking, contactless communication,
and notification. It comprises of wearable devices worn on
the wrist or hand. We identify four categories within wrist
held smart devices, which can be defined as follows.

(1) Smart Watches. They are one of the most popular wear-
able devices. Usually, smartwatches can function in two
ways, as presented in [58]. Firstly, communication and noti-
fication by connecting to other devices using Bluetooth and
complementing features like receiving notification calls,
performing microinteractions like taking voice commands,
limited web browsing, setting reminders, and app launching
on mobile. Krainyk et al. [59] proposed another function,
i.e., monitoring human physiological signals and biome-
chanics, thus providing fitness tracking. Users can record
their day-to-day activities like workout time, calories burnt,
sleep time, and step count. Enamamu et al. in [37] state that
they can also be used to determine heart rate and body tem-
perature using galvanic cell response and also remind users
of personal activity as mentioned in [60], thus benefiting
an individual’s health.

(2) Wrist Bands. These devices have similarities with smart-
watches but do not have a display screen to perform func-
tions like communication and detailed monitoring of
human signals. Wrist bands are specially designed to track
health and fitness activities and have a limited form factor
compared to smartwatches. Cai et al. in [61] presented their
features like heart rate trackers, pulse oximeter, EEG tracker,
ECG tracker, calories burnt, and step count. Rao et al. [62]
show that step count and daily activities are tracked differ-
ently in various fitness bands and provides how daily activi-
ties can be assessed for helpful health predictions along with
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Figure 2: Taxonomy on smart healthcare technologies.
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the methods for accurate fitness activity measurement.
Kumar and Mufti [45] show the impact of coronavirus on
global cloud-based wearable tracking devices, which facili-
tated monitoring and tracking of patients without transmis-
sion of virus hence lowering the burden of doctors at the
time of shortage of workforce.

(3) Gesture Control Devices. These devices can recognize and
stimulate movements in the human body, allowing one to
interact with and control objects without direct physical
contact. It enables a user to perform hand gestures to con-
nect with smartphones and perform various functionalities
with hand gestures as input signals. These devices consist

of a portable accelerometer and surface electromyographical
(EMG) sensor as discussed in [63]. It is beneficial for impaired
or disabled patients for interaction and communication pur-
poses. Gourob et al. in [43] discussed these devices that can
be utilized as vision-based gesture recognition system.

(4) Smart Rings. As they are small, they tend to have specific
and limited features compared to smartwatches and wrist
bands. They are generally designed to alert users about noti-
fications on mobile phones, make secured payments, and
track human activities, and also can be used as a safety
device in case of emergency [64] and provide ambient sens-
ing. Smart rings establish synergy between the tech and

Table 2: Comparative analysis of various state-of-the-art smart healthcare schemes for wearable devices.

Author Year
Wearable
devices

Objectives Pros Cons

Rosa and
Yang [36]

2017 Headphones
Proposed a smart wireless

headphone for cardiovascular and
stress monitoring

Reduces power expenditure, saves
computational resources, increases life

expectancy

Reliability issues, relevance
of physiological retrieved
data is not completely

trustable

Enamamu
et al. [37]

2017 Smart watch

Presented a smart watch-based
body temperate authentication
using galvanic skin response

sensors

Increased functionality, capacity, easy
communication, and secured
authentication technique

Does not function if varied
body temperature found
due to health issues, time-

consuming

Ko et al.
[38]

2017
Tracking
sensors

A single camera-based 3D
tracking for outdoor fall detection

towards smart healthcare

Accurate human tracking, improved
performance, compact structure, and

an advantage for elders

Camera distance limitation
and complex

Gacem
et al. [39]

2019
Smart
eyewear

Presented smart assistive glasses
equipped with augmented reality

for Alzheimer’s patient’s

Increases independence, cost-efficient,
and location tracking

Security and privacy issues
for patients, removal of

glasses proves to be risky for
patients

Zhang
et al. [40]

2019 E-tattoo
Proposed an out of hospital care,
body movement data collection

using e-skin sensor

Improves quality of chronic pain
management, early diagnosis, and
prevents unnecessary admission to

hospitals

Security issues, data
collected cannot be trusted

in all situations

Baek et al.
[41]

2020 Smart shoes
Presented a deep learning-based
heart rate estimation using smart

shoes sensor

Easy to record, robust, accurate
estimation

Inconvenient to use when
direct contact to users

required

Rabbani
et al. [42]

2021 Implantable

Proposed an implantable
fluorescence image sensor for

monitoring of immune response
in cancer therapy

Real-time monitoring, exact disease
progression, therapy assessment, and

provide personalized care

Imposes higher latency,
small amount of disruption

caused

Gourob
et al. [43]

2021
Gesture
control
device

A robotic hand that is controlled
with vision-based hand gesture

recognition system

Easy human-robot interactions for
patients to function using hand

gestures and used in adverse places

Multiple interpretations,
complex nonrigid

properties of hand, and
recognition issues

Basaklar
et al. [44]

2021
Smart
clothes

Presented a wearable device and
low-power design for smart health

applications, challenges, and
opportunities

Low-power consumption, accessible,
provides personalized care, provides
early diagnosis, and no manual

charging required

Comparable size and weight
constraints, not comfortable

always

Kumar
and Mufti
[45]

2021
Wrist

handheld
devices

Presented impact of coronavirus
on global cloud-based wearable

tracking devices

Remote health monitoring, screening,
tracking all without transmission of
virus, decreases burden of healthcare

industry

Security and privacy issues
of patient data

Behera
[46]

2022
Sensor
patches

Discussed chipless RFID sensors
for wearable applications

Wireless data capturing, on-body
sensing, and real-time monitoring of

vital signs

Security and privacy issues
and costly for mass
implementation
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fashion industry, and in the next few years, we might see
expensive smart rings made out of gold. The authors in
[65] discussed the application of smart rings; i.e., they can
be connected to smartphones using Bluetooth and provide
wireless charging without impacting the users.

2.1.3. Skin-Based Smart Devices. These devices can be
adhered to or tattooed on the skin. They can be classified into
three major categories, i.e., sensor patches that are microde-
vices embedded with sensor, E-tattoo, and E-skin which are
miniature real-looking tattoo or skin patches integrated with
sensors and circuits. Their primary function is to monitor
essential vital signs in the human body, disease diagnosis,
and monitoring. These devices are classified as follows.

(1) Sensor Patches. These devices are designed for sensory/
haptic applications to monitor human body physiological
signals and postural activities as investigated in [58]. They
are generally used to determine essential vital signs monitor-
ing, body temperature, postures, heart rate, pulse rate, track
medication taking, etc. The haptic application includes low-
ering depression levels, posture training, drug delivery to
specific body parts, and disease diagnosis. Sensor patches
are connected to the display-enabled smart devices using
Bluetooth or radio frequency signals. Zhang et al. in [66]
explored a similar design to flexible strain sensors with a
wide working range and reliability that can be used in
human motion monitoring. Behera [46] presented a unique
chipless RFID sensors which are traditionally costly for mass
usage in wearable devices. The framework provides wireless
data capturing, on-body sensing, and real-time monitoring
of vital signs.

(2) E-Tattoo. They are seen as temporary tattoos that use
flexible circuits for wireless data transmission and sensory
purposes. Due to their persistence on the body for a long time,
they should be ultra-thin and ultra-soft and exhibit high per-
formance. Lu [67] designed an electronic tattoo that possesses
the abovementioned features and can even be applied as
human-mimetic robots. Their functions include observing
human biological signals, communication, notification, and
making secured chip-based payments. Yin et al. [68] explored
these E-tattoos that are comfortable and versatile as they com-
prise of microphone for voice assistance and body sensors to
detect human essential body rates like ECG, temperature,
and hydration and also provide customized functions.

(3) E-Skin. They are used in the form of electronic skin,
which is stretchable and comfortable, having similar features
with E-tattoo smart devices. They are used for cardless
secured payments, adverse environment detection, data
transmission, health data collection, movement detection,
treatment of diseases virtually, preventing unnecessary
admissions to hospitals, improving quality of chronic pain
management in patients’ bodies, etc., thus improving the
overall medical and healthcare facilities as proposed in [40].

2.1.4. Body Wear Devices. It comprises of mainly clothing
items that serve as smart wearables such as smart clothes,

smart shoes, and smart belts. They are majorly used for
monitoring human physiological signals, biomechanics,
health and activity monitoring for early diagnosis and prog-
nosis, ambient sensing for hazardous environments, and
sensory-haptic applications such as therapeutic messages.

(1) Smart Clothes. They provide affordable and accessible
smart healthcare options with the help of edge computing,
wireless sensing, electronic surveillance, and low-powered
architectures. These devices help in providing more person-
alized health solutions. Yang and Cheng [69] presented the
wide variety of stretchable sensors, which facilitates the
collection of real-time data without disturbing users’ daily
activities and reports of children, old, and chronic patients.
Sensors like accelerometers, gyroscopes, and magnetometers
are embedded into small packages. Similarly, flexible sensors
in the clothes measure hip and knee angles and biosensors
track activities like ECG and EMG rates. Finally, AI algo-
rithms process the real-time data and connect it to smart
health applications installed in smart mobile phones as
discussed in [44].

(2) Smart Shoes. They comprise an integrated monitoring
circuit and sensors that provide fitness and biomedical infor-
mation, including movement tracker, step counter, calories
burnt, foot oxygen concentration, and heart rate determina-
tion. Bluetooth is used for wireless communication between
the display platform and the module system. Hwang et al.
[70] proposed a system in which pressure sensors shut down
the devices to prevent unnecessary battery usage when no
pressure feedback is received on shoes. Various smart shoes
systems have been proposed like real-time monitoring of
patients using smart shoe insole system [71], healthcare shoe
system to monitor gait in elderly patients, and foot odor
detection as studied in [72].

(3) Smart Belts. Smart belts as smart wearable devices have
various applications in healthcare. They can be used to cor-
rect posture, help in reducing abdominal obesity as studied
in [73], fetus health monitoring in pregnant women using
flex sensor belts [74], and analyzing body data. The main
focus is to provide proper guidance regarding overall health
by tracking daily activities like sitting time, step count, and
waist size.

2.1.5. Other Devices. They consist of other wearable devices,
such as implantable sensors inserted in the body parts,
straps, various tracking sensors, and safety devices for mon-
itoring and analyzing a person’s health. These devices can be
described as follows:

(1) Implantable. Implantable electronic devices can detect
medical changes and immediately take action like therapeu-
tic measures, diagnosis, and treatment through a single
message. They comprise of sensors, actuators, and signal
processing protocols. These devices are surgically implanted
into the human body. These devices are highly energy-effi-
cient, integrated circuits, and work on their own power for
a long time. They are used to electronically stimulate the
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nervous system to treat pain, depression, diabetes, and high
blood pressure. They are used for targeted therapies without
any side effects with the patient’s specific situation. Various
devices have been developed in this field, such as Molley
et al. [75] presented a next-generation self-supporting
cardiovascular implantable device that monitors and analy-
sis patient’s health constantly and Vaddiraju et al. [76]
explored a needle-implantable wireless device for continu-
ous glucose monitoring.

(2) Chest Straps. The chest straps are designed to be flexible,
stretchable, and comfortable. The sensors embedded have
various functions like lessening chronic pains and measuring
breathing rate. Then, Hung et al. [77] explored the moni-
tored respiratory system with an accelerometer strap on
the chest. Similarly, Rachim and Chung [78] discussed a
wearable smart strap for mobile ECG monitoring using
Bluetooth connection and providing real-time heart rate
monitoring to prevent emergency conditions and improve
the life quality of ill patients.

(3) Tracking Sensors. These devices are based on the Global
System for Mobile Communications (GSM)/GPS technolo-
gies to track and monitor patients’ real-time health to
provide efficient medical care when required. This can
bridge the gap between patients and doctors in case of emer-
gency. Aziz et al. [79] presented a model in which sensors
can capture the data and compare the data with configured
threshold via microcontroller that is defined by doctors
instruction for patients health. If there is any case of emer-
gency, a short message can be sent to the doctor’s mobile
number along with the measured body rates through the
GSM module. The GPS provides the current location of
the patient. This helps in end-to-end connection to
healthcare. Akbulut and Akan [80] discussed various fea-
tures of these devices such as respiration rate tracker, nerves
signs tracker, ECG sensor, glucose sensor, body temperature
sensor, blood pressure sensor, blood oxygen sensor, and
accelerometer in the smart wearable patient tracking system.

2.2. Body Area Networks. Body area networks (BANs) refer
to a wireless network for smart computing devices. They
consist of several sensors and smart devices that act as data
gateway and provide an interface to view and manage BANs
devices. It provides low-power sensors connected to human
body parts or externally used and communicates using
telecommunication networks. BANs include benefits like
continuous monitoring of patient vitals using ECG sensor,
EOG sensor, EEG sensor, blood pressure sensor, tempera-
ture sensor, and glucose sensor. It also improves quality in
medical health care, providing personal devices like motion
sensors, postural devices, and artificial body parts. BANs
are majorly used for medical applications; it provides remote
healthcare monitoring and telemedicine with the help of IT
and communication. BANs are specially used for patients
with chronic diseases or older people. It is also used to track
the performance of athletes. Jani et al. [81] investigated an
ECG and EMG sensor for determining biometric and medi-
cal information. Chu [82] presented an EEG sensor for brain

injuries, treatment, and keeping track of daily emotional-
social interactions. Similarly, Narasimhan et al. [83]
discussed about a blood pressure monitor for real-time mon-
itoring and Anuar and Leow [84] proposed a body tempera-
ture sensor for continuous monitoring and avoid heat
strokes. Table 3 provides the comparative analysis of these
state-of-the-art smart healthcare schemes for BANs.

These devices consist of actuators and sensors around
the human body, which can be in-body or on-body, to
monitor human body parts and deliver either impulses or
medicine. They function with a wireless communication link
to an access point or hub connected to the sensors on the
body. BANs provide low power consumption devices [89]
with self-healing facility, high security as Tian et al. [90] also
presented a high-efficient and robust WBAN. Gupta et al.
[3] presented a smart healthcare monitoring system using
WBANs, attaining varied psychological parameters such as
body temperature, heart rate, oxygen level, and vital signs
and providing on-time treatment. Similarly, Zou et al. [87]
proposed a multiparameter sensor system for healthcare
applications. Hodgkiss and Djahel [88] using BANs pre-
sented a fuzzy vault-enabled smart healthcare system for
high security of patient data and real-time sensing.

2.3. Digital Healthcare. Digital healthcare is a broad concept
that includes interaction between technology and healthcare.
It aims to provide cost-effectiveness, satisfy individual
patient needs, standard medical procedures, and treatment
based on real-time data, and improve healthcare services.
With the help of advancements in technology such as wear-
able devices, telehealthcare, and mobile health apps, patients
can stay healthy without much effort. Table 4 presents the
analysis of the various state-of-the-art smart healthcare
schemes for digital healthcare, which can be further divided
as follows:

2.3.1. Telehealthcare. It deals with the remote exchange of
clinical data between patients and doctors and provides
medical services from remote places using information and
communication technologies (ICT). It uses advanced tech-
nologies such as artificial intelligence, IoT, big data, and
cloud technologies to make an efficient and effective distant
healthcare [98].

(1) Telemonitoring. It refers to continuous or noncontinuous
monitoring of a patient’s body by healthcare professionals
remotely for medical follow-ups and taking required deci-
sions. It has gained popularity at the time of COVID-19.
Quintanar-Gomez et al. [99] have explored its various func-
tions such as blood pressure, heart rate monitoring using
multilayer perceptrons, and pulse rate variability and also
keeping track of patient’s body parameters like temperature
and pulse rate. It also provides periodic updates with reports
without exposing them to costly diagnosis procedures as
presented in [100].

(2) Teletreatment. It refers to remote treatment procedures
using medical robots combined with physician expertise to
provide health facilities at any remote place, at low cost,
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providing fast recovery, and saving various resources. Tele-
treatment can treat various diseases, operate remotely using
a telesurgery system, and provide feedback. Gupta et al.
[101] explored various telesurgery systems; some of them
are widely used in [102].

(3) Telemedicine. It refers to e-medicine, diagnosis, and con-
sultations using telecommunication interfaces. It has various
benefits like increased convenience to patients, reduced can-
cellations of appointments, and increased access, and thus
encouraging a healthy lifestyle. Jeyanthi et al. [103] proposed
a secured cloud-based telemedicine system that reduces
delay cost, increases availability, and reduces administrative
burdens. Su [104] designed a diagnosis assistant system for
breast diseases patients. Saini et al. in [97] surveyed various
e-healthcare telemedicine frameworks built on IoMT and
AI, in which the flow of emergency is prioritized for diagno-

sis and treatment. The proposed system outperforms tradi-
tional systems in security and trust aspects.

2.3.2. mHealth. It is also known as mobile health. It refers to
the wireless technology for medicine and healthcare prac-
tices supported by mobile devices. In a nutshell, it means
healthcare installed on your mobile phone. It provides per-
sonal digital assistance, monitoring health, tracking fitness,
and daily activities to keep people fit and healthy.

(1) Cloud Technologies. Cloud technologies in healthcare
refer to the practice of instructing remote servers connected
through the Internet to store, manage, and analyze
healthcare-related big data. It helps to increase efficiency
with a decrease in cost. It has functions like medical record
managing and performing back-end operations and also
helps in the creation of mHealth apps. Several cloud-based

Table 3: Comparative analysis of various state-of-the-art smart healthcare schemes for BANs.

Author Year
Body area
networks

Objectives Pros Cons

Jani et al. [81] 2017
ECG and EMG

sensors

Proposed a design of a low-power,
low-cost ECG and EMG sensor
for wearable biometric and

medical applications

Consumes low-power, is cost-
effective, and is highly portable

Reliability issues, less
durable due to compact

size

Narasimhan
et al. [83]

2018
Blood pressure

sensor
Presented a finger wearable blood

pressure monitor

Convenient, painless procedure,
early intervention of

hypertension, and accurate

Irregular heart rate
affects the accuracy and

can be erroneous

Chu [82] 2018 EEG sensor
Presented a wearable sensor for

brain EEG signal-oriented
applications

Used in treatment of various
brain injuries, enhance everyday
social and emotional interactions,

wireless wearable

Poor spatial resolution,
not used for pinpointing
exact source of defect or

activity

Anuar and
Leow [84]

2019
Body

temperature
sensor

Proposed a noninvasive core body
temperature sensor for
continuous monitoring

Remote monitoring, avoid heat
strokes, wireless system, and

highly reliable

Invasive method is not
comfortable for
continuous use

Matsushita
and
Kaneshima[85]

2019 Motion sensors
Presented a motion sensing
eyewear for daily healthcare

monitoring

Monitor daily activity of users,
real-time healthcare monitoring

Reliability issues,
security, and durability

issues

Hsu et al. [86] 2020 WBAN

Three-factor UCSSO scheme with
fast authentication and privacy
protection for telecare medicine

information systems

Secure against malicious attacks
and low overhead

No focus on tamper
resistance and

nonrepudiation attack

Gupta et al. [3] 2021 Smart sensors
Investigated a smart healthcare
monitoring system using WBAN

Reliable information, stable living
for patients, reduced medical cost

Security issues against
DDoS attack, man-in-
the-middle attack, and
single point of failure

Gupta et al. [3] 2021 WBAN
Presented smart healthcare

monitoring system using WBANs

Monitoring psychological
parameters such as temperature,
heart rate, and vital signs and
provide real-time diagnosis

Security, privacy, and big
data analysis issues

Zou et al. [87] 2021
Multiparameter

sensor

Proposed a multiphysiological
parameters integrated medical

system for healthcare application

Collects body temperature, ECG,
heart rate, oxygen saturation

(SpO2), blood glucose, and blood
pressure

Patient data insecurity at
the cloud platform

Hodgkiss and
Djahel [88]

2022 BANs
Proposed fuzzy vault-enabled
authentication in BANs-based

smart healthcare

Real-time sensing of human
biometrics, improved

communication overhead, and
highly secure

Limited power and
computational
capabilities
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healthcare systems have been proposed. Tawalbeh and
Habeeb [105] studied mobile cloud computing-based smart
healthcare systems. Another researcher presented an IoT
and cloud-based healthcare diagnosis that uses sensors to
collect real-time data and predict the severity of diseases
based on database [106]. Later, Esposito et al. [107] explored
a blockchain and cloud technology-based secure and private
healthcare system to provide convenience and availability to
the patients.

(2) Wearable Devices. These devices are used to provide
communication and notification in daily use and provide
various health-related benefits such as monitoring and diag-
nosing health conditions and vitals of the human body,
tracking medications, following the recovery of post-
operation patients, and fitness tracking. Hung et al. [108]
studied wearable medical devices for telehome using multi-
sensor data fusion and wireless technology. Then, Sharma
et al. [109] presented a smart wearable device based on Intel
curie platform that aims to make it portable, easy to use, low
power usage, accurate, and consistency in its functions

related to fitness tracking and wireless data transmission
and communication.

(3) Mobile Health Apps. They allow doctors to effectively
communicate with patients and providers and provide 24/7
healthcare facilities to patients and the ability of personal-
ized healthcare per user. But, the poor people living in rural
areas have limited healthcare resources. Pasha et al. [110]
designed a neural network-based mobile app that has
pretrained disease predictions for users. Chiu et al. [96] pro-
posed an interactive mobile app for self-supervised health
management along with a feedback system that increases
the likelihood of people becoming healthier.

2.3.3. Digital Health Systems. It refers to combining technol-
ogy with healthcare systems. These systems are aimed at
providing improved and cost-effective medical services. It
uses innovative technology, computing platforms, real-time
data, connectivity, software, and sensors to configure sys-
tems efficiently. Patients can now stay fit in an easy and
secure way.

Table 4: Comparative analysis of various state-of-the-art smart healthcare schemes for digital healthcare systems.

Author Year
Digital

healthcare
Objectives Pros Cons

Vardhini
et al. [91]

2016 Genomics

Proposed a genomics
revolution treatment for
diseases and opening new

frontiers for precision medicine

Personalized care, disease treatment
solutions, and reliable and intelligent

model

Inaccurate for some
treatment cases; use of big
data is time-consuming

Kobayashi
and
Homma
[92]

2019 Telemonitoring

Presented an analysis of
telemonitoring multivital data

for alert detection on
telehealthcare system

Increases life expectancy, reduces
medical cost, helps in acute disease
detection, and prevents progression

of fatal conditions

Sometimes inaccurate for
analyzing big data and

reliability issues while using
only vital data

Yang and
Chen [93]

2019
Medical big

data

Analysis and visualization
implementation of medical big

data resource sharing
mechanism based on deep

learning

Improvised visualization, display of
medical data, processing, and

resource sharing

High security and privacy
threat, misuse of medical

data, and proper analysis of
big data is a hard process

Koren and
Prasad
[94]

2020
Electronic

health records

Proposed personal wireless
data in formal electronic health
records and future potential of

medical things data

Provides quality solution, monitors
vital signs and conditions, provides
personalized healthcare, and leads to

better decision related to health
management

Cyber security threats,
privacy issues, and proper
utilization of big data is not

yet achieved

Lehmann
et al. [95]

2021 mHealth
Proposed an approach for

multidisciplinary evaluation of
mHealth applications

Quality assurance, low distortion,
solves problem of undifferentiated

mHealth applications

Reliability issues, not useful
for treatment, and diagnosis

of fatal diseases

Chiu et al.
[96]

2021
Mobile health

apps

Presented an interactive mobile
app for self-supervised health

management

Interactive health management
system, provides feedback, records
user health information, impacts
positively on people’s health

Daily activity tracking can
cause security and privacy
issues; positive feedback can
sometimes be misleading

Saini et al.
[97]

2021 Telemedicine
Analyzed e-healthcare

telemedicine system based on
IoMT and AI

Prioritizes the flow of emergency
healthcare transactions, outperforms
real-time healthcare systems, secures,

and is trustworthy

Less prior transaction may
get ignored sometimes

Kadu and
Singh [32]

2022
Digital health

systems

Proposed smart contract-based
transaction prioritization

scheme for smart healthcare

Provides unique alternatives,
information analysis cooperation,
intelligent aid diagnosis, and

continuous monitoring

Need to develop its capacities
and adaptability and security

issues
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(1) Electronic Health Records. Electronic health records
(EHRs) contain all the information from health centers
involved in patient care. They make real-time information
related to patients instantly available to authorized persons.
It contains treatment and medical details of the patient
and includes the broader scope of a patient’s healthcare.
They deliver various functions like providing a patient’s
medical history, treatment plans, medications list, diagnoses
to be done, allergies, laboratory and test results, and X-rays.
They also guide authorized persons regarding evidence-
based tools based on the records. The main feature of EHRs
is sharing digital records with other devices across different
healthcare organizations. With the rapid growth of smart
technology, healthcare solutions have also increased with
personalized health data. Koren and Prasad [94] presented
an EHR system that merges this medical data with central
systems and helps in better decision making and providing
improved healthcare solutions. EHRs are published using
traditional systems, which are time-consuming. An innova-
tive system was proposed in [111], which involves features
like voice assistance, editing ability, medical image process-
ing, and interactive schedules to provide a convenient tool
to physicians.

(2) Electronic Medical Records. Electronic medical records
(EMRs) are a digital form of paper records in health centers
and hospitals. They contain important information collected
by the medical staff in the hospital, which doctors mainly use
for treatment and diagnosis. EMRs enable doctors to track
data with time, identify patient visits, observe patients, and
improve overall healthcare quality. Some patients need
continuous or emergency care after discharge, for which
Intawong et al. [112] designed a seamless EMR for
healthcare management that exchanges data to community
hospitals and is reliable and effective for patients requiring
urgent care. Vardhini et al. [91] proposed a blockchain and
smart contract-based framework to resolve the problem of
EMRs, i.e., misuse of data and security, which has been
solved by providing data privacy, interportability, and acces-
sibility. Kadu and Singh [32] proposed an SCs-based trans-
action prioritization architecture for digital healthcare. It
provides creative alternative solutions with intelligent aid
diagnosis and continuous monitoring facility.

2.3.4. Health Analytics. It refers to using large amounts of
collected data to provide healthcare systems with actionable
intuition. These perceptions are developed through analyti-
cal disciplines such as big data analysis to deliver fact-
based intelligent decision-making systems. These decisions
improve the planning process, management activities, future
predictions, and intelligent learning in succession.

(1) Medical Big Data. Big data in the medical field can be
used by commercial, academic, government, and public
sectors as it includes overall health data. It can be analyzed
to improve decisions and make predictions of diseases and
emergency medical conditions. Li et al. [113] resolve the
redundancy problems of medical big data through a data
midplatform; i.e., it is not well connected and has critical

failures such as missing information, data disparity, and iso-
lated information. Yang and Chen [93] explored deep
learning-based medical big data resource sharing that fastens
the data analyzing and visualization of data collection and
system requirements.

(2) Genomics. Genomics refers to the genome and DNA data
of an organism. It requires a large amount of storage and
good software that supports it. It studies the biological
aspects of human organs such as heart disease, asthma, dia-
betes, and cancer. These diseases are caused due to environ-
mental as well as genetics. The data that drives genomics and
its fundamental biology basis is called genomics data. Using
this data is complex; hence, Kuznetsov et al. [114] presented
a cross-platform immersive virtual reality system to enable
graph genome interaction and analysis. Campbell [115]
investigated a model that provides a novel treatment for dis-
eases using genomics and new technology for precision
medicine that opens a new research scope in this field.

(3) Population Health Management. It focuses on the well-
being of the population as a whole. It follows financial and
care models for the patients and manages their data records.
It functions through primary health care, data analytics,
long-distance management, and doctor consultancy. The
main aim is to reduce per capita cost, enhance patient expe-
rience with the data-driven technology, and improve popu-
lations’ overall health. Panicacci et al. [116] presented a
population health management system to identify high-risk
patients using machine learning algorithms. Similarly, Wu
and Gao [117] designed a TCM five-pattern system to pre-
vent health-related issues in older people of the community
and provide the necessary treatment.

3. Security Aspects of Smart Healthcare

3.1. Key Security Attacks on Smart Healthcare. The smart
healthcare technologies, such as wearable devices, BANs,
and digital healthcare, are vulnerable to various security
attacks, such as spoofing, data manipulation, injection, and
social engineering attacks, as shown in Figure 3 that deteri-
orate the performance of the smart healthcare system.

3.1.1. Attacks against Healthcare Data (EHR/EMR). EHR
and EMR data from digital healthcare systems are most sus-
ceptible to security attacks. A patient’s confidentiality and
privacy are deeply disturbed because of such attacks. These
data present in digital form can be used for remote health
monitoring purposes and are trusted between patient, doc-
tor, and hospital. Various attacks are mentioned below.

(1) Key Logger Attack. While entering a patient’s data, key-
strokes can be detected by running a key logger program
[118]. The attacker acquires the credentials for illegally
accessing the patient’s health data based on keystrokes.

(2) Phishing Attack. In this attack [119], a patient falls into
the trap of an adversary by filling their health information
using an illegitimate email link sent by an adversary. The
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input received from the email link is used for blackmailing
and money laundering.

(3) Social Engineering Attack. Due to the increased presence
of a user on social media due to Internet services, an attacker
can trick the system by impersonating a legitimate user to
gain access to the patient record [120].

(4) Brute Force Attack. It uses a trial and error method for
guessing the password of a system to access the complete
information of the patient healthcare data from the hospital.

(5) SQL Injection. When a patient or doctor is entering data,
malicious SQL queries are injected into the forms filled by
the user. This leads to access to the database contents to
exploit the information stored in the database.

3.1.2. Attacks on Telemedicine. Telemedicine refers to con-
tinuous or noncontinuous monitoring of a patient’s body
by healthcare professionals remotely for medical follow-ups
and taking required decisions. The information exchange
between healthcare professionals and patients is susceptible
to various attacks, as mentioned below.

(1) IP Address Spoofing Attack. In this attack, to launch the
DoS attack at the service provider side, the attacker creates
forged IP packets from one system that appears to be created
on different systems.

(2) Cross-Site Scripting Attack. The attacker injects malicious
code into the web application to execute malicious scripts in
this attack to obtain the patient’s cookies. The attacker gains
access to the patient’s file system, webcam, microphone, and
geographical location by impersonating them. XSS is the
most vulnerable way of cross-site scripting.

(3) Cookie Manipulation Attack. In this attack, the attacker
manipulates and forges the cookies to steal the patient’s iden-
tity. Generally, our username and password are stored in the
form of stored cookies. Once filled in a web application form,
the data also gets stored inside cookies. Hence, the attacker
can access all these data if the stored cookie can be manipu-
lated. A patient/doctor’s financial, medical, or any other
personal sensitive data can be accessed by this attack.

(4) Session Hijacking Attack. In this attack, the attacker
hijacks a current and legitimate session of the patient/doctor
to access the information being exchanged by hijacking ses-
sion parameters. The attacker can take part in an ongoing
conversation after the same [121].

(5) DNS Spoofing Attack. DNS spoofing attacks service pro-
viders. In this attack, by spoofing the domain name system
(DNS), the attacker redirects the entire traffic to his
machine. The attacker manipulates the DNS entries, which
returns the attacker’s IP address to the users instead of a
legitimate IP address. Hence, patients/doctors start
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interacting with the attacker and unknowingly leak their
sensitive healthcare data.

3.1.3. Attacks against Healthcare Physical Devices (Wearable/
Implantable/Medical Equipment). Wearables, implantable,
and medical equipment read real-time healthcare data of a
patient and transmit the same to paired smartphones or any
storage device for later analysis. This data is confidential and
private about a user. Various security vulnerabilities and
attacks are possible on the aforementioned devices due to their
resource-constrained nature and insecure proprietary proto-
cols while manufacturing. Such attacks are mentioned below.

(1) Hardware Attack. Hardware attacks are implemented by
introducing Trojan into the implantable devices. They create
malfunctions in the embedded integrated chips (IC) and are
complex to detect.

(2) Firmware Modification Attack. In the case of wearables
and implantables, a device’s hardware is controlled by a pro-
gram stored in nonvolatile memory. Firmware modification
attack tries to modify that program to get control of the
hardware. To improve user experience, continuous firmware
updates are essential. And thus, attacks make use of these
firmware updates to inject malicious firmware into the
device [122]. This attack is performed by reverse engineering
communication protocol and application code.

(3) Eavesdropping Attack. In this attack, an unauthorized
entity intercepts users’ personal information. In wearable
and implantable devices, Bluetooth and radio frequency are
susceptible to eavesdropping. Marin et al. [123] showed
these devices undergo traffic analysis through tools such as
Ubertooth, Wireshark, and Adafruit and succumb to
eavesdropping.

(4) Sniffing Attack. In this attack, traffic is sniffed and ana-
lyzed using hardware and software sniffers. Static MAC
addresses are analyzed from the advertisement packets for
performing sniffing. Using scanning devices, sensitive
healthcare data can be extracted to plaintext through traffic
analysis [124].

(5) Information Disclosure Attack. In this attack, an unau-
thorized entity exposes the information due to a weak com-
munication channel or device. Rahman et al. [125] showed
an information disclosure attack on fitness trackers by
reverse-engineering the communication protocol. Lack of
encryption mechanism and authentication leads to extract-
ing sensitive healthcare data [126].

(6) Man in the Middle (MITM) Attack. In this attack, an
attacker intercepts the communication between two autho-
rized and legitimate entities and learns about the prevailed
data. Rieck [122] shows MITM attack in fitness trackers by
reverse engineering the firmware version.

(7) Unauthorized Access and Spoofing Attack. In wearables,
implantables, and medical equipment, an attacker accesses

sensitive healthcare data unfairly due to security vulnerabil-
ities and can spoof the healthcare service providers. It can be
done by brute-forcing the secure pin used for traffic analysis
and pairing [127].

(8) Replay Attack. In this attack, an adversary corrupts or
impersonates valid packets transmitted by the medical devices.
It can be done by manipulating the defects of encryption,
hard-coded MAC addresses used for pairing or authentication.

(9) Ransomware DOS Attack. This is a traditional DOS attack
where medical equipment is hacked by attackers and is inac-
cessible unless the desired ransom is paid to the attacker. It
is performed because of outdated operating systems [128]
and insecure protocols. The unavailability of medical equip-
ment can be fatal for human life in emergencies.

3.1.4. Attacks against WBAN. WBAN, despite having several
benefits, attracts attackers for luring various security attacks
due to their design, open-access environment, and portabil-
ity. Healthcare applications impose strict requirements such
as data integrity, availability, data confidentiality, authenti-
cation, and data freshness on the reliability of data delivery
in end-to-end systems. WBAN suffers from various security
attacks, as mentioned below.

(1) Masquerade Attack. In this attack, an attacker masquer-
ades the identity information of a legitimate WBAN node by
using a fake identity to avoid detection. The attacker accesses
a system by using stolen login IDs and passwords, dodging the
authentication mechanism, or manipulating security vulner-
abilities. A masquerade node can create a severe threat by
launching DoS attacks on medical applications. Using
biometric or key management authentication schemes can
prevent an adversary from impersonating a WBAN node.

(2) Clone Attack. In this attack, an attacker replicates legiti-
mate nodes by obtaining credentials of a WBAN node. It
secretly copies the ID and introduces itself, i.e., the cloned
ID, as an authorized node to the network. It affects the
authentication requirement of WBAN and helps attackers
gain illegitimate access, alter health data and conduct false
data injection.

(3) Accountability and Revocability Attack. This attack con-
centrates on key abuse. A WBAN node shares the access
key with unauthorized users and abuses their access privi-
leges, thus gaining access to the secret key to decrypt the
healthcare data. WBAN nodes are bound to be accountable
for policies that preserve patient data and revoke the same
when found maliciously violating it.

(4) Battery Depletion Attack. In this attack, the attacker
exhausts constrained resources such as battery power or pro-
cessor cycles by sending false data to a target BANs node. This
attack makes the target BANs node perform intensive process-
ing to reply to erroneous packets or retransmit them to other
nodes. The quick depletion of sensor battery power hence
reduces its lifetime for collecting sensitive healthcare data.
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(5) Data Sniffing/Snooping Attack. In this attack, an attacker
sitting on an insecure network path between a WBAN node
and a medical server gains access to the traffic flow of data
passively containing sensitive healthcare data, node IDs,
routing updates, etc., for later analysis. It affects the confi-
dentiality requirement in WBAN and can be prevented by
employing a key distribution scheme.

(6) Data Modification Attack. Data modification attacks
affect authentication, availability, integrity, and nonrepudia-
tion requirement in WBAN. An attacker modifies/replaces/
alters data either partly or entirely traveling between WBAN
nodes. Falsification of data may lead to severe consequences
on a patient’s life. A digital signature or keyed hash function
can avoid data modification attacks.

(7) Data Disclosure Attack. This attack affects the confiden-
tiality and privacy requirement in WBAN, where sensitive
data is revealed to unauthorized users using unsolicited
means. This leaked data can be spread all over the network.
Access control and encipherment techniques on the network
layer can prevent data disclosure attacks.

(8) Routing Attack. In this active malicious attack, the rout-
ing table is poisoned to transmit data packets to faulty desti-
nations by editing the entries in the routing table, causing
severe damage to the network. This attack affects the authen-
tication, availability, integrity, and confidentiality require-
ment in WBAN.

(9) Replay Attack. Replay attack affects hardware and soft-
ware resources in WBAN where an attacker intercepts the
messages traded between authorized users. The attacker
deliberately delays or replays the same to the legitimate
receiver to enforce aggregate result change.

(10) Node Subversion Attack. This attack is on privacy by
capturing and performing cryptanalysis on WBAN nodes
deployed in the network to access sensitive data such as node
ID, security policies, routing information, and security keys.

3.1.5. Attacks on Communication Protocol Stack. For data
exchange to occur, a secure communication channel is
required, which is governed by a set of communication pro-
tocols. An attacker aims to exploit the communication chan-
nel to take control over the entire communication protocol
stack. Various attacks are mentioned below for the same.

(1) Physical Layer. The physical layer is responsible for radio
frequency generation and selection, modulation of bits, signal
detection, and bit-wise encryption. Following attacks are possi-
ble for the physical layer where a radio-based medium is used.

(a) Jamming

Jamming is a type of attack inwhich the attacker sends radio
frequencies that interfere with the frequencies used by the sen-
sor node. Here, an attacker generates a radio signal randomly

with a frequency matching the one sent by sensor nodes. The
radio signal sent by the attacker interferes with the other signal
transmitted by a sensor node and receives within the attacker’s
range cannot receive anymessage. Thus, the nodes in the range
of attacker signals become inaccessible as long as these jamming
signals continue andnomessages canbe either givenor received
among the affected nodes and other sender nodes.

(b) Tampering

Tampering refers to stealing sensitive information such
as cryptographic keys provided with physical access to the
node. Tamper-proofing a node is a defense mechanism to
this attack where a node vaporizes its memory when tried
to get accessed maliciously.

(2) Data Link Layer. The data link layer provides shared
access channels such as carrier sense multiple access (CSMA)
to all neighboring nodes. This layer faces issues related to the
collision of data packets, resource-constrained environment
due to repeated retransmission, etc., which are encountered
on this layer. Such various attacks are listed below.

(a) Collision

A collision occurs when more than one node attempts to
transmit data packets on the same frequency simultaneously.
This results in updation of data portion resulting in check-
sum mismatch at the destination, leaving the packet dis-
carded. An attacker can deliberately cause collisions of data
packets if gained access to the data link layer.

(b) Exhaustion of resources

When corrupted packets are transmitted continuously
and repeatedly, it leads to resource-constrained scenarios
such as battery depletion and energy depletion, thus leading
to resource exhaustion.

(c) Unfairness

Unfairness occurs because of repeated collision-based
MAC layer attacks and harsh use of MAC layer priority
mechanisms. Unfairness is a partial DoS attack leading to
performance degradation.

(3) Network Layer. The network layer is responsible for reli-
able end-to-end delivery. The data packets travel through a
set of nodes acting as routers having information about the
network route a packet will take. Hence, security attacks
are possible on this layer on the routing protocols. Men-
tioned below are attacks on energy, power, and memory-
efficient routing protocols.

(a) Black hole attack

A black hole is formed by vehicles refusing to participate
in communication or drop their packets. Hence, entire traf-
fic gets directed to a node having no public existence.
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(b) HELLO flood attack

The adversary node uses a powerful transmitter in this
attack and floods the network with a high-quality route. This
high-quality route attracts all data packets from other nodes,
hoping to have a better path from sender to destination, but
such a path does not exist. Thus, the attacker receives all the
data packets.

(c) Warmhole attack

A wormhole creates a shortcut route between two distant
nodes in this attack. An attacking node disrupts routing by
short-circuiting the network, thus not allowing the usual
packets to flow through a legitimate path. The attacker can
monitor the traffic or damage the data flow.

(d) Sybil attack

This is one of the hazardous attacks in which multiple
identities exist of a malicious node. Hence, it is challenging
to decide the legitimacy of a node from where information
is received.

(4) Transport Layer. The transport layer is responsible for
end-to-end communication services between applications
running on multiple hosts. Attacks on the transport layer
disrupt the application processes and hinder the delivery
process. Two such attacks at the transport layer are men-
tioned below.

(a) Flooding

In this attack, the attacker broadcasts the victim node
with many connection establishment requests to drain its
resources, thus generating a flooding attack. This attack
can be preserved by limiting the number of connections a
node can accept.

(b) Desynchronization

In this attack, an adversary uses a fake sequence number
and copies a message multiple times to one or both the end
nodes of an active connection. This results in desynchroni-
zation, forcing nodes to retransmit the messages resulting
in draining of the resources of a victim node.

(5) Application Layer. The application layer is responsible
for providing support, interface, and services to end-user,
such as email services and database services. Any attack on
this layer will restrict access to such services.

(a) Overwhelm attack

An attacker drains a node’s energy and absorbs network
bandwidth by overwhelming the network by forwarding a
mass amount of traffic to the base station, thus causing the
network to jam and not allowing essential services to the
end-user.

(b) Repudiation attack

These attacks lead to denial of participation from all
parts of the communication channel called repudiation. This
results in nonservice to the end-user because of participation
denial from the malicious node.

3.2. Classification of Security Solutions for Smart Healthcare.
As discussed in the previous section, smart healthcare sys-
tems succumb to multiple attacks based on access to
healthcare data, communication channels, physical devices,
data storage, etc. Many researchers have developed security
frameworks, architectures, algorithms, protocols, software
services, policies, and tools to secure healthcare systems.
Classification of security solutions for smart healthcare is
presented in this section.

3.2.1. Password-Based Solutions. A basic authentication
scheme is a password-based scheme, quite popular in our
day-to-day applications. It requires a user to remember their
password to login onto a system and access the services pro-
vided by the system. A password-based scheme is susceptible
to brute force attacks where an attacker tries to guess the
password by using multiple permutations and combinations.
Wei et al. [129] have achieved authentication in WBAN
employing low entropy password-based scheme and
achieved anonymity. But, the authentication scheme suffers
from high communication costs because of the length of
the messages affecting the bandwidth. Liu et al. [130] pro-
posed an authentication scheme using a custom password
authentication algorithm that generates dynamic passwords
achieving anonymity, privacy, and security. It outperforms
other password-based techniques in terms of computational
and communication costs. However, forward secrecy is not
considered by the scheme. Kim et al. [131] proposed a
three-party password authentication scheme with a key
exchange that preserves user anonymity and prevents
impersonation attacks.

3.2.2. Biometric-Based Solutions. A biometric-based authen-
tication scheme verifies the user’s physiological and biologi-
cal traits and matches them with those already stored in the
system. It is challenging to forge, copy, or break a biometric-
based authentication. Although, sometimes, due to errors in
the design, or the nonstability of biometric traits, the authen-
tication fails. Fingerprint, heart rate, iris, voice, hand geom-
etry, retina, ECG, PPG, etc. are considered biometric
characteristics. Arya et al. [132] used a fingerprint biometric
authentication scheme for WBAN applications. It used a
mutual authentication and key establishment procedure.
But it does not justify security in WBAN applications. Koya
and Deepthi [133] used ECG biometric authentication
scheme for WBAN applications. It provides better security
than other ECG biometric schemes and performs better.
Tan and Chung [134] used ECG biometric authentication
along with cryptographic techniques such as elliptic curve
and Diffie-Hellman. The scheme protects user identity but
provides only conditional privacy. Mohammedi et al. [135]
proposed a lightweight biometric authentication scheme
for remote patient monitoring using elliptic curve
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encryption. The scheme justified lower communication and
computation costs with lower storage. Shakil et al. [136] pro-
posed BAMHealthCloud for securing e-medical data using a
MapReduce framework. The said system performed better
than other biometric schemes.

3.2.3. Cryptographic Solutions. Cryptographic-based solu-
tions can be divided into symmetric-key cryptography,
asymmetric key cryptography, and hash key cryptography.
Many researchers have given solutions using multiple cryp-
tographic algorithms such as AES, DES, SHA, Triple DES,
RSA, ECC, DSA, and MAC. Sharma and Bhatt [137] used
quantum mechanics to secure IoT-based healthcare systems
to overcome security challenges such as scalability, data con-
fidentiality, and mobility. Gaikwad et al. [138] proposed
using elliptic curve cryptography (ECC) for securing e-
health data. Time and computation cost was considered in
this scheme. Chen et al. [139] proposed an anonymous
mutual authentication scheme on WBAN for wearable
sensors. This scheme prevents impersonation, spoofing,
and offline identity guessing attacks. Jegadeesan et al. [140]
presented a privacy-preserving anonymous authentication
scheme to provide security and privacy to users’ data along
with achieving low communication and computation costs.
Shen et al. [141] used the ECC algorithm to create a certifi-
cateless authentication protocol with low computation cost
and high security.

3.2.4. Access Control-Based Solutions. Unauthorized access
can be restricted by employing access control mechanisms
for protecting e-health data. Dankar and Badji [142] pre-
sented a risk-aware secure framework to store e-health data.
Firstly, the risk is identified on the data and the access con-
trol mechanism determines the level of data protection on
the risk. Later, the data is stored. Hence, it offers data protec-
tion against unauthorized access. Rajput et al. [143], Shah-
naz et al. [144], and Xu et al. [145] used access control
mechanisms by employing blockchain for securing e-health
data. The first focuses on securing data during emergencies,
the second focuses on off-chain scaling, and the last focuses
on sharing symmetric keys between patient and staff. Wu
et al. [146] demonstrated access control schemes on
implantable medical devices. Lounis et al. [147] proposed
ciphertext policy attribute-based encryption (CP-ABE) to
achieve performance and flexibility in medical wireless sen-
sor networks. Yang et al. [148] proposed a fine-grained
access control mechanism for updating access policy without
any data leakage.

3.2.5. Digital Signature-Based Solutions. Digital signatures
are used to acquire authentication and nonrepudiation of
digital messages and documents. By employing the hash
function over the data, the sender node generates the mes-
sage digest and is further signed using its private key, then
forwarded to the receiver node. The destination node con-
firms the signature by utilizing the sender’s public key. The
data is extracted by using the hash function if the result is
valid. Alzubi [149] proposed a blockchain-based Lamport
Merkle Digital Signature, which authenticates by creating a

tree where the leaf nodes contain sensitive patient informa-
tion obtained by the hash function. Abkari et al. [150] use
a radio frequency identification system for monitoring hos-
pital data and tracking medicines using a digital signature.
Kumar et al. [151] proposed ElGamal digital signature with
rabbit and serpent algorithm for securing healthcare data
streaming. Margheri et al. [152] demonstrated digital signa-
ture for provenance tracking of any medical document
containing healthcare data. Wu et al. [153] used hash with
SHA-256 along with blockchain for cross-enterprise docu-
ment sharing.

3.2.6. Key Management-Based Solutions. Key management
solutions help provide data security. It involves crypto-
graphic key generation required to encrypt/decrypt data,
key renewal, agreement of keys between communicating
entities, secret key distribution, and revocation of keys. Don-
mez and Nigussie [154] presented a key management
scheme, LoRaWAN, for monitoring healthcare systems. This
scheme stores lifetime root keys in end devices susceptible to
physical attacks and lacks mechanisms to update the root
keys. If the root keys are exposed, the session security will
be compromised. Jiang et al. [155] proposed an end-to-end
session key management scheme for a wearable healthcare
monitoring system. This scheme overcomes desynchroniza-
tion attacks. He and Zeadally [156] presented a symmetric
key generation-based authentication protocol scheme for
ambient assisted living systems (AAL).

3.2.7. Machine Learning-Based Solutions. Machine learning
(ML) models play a significant role in healthcare systems.
Applications of ML range from disease diagnosis from
EHR data, medical image analysis, real-time health monitor-
ing, vulnerability detection, and providing security towards
threats on healthcare data. Few such works are discussed
here. Salem et al. [157] presented an anomaly detection
scheme using support vector machine (SVM) and linear
regression models on wireless medical sensor networks.
Rajendran et al. [158] used machine learning approaches
for enhancing security and privacy in edge intelligence in
healthcare applications. Pirbhulal et al. [159] propounded
an ML-based biometric security framework on ECG signals.
Begli et al. [160] created an intrusion detection system using
SVM against DoS attack and user to root (U2R) attack for
remote healthcare monitoring system. Sengan et al. [161] cre-
ated a dynamic, secure aware routing by ML to secure
healthcare data. ISTHMUS is proposed by Arora et al. [162]
where the ML approach is used to secure cloud-based
healthcare architecture. This scheme is secure, robust, and
scalable and provides real-time monitoring. SVM and fuzzy
C-means clustering is used by Marwan et al. [163] for data
protection against untrusted clouds storing healthcare data.

3.2.8. Blockchain-Based Solutions. Blockchain technology
has emerged as a significant area for providing security in
many applications, majorly in the healthcare domain. We
studied many applications where blockchain is used for
securing e-health records, medical networks, medical
devices, etc. Li et al. [164] designed a blockchain-based
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reliable data storage system for preserving the privacy of
healthcare data. The authors used AES as a cryptographic
algorithm for protecting the anonymity of the user and its
data. Fan et al. [165] proposed blockchain-based MedBlock,
to account for the scarcity of data management and data
sharing policies in the EMR system. In this solution, hospitals
can upload their data on MedBlock and ones with the right
decryption key can retrieve the same. Nguyen et al. [166]
proposed a framework integrating blockchain and InterPlan-
etary File System (IPFS) for sharing e-health data in a mobile
cloud environment. They used smart contracts for secure e-
health data [167]. But, data confidentiality is still not on
point. Wang et al. [168] propounded a blockchain-based
privacy-preserving scheme for e-health data where the cloud
stores encrypted text of e-health data and blockchain stores
keyword encrypted text to search and share the data. Abou-
Nassar et al. [169] implemented DITrust chain using Ether-
eum and Ripple for securing trust in IoT healthcare systems.
Islam and Young Shin [170] propounded a blockchain-based
healthcare scheme for assisting unmanned aerial vehicles
(UAV) in providing security to health data collected from
users using UAV and stored on the nearest server in the
UAV path. Miyachi and Mackey [171] presented hOCBS, a
privacy-preserving blockchain-based framework for leverag-
ing healthcare using on-chain and off-chain system design.

3.2.9. Telehealthcare-Based Solutions. In the era of COVID-
19, telehealthcare has emerged as one of the safest approaches
for communication between patient and doctor. It refers to
continuous or noncontinuous monitoring of a patient’s body
by healthcare professionals remotely for medical follow-ups
and taking required decisions. Telehealthcare includes tele-
monitoring, teletreatment, telemedicine, and telesurgery. All
these approaches are susceptible to numerous attacks, and
research work is done in this area to secure the same. Thanki
andKothari [172] presented amultilevel securewatermarking
scheme to secure medical images in telemedicine applications
without compromising the quality of medical images. Man-
sour and Parah [173] used Lagrange’s interpolation polyno-
mial and bit substitution for creating reversible data hiding
for securing e-health data in telemedicine applications. Gupta
et al. [101] proposed AaYusH, an Ethereum-based smart con-
tract and IPFS protocol for securing telesurgery systems in
healthcare 4.0. The authors outperformed the performance
on latency and data storage cost. Kordestani et al. [174] pro-
posed HapiChain, a blockchain-based scheme for telemedi-
cine applications. It ensures healthcare data security,
scalability, and reliability using DApps as a platform. Gupta
et al. [175] proposed BITS, a blockchain-based 6G-enabled
tactile Internet telesurgical system addressing security, high
data storage cost, privacy, and latency issues. Gupta et al.
[176] propounded BATS, a blockchain and AI-based drone-
assisted telesurgery system underlying 6G network. The use
of IPFS led to low storage cost, low packet loss ratio, and low
bandwidth consumption as compared to the previous
approach [101].

(1) Hardware-Based Solutions. Hardware-based solutions
include employing physical unclonable functions (PUF) that

use one-way hash functions. Xie et al. [177] proposed a
lightweight authentication scheme for BAN sensors using
PUF. The body sensors establish a shared secret to secure
the data exchange between the implants with low overhead.
Tan et al. [178] propounded a cloud-assisted and PUF-based
authentication scheme for WBAN using multiple hops. It
resulted in reduced storage overhead and reduced data
transmission loss. Wang et al. [179] use PUF for securing
BAN sensor pairs without any encryption schemes and
preventing impersonation attacks.

4. The Proposed Approach

The integration of smart healthcare in users’ daily activities
has improved their quality of life. It has many entities such
as wearable devices, IoT sensors, mobile devices, dynamic
databases to access information, and the Internet. They con-
tinuously connected to share real-time healthcare data from
wearable devices to different predictive services to improve
users’ health. However, this approach is vulnerable to vari-
ous security issues such as distributed denial of service
(DDoS), session hijacking, privilege escalation, and injection
attacks, where an attacker can easily manipulate the
healthcare data to misguide the healthcare specialist. There-
fore, there is a need for a secure architecture that can analyze
such malicious behavior of the attacker. This section intro-
duces the working of the proposed architecture that is
divided into three layers as shown in Figure 4, i.e., data
acquisition, data analysis, and application layer. A compre-
hensive description of each layer is as follows.

4.1. Data Acquisition Layer. This layer constitutes multiple
IoT sensors placed on the human body in the proposed
architecture, such as smart bands, hearing aids, neural inter-
faces, and immersive helmets. These sensors collect the real-
time health status of the body; for example, EEG records any
abnormalities in the brain, smart shoes provide a person’s
posture, calories, and step count, and smartwatches monitor
blood pressure, heart, and respiration rates. These wearable
devices come with an implicit application interface in the
smartphone. As a result, the data is collected in the smart-
phone using a 6G network interface [180]. The data is stored
inside some centralized system, such as a healthcare infor-
mation system (HIS), which is generally acquired by
nation-states. This healthcare information is crucial for any
medical practitioner, doctor, drug specialist, and medical
institution to predict an unknown disease and develop a
drug for a pandemic, population management, and
decision-making process. The recent coronavirus outbreak
is a perfect example elucidating the importance of healthcare
data to medical institutions such as the World Health Orga-
nization (WHO). The clinical and health data of all the
COVID-19 patients makes it possible to develop an exten-
sive range of COVID-19 vaccines. Conversely, due to the
high necessity of this data, it is always susceptible to
attackers. The healthcare data carry valuable information
of the users such as social security numbers, radiological
images, insurance claims, and diagnosis records. An attacker
can perform data tampering and network attacks that seize
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the data for nefarious purposes. Therefore, an AI-based
architecture has been proposed to analyze the network
attacks and classify the correct and attacked data.

4.2. Data Analytic Layer. This layer consolidates ML classi-
fiers to analyze the healthcare data for malicious conduct.
To achieve this, a log file that is maintained by every wear-
able device has to be acquired for analysis purposes. A raw
dataset can be formed by analyzing the network activities
and critical warnings in the log file. The collected raw dataset
is converted into an ML-based compatible format, i.e., a
comma-separated value (CSV) file. It has healthcare data
of all the users utilizing wearable devices connected to their
bodies and the attack data. The attack data can misguide the
doctors, which can risk human life, and hence need to erad-
icate from the normal data, whereas the normal data guide
the doctors to diagnose the patient further. From the per-
spective of ML, it is a binary classification problem; that is,
normal data is classified as 0 and attack data is classified as
1. To accomplish the classification task, the raw dataset
needs to be preprocessed before passing it to the learning
models, as it has outliers that can mislead the classifiers. If
the data is not normalized, it means few values are small in
the data columns and few are large. Missing values in the
columns can make the learning model biased. Consequently,
preprocess steps equipped with outlier detection, normaliza-
tion, filling missing values, and feature selection are applied
to the dataset. While doing so, it also needs to verify the
imbalanced dataset problem, in which if the majority class
is higher than the minority class, the ML model gets biased
towards the majority class. Resampling techniques such as
oversampling and undersampling can vividly balance the
dataset. Next, the balanced dataset is divided into train and
test data to validate the final prediction. The output is based
on various performance metrics such as accuracy, precision,
recall, and Matthews correlation coefficient (MCC) value. It
is challenging to decide which metrics are reliable for proper
classification, as each has its pros and cons. The MCC value
has been taken as the final metric to fix this obscurity
because it is popularly used in binary classification problems.

4.3. Application Layer. The data analytics layer classifies the
valid data from the attack data and forwards it to the applica-
tion layer via a 6G network interface. This layer comprises dif-
ferent use cases such as hospitals, pharmacies, ambulances,
and medical institutions where validated healthcare data is
utilized for rapid drug development, early diagnosis, easy
tracking and reporting of disorder, and faster clinical trials.
This layer also deals with quick information sharing between
the wearable device andmedical specialists in amedical emer-
gency. For example, a patient at a remote location and stuck
with a heart attack, his wearable device tries to send this infor-
mation via a cellular network to the nearby hospitals. The con-
ventional cellular networks such as 4G and 5G are not
competent enough to send this information readily to the
medical staff. This is because it has low data rates (20/
10Gbps), high latency (100 ns), and low reliability (10 5).
Therefore, the benefits of a 6G network such as ultra-low
latency (<1ms), ubiquitous high-speed data connectivity ð1
TbpsÞ, scalable connectivity (10 9 devices/sqm), and ultra-
high reliability (99.99999%) are accompanied in the proposed
architecture. A 6G-enabled proposed framework augments
the application layer by quickly sharing the healthcare data
with the medical staff, improving human life expectancy.

Figure 5 shows the sequence flow of the proposed
approach, initiating with taxonomy on smart healthcare
technologies. The taxonomy is classified into wearable
devices, body area networks, and digital healthcare. Then,
security aspects of smart healthcare have been discussed,
after which various security solutions for smart healthcare
have been presented. To mitigate these security issues in
smart healthcare technologies, an AI-based architecture has
been proposed with a 6G network consisting of data acquisi-
tion, data analytic, and application layers.

5. UAV-Assisted Secure Healthcare for COVID-
19 Outbreak: A Case Study

The COVID-19 pandemic is one of the difficult outbreaks
the world has faced in recent years. COVID-19 is an infec-
tious disease that spreads quickly from an infected person’s
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mouth or nose when they sneeze or cough. Therefore, it is
difficult for doctors to provide adequate medical treatment
to COVID-19 patients without carrying proper precaution-
ary measures. Despite personal protective equipment (PPE)
kits, disposable gloves, disinfectants, antibiotics, and other
possible preventive measures, COVID-19 is still a crisis that
has impacted mental health and the nation’s economy.
Therefore, there is a requirement for a technology that
collects COVID-19 patient data, limits physical contact,
and reduces the spread of infection. Integrating UAVs in
such situations can help in fighting the growing number of
COVID-19 patients. UAVs are especially used in remote
locations for healthcare delivery, where they fastly deliver
critical medicines, vaccines, and blood packages. However,
due to the surface transmission in COVID-19, such as a per-
son who has the virus coughed or sneezed gets touched by
the other person and the person gets contaminated with
coronavirus. This hugely affects the medical doctors and
coworkers who continuously contact the COVID-19 patient
for their regular checkups and follow-ups. Therefore, a
UAV-assisted smart and secure healthcare has been pro-
posed as shown in Figure 6 to mitigate the aforementioned
issue. UAVs are used to acquire the healthcare data of
ground users using their wearable devices. Based on the
assumption that every user has a fitness tracker (smart band)
which has measurements such as oxygen saturation (SpO2),
heart rate, temperature, and blood pressure, which is crucial
for COVID-19 cases. In the COVID-19 layer, UAVs collect
the abovementioned measurements and share them with
the application layer via a 6G network interface. Addition-
ally, UAVs are equipped with imaging and IoT sensors; for

example, thermal sensors can identify a user with a temper-
ature greater than the COVID-19 temperature threshold,
that is, 37.8°C or greater. Furthermore, the COVID-19
patients are disjointed from the typical hospitals and shifted
to different COVID-19 medical centers due to the conta-
gious virus. However, these centers are infrastructure-less;
hence, it has to contact the hospital every time they need
an update on the patient.

Thus, UAVs can be beneficial for faster content delivery
between hospitals and COVID-19 centers. It can collect the
data from the wearable device of the COVID-19 patient
and share it with the hospital. The UAV can share the infor-
mation with the relay UAV using UAV-to-UAV communi-
cation if the hospital is far away.

5.1. Dataset Description. Nevertheless, the security of the
aforementioned approach is in question because an attacker
can proliferate their attack and manage to tamper with the
healthcare data. For example, an attacker can target wearable
devices to exploit them and acquire users’ medical data or
broadcast a DDoS on resource-constrained devices, i.e.,
wearable sensors. The medical data is critical for doctors;
based on this data, the doctors start their diagnosis. Hence,
it is essential to prevent the medical data from the attacker
who tries to manipulate it for their malicious intent. We
have used a wearable healthcare dataset with normal and
attack data to analyze this. The original dataset has 188697
× 52 numbers of columns and rows. The dataset has been
generated using different IoT sensors placed with a patient
bed, to which an MQ Telemetry Transport- (MQTT-) based
attack has been performed by the attackers. A Wireshark
tool has been deployed between the communication link to
sniff and capture the network traffic as raw data. Later this
data is converted into an appropriate CSV format as an
input to the ML model. The raw dataset has outliers, missing
and vague values, and unnormalized data, which needs to be
processed before sending it to the ML model. Therefore, the
dataset is verified against the abovementioned issues using
various python functions. The dataset has a large feature
space of 52 features, which needs to be reduced using princi-
pal component analysis (PCA). It works on the principle of
eigenvalues and eigenvectors, which indicates the necessary
features to be included in the dataset. Figure 7 illustrates
the cumulative variance graph signifies that the initial 23 fea-
tures contain 94% of the variance. Therefore, we have
reduced the features space from 52 to 25 in our dataset.

Next, the processed data is divided into a training and
testing dataset, where the training data is validated against
the test data. It is then further delivered to multiple ML clas-
sifiers such as RF, linear discriminant analysis (LDA), ridge,
logistic regression, naive Bayes, and perceptron to classify
the normal and malicious data. From Figure 8, it can be seen
that RF got 98% of accuracy and outperformed compared to
other classifiers. The high accuracy is due to its versatility in
solving classification problems, efficient decision-making,
robustness to outliers, and less impact by noise. The RF uses
high correlation in decision trees by splitting a random set of
features. As a result, the RF algorithm considers a small set
of features instead of all the features for training the model.
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In addition, it has the versatility in handling binary,
numeric, and categorical features in training. One of the sig-
nificant issues of the binary classification problem is its
unbalanced dataset, where accuracy fluctuates as per the
dominant class. This is adequately handled by the sampling
and the RF algorithm, which minimizes the overall error rate
of the class, influencing the proposed architecture to achieve
higher accuracy. Contrary, the LDA algorithm is slightly
underrated due to its overfitting problem with large datasets;
however, the performance of LDA still matches with the RF.
Ridge algorithm is an extension to the logistic regression,
where a hyperparameter is utilized to improve the accuracy;
however, the problem lies in its high bias and low interpret-
ability model that reduces the algorithm’s accuracy. Addi-
tionally, a perceptron is a fundamental neural network that
needs more number of hidden layers to provide better accu-
racy. However, doing so increases the computational com-
plexity of the model. Therefore, we have applied only one
hidden layer to reduce the complexity, but it significantly
reduces the model’s accuracy.

Moreover, in Figure 9, a log-loss score graph has been
composed to assess the performance of the classifiers. It dis-
plays how close is the prediction values to the actual values.
The higher the divergence of the prediction values from the
actual values, the higher the log-loss score. It is apparent
from the graph that the perceptron has a considerable log-
loss score value, and therefore, there is an exponential rise
in the graph curve, whereas the RF has a minuscule log-
loss score value, and hence, it is near to 0. Some of the merits
of the proposed solution are as follows.

(i) Use of wearable technology and adopting UAV
communication can help in providing instant med-
ical treatment despite an outbreak

(ii) System’s latency is reduced to <1ms

(iii) Increases the system’s reliability and scalability to
99.99999% and 1099 devices/sqm, respectively

(iv) Enhances the security and privacy of the smart
healthcare system using AI models

6. Open Issues and Research Challenges/Future
Challenges and Research Opportunities

In this section, we consolidated open security issues and
research challenges in smart healthcare technology.

6.1. Security. The data generated by the various wearable
devices and BANs can encounter various security and pri-
vacy issues in the smart healthcare system as patients data
may contain their personal information that is being shared
among different medical staff before sending it to the
doctors. Also, data needs to be secure from multiple sensors
and wireless technologies through which hackers can attack
to get their personal information. Thus, there is a need to
adapt counter security measures to provide the security
and confidentiality in the smart healthcare system.

6.2. Data Sharing. In smart healthcare system, data from the
IoT devices gets shared to the healthcare professionals, but
there is no certainty that how their data is getting processed
and how many people are involved in it before sending it to
the doctors. For example, if some attacker tampers with the
data, then patients can get the wrong medicine or even get
no prescription by the doctors. It can lead to the delay in
their treatment or may be more threatening for their health.
Therefore, there is a need to control the data sharing or
introduce a mechanism to secure the data transmission in
the smart healthcare system.

6.3. Voluminous Data. A considerable amount of data is col-
lected from various wearable devices attached to human
bodies. Furthermore, this data is continuously changing as
per the patient’s health status. To manage such a dynamic
and massive amount of information is a cumbersome task.
Moreover, different kinds of data need to be stored in a
different kind of format. For example, an IoT sensor cap-
tures the EEG of the brain, which is in an image format, to
run an ML model on it; it needs to be converted into a
CSV format. Hence, there is a need to have an efficient
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storage mechanism that converts the file according to the
need of an application.

6.4. High Power Consumption. Wearable devices are battery-
constrained devices that continuously monitor and track the
patient’s health status; in doing so, it consumes a large
amount of power from the battery. Consequently, the user
needs to charge it multiple times. To resolve this issue, the
user needs to put their devices in sleep mode at regular inter-
vals when not monitoring the health status.

6.5. Lack of Standardization. Multiple devices are used in
the smart healthcare systems to relay healthcare data. Each
device has a different set of protocols and configurations to
share this information with medical staff. However, there is
no centralized consensus or standardization available for
communication, implementation, and deployment of IoT
sensors in the healthcare sector. Hence, there is a need to
do research on this aspect where the IoT devices with dif-
ferent standards and protocols can communicate without
any hinderance.
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6.6. Computationally Expensive. Consolidating ML to assim-
ilate smart and secure healthcare is computationally expen-
sive. The reason behind this is the voluminous healthcare
data, which an ML model has to execute. As the size of the
dataset increases, the execution time of ML increases. As a
consequence, the prediction service responds delinquently
to the medical staff in case of an emergency. Hence, a deep
learning-based model has to be utilized in the smart
healthcare system to overcome this issue.

7. Conclusion

In this paper, we presented a comprehensive survey on
smart healthcare technologies such as wearable devices,
BANs, and digital healthcare to encounter security and pri-
vacy issues in the smart healthcare system. In addition, a
comparative analysis of various state-of-the-art healthcare
schemes has been discussed. Based on it, we presented a
taxonomical classification of different smart healthcare tech-
nologies with their security issues. Then, we propose an AI-
based secure and reliable architecture incorporating a 6G
network interface for smart healthcare technologies. The
employed AI model ensures the secure transmission of
healthcare data to healthcare professionals. Furthermore, to
evaluate the proposed architecture, we have studied a case
study on the COVID-19 pandemic to devise a UAV-
assisted secure healthcare framework to prevent it from
security attacks. Finally, we have discussed open issues and
research challenges for smart healthcare technologies. In
the future, we will explore a novel solution by amalgamating
blockchain technology and AI models to enhance the secu-
rity and reliability of smart healthcare technologies.
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