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Abstract

Robotic systems are one of the core technologies that will shape our future. Robots already change our private and profes-
sional life by working together with humans in various domains. Evoked by this increasing trend, great variability exists in 
terms of robots and interaction scenarios. This has boosted research regarding shaping factors of human–robot interaction 
(HRI). Nevertheless, this variety hinders the comparability and the generalizability of insights. What is needed for efficient 
research is a structured approach that allows the analysis of superordinate attributes, making previous HRI research compa-
rable, revealing research gaps and thus guiding future research activities. Based on the review of previous HRI frameworks 
we developed a new HRI taxonomy that (1) takes into account the human, the robot, the interaction and the context of the 
HRI, (2) is applicable to various HRI scenarios and (3) provides predefined categories to enable structured comparisons of 
different HRI scenarios. A graphical representation of the taxonomy, including all possible classifications, eases the applica-
tion to specific HRI scenarios. To demonstrate the use and value of this taxonomy, it is applied to different studies in HRI in 
order to identify possible reasons for contrasting results. The exemplified applications of the taxonomy underline its value 
as a basis for reviews and meta-analyses. Moreover, the taxonomy offers a framework for future HRI research as it offers 
guidance for systematic variations of distinctive variables in HRI.

Keywords Human–robot interaction · Taxonomy · Collaborative robots · HRI framework · Robot morphology · 
Collaboration

1 Introduction

The idea of interacting with animated (humanoid) 
machines that free mankind from labor has been fascinat-
ing ever since, starting with Leonardo da Vinci’s visions 
of mechanical machines [1] and becoming concrete (and 
frightening) in the play “Rossum’s universal robots” by 
Karel Capek [2]. Science fiction has been thrilled by those 
machines and has introduced world-famous (fictional) 
robots, such as the Terminator, R2-D2 and C-3PO (Star 
Wars), or Lieutenant Commander Data in the TV series 
Star Trek: The Next Generation. However, robots have 
not remained fictional. In 1962, the first real industrial 
robots were introduced in the Ford factory in Canton [3]. 

Since then, the implementation of robots into various work 
domains has become an increasing technology-driven 
trend [4–7]. The first generations of robots, however, had 
nothing to do with their fictional counterparts—look-
ing rather technical than humanoid and working behind 
fences, because of safety and efficiency reasons. Com-
pared to these earlier generations, today’s collaborative 
robots directly interact with the human in terms of time 
and space. This is facilitated by technological advances, 
especially regarding sensor technology, enabling more 
complex and adaptive robotic behavior while interacting 
with humans. This also implies new forms of interaction, 
and has resulted in a variety of robotic applications, like 
military search and rescue (S&R) missions, healthcare 
support, service assistance, therapeutic implementation 
to substitute animals, or the human–robot collaboration 
in the manufacturing domain. This widespread use of 
robots has come along with a plethora of robotic appear-
ances and interaction concepts, which is also mirrored in 
HRI research. However, a great variety entails a challenge 
for creating replicable and generalizable results. Many 
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experimental HRI studies revealed notable findings, but 
whether these results remain valid in case the context, the 
robot, or anything else changes, is questionable. To illus-
trate this lack of comparability and generalizability, dif-
ferent studies from research on an extensively investigated 
phenomenon in HRI—anthropomorphism—are presented 
below.

The term anthropomorphism is often loosely used for 
the tendency to attribute human characteristics to inanimate 
objects or animals, in order to rationalize their actions. More 
precisely, it goes beyond attributing life to nonliving objects, 
as it includes “attributing capacities that people tend to think 
of as distinctly human to nonhuman agents, in particular 
human-like mental capacities (e.g. intentionality, emotion, 
cognition)” [8, p 220]. Anthropomorphism is applied mainly 
(but not exclusively) in social robotics to support meaningful 
social interactions and human acceptance of the robot [9]. 
As depicted by the following examples, this phenomenon 
can be induced by characteristics of a robot’s appearance, 
behavior and communication, as well as by framing the 
robot anthropomorphically via names or stories [10].

To answer the question whether lifelike movements and 
an anthropomorphic framing might affect people’s empa-
thy for a robot, Darling, Nandy and Breazeal [11] examined 
how humans respond to a simple robotic object when asked 
to strike it. As dependent variables they measured people’s 
hesitation to strike the robot and evaluated its relationship 
with their trait empathy. Results revealed that an anthropo-
morphic framing of robots (e.g. giving names and presenting 
character descriptions) affected people’s empathy and com-
mitment towards the robot.

Most recently, Nijssen, Müller, Baaren and Paulus [15] 
conducted an online-experiment in which participants had 
to decide whether they would sacrifice an agent in moral 
dilemmas. The to-be-sacrificed agent was either a human, a 
human-like robot, or a machine-like robot. Results showed 
that machine-like robots were sacrificed more often com-
pared to human-like robots and humans. These results are in 
line with those of Darling et al. [11] regarding the impact of 
anthropomorphism on the willingness to immolate robots. 
However, both experiments used experimental setups that 
differed substantially from real HRI applications. First, nei-
ther study included a de facto interaction between human and 
robot, as participants either just observed a real robot [11] or 
saw pictures of robots [15]. Second, the required decision in 
both experiments to destroy or sacrifice the robot represents 
a situation probably not appropriate in HRI, as most often a 
fruitful relationship is the overall aim of social HRI. Third, 
robots in both experiments represented extremes in terms of 
their morphology. While Darling and colleagues used Hex-
bug Nanos [11], bug-like crawling toys, Nijssen et al. [15] 
showed pictures of the robotic counterpart of Hiroshi Ishig-
uro, which represents an extremely anthropomorphic design.

In the attempt to bring the experimental setup closer to 
real applications, Onnasch and Roesler [16] conducted a 
laboratory study including a collaborative interaction with 
an embodied robot. Participants received either an anthropo-
morphic or a technical description of a humanoid NAO robot 
prior to a collaborative task. Afterwards, the willingness to 
“save” the robot from malfunctioning was assessed via dona-
tion behavior (for a pretended robot repair). In contrast to the 
aforementioned studies, results revealed a negative effect of 
anthropomorphism on the willingness to “save” the robot, as 
long as the robot’s functional value for the task fulfillment 
was not additionally mentioned. These studies already illus-
trate that experiments seemingly comparable at first glance 
might not lead to compatible results, because of different 
robots, contexts and interactions.

A more real-world and application-orientated implemen-
tation of anthropomorphism was examined by Kuz, Mayer, 
Müller and Schlick [12] and Mayer, Kuz and Schlick [13]. 
They investigated the impact of robot movement on HRI 
and revealed that anthropomorphic trajectories and speed 
profiles ease the prospective identification of robot actions. 
In contrast, Riek and colleagues [14] reported that action 
identification is faster with machine-like trajectories com-
pared to smooth, human-like movement patterns. These 
studies, again with contrasting results, differed with respect 
to the robots applied in the experiments. While Kuz and 
colleagues [12, 13] used a (simulated) industrial assembly 
robot for their experimental setting, Riek et al. [14] applied 
a humanoid robot torso.

As the exemplified studies show, a distinct overall inter-
pretation of experimental findings regarding the impact of 
anthropomorphism is not easy to draw. Although all of the 
discussed studies deal with anthropomorphism, the concept 
is operationalized on different dimensions (appearance, 
movement and framing), and robots are hardly compara-
ble (see Table 1). Moreover, while attempting to compare 
the studies, it becomes obvious that the actual interac-
tion between human and robot, as well as the definition of 
human’s role are often insufficiently described or receive 
not enough attention in the experimental setups. These 
variations and the lack of definitions complicate the com-
parison of results and the identification of relevant impact 
factors (e.g. What operationalization of anthropomorphism 
is most effective?). Consequently, insights remain on the 
level of single use cases. Therefore, the great variability of 
robots and their application scenarios are a main challenge 
for structured research, which is mandatory for knowledge 
accumulation and scientific progress in the HRI domain. To 
advance our understanding of HRI and allow experiments to 
be replicated, there is a need for more basic theories, tools 
and methodologies. In 2007, Dautenhahn has already called 
for an increase in effort to make research in HRI more com-
parable and she stated that “without a scientific culture of 
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being able to replicate and confirm or refute other research-
ers’ findings, results will remain on the level of case stud-
ies” [17, p 700]. To ease the knowledge accumulation, a 
good blueprint is needed, i.e. a taxonomy with a certain level 
of abstraction to allow the classification of different HRI 
scenarios and enable a meta-interpretation of single-study 
results.

2  Existing HRI‑Frameworks

Up to date, there are several frameworks regarding the clas-
sification of HRI. Granda, Kirkpatrick, Julien and Peterson 
proposed a standard for stages of HRI already in 1990 [18]. 
They propose five stages to categorize a robot’s functional 
capabilities in interaction with humans. In the first stage, 
the bounded autonomy (1), robots are able to function 
with little human intervention. Teleoperation (2) describes 
a human–robot system in which the human is an integral 
and full-time component in the control loop. When oper-
ating with supervised autonomy (3), the robot can handle 
certain (sub-) tasks autonomously allowing the human to 
perform other tasks, or even control other robots. Based on 
Sheridan’s supervisory control concept [19], in this third 
stage, the human is responsible for task planning, teaching 
the robot, monitoring robot activities, intervening in robotic 
tasks when necessary, and learning to improve all of these 
activities. With adaptive autonomy (4), the robot performs 
most of the tasks independently, whereas the human acts as 
an information manager, organizing the structure of expert 
systems and databases. In the final stage, the virtual symbio-
sis (5), the human and the robot exchange information based 
on shared knowledge. However, even with this symbiotic 
interaction, the ultimate responsibility is still on part of the 
human. A strength of this approach is that the stages can 
not only describe different levels of robot autonomy in a 
human–robot team, but also have predicted future directions 
of the development of HRI. The application of this model 
to actual scenarios, however, is not very straightforward as 
the stages are not mutually exclusive and often overlap with 
characteristics of one stage blurring into the next [18]. In 
particular, the supervised and adaptive autonomy merge 
smoothly into each other, as supervised control is already 
characterized by a variable span of autonomous control. It 
remains unclear which degree of autonomy represents the 
cut-off, differentiating the two categories. Additionally, the 
human role is described as an operator on all stages, even 
though the machine is characterized as a “co-worker” in the 
virtual symbiosis.

Twelve years later, Scholtz proposed a framework for 
differing human roles in interaction with robots regarding 
models of human–computer interaction [20]. According to 
Scholtz, the human may act as the supervisor of the robot, a 

role originally described in interaction with automated sys-
tems by Sheridan and Verplank [21]. In this passive role, 
the human is taken out-of-the-loop, i.e., monitoring the task 
performance from a superordinate position and only inter-
vening if malfunctions or deviations occur. Further roles 
describe the human as an operator, directly giving control 
inputs to the robot, or as a mechanic or team partner—the 
latter implying equivalence between human–human and 
human–robot interactions. Scholtz [20] uses this team con-
cept as a metaphor to underline the importance of a recip-
rocal adjustment between actions of the human and of the 
robot for task accomplishment. Moreover, she defines a non-
interacting role, namely, the human as a bystander. In this 
context, human and robot share only the same space. Thus, 
a mental representation of the robot and its actions is nec-
essary to avoid non-intended interactions (i.e. collisions). 
This role is especially important for the implementation of 
autonomous robots in close proximity of humans (without 
safety fences). The framework represents a sound basis for a 
detailed differentiation of varying human roles in interaction 
with robots. However, while the author states the importance 
of generalizing the roles between different domains, it is not 
considered that different roles are predominantly represented 
in specific domains (e.g. operator in space expedition, peer 
in edutainment). Furthermore, the human roles provide no 
particular information about the interaction itself.

This issue is addressed in the classification of Schmidtler 
and collegues [22], who define human–robot interaction 
types based on working time, workspace, aim and contact. 
Hence, they deduce three different forms of human–robot 
interactions with increasing proximity and dependency. 
Coexistence is characterized by overlapping working time 
and workspace of the human and the robot. Cooperation is 
additionally characterized by the same aim, whereas collabo-
ration describes the most dependent form of interaction, with 
an actual contact between the human and the robot while 
they work together. Even though the interaction types focus 
on the comprehensive interaction of human and robot, a 
drawback is that they exclusively focus on HRI in the indus-
trial environment and that the three interaction types might 
not be sufficient to describe HRI in detail (e.g. What about 
the robot’s autonomy?).

Other frameworks of HRI broaden the perspective as they 
do not only focus on the human and the interaction, but also 
on characteristics of the robot (e.g. information regarding 
the communication between human and robot). Yanco and 
Drury [23, 24], for instance, adopt Scholtz’ interaction roles 
[20] and further describe ten categories related to interaction 
and robot characteristics. However, the categorical speci-
fications vary in detail. While some of these are very well 
described with predefined categorical levels and are easy to 
apply (robot morphology), other categories, like task type, 
are not further detailed and therefore hard to apply to actual 
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HRI scenarios (autonomy level in percentage) or do not 
apply to different kinds of robots or interaction scenarios. 
The latter is especially true for the category decision support 
for operators (without predefined levels). Decision support 
as a cognitive task is not a primary aim of HRI as robots 
traditionally resume manual tasks, i.e. action implementa-
tion, whereas the cognitive parts remain with the human (in 
contrast to human-automation interaction [25]).

Further classification models often only account for cer-
tain aspects or domains of HRI [17, 18, 20, 22–24, 26–33] 
(for an overview see Table 2). Beer, Fisk and Rogers [27], 
for example, provide a very detailed framework regarding 
robot autonomy. However, the model is restricted to the 
essential aspect of autonomy and only applies to service 
robots. Therefore, the question if the model also applies to 
other HRI scenarios persists. Dautenhahn [28] differentiates 
a robot’s task as a persuasive machine (therapeutic play-
mate), a social mediator or a model social agent. The empha-
sis of this role definition is the robot’s function as a stimula-
tor for (social) interactions, as the model was developed for 
HRI in the context of autism therapy. Moreover, Dautenhahn 
proposes four evaluation criteria to identify requirements for 
social skills of robots: the contact with humans, the robot’s 
functionalities, the role of the robot, and the requirements 
of social skills. For every criterion, the extremes are defined 
(e.g. contact with humans: none remote vs. repeated long-
term physical), but other scale characteristics are missing 
(e.g. no further details on what and how many distinct inter-
cepts are between the extremes [17]). Kahn and colleagues 
[31] propose to characterize HRI with nine evaluation 
benchmarks of success in building human-like robots (and 
to define essential features of being human), but remain on 
a conceptual level without further specification or guidance 
for an operationalization of those benchmarks.

Other approaches focus on the establishment of com-
mon metrics for HRI [34–39]. Steinfeld et al. [40], for 
instance, analyzed the interaction between humans and 
robots with regard to three aspects: the human, the robot 
and the system. The metrics are defined for five task cat-
egories: navigation, perception, management, manipula-
tion and social tasks like tour guiding in a museum. A 
drawback of the proposed framework is its only focus on 
task-oriented mobile robots.

The outlined approaches represent a valuable effort 
to define a standardized set of dependent variables that 
should be evaluated in HRI experiments. What is not 
addressed is the actual interaction between human and 
robot.

To summarize, existing frameworks provide useful 
approaches to characterize and investigate HRI. While 
some frameworks are very detailed regarding the human 
role [20], other approaches provide sound guidance in the 
definition of the interaction between human and robot 
[e.g. 18, 22], or focus on the robot’s functions [17, 27]. 
The application of these models to various HRI scenarios, 
however, is not always easy or feasible. Sometimes, the 
models only account for a specific domain [e.g. autism 
therapy, 28], or they remain on a conceptual level without 
further specification or guidance for an operationalization 
[e.g. 23, 24, 31]. Therefore, a framework is needed which 
builds on these models, but also

(1) takes into account the human, the robot, the interaction 
and the context of the HRI,

(2) is applicable to various HRI scenarios and
(3) provides predefined categories to enable structured 

comparisons of different HRI scenarios.

Table 2  Overview of HRI framework models and focuses that form the basis of the proposed HRI taxonomy

Author(s) Model Focus

Bartneck and Forlizzi [26] Social HRI

Beer et al. [27] Robot autonomy for service robots

Dautenhahn [17, 28] HRI in autism therapy, social skills for robots

De Santis et al. [29] Physical safety in HRI

Fong et al. [30] Socially interactive robots

Granda et al. [18] Stages of HRI capability, human role in HRI

Kahn et al. [31] Psychological benchmarks for the evaluation of success in building humanlike robots

Lee et al. [32] Home service robots

Schmidtler et al. [22] Type of interaction between human and robot

Scholtz [20] Human role in HRI

Walters et al.; Koay et al. [33] Human–robot proxemics (model for human use and manipulation of distances 
between each other with regard to social behavior and perceptions)

Yanco and Drury [23, 24] HRI
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3  A New Interaction Taxonomy for HRI

The proposed HRI taxonomy is divided into three clus-
ters specifying the HRI with different foci. In contrast to 
existing frameworks lacking generalizability, the first com-
ponent cluster of the taxonomy allows a classification of 
the prevailing context of interaction, comprehensively for 
all domains, considering the field of application and the 
type of exposure regarding the human–robot interaction. 
After defining this macroscopic level, the characteristics 
of the robot can be specifically classified regarding task, 
morphology and autonomy. The actual team classification 
cluster is subdivided into human role, team composition, 
information about the communication channel, and prox-
imity. The hierarchical structure of the taxonomy is an 
approach for top-down analyses of existing interactions 
from general circumstances to specific team characteris-
tics, as well as an indicator for adapting and optimizing the 
design of HRI bottom-up. Moreover, the easy applicability 
is ensured by a graphical support highlighting the three 
different clusters and the related categories to specify an 
HRI scenario (see Fig. 1).

The descriptive taxonomy aims to serve as a structural 
basis to classify various aspects of HRI. Not all categories 
are mutually exclusive and when applying the taxonomy to 
existing research, relevant information is often missing for 
particular categories. Nonetheless, the comparison of two 

studies based on the taxonomy can reveal differences in 
structural and functional characteristics [41], which serve 
as a basis to interpret varying outcomes.

The three taxonomy clusters are described in detail in the 
following subsections. Then, the broad applicability is illus-
trated first on fictional robots and then on a specific research 
question in HRI.

3.1  The Interaction Context Classification

The interaction context classification describes the first 
layer of the hierarchical structure of the HRI and aims to 
explicate the specific domain context. To enable a differ-
entiated and complete domain classification, the category 
field of application extends the differentiation of industrial 
and service robots in the ISO 8373:2012 [42]. Examples for 
robots as service providers are professional cleaning robots 
for solar collectors or hoovering and lawn mowing robots 
for personal use. Another field of application are military 

and police robots, like unmanned aerial and ground vehi-
cles which are already widely implemented in various tasks, 
like wildfire control, bomb disposals or search and rescue. 
Moreover, space exploration is added, as space robots need 
to fulfill special requirements, like surviving the rigors of 
the extraordinary environment and performing multiple (and 
unanticipated) tasks.

In addition to that, further specifications are incorporated 
to address the emerging domain of social robotics [43].  

Fig. 1  Graphical overview of 
the proposed taxonomy includ-
ing the three category clusters: 
Interaction context (dark grey), 
robot (medium grey) and team 
classification (light grey)
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Accordingly, a robot can be applied as an assistant in a 
therapeutic setting. The robotic seal Paro is a well-known 
example for such an application. Paro is an advanced inter-
active robot that is an alternative for pet therapy in environ-
ments such as hospitals and extended care facilities, where 
pets are not allowed. Studies indicate the potential benefit 
of this robotic system for older adults and dementia patients 
[e.g. 44, 45].

Robots are also increasingly used in educational settings 
and research. For instance, Saerbeck et al. [46] introduced 
iCat, a robotic research platform, to support school children 
(aged 10–11 years) in remembering vocabulary when learn-
ing a language. Another example is provided by Hashimoto 
and colleagues [47], who implemented an android robot that 
collaboratively solved exercises with students in a Tokyo 
elementary school.

Moreover, there is the growing field of entertainment 
robots, such as robotic dogs or other robotic toys like Cozmo, 
which are also often used in research [e.g. 48, 49]. Regard-
ing the use of robots in research, it is important to note that 
the categorization of the field of application depends on the 
actual use of the robot, not what the robot was originally 
designed for. Cozmo, for example, is originally thought of 
as an entertaining robotic toy for children. When this toy is 
used in research as an interaction partner for children with 
autistic spectrum disorder, Cozmo would have to be catego-
rized as a therapeutic companion [48].

Additionally, there are a lot of studies that do not have 
such context information, e.g. pure perceptional studies. To 
cover those studies as well, the last category level is none.

The particular field of application often sets general con-
ditions of specific characteristics of the human users (e.g. 
the homogeneity of manufacturing workers interacting with 
industrial robots), as well as properties of the interaction 
scenario (e.g. the unstructured interaction environment of a 
socially assistive robot).

Besides the field of application, the taxonomy further 
defines the kind of exposure to the robot. There is a grow-
ing body of research indicating that physically embodied 
robots are perceived differently than virtual two-dimensional 
agents and have different effects [e.g. 50–52]. Therefore, the 
taxonomy differentiates between an exposure to embodied 
versus depicted robots. Examples for the latter are virtual 
two-dimensional agents (on a computer screen), but also 
real robots that are only exposed to participants by showing 
them video clips or images of the robots. The core aspect 
that is addressed by these category levels is the embodiment 
of the robot, i.e. if the exposure enables an experience of 
corporality and a direct tactile interaction [51]. Moreover, 
this category also differentiates the setting, i.e. whether the 
exposure to a robot is realized in the wild (field) or in a 
controlled (and more artificial) laboratory setting, which 
could impact the perception and behavior towards a robot. 

A laboratory setting also includes online studies. Differ-
ent settings can lead to different outcomes, e.g. Salter et al. 
[53] found that children enjoyed playing and were actively 
engaged with a robot under laboratory conditions, whereas 
a field experiment [54] with the same robot revealed that 
most children became successively bored by interacting with 
the robot. This surprising result was partially explained by 
a disappearing novelty effect and by the repeated exposure. 
Nonetheless, the unstructured environment additionally led 
to former unknown robotic problems like getting “stuck” 
without being able to free itself.

3.2  The Robot Classification

Besides the interaction itself, the previous mentioned con-
tradicting results of Kuz et al. [12, 13] and Riek and col-
leagues [14] illustrate that the robot’s design and function 
have strong impact on the interaction of human and robot. 
Therefore, the next part of the taxonomy focuses on the 
robot’s work context and design with the three variables of 
robot task specification, degree of robot autonomy, and robot 
morphology.

The robot task specification describes eight abstract task 
types to allow a classification and standardized comparison 
of diverse tasks in various application domains. Based on 
the predominant human–robot interactions, we define the 
tasks as follows.

Information exchange this task describes the robot’s 
acquisition and analysis of information from the environ-
ment and the information transfer to the human. This task 
is often implemented when operating in hostile environ-
ments like the Mars mission or S&R missions.
Precision the robot performs tasks that require particu-
larly filigree capabilities and are hard to perform for 
humans (e.g. robots for micro-invasive surgery like the 
daVinci system that suppresses the surgeon’s tremor).
Physical load reduction the robot resumes tasks to reduce 
the human’s physical workload (e.g. lifting, carrying or 
fixing actions). Representative for this kind of task allo-
cation between robot and human is the use of powered 
exoskeletons that support the human to carry heavy loads 
during long missions or that allow paraplegic wearers to 
walk upright with little physical exertion.
Transport the robot is implemented to transport objects 
from one place to another (e.g. robots that carry parcels 
to different shelves in a warehouse, or robots carrying 
linen in hospitals from the patient rooms to the laundry).
Manipulation the robot physically modifies its environ-
ment (e.g. robots that perform welding actions on an 
object or pick&place robots).
Cognitive stimulation the robot’s aim is to engage the 
human on a cognitive level in the interaction through ver-
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bal or nonverbal communication. This task is often found 
in social HRI implemented in an educational setting like 
schools or kindergartens.
Emotional stimulation the robot aims at stimulating emo-
tional expressions and reactions in an interaction. Exam-
ples for this kind of robot are the robot seal Paro or other 
pet-like robots.
Physical stimulation robots for physical stimulation are 
often used in a rehabilitation context. The hirob from 
KUKA Medical Robotics, for instance, automates the 
conventional hippotherapy by imitating the exact move-
ments that a horse’s back does, while the horse is walk-
ing. Thereby, the robot enables an intensive therapeutic 
exercise to regain torso control and stability for patients 
with neurological deficits.

The robot morphology serves as another classification 
parameter for HRI, also proposed by Fong and colleagues 
[30] and Yanco and Drury [23]. From a psychological per-
spective, the morphology is of special interest as it shapes 
a user’s expectations of the robot’s functioning, as well as 
communication style and modalities. Therefore, to create 
an intuitive interaction with a robot, its design can be used 
to activate associations with already known objects [55]. 
Humanoid robots represent a typical example of this. The 
more human-like a robot appears, the more a user will expect 
an intuitive communication via natural speech. Moreover, 
human likeness could raise expectations regarding the robot 
competence, knowledge and autonomy [56].

Therefore, the differentiation of robot morphology 
(anthropomorphic, zoomorphic, technical) represents a fun-
damental determinant for HRI, especially for first-contact 
interactions with robots. In line with Yanco and Dury [23] 
and in contrast to Fong and colleagues [30], this taxonomy 
elides a cartoon-like or caricaturized category, as it is not 
distinctly adaptable and based on either of the other catego-
ries. Taking a closer look at the robots in Table 1, this prob-
lem becomes obvious, as for instance the Hexbug Nano used 
by Darling and colleagues [11] is a caricaturized cockroach 
and therefore coincidentally zoomorphic. The NAO robot 
used by Onnasch and Roesler [16] is a small caricaturized 
human and therefore anthropomorphic.

However, this categorization of morphology goes beyond 
appearance, and therefore deviates from existing classifica-
tions [23, 30], as it further subdivides robot morphology 
into four dimensions: appearance (How does it look like?), 
communication (e.g. communication by speech, written 
input/output, signals, non-verbal communication, gestures; 
implicit or explicit communication), movement (e.g. joint/
smooth, functional movement) or context information (e.g. 
framing). On each dimension, robot morphology can be clas-
sified as anthropomorphic, zoomorphic or technical. To per-
ceive a robot as being humanoid (anthropomorphic design), 

not every detail has to be human-like, i.e. it might be already 
sufficient if the robot has a human-like body and a head, 
even though legs and feet are missing, or if the communi-
cation style and context is anthropomorphic. However, the 
appearance might be more task driven and therefore techni-
cal. Same accounts for a zoomorphic design, where a typical 
pet name like “Kitty” or “Buster” and certain sounds might 
lead to a zoomorphic perception of the robot even though 
the appearance might be more like a “box”. With a technical 
robotic appearance, framing, movement and communication 
can fundamentally change the way it is perceived. As men-
tioned before, the manifestations of all three classifications 
on the four dimensions can be assigned without the total 
transfer of every detail of anthropomorphic or zoomorphic 
characteristics or even as stated beforehand in a caricaturized 
manner. As the manifestations of the technical, zoomorphic 
and anthropomorphic categories are gradual, we advise a 
differentiated classification of each aspect (appearance, com-
munication style, movement, and context). However, cur-
rent frequently used questionnaires like the GOODSPEED 
[57] and the revised GODSPEED [58] questionnaire are not 
appropriate for this purpose, as they mainly focus on the 
development of uncanny valley indices. Furthermore, the 
semantic differentials distinguish between unlively techni-
cal aspects and natural human aspects, like consciousness or 
being alive. Even though robotic design utilizes the human 
tendency to anthropomorphize robots [59], it is not assumed 
that humans perceive clearly non-living objects as holding 
uniquely human characteristics and as being actually alive. 
In addition, the animal-likeness (zoomorphism), which is 
especially important for social HRI, cannot be measured 
with these instruments. For these reasons, we cannot sug-
gest an existing questionnaire to rate the robots’ morphology. 
Future research should develop a questionnaire that can reli-
ably measure the degree to which a robot’s morphology is 
technical, zoomorphic and anthropomorphic.

The degree of robot autonomy represents another classi-
fication variable which defines the need for human interven-
tion during interaction. In this context, Beer and colleagues 
[27] define the level of autonomy with regard to perception, 
action planning and action implementation. However, they 
do not consider information analysis and aggregation as a 
separate task that could be performed by either human or 
robot. Thus, we propose to classify robot autonomy accord-
ing to models applied in human-automation interaction, 
referring to Wickens, Hollands, Banbury and Parasuraman 
[60]. Accordingly, the degree of robot autonomy is subdi-
vided into four stages: information acquisition, informa-

tion analysis, action selection and action implementation. 
For each stage, the level of robot autonomy can vary from 
low/none to high/complete, therefore implying the level of 
human intervention and which parts of a task concern the 
human at the same time. This way of classifying autonomy 
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is based on a well-established framework by Parasuraman, 
Sheridan and Wickens [25] for stages and levels of automa-
tion (equivalent to autonomy in this case, see Fig. 2). Based 
on this original work [25], the categorization is made on a 
10-point scale with higher scores representing higher auton-
omy of the technology over human action. Due to practical 
reasons of a synoptic taxonomy with intuitive applicability, 
we suggest a threefold division into low, medium and high 
autonomy.

In sum, the three variables of robot task specification, 
robot morphology and degree of robot autonomy enable the 
systematic comparison of different robots and their effective-
ness. These variables form a basis for design guidelines for 
beneficial HRI.

3.3  The Team Classification

Applying variables of team classification to HRI scenarios 
characterizes the structure of interaction, aspects of compo-
sition and teamwork that are addressed with four variables: 
human role, team composition, communication channel and 
proximity (physical and temporal).

The human role is based on Scholtz’ role descriptions 
[20], except the role as a mechanic. This role does not rep-
resent an actual interaction of human and robot, but rather 
an action of the human on the robot in terms of repair and 
maintenance work on a functional level (hardware and soft-
ware). Instead, based on Schmidtler et al. [22], the peer role 
is further differentiated in cooperator and collaborator to 
depict different levels of interaction on the same hierarchi-
cal level as the robot. According to this, five distinct human 
roles are defined: the supervisor monitors the robot and 
gives instructions on how to perform the task. The opera-

tor controls the robot. This role is an extension of Scholtz’ 
definition, as the operator not only “is called upon to modify 
internal software or models when the robot behavior is not 
acceptable” [20, p 10–11], but explicitly is on a higher hier-
archical level as the robot can be directly controlled by the 
human. For example, operating a bomb disposal robot can 

be described as this role: human and robot explicitly work 
together. Both parties pursue the same overall goal as well 
as the same sub goals (“approach bomb, fire a high-pressure 
jet of water at the wires, …). This operation is characterized 
by synergy effects. Neither the human nor the robot could 
do the task alone, as it is too dangerous for the human and 
too complex for the robot (up to now). Other examples for a 
human operator are the interaction with the surgical daVinci 
robot, which is directly operated by the surgeon but at the 
same time controls for the surgeon’s tremor, or exoskele-
tons worn by humans. In these scenarios, the human role is 
always higher in hierarchy compared to the robot (which is 
controlled).

The collaborator has the same sub- and overall goals as 
the robot, but is dependent on the robot’s actions; they work 
together for a joint task completion. As a collaborator the 
human has no managerial responsibility. This role can be 
thought of as a teammate on the same hierarchical level. An 
example is an industrial robot which is holding and rotating 
heavy workpieces to support the simultaneous and continu-
ous work of the human. In this team composition there is no 
hierarchical difference between the team partners.

The cooperator also works with the robot to fulfil a 
shared overall goal. However, both partners do not directly 
depend on each other, because of a strict task allocation 
between human and robot. However, task completion from 
both parties is still needed to fulfil a shared overall goal. The 
application of pick and place robots in manufacturing often 
represents an example for this human role. Robot and human 
are co-workers, they work together (but on their own) at an 
assembly line pursuing a shared goal—the production of a 
specific product.

In the role of a bystander, the human does not interact 
with the robot but shares the same space. Therefore, even 
this human role requires a mental representation of the robot 
and its actions to avoid collisions. The aim of the human 
role is avoidance. An example of a human as a bystander is 
the interaction of visitors and a transport robot in a hospital 
setting. Both parties do not pursue the same goal, the robot’s 

Fig. 2  Stages and Levels of 
automation [18]. Two auto-
mated systems are depicted, 
system A representing higher 
levels of automation and system 
B lower automation
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goal might be to transport laundry from one place to another, 
the visitors’ goal is to visit someone in the hospital. They 
still have to short-term coordinate their actions to avoid a 
possible collision.

Another variable, which received little attention in 
previous classification approaches, is team composition. 
Essentially, there are three possible options: equal number 
of humans and robots (NH = NR), more humans than robots 
(NH > NR) and more robots than humans (NH < NR). In order 
to ensure comparability between different HRI scenarios, 
it might be reasonable to further specify the concrete num-
ber of humans and robots when applying the taxonomy. For 
instance, an interaction scenario consisting of one human 
and two robots is very different compared to a scenario with 
one human and 100 robots like it is the case when control-
ling robot swarms.

The communication channel is further subdivided into 
input and output to highlight the interactional component 
of human–robot teamwork. Input describes how information 
from the human is “perceived” by the robot, i.e. how humans 
can provide information to the robot. This can be done either 
using an electronic (e.g. remote control via control device), a 
mechanical (e.g. the kinematic movement of the robot arm), 
an acoustical (e.g. verbal commands) or an optical channel 
(e.g. gesture control). The robot’s output can be perceived 
by the human senses through a tactile communication chan-
nel (e.g. haptic using vibrations), an acoustical (e.g. animal 
sounds) and a visual channel (e.g. artificial eye movements), 
respectively.

This communication takes place in the dimensions of 
spatial and temporal proximity. The physical proximity 
describes the distance between the human’s and the robot’s 
work area. Huttenrauch and Eklundh [61] propose five cat-
egories that are extended with the category “none” by Yanco 
and Drury [23], which is also applied in this taxonomy. The 
category “none” is especially important for a remotely con-
trolled HRI (e.g. the Mars rover Curiosity) which is repre-
sented in our taxonomy through the combination of human 
role = supervisor, and physical proximity = none. The cat-
egories are defined as follows.

Following human and robot have stable physical contact 
over a prolonged time. This is realized with specific inter-
faces at the robot (e.g. joystick, force/torque sensors) or 
using/manipulating the objects held by the robot.
Touching human and robot share the same workspace. 
They directly interact in close proximity. Human and 
robot have physical contact.
Approaching human and robot work in the same space. 
There is no physical contact but both parties work closely 
together.
Passing the human’s and robot’s workspaces partly or 
completely overlap. However, contact is prevented.

Avoiding human and robot do not work in striking distance 
and avoid direct contact. The human tries to stay out of the 
robot’s operating distance.
None human and robot are not in the same working envi-
ronment.

Adjacent to the physical proximity, we further describe 
the temporal proximity between human and robot, which is 
either synchronous or asynchronous. Synchronous implies that 
human and robot are working at the same time. In an asyn-
chronous interaction, human and robot are working at different 
times, like in the case of shift working.

3.4  Graphical Support for Classifying HRI Scenarios 
in Practice

To ease the application of the HRI taxonomy to actual sce-
narios, we offer a compact canvas-representation including all 
variables with according categories (see Fig. 1). The idea of 
this kind of graphical representation stems from the business 
and management domain and was first introduced as the Busi-
ness Model Canvas by Osterwalder [62]. In its original use, 
the canvas representation is a template for developing new or 
documenting existing business models. The canvas lists and 
combines all elements describing a company’s or a product’s 
value proposition, infrastructure, customers and finances, and 
therefore provides a very condensed and scalable overview of 
complex circumstances.

When applied in the context of HRI, at least one category 
should be selected per variable. Whereas it might be appro-
priate to select more than one category for some variables 
there are also categories that are mutually exclusive. These 
are exposure to (interaction context classification), morphol-
ogy, autonomy (robot classification), and human role (team 
classification). The graphical support depicts the hierarchical 
structure of the taxonomy. In the upper right, the two variables 
defining the interaction classification are depicted in dark grey. 
The variables concerning the robot are organized in middle 
grey, and the team classification variables are grouped in light 
grey in the lower part of the canvas template. The left part of 
the canvas is a placeholder for a description of the specific HRI 
categorized using the canvas. Information should be provided 
about the robot, the robot’s task, as well as the specific HRI. 
To further ease the application of the taxonomy we provide 
an interactive canvas pdf that can be downloaded at: https ://
hu.berli n/ingps y

https://hu.berlin/ingpsy
https://hu.berlin/ingpsy
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4  Applying the Taxonomy

4.1  Is interacting with R2-D2 comparable 
to interacting with C-3PO?

To exemplify the use and the benefits of the proposed 
taxonomy, we first apply the taxonomy to two very popu-
lar robots: R2-D2 and C-3PO. Even though both robots 
are fictional, we chose them to present a comprehensible 
example that most people can relate to and that is easy 
to understand. Kahn [63] conducted interviews regarding 
attitudes towards intelligent service robots and revealed 
that most people would prefer interacting with R2-D2 
because this robot seems to be more likeable than C-3PO. 
To answer the question of why people prefer R2-D2 over 
C-3PO, we categorize both robots using the canvas tem-
plate (see Figs. 3, chosen specifications per variable are 
written in italic bold).

R2-D2 is an astromech droid developed for naviga-
tional and maintenance tasks. The R2-class of robots is 
common in the Star Wars universe and they are part of 
many starships. R2-D2 is able to resume the astronaviga-
tion of a starship. Moreover, it executes diverse tasks as a 
mechanic. The field of application is therefore service, as 
these robots support their pilots in a professional environ-
ment in the aforementioned tasks. The exposure of the 
human to the robot is embodied and takes place in the field.

The robot’s tasks are defined as precision and manipula-

tion. Navigating the spaceship requires precise inputs and 
interventions for the most efficient and safe route. Even now-
adays, the navigation and flying of commercial aircrafts is 
mainly supported or resumed by automated systems as these 
outperform human pilots. Moreover, as a mechanic, R2-D2 
directly manipulates its environment. Regarding R2-D2’s 
morphology, a differentiated perspective is needed. R2-D2’s 
appearance and movement are clearly technical. The com-
munication was designed in a technical style in the first place 
because R2-D2 communicates with other robots. However, 
in communication with humans, it recalls zoomorphic asso-
ciations as information is not only explicated, but also what 
might be interpreted as mood or feelings through chang-
ing pitch. Based on context information on how people talk 
about R2-D2 and what information is shared about it (e.g. 
what adventures it has been part of), the robot context is 
classified as anthropomorphic. It is seen as a real teammate, 
it attends mission briefings and is seen as a valuable part-
ner because of its experience and character. As the earlier 
description of R2-D2’s task shows, its autonomy is high on 
every level: information acquisition and analysis, action 
selection and action implementation.

The human role is that of a supervisor who monitors 
the robot and gives instructions, and the team composition 

typically consists of a pilot and R2-D2, therefore NH = NR. 
R2-D2 receives information from the human using mainly 
the acoustic channel (e.g. speech input), and output can 
be perceived by the human through the acoustic (e.g. 
beeps) and visual channel (e.g. projections). The physical 
proximity is defined as passing or none. R2-D2’s and the 
human’s workspace partly or completely overlap, e.g. dur-
ing maintenance work. When navigating, R2-D2 is physi-
cally separated from the pilot, they are not sharing the 
same working environment. Temporal proximity can be 
either synchronous or asynchronous.

C-3PO is a protocol droid. The 3PO units are specialized 
on language, translation and diplomacy and can be found on 
nearly every planet and every starship in the galaxy. They 
work for kings and queens, senators or business profession-
als. They not only translate between different languages but 
also act as robot-human interpreters. The field of applica-
tion is service and the interaction represents an embodied 
exposure in the field. Acting as an interpreter, C-3PO’s task 
is categorized as information exchange. Like R2-D2, C-3PO 
is highly autonomous on all levels of autonomy but var-
ies significantly regarding the robot’s morphology, which is 
anthropomorphic in appearance, communication, movement 
and context.

The human role is categorized as a collaborator because 
the human is dependent on C-3PO’s actions, they work 
together for a joint task completion: the human having a 
conversation and creating content, the robot translating what 
is said between the two parties. The team composition is 
NH < NR or NH > NR, as the HRI scenario typically includes 
either two humans and C-3PO, or one human, one robot and 
C-3PO. Regarding the hierarchical level, one could argue 
that the human is on a higher level (i.e. an operator). How-
ever, the relation between the two agents can be seen as the 
relation between a human interpreter and his/her customer. 
C-3PO can do the translation or refuse to do so. Moreover, 
the robot decides what and how to translate. For example, 
bad language is not translated by C-3PO which then tries to 
rephrase into acceptable terms or just refuses to translate. 
Information can be passed from human to C-3PO using an 
acoustic (e.g. speech) or an optical channel (e.g. written 
text), and output is given by the robot using acoustic and 
visual communication (gestures). The physical proximity 
can be described as approaching, as C-3PO and the human 
for which it is interpreting share the same space, working 
closely together but with no physical contact. Most of the 
time, the temporal proximity is synchronous but as it is 
possible to send C-3PO to deliver messages, the proximity 
might be asynchronous as well, which again illustrates the 
dependency on the specific task for categorizing robots.

By applying the taxonomy to both robots, we can now 
try to find variables of HRI that might cause the perception 
that R2-D2 is more likeable than C-3PO (although this is a 
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R2- D2 is a small (approx. 1-meter height)

astromech droid, which was developed for

navigational and maintenance tasks. It is able to

resume the astronavigation of a starship and

executes diverse tasks as a mechanic.
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C-3PO is a human-sized protocol droid and is

specialized on language, translation and diplomacy.

It does not only translate between different

languages, but also acts as a robot-human

interpreter.
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Fig. 3  Application of the HRI taxonomy for R2-D2 and C-3PO using the canvas representation. Chosen specifications per variable are written in 
italic bold
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post hoc explanation that has to be handled with caution). 
The comparison of the two canvas representations reveals 
the similarities and differences of both HRI scenarios. While 
the field of application, exposure, robot autonomy, commu-
nication channel and temporal proximity are comparable, 
there are also remarkable differences. First of all, the robots 
differ regarding the task for which they were developed. 
Moreover, the human role is different. In interaction with 
C-3PO, the human is a collaborator and dependent on the 
robot’s actions. For the human, this might also imply a (per-
ceived) shared responsibility entailing higher expectations 
of the robot’s ability. Working with R2-D2, the human is 
not directly involved in the task fulfillment but has to super-
vise the robot, i.e., the action implementation is completely 
resumed by the robot, whereas responsibility remains with 
the human. Together with R2-D2’s morphology combining 
functional, zoomorphic and humanoid aspects, this might 
foster the caregiver effect [64, 65]. When we interact with 
a machine that presents itself as dependent, e.g. has to be 
supervised and recalls associations with a pet, we have the 
tendency to nurture this machine, which in turn creates sig-
nificant social attachments. This might explain why most 
people would be more willing to interact with R2-D2. As 
R2-D2 is highly autonomous and often meets bystanders 
when navigating to its workplace as a mechanic, the chosen 
morphology might help to enhance its acceptance: it does 
not look dangerous or scary, is smaller than a human adult 
and with its technical appearance it does not look very com-
plex. In contrast, C-3PO was designed as a humanoid robot 
on all levels: appearance, communication, movement and 
context. This design supports notions of seriousness, exper-
tise and trustworthiness, especially as C-3PO looks like an 
adult, is tall and has no scheme of childlike characteristics. 
Therefore, the chosen morphology is fitting for the human 
role, C-3PO’s ability and task (interpreting in a business or 
political context).

In summary, applying the taxonomy explicates that inter-
acting with R2-D2 is fundamentally different from interact-
ing with C-3PO. Based on the detailed categorization and 
a post hoc analysis of both robots, a hypothesis can be pro-
posed on the reasons why people think R2-D2 is more like-
able: the likability of a robot is dependent on its morphology 
and the accompanying expectations, as well as the human 
role in interaction with the robot.

4.2  Anthropomorphism in HRI: Different Results 
or Different Scenarios?

The application to fictional HRI aimed to demonstrate how 
to apply the taxonomy by using examples most people are 
familiar with. In a second application, we refer to the set 
of studies on anthropomorphic movement discussed in the 

Introduction. While Kuz et al. [12] have demonstrated that 
anthropomorphic trajectories and speed profiles ease the 
prospective identification of robot actions, Riek’s research 
group [14] reports that action identification is faster with 
machine-like trajectories compared to smooth, human-
like movement patterns. To disentangle possible reasons 
for these different results, the taxonomy is applied to both 
experimental setups (see Fig. 4).

Kuz and colleagues [12, 13] used a virtual simulation 
environment with a single-arm assembly robot and its work-
place. The robot’s task was to place an object to certain 
fields on a black and white grid. The experimental setup 
and the simulated robot represent a scenario of an indus-

trial application, and participants were exposed to a depicted 
robot in a laboratory setting. The robot’s task of placing 
objects is classified as a manipulation. The morphology 
regarding appearance is described as technical, and there 
was no communication. The movement, however, was the 
independent variable of the experiment and implemented as 
either technical or anthropomorphic. No additional informa-
tion was given regarding the context. The overall degree of 
robot autonomy for the experimental setup can be described 
as high because from the participants’ perspective the robot 
was performing completely autonomously without any exter-
nal impact. During experimental trials, participants had to 
observe the robot and predict the robot arm’s end position, 
i.e. where the robot was going to place the object. Conse-
quently, the human role was that of a bystander with no 
control or supervisory task. The team (if this term is appro-
priate at all for the experimental scenario) consisted of one 
human and one robot, therefore NH= NR. The communication 
channels for input might be electronic (not specified in the 
experimental description), and the output was visual. The 
temporal proximity was synchronous, but there was no phys-

ical proximity as participants were just passively observing 
a simulated robot at its workplace.

The application of the taxonomy to the HRI study of 
Riek et al. [14] reveals the very artificial character of the 
chosen interaction scenario. Because of the abstraction 
level, the field of application cannot be specified and is 
therefore categorized as none. Participants were exposed 
to a depicted robot (videos) within a laboratory setting. 
The robot’s only task in the experiment is described as ges-
turing, i.e. an explicit non-verbal communication and thus 
can be categorized as information exchange. The robot’s 
morphology regarding its appearance and communication 
style (explicit non-verbal communication) was anthropo-
morphic. No context information was provided to partici-
pants. Again, the robot’s movement was the independent 
variable and implemented as either technical or anthropo-

morphic. Comparable to Kuz et al. [12], the overall degree 
of robot autonomy can be described as high because the 
robot seemed to perform completely autonomously from 



846 International Journal of Social Robotics (2021) 13:833–849

1 3

Exposure to

robot

embodied

depicted

setting

field 

laboratory

Degree of Robot Autonomy

information

acquisition

information

analyses

decision-

making

action

implementation

Team Composition

NH = NR

NH > NR

NH < NR

Robot Morphology 

appearance

communication

movement

context

a (anthropomorphic)

z (zoomorphic)

t (technical)

Field of Application

industry

service

military & police

space expedition

therapy

education

entertainment

none

Robot Task Specification

information exchange

precision

physical load reduction

transport

manipulation

cognitive stimulation

emotional stimulation

physical stimulation

Robot Description & Illustration

- +

☐ ☐ ☐

☐ ☐ ☐

☐ ☐ ☐

☐ ☐ ☐

a      z      t

Proximity

temporal

synchronous

asynchronous

physical

following

touching

approaching

passing

avoidance

none

Communication Channel

input

electronic

mechanical

acoustic

optic

output

tactile

acoustic

visual

Kuz et al. (2013) used a virtual simulation

environment consisting of an assembly robot and its

workplace. The simulation scene comprises a six-axis

gantry robot that could be regarded as a real human

arm in a real “placing” situation.

The virtual robot‘s task 

is to place a cylinder 

to certain areas of a grid. 
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Riek et al. (2010) used the humanoid robot torso

BERTI (Bristol and Elumotion, Robotic Torso 1.).

The robot has two arms, each arm of the robot has

seven degrees of freedom (DOFs), each hand has

nine DOFs, and the neck and waist have two DOFs.

The robot‘s task is to perform three interactional

gestures.
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Fig. 4  Application of the HRI taxonomy for the robots used by Kuz et al. [12] and Riek et al. [14] using the canvas representation. Chosen speci-
fications per variable are written in italic bold
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a participant’s perspective. The human role was that of a 
bystander as human and robot were not working together, 
nor had a shared goal, but the scenario implied some basic 
communication affordances. With an interaction of one 
robot and one participant at a time, the team composition 
is defined as NH= NR. Based on the given information in 
the experimental description, the communication input 
channel might be electronic. However, as participants had 
to interpret the robot’s gestures, it might also be possible 
that they assumed a reciprocity in this kind of communi-
cation, i.e. an optical input. This is not discussed in the 
original paper. The robot communicated with participants 
using gestures which resembles a visual communication 
output. The proximity is classified as being synchronous in 
time and none regarding the physical proximity (because 
of using video material).

The application of the taxonomy reveals similarities and 
differences between the two studies. The interaction context 
and exposure setting are categorized similarly and there are 
no differences within the taxonomy part of team character-
istics. The categorization of degree of robot autonomy is 
also comparable in both studies. However, there are also 
at least three aspects in which the studies differ essentially: 
the field of application, the robot task specification and the 
morphology. These differences are important when inter-
preting results. Both studies compare a robot’s movement 
being anthropomorphic or technical. However, while in Kuz 
et al.’s [12] experiment the robot’s movement is a means to 
an end, i.e. the movement is needed in order to fulfill the 
task of manipulation, the robot movement in the study of 
Riek et al. [14] is the central variable, as this actually is the 
robot’s task: information exchange via gestures. Moreover, 
the robots differ greatly regarding their appearance (techni-
cal vs. anthropomorphic design). These differences might 
explain the contradicting results as they show that even 
though both focused on a robot’s movement, they, in fact, 
did research on completely different HRI scenarios which 
cannot be assessed as equal, since movement had dissimilar 
functions.

So, to answer the question: “Different results or different 
HRI scenarios?”, the taxonomy illustrates that a comparison 
of the two study results would resemble a comparison of 
apples and oranges because, in fact, these are completely 
different scenarios.

5  Outlook

The exemplified application of the taxonomy to both fic-
tional and real examples shows its strength by enabling a 
structured comparison of very different HRIs revealing simi-
larities and differences. Hence, the taxonomy has a broad 
practical applicability to top-down classifications of existing 

HRI scenarios which can be the basis for precise interven-
tions in order to optimize HRI. Moreover, the taxonomy 
serves as a basis to decide whether studies are comparable 
and if an overall interpretation is valid. Additionally, the 
taxonomy enables the identification of dimensions on which 
HRI studies differ. This is the foundation for more general-
ized insights, as such structured comparisons and categori-
zations allow meta-analyses. There already exists a rich and 
rising research body. However, the interaction context, the 
robot and the team characteristics of the individual studies 
differ considerably. Are implications of results obtained in 
studies with a therapeutic zoomorphic robot still valid for 
studies utilizing a single-arm industrial robot in a manufac-
turing domain? The generalizability of insights from single 
studies is always problematic. The proposed descriptive HRI 
taxonomy facilitates HRI research, as it illustrates similari-
ties and highlights differences of actual scenarios. Further-
more, the taxonomy offers a framework for experimental 
study setups, as the predefined categories propose a struc-
tured graduation on each HRI-dimension. By following such 
structured research actions, it will be possible to tell which 
detailed aspects of HRI might have a beneficial impact to 
enable a safe and efficient teamwork between humans and 
robots.
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