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ABSTRACT
In this paper we propose a method for generating reduced mod-
els for a class of nonlinear dynamical systems, based on truncated
balanced realization (TBR) algorithm and a recently developed tra-
jectory piecewise-linear (TPWL) model order reduction approach.
We also present a scheme which uses both Krylov-based and TBR-
based projections. Computational results, obtained for examples of
nonlinear circuits and a micro-electro-mechanical system (MEMS),
indicate that the proposed reduction scheme generates nonlinear
macromodels with superior accuracy as compared to reduction al-
gorithms based solely on Krylov subspace projections, while main-
taining a relatively low model extraction cost.

Categories and Subject Descriptors
B.7.2 [Design Aids]: Simulation; G.1.2 [Approximation ]: Non-
linear approximation; I.6.5 [Model Development]: Modeling me-
thodologies

General Terms
Algorithms, Performance, Design

Keywords
Model Order Reduction, nonlinear systems, Truncated Balanced
Realization

1. INTRODUCTION
Model Order Reduction (MOR) plays an increasingly important

role in system-level design automation, providing techniques for
extracting low cost, easy to use macromodels for e.g. circuit in-
terconnects or subsystems of a complicated mixed-signal, mixed-
technology system-on-a-chip.

Most of the research effort so far focused on developing MOR
techniques suitable for linear systems, with predominance of meth-
ods based on Krylov subspace projections [2], due to a low nu-
merical cost associated with model generation. More recently, also
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methods based on Hankel norm approximants and Truncated Bal-
anced Realization (TBR) gained much interest in the engineering
community, due to their superior accuracy, as compared to Krylov-
based methods, as well as guaranteed error bounds and a stability
preservation property [3], [9].

Available MOR techniques for nonlinear systems are much scar-
cer and include methods based on linearization or bilinearization
of the initial system around the equilibrium point [10], algorithms
using Karhunen-Lòeve expansion (or Proper Orthogonal Decom-
position) [13], and finally methods of balanced truncation [7], [12].
Unfortunately, the existing MOR algorithms for nonlinear systems
based on balancing transformations, although accurate, either are
characterized by high numerical cost of generating the models or
overlook issues associated with the numerical cost of evaluating
the final reduced order model (cf. Section 2).

In this paper we propose an approach which merges a recently
developed trajectory piecewise-linear (TPWL) model order reduc-
tion technique [11], providing a cost-efficient representation of sys-
tem’s nonlinearity, with state space projection method based on
TBR. As shown below, this method outperforms algorithms using
solely Krylov subspace reduction, while maintaining a relatively
low computational cost.

We start in the next section with briefly describing the Trajec-
tory Piecewise-Linear (TPWL) approach toward modeling nonlin-
ear systems, and then, in Section 3, we present an algorithm for
generating the reduced order basis using the TBR algorithm. Sec-
tion 4 gives examples of nonlinear systems, which served to test our
approach, and Section 5 contains computational results. In Section
6 we present our conclusions.

2. TRAJECTORY PIECEWISE-LINEAR
MACROMODELS

In this paper we consider a class of nonlinear dynamical systems
which can be represented using the standard state space form:�

ẋ(t) = f(x(t)) + Bu(t)
y(t) = Cx(t)

(1)

wherex(t) ∈ RN is a vector of states at timet, f : RN → RN is
a nonlinear vector-valued function,B is anN × M input matrix,
u : R → RM is an input signal,C is anN ×K output matrix and
y : R → RK is the output signal.

In the context of nonlinear systems, the ultimate goal of model
order reduction techniques is constructing macromodels capable of
approximately simulating the input-output behavior of systems in
form (1) at a significantly reduced numerical cost. One should note
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that, unlike in the linear case, construction of a macromodel using
a simple order reduction, realized through basis projection, does
not achieve this goal. Suppose we consider anN × q (q ¿ N )
projection basisV , i.e. we try to approximate every state (x) of
the system with a linear combination of the columns ofV . After
performing the projectionx = V z on system (1) and applying a
‘testing’ N × q basisW (W T V = I) we obtain the following
reduced order system:�

ż = W T f(V z(t)) + W T Bu(t)
y(t) = CV z(t).

(2)

Although the order of the above system is reduced toq, its numeri-
cal solution remains costly. In particular, evaluation ofW T f(V z)
term typically requires at leastO(N) operations, and makes system
(2) as costly to evaluate as system (1). In order to overcome this
difficulty, using the following quasi-piecewise-linear approximate
representation of nonlinear functionf has been proposed in [11]:

f(x) ≈
s−1X
i=0

w̃i(x) (f(xi) + Ai(x− xi)) , (3)

where xi’s (i = 1, . . . , (s − 1)) are some linearization points
(states),Ai’s are the Jacobians off evaluated at statesxi, and
w̃i(x)’s are state-dependent weights (

Ps−1
i=0 w̃i(x) = 1 for all x).

Applying the above approximation, and performing a projection of
system (1) with biorthonormal matricesV andW yields:�

ż = (
Ps−1

i=0 wi(z)Air)z + γ · w(z) + Bru
y = Crz

, (4)

where:

γ =
h
W T (f(x0)−A0x0), . . . , W

T (f(xs−1)−As−1xs−1)
i
,

w(z) = [w0(z) . . . ws−1(z)]T (
Ps−1

i=0 wi(z) = 1 for all z) is a
vector of weights,Air = W T AiV , Br = W T B, andCr = CV .
One should note that evaluation of the right hand side of equation
(4) requires at mostO(sq2) operations, wheres is the number of
linearization points used.

As proposed in [11], linearization pointsxi used in system (4)
are picked from a ‘training trajectory’ of the initial nonlinear sys-
tem, corresponding to some appropriately selected ‘training input’.

In order to obtain a reduced system in form (4) one also needs to
pick suitable biorthonormal projection basesV andW . This issue
is addressed in more detail in the following section.

3. GENERATION OF THE REDUCED OR-
DER BASIS

In order to obtain a reduced system in form (4) we considered
a few different strategies toward generating the projection basesV
andW . In the simplest approach we applied a standard TBR al-
gorithm to obtain a balancing transformation for the linearization
of system (1) at the initial statex0. In an extended approach we
included subsequent linearization points in the projection bases, as
well as generated truncated balancing transformations for lineariza-
tions of system (1) at different states, located along the training
trajectory. The multiple bases were then aggregated into a sin-
gle basis using a biorthonormalization algorithm. In yet another
approach we applied a two-step reduction: first we performed an
intermediate reduction using a standard Krylov subspace method,
and then applied a TBR-based projection to obtain the final macro-
model. In the following sections the outlined reduction strategies
are described in more detail.

3.1 Truncated Balanced Realization at the ini-
tial state

In the simplest projection strategy we consider linearization of
(1) at the initial statex0:�

ẋ = A0x + f(x0)−A0x0 + Bu
y = Cx

(5)

In the above system, apart from a ‘real’ input termBu, we also
have a(f(x0) − A0x0) term, which may be treated as an addi-
tional input that introduces a constant shift to the system. In case
of Krylov-based reduction we may account for this constant shift
by simply adding(f(x0)−A0x0) vector to the projection basisV .
If TBR-based reduction is used, the situation is more subtle. We
have found, that for the examples of micromachined switch and
nonlinear transmission line models (cf. Section 4) it is enough to
use only the ‘real’ input term̂B = B in the balancing procedure
(cf. below). However, for the op-amp example it is necessary to
take B̂ = [(f(x0) − A0x0) B] as an input term. Summing up,
we compute balancing transformation for the matrices:Â = A0,
Ĉ = C, and suitableB̂ using the square-root TBR procedure [8]:

TBR(Â, B̂, Ĉ)
Input: System matriceŝA, B̂, andĈ.
Output: Projection basesV andW .
(1) Find observability GrammianP :

ÂP + PÂT = −B̂B̂T ;
(2) Find controllability GrammianQ:

ÂT Q + QÂ = −ĈT Ĉ;
(3) Using SVD compute Cholesky factors ofP andQ:

P = ZcZ
T
c , Q = ZoZ

T
o ;

(4) Compute SVD of Cholesky product:UΣV = ZT
o Zc;

(5) ComputeV andW :
V = ZcV TΣ−1/2, W = ZoUTΣ−1/2;

whereT = [I(q×q)0]T is anN × q truncation matrix.

The obtained projection basesV andW are then used to com-
pute the reduced order JacobiansAir (cf. (4)).

We have found that, in order to obtain an accurate reduced order
model, it is often critical to include the linearization pointx0 in
the reduced order basis (which ensures exact representation of this
state in the reduced order state space). SupposeV andW areN×p
bases computed with TBR algorithm andx0 is not in the span of
those bases. Then, we may form new basesW̃ and Ṽ which in-
cludex0 using a biorthonormalization algorithm. One should note
that matricesṼ and W̃ are no longer balancing transformations
for system (5), although they still approximately capture the ‘most
controllable’ and ‘most observable’ regions of the state space for
this linearized system.

3.2 Aggregate TBR-based projection
In the discussed trajectory piecewise-linear MOR approach we

consider a weighted combination of linearized models of system
(1) in form (5). Clearly, each of those models has a different set of
balancing transformations and a different ‘most controllable’ and
‘most observable’ part of the state space. In order to obtain a sin-
gle, consistent reduced order representation which will include the
most relevant parts of the state space for all the models, one may
construct aggregate reduced basesVagg andWagg by merging the
subsequent balanced realizations[Vi, Wi] for different linearized
models, and then biorthonormalizing.1

1During this process one typically needs to remove excessive vec-
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Figure 1: An example of a nonlinear transmission line RLC
circuit model.

3.3 Two-step hybrid reduction
Due to high complexity of the TBR algorithm (O(N3), whereN

is the initial size of the system) and problems with ill-conditioning
of Lyapunov equations, reduction algorithms based solely on TBR
are limited in practice to systems with a few hundred unknowns.
In order to allow effective and efficient reduction of larger systems
one may use a two-step hybrid reduction [5] in which a standard
Krylov subspace method (cf. [10], [11]) is used to reduce the initial
TPWL model to a medium-sized model (e.g. of orderqi ≈ 100),
and then TBR is used to further compress that model.

As shown in the following sections, the above approach pro-
vides excellent nonlinear reduced order models, generated with sig-
nificantly reduced computational effort as compared to reduction
schemes based solely on TBR.

4. EXAMPLES OF NONLINEAR SYSTEMS
In this Section we consider four examples of nonlinear systems

which may be described by equations (1) and, due to their highly
nonlinear dynamical behavior, are suitable to test the proposed re-
duction algorithms.

The first two examples (the first one was also examined in [1])
refer to a nonlinear transmission line circuit model shown in Fig-
ure 1. The first circuit consists of resistors, capacitors, and diodes
with a constitutive equationid(v) = exp(40v)− 1. For simplicity
we assume that all the resistors and capacitors have unit resistance
and capacitance, respectively (R = 1, C = 1) (In this case we
assume thatL = 0). The input is the current source entering node
1: u(t) = i(t) and the (single) output is chosen to be the voltage
at node 1:y(t) = v1(t). Consequently, if the state vector is taken
asx = [v1, . . . , vN ], wherevi is the voltage at nodei, the system
has symmetric Jacobians at any linearization point, andB = C.
In this example we considered the number of nodesN = 400 and
N = 1500. In the second example (cf. Figure 1) we also consider
inductors (with inductanceL = 10), connected in series with the
resistors. We apply the RL formulation in order to obtain a dynam-
ical system in form (1) with voltages and currents at subsequent
nodes (or branches) of the circuit as state variables. In this case the
Jacobians off become nonsymmetric.

The third example is a micromachined switch (fixed-fixed beam)
shown in Figure 2. Following Hung et al. [4], the dynamical be-
havior of this coupled electro-mechanical-fluid system can be mod-
eled with 1D Euler’s beam equation and 2D Reynolds’ squeeze film
damping equation [4]. Spatial discretization of those equations us-
ing a standard finite-difference scheme leads to a nonlinear dynam-
ical system in form (1) withN = 880 states. For this system the

tors which are linearly dependent on the other columns ofVagg or
Wagg.

x

Si substrate

2 um of poly Si

0.5 um of poly Si deflection

2.3 um gap

filled with air
0.5 um SiN

z

y

y(t) − center point

u=v(t)

Figure 2: Micromachined switch (following Hung et al. [4]).

state vector (x) consists of heights of the beam above the substrate
(u) computed at the grid points, values of∂(u3)/∂t, and the values
of pressure below the beam. For the considered example we select
our outputy(t) as the deflection of the center of the beam from the
equilibrium point (cf. Figure 2).

The last of the examples we consider in this paper is an opera-
tional amplifier with differential input and output, and consisting
of 70 MOSFETs, 13 resistors and 9 linear capacitors connected to
51 circuit nodes. Nodal analysis yields a nonlinear model of the
device in the form: �

Eẋ = f(x) + Bu
y = Cx

(6)

whereE is the capacitance matrix, andx consists of voltages at
the circuit nodes. (In this example we used transistor models with
linearized capacitances, and consequently matrixE is state-inde-
pendent.) In order to transform system (6) to form (1), suitable for
TBR-based reduction, we note thatE is a symmetric positive defi-
nite matrix. Consequently, we can perform Cholesky factorization
on E: E = RT R, whereR is an upper triangular matrix. Sub-
stituting change of variables̃x = Rx to (6) yields the following
system in form (1):�

˙̃x = (RT )−1f(R−1x̃) + (RT )−1Bu
y = CR−1x̃

It has been found that the above representation provides linearized
systems, which are better conditioned than e.g. a representation ob-
tained by left-multiplying first of equations (6) byE−1.

5. COMPUTATIONAL RESULTS
In this section we present results of numerical tests for the appli-

cation examples described above.

5.1 Transmission line models
First, we considered nonlinear transmission line RLC circuit mo-

del. We applied the two-step hybrid projection algorithm proposed
in Section 3.3. The initial problem sizeN equaled 800. Using
Krylov projection, the TPWL system (with 20 linearization points)
was first reduced to a system of order orderqi = 100. Then we ap-
plied a simple TBR reduction (described in Section 3.1) which gen-
erated a truncated balancing transformation of orderq = 4 (for the
linearized system at the initial statex0 = 0). Figure 3 compares a
transient computed with the obtained reduced order model (denoted
as Krylov-TBR TPWL model) with the transients obtained with full
order nonlinear and linear models. One may note that Krylov-TBR
TPWL reduced order model provides an excellent approximation
of the transient for the initial system. It is also apparent that the
model is substantially more accurate than a full order linear model
of the transmission line.
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Figure 3: Comparison of system response (nonlinear trans-
mission line RLC circuit) computed with nonlinear and linear
full-order models, as well as Krylov-TBR TPWL reduced or-
der model (20 models of orderq = 4) for the input current
i(t) = (sin(2πt/10) + 1)/2. The TPWL model was generated
using a unit step input current. Intermediate Krylov model or-
der qi = 100.
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TBR TPWL reduced order models (nonlinear transmission line
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voltages. Initial order of system N = 1500; intermediate
Krylov model order qi = 100.

Figure 4 shows the error in the output signal‖yr−y‖2 computed
for different values ofq, whereyr is the output signal obtained with
Krylov-TBR TPWL reduced order model, andy is computed with
full order nonlinear model (in this example‖y‖2 = 0.44). Anal-
ogous errors were also computed for reduced order TPWL mod-
els obtained with pure Krylov-based reduction. The results on the
graph show that Krylov-TBR TPWL models are significantly more
accurate than Krylov TPWL models of the same size. Also, the dis-
cussed Krylov-TBR TPWL model achieves its best accuracy (lim-
ited by the quality of TPWL approximation tof ) at a much lower
order than the TPWL model based solely on Krylov subspace re-
duction.

It follows from Fig. 4 that the total error of TPWL reduced order

Table 1: Comparison of model extraction times for Krylov,
TBR and Krylov-TBR TPWL MOR techniques for different
initial problem sizes.

Initial TBR Krylov-TBR Krylov
model TPWL, TPWL, TPWL,
sizeN q = 6 q = 6 q = 30
1500 1268 s 30.57 s 26.34 s
800 181.8 s 8.57 s 7.75 s
400 23.75 s 2.73 s 3.03 s

approximation of a full nonlinear model consists of two compo-
nents: the error due to projection procedure, and the error asso-
ciated with piecewise-linear approximation of nonlinear function
f . The first component is dominant when the order of the reduced
model is small. One may note that for Krylov-TBR approach this
error component becomes negligible as soon as the order of the
reduced model is greater than 5. Further considerations on error
estimates for TPWL models may be found in [11].

In order to estimate how intermediate Krylov reduction affects
total accuracy of a TPWL reduced order model, we used pure TBR
reduction to construct TPWL models for the example of a nonlin-
ear transmission line RC circuit model withN = 400 nodes. It
has been found that using an intermediate Krylov reduction has a
vanishingly small effect on the accuracy of the final TPWL reduced
order model.

We also compared performance of different MOR strategies for
the example of a nonlinear transmission line RC circuit model. Ta-
ble 1 shows a comparison of model extraction times for MATLAB
implementations of TBR, Krylov-TBR, and Krylov TPWL MOR
algorithms. One may note that, while the pure TBR reduction
quickly becomes expensive asN grows, the cost of generating a
reduced model (of orderq = 6) with the two-step hybrid Krylov-
TBR strategy remains low and matches the cost of generating an
equally accurate model (of orderq = 30!) with a pure Krylov-
based reduction. This clearly follows from the fact that model ex-
traction cost for pure TBR-based projection isO(N3), while hy-
brid Krylov-TBR projection can be performed atO(Nq2

i )+O(q3
i )

cost, provided matrixA is sparse and structured.

5.2 Micromachined switch example
We also applied the Krylov-TBR TPWL model order reduction

strategy to generate macromodels for the micromachined switch
example described in Section 4. In this case, the reduced basis
was generated using the linearized model of system (1) only at the
initial statex0, and the initial state was included in the basesV and
W .

Surprisingly, unlike in the previous example, we didnotobserve
a monotonically decreasing output error behavior for the growing
orderq of the reduced system. Instead, we found that macromodels
with odd orders behave very differently than the macromodels with
even orders. On one hand, models of even order are substantially
more accurate than models of the same order generated by Krylov
reduction – cf. Figure 5. On the other hand, ifq is odd we obtain
inaccurate and unstable reduced order models. This phenomenon
is reflected in the error plot shown in Figure 5.

The ‘even-odd’ phenomenon can be viewed in more detail by
examining eigenvalues of the reduced order Jacobians from dif-
ferent linearization points. For the considered example, the initial
nonlinear system is stable. Consequently, Jacobians off at all lin-
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Figure 5: Errors in output computed by TPWL models gen-
erated with different MOR procedures (micromachined switch
example);N = 880; intermediate Krylov model order qi = 96;
5.5-volt step testing and training input voltage.

earization points are also stable. Nevertheless, in this example, the
generated reduced order basis provides a truncated balancing trans-
formation only for the linearized system from the initial statex0.
Therefore, only the reduced Jacobian fromx0 is guaranteed to be
stable. Other Jacobians, reduced with the same set of bases, may
develop eigenvalues with positive real parts.

Figure 6 shows spectra of the reduced order Jacobians for models
of orderq = 7 andq = 8. One may note that, forq = 8, the spectra
of the Jacobians from a few first linearizations points are very sim-
ilar. They also follow the same pattern: two of the eigenvalues are
real, and the rest forms complex-conjugate pairs. If we increase or
decrease the order of the model by 2 a new complex-conjugate pair
of stable eigenvalues will add to the spectra of the Jacobians. On
the other hand, if the order of the model is increased or decreased
by 1 (cf. Figure 6 (top)) a certain complex-conjugate pair will be
broken, and a real eigenvalue will form. At the first linearization
point this eigenvalue is a relatively small negative number. As we
move to the next linearization point, the corresponding eigenvalue
shifts significantly to the right half-plane to form an unstable mode
of the system. An obvious workaround for this problem in the con-
sidered example is to generate models of even order. Nevertheless,
a true solution to this problem would involve investigating a much
deeper issue, namely, that of robustness of stability preservation
by balancing transformations applied to perturbed system matrices
(corresponding, in the context of TPWL approximations, to Jaco-
bians from different linearization points along a trajectory of the
system).

Though the issue of TBR stability for perturbed systems requires
further investigation to develop robust strategies, the proposed me-
thod is extremely effective. For example, the plot in Figure 7 de-
monstrates that a 4th order Krylov-TBR TPWL model generates
transient behavior that is indistinguishable from the transient for
the reference model.

5.3 Op-amp example
As the last example, we considered the operational amplifier ex-

ample, described in Section 4. The examined circuit hadN = 51
nodes and eight inputs: 1) the differential input with input signals
vin1 andvin2, 2) the auxiliary inputsvcmmrst, vgnd, vintn, vintp,
vrst, andvcmmin used in common mode rejection testing.
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The full order nonlinear simulations were performed using the
NITSWIT circuit simulator [6]. In order to generate the reduced
order TPWL models we applied the following set of training inputs:

vin1(t) =

8<: 0 t < 290
12.5 · 10−3(t− 290)/10 290 ≤ t < 300
12.5 · 10−3 t ≥ 300

vin2 = −vin1 and auxiliary PWL input signals – cf. [11].
We applied the MOR algorithm described in Section 3.2 (us-

ing multiple balancing bases from different linearization points),
to generate a TPWL model of orderq = 30 (with s = 35 lin-
earized models and 8 inputs). The obtained reduced order TPWL
model was then tested for the input:

vin1(t) =

8<: 0 t < 290
11.5 · 10−3(t− 290)/110 290 ≤ t < 400
11.5 · 10−3 t ≥ 400

(vin2 = −vin1). Figure 8 shows a comparison of the transients
computed with NITSWIT and with the reduced order TBR TPWL
model for one (of the two) output nodes of the amplifier. One may
note very good agreement of the results. The relative error, com-
puted ase = ‖yr − y‖1/‖y‖1 · 100%, whereyr is the transient
obtained with reduced order TPWL model andy is the reference
result, equals onlye = 0.71%. This error includes: 1) error due
to the piecewise-linear approximation, 2) error due to reduced or-
der projection. As computed in a separate test, the error due to
piecewise-linear approximation equaled in this case 0.37%.

The results indicate that the MOR method proposed in Section
3.2, based on using aggregated truncated balancing transformations
from different linearization points, may be effectively applied to
model complicated nonlinear systems with multiple inputs. It is
important to point out that not only do the TPWL models have a
lower order than the original system, but also they are much easier
to use. Since a TPWL model consists of a weighted combination
of linear models, the time-stepping is very straightforward.

6. CONCLUSIONS AND ACKNOWLEDG-
MENTS

In this paper we proposed an algorithm for generating accurate
reduced models for nonlinear dynamical systems, merging trun-

cated balanced realization (TBR) algorithm and a trajectory piece-
wise-linear (TPWL) model order reduction approach. A two-step
hybrid reduction algorithm based on Krylov subspace projection
and TBR has also been examined. Results of numerical tests show
that, for the considered application examples, the discussed MOR
algorithm efficiently generates very low order TPWL models, char-
acterized by superior accuracy over models extracted solely with
Krylov subspace projection methods.

Summing up, the main advantages of the proposed MOR strat-
egy include accuracy, performance, and applicability to strongly
nonlinear systems. A fundamental limitation of the discussed algo-
rithm is that TBR (unlike Krylov projection) may be computed only
for stable linear systems, therefore our TBR-based TPWL proce-
dures may approximatef only in the region of the state space where
linearizations off yield stable linear systems. One also needs a sta-
ble intermediate model for Krylov-TBR reduction (which Krylov
projection does not guarantee).

There are also a number of issues yet to be addressed about the
proposed approach, such as investigating applicability of the trun-
cated balancing transformations to reducing system matrices corre-
sponding to a number of different linearization points, or examining
the problem of robustness of stability preservation for the proposed
TBR-based TPWL model order reduction strategy.
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