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ABSTRACT | The AV1 video compression format is developed

by the Alliance for Open Media consortium. It achieves more

than a 30% reduction in bit rate compared to its predecessor

VP9 for the same decoded video quality. This article provides

a technical overview of the AV1 codec design that enables

the compression performance gains with considerations for

hardware feasibility.
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I. I N T R O D U C T I O N

The last decade has seen a steady and significant growth of

web-based video applications, including video-on-demand

(VoD) service, live streaming, conferencing, and virtual

reality [1]. Bandwidth and storage costs have driven the

need for video compression techniques with better com-

pression efficiency. VP9 [2] and HEVC [3], both debuted

in 2013, achieved in the range of 50% higher compression

performance [4] than the prior codec H.264/AVC [5] and

were quickly adopted by the industry.

As the demand for high-performance video compression

continued to grow, the Alliance for Open Media [6] was

formed in 2015 as a consortium for the development of

open, royalty-free technology for multimedia delivery. Its

first video compression format AV1, released in 2018,

enabled about 30% compression gains over its predeces-

sor VP9. The AV1 format is already supported by many

web platforms, including Android, Chrome, Microsoft

Edge, and Firefox, and multiple web-based video ser-

vice providers, including YouTube, Netflix, Vimeo, and
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Bitmovin, have begun rolling out AV1 streaming services

at scale.

Web-based video applications have seen a rapid shift

from conventional desktop computers to mobile devices

and TVs in recent years. For example, it is quite com-

mon to see users watch YouTube and Facebook videos

on mobile phones. Meanwhile, nearly all the smart TVs

after 2015 have native apps to support movie playback

from YouTube, Netflix, and Amazon. Therefore, a new

generation video compression format needs to ensure that

it is decodable on these devices. However, to improve

the compression efficiency, it is almost inevitable that a

new codec will include coding techniques that are more

computationally complex than its predecessors. With the

slowdown in the growth of general CPU clock frequency

and power constraints on mobile devices, in particular,

next-generation video compression codecs are expected

to rely heavily on dedicated hardware decoders. There-

fore, during the AV1 development process, all the coding

tools were carefully reviewed for hardware considerations

(e.g., latency and silicon area), which resulted in a codec

design well-balanced for compression performance and

hardware feasibility.

This article provides a technical overview of the

AV1 codec. Prior literature highlights some major charac-

teristics of the codec and reports preliminary performance

results [7]–[9]. A description of the available coding tools

in AV1 is provided in [8]. For syntax element definition

and decoder operation logic, the readers are referred to

the AV1 specification [9]. Instead, this article will focus

on the design theories of the compression techniques and

the considerations for hardware decoder feasibility, which

together define the current state of the AV1 codec. For

certain coding tools that potentially demand substantial

searches to realize the compression gains, it is imperative

to complement them with proper encoder strategies that

materialize the coding gains at a practical encoder com-

plexity. We will further explore approaches to optimizing
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the tradeoff between encoder complexity and the coding

performance therein. The AV1 codec includes contribu-

tions from the entire AOMedia teams [6] and the greater

ecosystem around the globe. An incomplete contributor list

can be found at [10].

The AV1 codec supports input video signals in the

4:0:0 (monochrome), 4:2:0, 4:2:2, and 4:4:4 formats.

The allowed pixel representations are 8, 10, and 12 bit.

The AV1 codec operates on pixel blocks. Each pixel block is

processed in a predictive-transform coding scheme, where

the prediction comes from either intraframe reference

pixels, interframe motion compensation, or some com-

binations of the two. The residuals undergo a 2-D uni-

tary transform to further remove the spatial correlations,

and the transform coefficients are quantized. Both the

prediction syntax elements and the quantized transform

coefficient indexes are then entropy coded using arithmetic

coding. There are three optional in-loop postprocessing fil-

ter stages to enhance the quality of the reconstructed frame

for reference by subsequent coded frames. A normative

film grain synthesis unit is also available to improve the

perceptual quality of the displayed frames.

We will start by considering frame-level designs, before

progressing on to look at coding block-level operations

and the entropy coding system applied to all syntax ele-

ments. Finally, we will discuss in-loop and out-of-loop fil-

terings. The coding performance is evaluated using libaom

AV1 encoder [11], which is developed as a production

codec for various services, including VoD, video confer-

encing, and light field, with encoder optimizations that

utilize the AV1 coding tools for compression performance

improvements while keeping the computational complex-

ity in check. We note that the libaom AV1 encoder opti-

mization is being actively developed for better compression

performance and higher encoding speed. We refer to

the webpage [12] for the related performance statistics

update.

II. H I G H - L E V E L S Y N TA X

The AV1 bitstream is packetized into open bitstream units

(OBUs). An ordered sequence of OBUs is fed into the

AV1 decoding process, where each OBU comprises a vari-

able length string of bytes. An OBU contains a header and

a payload. The header identifies the OBU type and specifies

the payload size. Typical OBU types include the following.

1) Sequence Header contains information that applies

to the entire sequence, e.g., sequence profile

(see Section VIII) and whether to enable certain

coding tools.

2) Temporal Delimiter indicates the frame presentation

time stamp. All displayable frames following a

temporal delimiter OBU will use this time stamp,

until the next temporal delimiter OBU arrives.

A temporal delimiter and its subsequent OBUs of the

same time stamp are referred to as a temporal unit.

In the context of scalable coding, the compression

data associated with all representations of a frame at

various spatial and fidelity resolutions will be in the

same temporal unit.

3) Frame Header sets up the coding information for a

given frame, including signaling inter or intraframe

type, indicating the reference frames and signaling

probability model update method.

4) Tile Group contains the tile data associated with

a frame. Each tile can be independently decoded.

The collective reconstructions form the reconstructed

frame after potential loop filtering.

5) Frame contains the frame header and tile data. The

frame OBU is largely equivalent to a frame header

OBU and a tile group OBU but allows less overhead

cost.

6) Metadata carries information, such as high dynamic

range, scalability, and timecode.

7) Tile List contains tile data similar to a tile group OBU.

However, each tile here has an additional header that

indicates its reference frame index and position in

the current frame. This allows the decoder to process

a subset of tiles and display the corresponding part

of the frame, without the need to fully decode all

the tiles in the frame. Such capability is desirable for

light field applications [13].

We refer to [9] for bit field definitions and more detailed

consideration of high-level syntax.

III. R E F E R E N C E F R A M E S Y S T E M

A. Reference Frames

The AV1 codec allows a maximum of eight frames in its

decoded frame buffer. For a coding frame, it can choose

any seven frames from the decoded frame buffer as its

reference frames. The bitstream allows the encoder to

explicitly assign each reference a unique reference frame

index ranging from 1 to 7. In principle, the reference

frames indices 1–4 are designated for the frames that

precede the current frame in terms of display order, while

indices 5–7 are for reference frames coming after the

current one. For compound interprediction, two references

can be combined to form the prediction (see Section V-C4).

If both reference frames either precede or follow the

current frame, this is considered to be the unidirectional

compound prediction. This contrasts with bidirectional

compound prediction where there is one previous and one

future reference frame. In practice, the codec can link a

reference frame index to any frame in the decoded frame

buffer, which allows it to fill all the reference frame indexes

when there are not enough reference frames on either side.

In estimation theory, it is commonly known that

extrapolation (unidirectional compound) is usually less

accurate than interpolation (bidirectional compound) pre-

diction [14]. The allowed unidirectional reference frame

combinations are hence limited to only four possible

pairs, i.e., (1, 2), (1, 3), (1, 4), and (5, 7), but all the

12 combinations in the bidirectional case are supported.

This limitation reduces the total number of compound

reference frame combinations from 21 to 16. It follows the
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assumption that if the numbers of the reference frames on

both sides of the current frame in natural display order are

largely balanced, the bidirectional predictions are likely to

provide a better prediction. When most reference frames

are on the one side of the current frame, the extrapolations

that involve the nearest one are more relevant to the

current frame.

When a frame coding is complete, the encoder can

decide which reference frame in the decoded frame buffer

to replace and explicitly signals this in the bitstream.

The mechanism also allows one to bypass updating the

decoded frame buffer. This is particularly useful for high

motion videos where certain frames are less relevant to

neighboring frames.

B. Alternate Reference Frame

The alternate reference frame (ARF) is a frame that will

be coded and stored in the decoded frame buffer with

the option of not being displayed. It serves as a reference

frame for subsequent frames to be processed. To transmit

a frame for display, the AV1 codec can either code a new

frame or directly use a frame in the decoded frame buffer—

this is called “show existing frame.” An ARF that is later

being directly displayed can be effectively used to code a

future frame in a pyramid coding structure [15].

Moreover, the encoder has the option to synthesize a

frame that can potentially reduce the collective prediction

errors among several display frames. One example is to

apply temporal filtering along the motion trajectories of

consecutive original frames to build an ARF, which retains

the common information [16] with the acquisition noise on

each individual frame largely removed. The encoder typ-

ically uses a relatively lower quantization step size to code

the common information (i.e., ARF) to optimize the overall

rate-distortion performance [17]. A potential downside

here is that this results in an additional frame for decoders

to process, which could potentially stretch throughput

capacity on some hardware. To balance the compression

performance and decoder throughput, each level definition

defines an upper bound on the permissible decoded sample

rate, namely maximum decode rate. Since the decoded

sample rate is calculated based on the total number of

samples in both displayable frames and ARFs that will not

be used as a “show existing frame,” it effectively limits the

number of allowable synthesized ARF frames.

C. Frame Scaling

The AV1 codec supports the option to scale a source

frame to a lower resolution for compression and rescale

the reconstructed frame to the original frame resolution.

This design is particularly useful when a few frames are

overly complex to compress and, hence, cannot fit in the

target streaming bandwidth range. The downscaling factor

is constrained to be within the range of 8/16–15/16.

The reconstructed frame is first linearly upscaled to the

original size, followed by a loop restoration filter as part

of the postprocessing stage. Both the linear upscaling

filter and the loop restoration filter operations are nor-

matively defined. We will discuss it with more details

in Section VII-D. In order to maintain a cost-effective

hardware implementation where no additional expense on

line buffers is required beyond the size for regular frame

decoding, the rescaling process is limited to the horizontal

direction. The upscaled and filtered version of the decoded

frame will be available as a reference frame for coding

subsequent frames.

IV. S U P E R B L O C K A N D T I L E

A. Superblock

A superblock is the largest coding block that the

AV1 codec can process. The superblock size can be either

128 × 128 luma samples or 64 × 64 luma samples, which

is signaled by the sequence header. A superblock can be

further partitioned into smaller coding blocks, each with

its own prediction and transform modes. A superblock

coding is only dependent on its above and left neighboring

superblocks.

B. Tile

A tile is a rectangular array of superblocks whose spatial

referencing, including intraprediction reference and the

probability model update, is limited to be within the tile

boundary. As a result, the tiles within a frame can be

independently coded, which facilitates simple and effective

multithreading for both encoder and decoder implemen-

tations. The minimum tile size is one superblock. The

maximum tile width corresponds to 4096 luma samples,

and the maximum tile size corresponds to 4096×2304 luma

samples. A maximum of 512 tiles are allowed in a frame.

AV1 supports two ways to specify the tile size for each

frame. The uniform tile size option follows the VP9 tile

design and assumes all the tiles within a frame are of the

same dimension, except those sitting at the bottom or right

frame boundary. It allows one to identify the number

of tiles vertically and horizontally in the bitstream and

derives the tile dimension based on the frame size. The sec-

ond option, the nonuniform tile size, assumes a lattice

form of tiles. The spacing is nonuniform in both vertical

and horizontal directions, and tile dimensions must be

specified in the bitstream in units of superblocks. It is

designed to recognize the fact that the computational

complexity differs across superblocks within a frame due to

the variations in video signal statistics. The nonuniform tile

size option allows one to use smaller tile sizes for regions

that require higher computational complexity, thereby bal-

ancing the workload among threads. This is particularly

useful when one has ample computing resources in terms

of multiple cores and needs to minimize the frame coding

latency. An example is provided in Fig. 1 to demonstrate

the two tile options.

The uniform/nonuniform tile size options and the tile

sizes are decided on a frame by frame basis. It is
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Fig. 1. Illustration of the uniform and nonuniform tile sizes. The uniform tile size option uses the same tile dimension across the frame.

The nonuniform tile size option requires a series of width and height values to determine the lattice.

noteworthy that the postprocessing filters are applied

across the tile boundaries to avoid potential coding arti-

facts (e.g., blocking artifacts) along the tile edges.

V. C O D I N G B L O C K O P E R AT I O N S

A. Coding Block Partitioning

A superblock can be recursively partitioned into smaller

block sizes for coding. AV1 inherits the recursive block

partitioning design used in VP9. To reduce the overhead

cost on prediction mode coding for video signals that

are highly correlated, a situation typically seen in 4k

videos, AV1 supports a maximum coding block size of

128 × 128 luma samples. The allowed partition options

at each block level include ten possibilities, as shown

in Fig. 2. To improve the prediction quality for complex

videos, the minimum coding block size is extended to 4×4

luma samples. While such extensions provide more coding

flexibility, they have implications for hardware decoders.

Certain block size-dependent constraints are specifically

designed to circumvent such complications.

1) Block Size-Dependent Constraints: The core comput-

ing unit in a hardware decoder is typically designed around

a superblock. Increasing the superblock size from 64 × 64

to 128 × 128 would require about four times silicon area

for the core computing unit. To resolve this issue, we con-

strain the decoding operations to be conducted in 64 × 64

units even for larger block sizes. For example, to decode

a 128 × 128 block in the YUV420 format, one needs to

decode the luma and chroma components corresponding

to the first 64 × 64 block, followed by those corresponding

to the next 64 × 64 block, and so on, in contrast to

processing the luma component for the entire 128 × 128

block, followed by the chroma components. This constraint

effectively rearranges the entropy coding order for the

luma and chroma components and has no penalty on the

compression performance. It allows a hardware decoder to

process a 128× 128 block as a series of 64× 64 blocks and,

hence, retain the same silicon area.

At the other end of the spectrum, the use of 4×4 coding

blocks increases the worst case latency in the YUV420 for-

mat, which happens when all the coding blocks are 4 × 4

luma samples and are coded using intraprediction modes.

To rebuild an intracoded block, one needs to wait for its

above and left neighbors to be fully reconstructed because

of the spatial pixel referencing. In VP9, the 4 × 4 luma

samples within a luma 8 × 8 block are all coded in either

inter or intramode. If it is in the intramode, the collocated

4×4 chroma components will use an intraprediction mode

followed by a 4× 4 transform. An unconstrained 4× 4 cod-

ing block size would require each 2× 2 chroma samples to

go through prediction and transform coding, which creates

dependence in the chroma component decoding. Note that

intermodes do not have such spatial dependence issues.

AV1 adopts a constrained chroma component coding for

4 × 4 blocks in the YUV420 format to resolve this latency

issue. If all the luma blocks within an 8×8 block are coded

in the intermode, the chroma component will be predicted

in 2 × 2 units using the motion information derived from

the corresponding luma block. If any luma block is coded

in an intramode, the chroma component will follow the

bottom-right 4 × 4 luma block’s coding mode and conduct

the prediction in 4 × 4 units. The prediction residuals of

chroma components then go through a 4 × 4 transform.

These block size-dependent constraints enable the

extension of the coding block partition system with limited

impact on hardware feasibility. However, an extensive rate-

distortion optimization search is required to translate this

increased flexibility into compression gains.

2) Two-Stage Block Partitioning Search: Observing that

the key flexibility in variable coding block size is provided

by the recursive partition that goes through the square

coding blocks, one possibility is to employ a two-stage par-

tition search approach. The first pass starts from the largest

Fig. 2. Recursive block partition tree in AV1.
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Fig. 3. Directional intraprediction modes. The original eight

directions in VP9 are used as a base. Each allows a supplementary

signal to tune the prediction angle in units of 3◦.

coding block size and goes through square partitions only.

For each coding block, the rate-distortion search is limited,

e.g., only using the largest transform block and 2-D DCT

kernel. Its partition decisions can be analyzed to determine

the most likely operating range, in which the second block

partition search will conduct an extensive rate-distortion

optimization search for all the ten possible partitions.

Changing the allowed block size search range drawn from

the first pass partition results would give different tradeoffs

between the compression performance and the encoding

speed. We refer to [18] for more experimental results.

We will next discuss the compression techniques avail-

able at a coding block level within a partition.

B. Intraframe Prediction

For a coding block in intramode, the prediction mode

for the luma component and the prediction mode for

both chroma components are signaled separately in the

bitstream. The luma prediction mode is entropy coded

using a probability model based on its above and left

coding blocks’ prediction context. The entropy coding

of the chroma prediction mode is conditioned on the

state of the luma prediction mode. The intraprediction

operates in units of transform blocks (as introduced in

Section V-E) and uses previously decoded boundary pixels

as a reference.

1) Directional Intraprediction: AV1 extends the direc-

tional intraprediction options in VP9 to support higher

granularity. The original eight directional modes in VP9 are

used as a base in AV1, with a supplementary signal to

fine-tune the prediction angle. This comprises up to three

steps clockwise or counterclockwise, each of 3◦, as shown

in Fig. 3. A two-tap bilinear filter is used to interpolate

the reference pixels when a prediction points to a subpixel

position. For coding block size of less than 8 × 8, only

the eight base directional modes are allowed since the

small number of pixels to be predicted does not justify the

overhead cost of the additional granularity.

2) Nondirectional Smooth Intraprediction: VP9 has

two nondirectional intrasmooth prediction modes:

dc_PRED and TM_PRED. AV1 adds three new smooth

prediction modes that estimate pixels using a distance

weighted linear combination, namely SMOOTH_V_PRED,

SMOOTH_H_PRED, and SMOOTH_PRED. They use the

bottom-left (BL) and top-right (TR) reference pixels to fill

the right-most column and bottom-row, thereby forming

a closed-loop boundary condition for interpolation.

We use the notations in Fig. 4 to demonstrate their

computation procedures.

1) SMOOTH_H_PRED: PH = w(x)L + (1 − w(x))TR.

2) SMOOTH_V_PRED: PV = w(y)T + (1 − w(y))BL.

3) SMOOTH_PRED: P = (PH + PV )/2.

Here, w(x) represents the weight based on distance x from

the boundary, whose values are preset.

AV1 replaces the TM_PRED mode that operates as

P = T + L − TL

with a PAETH_PRED mode that follows:

P = argmin|x − (T + L − TL)| ∀x ∈ {T, L, TL}.

The nonlinearity in the PAETH_PRED mode allows the

prediction to steer the referencing angle to align with the

direction that exhibits highest correlation.

3) Recursive Intraprediction: The interpixel correlation

is modeled as a 2-D first-order Markov field. Let X(i, j)

denote a pixel at position (i, j). Its prediction is formed by

X̂(i, j) = αX̂(i−1, j)+βX̂(i, j−1)+γX̂(i−1, j−1) (1)

where X̂s on the right-hand side are the available recon-

structed boundary pixels or the prediction of the above

and left pixels. The coefficient set {α, β, γ} forms a linear

predictor based on the spatial correlations. A total of five

different sets of linear predictors are defined in AV1; each

represents a different spatial correlation pattern.

To improve hardware throughput, instead of recursively

predicting each pixel, AV1 predicts a 4×2 pixel patch from

its adjacent neighbors, e.g., p0 − p6 for the blue patch x0 −

x7 in Fig. 5, whose coefficients can be directly derived from

Fig. 4. Illustration of the distance weighted smooth

intraprediction. The dark green pixels are the reference, and the

light blue ones are the prediction. The variables x and y are the

distance from left and top boundaries, respectively.
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Fig. 5. Recursive-filter-based intrapredictor. Reference pixels

p0–p6 are used to linearly predict the 4× 2 patch in blue. The

predicted pixels will be used as reference for next 4× 2 patch in the

current block.

{α, β, γ} by expanding the recursion

x0 = αp1 + βp5 + γp0

x1 = αp2 + βx0 + γp1

= βγp0 + (αβ + γ)p1 + αp2 + β2 p5

x2 = αp3 + βx1 + γp2

= γβ2 p0 + (αβ + γ)βp1 + (αβ + γ)p2 + αp3 + β3 p5

...

Such expansion avoids the interpixel dependence within a

4×2 patch, thereby allowing hardware decoders to process

the predictions in parallel.

4) Chroma From Luma Prediction: Chroma from luma

prediction models chroma pixels as a linear function

of corresponding reconstructed luma pixels. As depicted

in Fig. 6, the predicted chroma pixels are obtained by

adding the dc prediction of the chroma block to a scaled

ac contribution, which is the result of multiplying the ac

component of the downsampled luma block by a scaling

factor explicitly signaled in the bitstream [19].

5) Intrablock Copy: AV1 allows intraframe motion-

compensated prediction, which uses the previously coded

pixels within the same frame, namely Intrablock Copy

(IntraBC). A motion vector at full pixel resolution is used

to locate the reference block. This may imply a half-pixel

accuracy motion displacement for the chroma components,

in which context a bilinear filter is used to conduct sub-

pixel interpolation. The IntraBC mode is only available for

intracoding frames and can be turned on and off by frame

header.

Typical hardware decoders pipeline the pixel recon-

struction and the postprocessing filter stages such that

the postprocessing filters are applied to the decoded

superblocks, while later superblocks in the same frame

are being decoded. Hence, an IntraBC reference block

is retrieved from the pixels after postprocessing filters.

In contrast, a typical encoder would process all the coding

blocks within a frame and then decide the postprocessing

filter parameters that minimize the reconstruction error.

Therefore, the IntraBC mode most likely accesses the

coded pixels prior to the postprocessing filters for rate-

distortion optimization. Such discrepancy hinders the effi-

ciency of IntraBC mode. To circumvent this issue, all the

postprocessing filters are disabled if the IntraBC mode is

allowed in an intra-only coded frame.

In practice, the IntraBC mode is most likely useful for

images that contain a substantial amount of text con-

tent or similar repeated patterns, in which setting post-

processing filters are less effective. For natural images

where pixels largely form an autoregressive (AR) model,

the encoder needs to be cautious regarding the use of

IntraBC mode, as the absence of postprocessing filters may

trigger visual artifacts at coarse quantization.

6) Color Palette: In this mode, a color palette ranging

between two to eight base colors (i.e., a pixel value) is

built for each luma/chroma plane, where each pixel gets

assigned a color index. The number of base colors is an

encoder decision that determines the tradeoff between

fidelity and compactness. The base colors are predictively

coded in the bitstream using those of neighboring blocks

as reference. The color indexes are coded pixel-by-pixel

using a probability model conditioned on previously coded

color indexes. The luma and chroma channels can decide

whether to use the palette mode independently. This mode

is particularly suitable for a pixel block that contains

limited pixel variations.

C. Interframe Prediction

AV1 supports rich toolsets to exploit the temporal corre-

lation in video signals. These include adaptive filtering in

translational motion compensation, affine motion compen-

sation, and highly flexible compound prediction modes.

1) Translational Motion Compensation: A coding block

uses a motion vector to find its prediction in a reference

frame. It first maps its current position, e.g., top-left pixel

position (x0, y0) in Fig. 7, in the reference frame. It is then

displaced by the motion vector to the target reference block

whose top-left pixel is located at (x1, y1).

Fig. 6. Outline of the operations required to build the CfL

prediction [19].
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Fig. 7. Translational motion-compensated prediction.

AV1 allows 1/8 pixel motion vector accuracy. A subpixel

is generated through separable interpolation filters. A typi-

cal procedure is shown in Fig. 8, where one first computes

the horizontal interpolation through all the related rows.

The second vertical filter is applied to the resulting inter-

mediate pixels to produce the final subpixel. It is clear that

the intermediate pixels (orange) can be reused to produce

multiple final subpixels (green).

Common block-based encoder motion estimations are

conducted via measurements of the sum of absolute

difference (SAD) or the sum of squared error (SSE)

[20]–[22], which tends to favor a reference block that

resembles the dc and lower ac frequency components

well, whereas the high-frequency components are less

reliably predicted. An interpolation filter with a high cutoff

frequency would allow more high-frequency components

from the reference region to form the prediction and is

suitable for cases where the high-frequency components

between the reference and the current block are highly

correlated. Conversely, an interpolation filter with a low

cutoff frequency would largely remove high-frequency

components that are less relevant to the current block.

An adaptive interpolation filter scheme is used in VP9,

where an intercoded block in VP9 can choose from three

eight-tap interpolation filters that correspond to different

cutoff frequencies in a Hamming window in the frequency

domain. The selected interpolation filter is applied to both

vertical and horizontal directions. AV1 inherits the inter-

polation filter selection design and extends it to support

independent filter selection for the vertical and horizontal

directions, respectively. It exploits the potential temporal

statistical discrepancy between the vertical and horizontal

directions for improved prediction quality. Each direction

can choose from three finite impulse response (FIR) filters,

namely SMOOTH, REGULAR, and SHARP in ascending

order of cutoff frequencies. A heat map of the correla-

tions between the prediction and the source signals in the

transform domain is shown in Fig. 9, where the prediction

and source block pairs are grouped according to their opti-

mal 2-D interpolation filters. It is evident that the signal

statistics differ in vertical and horizontal directions, and

an independent filter selection in each direction captures

such discrepancy well.

To reduce the decoder complexity, the SMOOTH and

REGULAR filters adopt a six-tap FIR design, which appears

to be sufficient for a smooth and flat baseband. The SHARP

filter continues to use an eight-tap FIR design to mitigate

the ripple effect near the cutoff frequency. The filter coeffi-

cients that correspond to half-pixel interpolation are

SMOOTH [−2, 14, 52, 52, 14,−2]

REGULAR [2,−14, 76, 76,−14, 2]

SHARP [−4, 12,−24, 80, 80,−24, 12,−4]

whose frequency responses are shown in Fig. 10. To further

reduce the worst case complexity when all coding blocks

are in 4×4 luma samples, there are two additional four-tap

filters that are used when the coding block has dimensions

of 4 or less. The filter coefficients for half-pixel interpola-

tion are

SMOOTH [12, 52, 52, 12]

REGULAR [−12, 76, 76,−12].

The SHARP filter option is not applicable due to the short

filter taps.

2) Affine Model Parameters: Besides conventional trans-

lational motion compensation, AV1 also supports the affine

transformation model that projects a current pixel at (x, y)

to a prediction pixel at (x′, y′) in a reference frame through

�
x′

y′

�
=

�
h11 h12 h13

h21 h22 h23

����x

y

1

�
�� . (2)

The tuple (h13, h23) corresponds to a conventional motion

vector used in the translational model. Parameters h11 and

Fig. 8. Subpixel generation through separable interpolation filter.
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Fig. 9. Heat map of the correlations between the prediction and

the source signals in the transform domain. The motion estimation

here is in units of 16× 16 block. The prediction and source blocks

are grouped based on their optimal interpolation filters. The test

clip is old_town_cross_480p. The top and left labels mark the

interpolation filters used in the horizontal and vertical directions,

respectively. It is evident that the groups using the SHARP filter

tend to have a higher correlation in high-frequency components

along the corresponding direction.

h22 control the scaling factors in the vertical and horizontal

axes and, in conjunction with the pair h12 and h21, decide

the rotation angle.

A global affine model is associated with each reference

frame, where each of the four nontranslational parameters

has 12-bit precision, and the translational motion vector

is coded in 15-bit precision. A coding block can choose

to use it directly provided the reference frame index. The

global affine model captures the frame-level scaling and

rotation and, hence, primarily focuses on the settings of

rigid motion over the entire frame. In addition, a local

Fig. 10. Frequency responses of the three interpolation filters at

half-pixel position.

Fig. 11. Illustration of the local affine parameter estimation.

affine model at the coding block level would be desirable

to adaptively track the nontranslational motion activities

that vary across the frame. However, the overhead cost

of sending the affine model parameters per coding block

also introduces additional side information [23]. As a

result, various research efforts focus on the estimation of

the affine model parameters without the extra overhead

[24], [25]. A local affine parameter estimation scheme

based on the regular translational motion vectors from

spatial neighboring blocks has also been developed

for AV1.

The translational motion vector (h13, h23) in the local

affine model is explicitly transmitted in the bitstream.

To estimate the other four parameters, it hypothesizes that

the local scaling and rotation factors can be reflected by

the pattern of the spatial neighbors’ motion activities. The

codec scans through a block’s nearest neighbors and finds

the ones whose motion vector points toward the same

reference frame. A maximum of eight candidate reference

blocks is allowed. For each selected reference block, its

center point will first be offset by the center location of the

current block to create an original sample position. This

offset version will then add the motion vector difference

between the two blocks to form the destination sam-

ple position after the affine transformation. Least-squares

regression is conducted over the available original and

destination sample position pairs to calculate the affine

model parameters.

We use Fig. 11 as an example to demonstrate the affine

parameter estimation process. The nearest neighbor blocks

are marked by the scan order. For Block k, its center

position is denoted by (xk, yk), and the motion vector is

denoted by mvk. The current block is denoted by k = 0.

Assume that, in this case, Blocks 1, 2, 5, and 7 share

the same reference as the current block and are selected

as the reference blocks. The original sample position is

formed as

(ak, bk) = (xk, yk) − (x0, y0) (3)

where k ∈ {1, 2, 5, 7}. The corresponding destination

sample position is obtained by further adding the motion
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vector difference

	
a′

k, b′k



= (ak, bk)+(mvk.x, mvk.y)−(mv0.x, mv0.y). (4)

To formulate the least-squares regression, we denote the

sample data as

P =

�
����

a1, b1

a2, b2

a5, b5

a7, b7

�
���� , q =

�
����

a′
1

a′
2

a′
5

a′
7

�
���� , and r =

�
����

b′1
b′2
b′5
b′7

�
���� . (5)

The least-squares regression gives the affine parameter in

(2) as

�
h11

h12

�
= (P T P )−1P T q, and

�
h21

h22

�
= (P T P )−1P T r. (6)

In practice, one needs to ensure that the spatial neighbor-

ing block is relevant to the current block. Hence, we dis-

card the reference block if any component of the motion

vector difference is above 8 pixels in the absolute value.

Furthermore, if the number of available reference blocks

is less than 2, the least-squares regression problem is ill

posed; hence, the local affine model is disabled.

3) Affine Motion Compensation: With the affine model

established, we next discuss techniques in AV1 for efficient

prediction construction [26]. The affine model is allowed

for block size at 8 × 8 and above. A prediction block is

decomposed into 8 × 8 units. The center pixel of each

8×8 prediction unit is first determined by the translational

motion vector (h13, h23), as shown in Fig. 12. The rest of

the pixels at position (x, y) in the green square in Fig. 12

are scaled and rotated around the center pixel at (x1, y1)

to form the affine projection (x′, y′) in the dashed line

following:

�
x′

y′

�
=

�
h11 h12

h21 h22

��
x − x1

y − y1

�
+

�
x1

y1

�
. (7)

The affine projection allows 1/64 pixel precision. A set

of eight-tap FIR filters (six-tap in certain corner cases) is

designed to construct the subpixel interpolations. A con-

ventional translational model has a uniform subpixel offset

across the entire block, which allows one to effectively

“reuse” most intermediate outcomes to reduce the over-

all computation. Typically, as introduced in Section V-C1,

to interpolate an 8 × 8 block, a horizontal filter is first

applied to generate an intermediate 15 × 8 array from a

15 × 15 reference region. The second vertical filter is then

applied to the intermediate 15 × 8 array to produce the

final 8 × 8 prediction block. Hence, a translational model

requires (15×8)×8 multiplications for the horizontal filter

Fig. 12. Build the affine prediction.

stage and (8 × 8) × 8 multiplications for the vertical filter

stage, 1472 multiplications in total.

Unlike the translational model, it is reasonable to

assume that each pixel in an affine model has a different

subpixel offset due to the rotation and scaling effect.

Directly computing each pixel would require 64 × 8 × 8 =

4096 multiplications. Observe, however, that the rotation

and scaling matrix in (7) can be decomposed into two

shear matrices

�
h11 h12

h21 h22

�
=

�
1 0

γ 1 + δ

��
1 + α β

0 1

�
(8)

where the first term on the right-hand side corresponds to a

vertical interpolation and the second term corresponds to a

horizontal interpolation. This translates building an affine

reference block into a two-stage interpolation operation.

A 15 × 8 intermediate array is first obtained through

horizontal filtering over a 15 × 15 reference region, where

the horizontal offsets are computed as

horz offset = (1 + α)(x − x1) + β(y − y1). (9)

The intermediate array then undergoes vertical filtering to

interpolate vertical offsets

vert offset = γ(x − x1) + (1 + δ)(y − y1) (10)

and generates the 8×8 prediction block. It, thus, requires a

total of 1472 multiplications, the same as the translational

case. However, it is noteworthy that the actual computa-

tional cost of affine model is still higher since the filter

coefficients change at each pixel, whereas the translational

model uses a uniform filter in the horizontal and vertical

stages, respectively.

To improve the cache performance AV1 requires the hor-

izontal offset in (9) to be within 1 pixel away from (x−x1)

and the vertical offset in (10) to be within 1 pixel away

from (y−y1), which constrains the reference region within
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a 15×15 pixel array. Consider the first stage that generates

a 15 × 8 intermediate pixel array. The displacements from

its center are (x − x1) ∈ [−4, 4) and (y − y1) ∈ [−7, 8).

Hence, we have the constraint on the maximum horizontal

offset as

max α(x − x1) + β(y − y1) = 4|α| + 7|β| < 1. (11)

Similarly, (x − x1) ∈ [−4, 4) and (y − y1) ∈ [−4, 4) in

the second stage, which leads to

4|γ| + 4|δ| < 1. (12)

A valid affine model in AV1 needs to satisfy both conditions

in (11) and (12).

4) Compound Predictions: The motion-compensated pre-

dictions from two reference frames (see supported refer-

ence frame pairs in Section III-A) can be linearly combined

through various compound modes. The compound predic-

tion is formulated by

P (x, y) = m(x, y) ∗ R1(x, y) + (64 − m(x, y)) ∗ R2(x, y)

where the weight m(x, y) is scaled by 64 for integer com-

putation, and R1(x, y) and R2(x, y) represent the pixels at

position (x, y) in the two reference blocks. P (x, y) will be

scaled down by 1/64 to form the final prediction.

a) Distance weighted predictor: Let d1 and d2 denote

the temporal distance between the current frame and its

two reference frames, respectively. The weight m(x, y) is

determined by the relative values of d1 and d2. Assuming

that d1 ≤ d2, the weight coefficient is defined by

m(x, y) =

�����
�����

36, d2 < 1.5d1

44, d2 < 2.5d1

48, d2 < 3.5d1

52, otherwise.

(13)

The distribution is symmetric for the case d1 ≥ d2.

b) Average predictor: A special case of the distance

weighted predictor, where the two references are equally

weighted, i.e., m(x, y) = 32.

c) Difference weighted predictor: The weighting coef-

ficient is computed per pixel based on the difference

between the two reference pixels. A binary sign is sent

per coding block to decide which reference block prevails

when the pixel difference is above a certain threshold

m(x, y)=

��
��

38 +
|R1(x, y) − R2(x, y)|

16
, sign = 0

64 −

�
38 +

|R1(x, y) − R2(x, y)|

16

�
, sign = 1.

(14)

Note that m(x, y) is further capped by [0, 64].

Fig. 13. Illustration of the compound prediction modes. The

distance weighted predictor uniformly combines the two reference

blocks. The difference weighted predictor combines the pixels when

their values are close (e.g., the dial plate and the numbers) and

picks one reference when the difference is large (e.g., the clock

hands). The wedge predictor uses one of the preset masks to split

the block into two sections, each filled with one reference block’s

pixels. In the above example, it stitches the lower part predictor

1 and the higher upper part of predictor 2 as the compound

prediction.

d) Wedge mode: A set of 16 coefficient arrays has been

preset for each eligible block size. They effectively split the

coding block into two sections along with various oblique

angles. m(x, y) is mostly set to 64 in one section and 0 in

the other, except near the transition edge, where there is a

gradual change from 64 to 0 with 32 at the actual edge.

We use Fig. 13 to demonstrate the compound options

and their effects. The numerous compound modes add

substantial encoding complexity in order to realize their

potential coding gains. A particular hotspot lies in the

motion estimation process because each reference block

is associated with its own motion vector. Simultaneously

optimizing both motion vectors for a given compound

mode makes the search space grow exponentially. Prior

research [27] proposes a joint search approach that iter-

atively fixes one motion vector and searches the other

motion vector until the results converge, which can signif-

icantly reduce the number of motion vector search points

for a compound mode.

Other prediction modes supported by AV1 that blends

multiple reference blocks include overlapped block motion

compensation and a combined inter–intra-prediction

mode, both of which operate on a single reference frame

and allow only one motion vector.

e) Overlapped block motion compensation: The over-

lapped block motion compensation mode modifies the

original design in [28] to account for variable block sizes

[29]. It exploits the immediate spatial neighbors’ motion

information to improve the prediction quality for pixels

near its top and left boundaries, where the true motion

trajectory correlates with the motion vectors on both sides.

It first scans through the immediate neighbors above

and finds up to four reference blocks that have the same

reference frame as the current block. An example is shown

in Fig. 14(a), where the blocks are marked according to
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Fig. 14. Overlapped block motion compensation using (a) top and

(b) left neighboring blocks’ motion information, respectively.

their scan order. The motion vector of each selected refer-

ence block is employed to generate a motion-compensated

block that extends from the top boundary toward the

center of the current block. Its width is the same as the

reference block’s width, and its height is half of the current

block’s height, as shown in Fig. 14(a). An intermediate

blending result is formed as

Pint(x, y) = m(x, y)R1(x, y) + (64 − m(x, y))Rabove(x, y)

(15)

where R1(x, y) is the original motion-compensated pixel

at position (x, y) using current block’s motion vector mv0,

and Rabove(x, y) is the pixel from the overlapped reference

block. The weight m(x, y) follows a raised cosine function:

m(x, y) = 64 ∗

�
1

2
sin

�
π

H

�
y +

1

2

��
+

1

2

�
(16)

where y = 0, 1, . . . , H/2 − 1 is the row index, and H is the

current block height. The weight distribution for H = 16 is

shown in Fig. 15.

Fig. 15. Normalized weights for OBMC with H � 16 or W� 16.

The scheme next processes the immediate left neighbors

to extract the available motion vectors and build over-

lapped reference blocks extending from the left boundary

toward the center, as shown in Fig. 14(b). The final predic-

tion is calculated by

P (x, y) = m(x, y)Pint(x, y) + (64−m(x, y))Rleft(x, y) (17)

where Rleft(x, y) is the pixel from the left-hand side over-

lapped reference block. The weight m(x, y) is a raised

cosine function of the column index x

m(x, y) = 64 ∗

�
1

2
sin

�
π

W

�
x +

1

2

��
+

1

2

�
(18)

where x = 0, 1, . . . , W/2 − 1 and W is the current block

width.

f) Compound inter–intra-predictor: This mode combines

an intraprediction block and a translational interpredic-

tion block. The intraprediction is selected among the dc,

vertical, horizontal, and smooth modes (see Section V-B2).

The combination can be achieved through either a wedge

mask similar to the compound intercase above or a preset

coefficient set that gradually reduces the intraprediction

weight along its prediction direction. Examples of the

preset coefficients for each intramode are shown in Fig. 16.

As discussed above, AV1 supports a large variety of

compound prediction tools. Exercising each mode in the

Fig. 16. Normalized weight masks of compound

inter–intra-prediction for 8× 8 blocks.
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rate-distortion optimization framework fully realizes their

potential, at the cost of bringing a significant complexity

load for the encoder. Efficient selection of the appropriate

compound coding modes without extensive rate-distortion

optimization searches remains a challenge.

D. Dynamic Motion Vector Referencing Scheme

Motion vector coding accounts for a sizable portion

of the overall bit rate. Modern video codecs typically

adopt predictive coding for motion vectors and code the

difference using entropy coding [30], [31]. The prediction

accuracy has a large impact on the coding efficiency.

AV1 employs a dynamic motion vector referencing scheme

that obtains candidate motion vectors from the spatial and

temporal neighbors and ranks them for efficient entropy

coding.

1) Spatial Motion Vector Reference: A coding block will

search its spatial neighbors in the unit of 8×8 luma samples

to find the ones that have the same reference frame index

as the current block. For compound interprediction modes,

this means the same reference frame pairs. The search

region contains three 8 × 8 block rows above the current

block and three 8×8 block columns to the left. The process

is shown in Fig. 17, where the search order is shown by

the index. It starts from the nearest row and column and

interleaves the outer rows and columns. The TR 8 × 8

block is included if available. The first eight different

motion vectors encountered will be recorded, along with

a frequency count and whether they appear in the nearest

row or column. They will then be ranked, as discussed in

Section V-D4.

Note that the minimum coding block size in AV1 is

4 × 4. Hence, an 8 × 8 unit has up to four different motion

vectors and reference frame indexes to search through.

This would require a hardware decoder to store all the

Fig. 17. Spatial reference motion vector search pattern. The index

ahead of each operation represents the processing order. TL stands

for the top-left 8 × 8 block. TR stands for the top-right 8× 8 block.

Fig. 18. Line buffer, shown in orange, stores the coding

information associated with an entire row of a frame. The dashed

line shows superblocks. The information in the line buffer will be

used as above context by later coding blocks across superblock

boundaries. The line buffer is updated as new coding blocks (in blue)

are processed. In contrast, the green shows coding information to

be used as left context by later blocks, the length of which

corresponds to the size of a superblock.

motion information at 4 × 4 unit precision for the three

8 × 8 block rows above. Hardware decoders typically use

a line buffer concept, which is a dedicated buffer in the

static random access memory (SRAM), a fast and expen-

sive unit. The line buffer maintains coding information

corresponding to an entire row of a frame, which will

be used as context information for later coding blocks.

An example of the line buffer concept is shown in Fig. 18.

The line buffer size is designed for the worst case that

corresponds to the maximum frame width allowed by the

specification. To make the line buffer size economically

feasible, AV1 adopts a design that only accesses 4×4 block

motion information in the immediate above row (the green

region in Fig. 17). For the rest of the rows, the codec only

uses the motion information for 8 × 8 units. If an 8 × 8

block is coded using 4 × 4 blocks, the bottom-right 4 × 4

block’s information will be used to represent the entire 8×8

block, as shown in Fig. 17. This halves the amount of space

needed for motion data in the line buffer.

The storage of the coding context to the left, on the other

hand, depends on the superblock size and is agnostic to

the frame size. It has far less impact on the SRAM space.

However, we keep its design symmetric to the above con-

text to avoid the motion vector ranking system described

in Section V-D4 favoring either side.

2) Motion Field Motion Vector Reference: Common prac-

tice extracts the temporal motion vector by referring to

the collocated blocks in the reference frames [31] [32].

Its efficacy, however, is largely limited to capture motion

trajectories at low velocities. To reliably track the motion

trajectory for efficient motion vector prediction, AV1 uses

a motion field approach [33].
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A motion field is created for each reference frame ahead

of processing the current frame. First, we build motion

trajectories between the current frame and the previously

coded frames by exploiting motion vectors from previously

coded frames through either linear interpolation or extrap-

olation. The motion trajectories are associated with 8 × 8

blocks in the current frame. Next, the motion field between

the current frame and a given reference frame can be

formed by extending the motion trajectories from the

current frame toward the reference frame.

Interpolation: The motion vector pointing from a ref-

erence frame to a prior frame crosses the current frame.

An example is shown in Fig. 19. The frames are drawn

in display order. The motion vector ref_mv at block

(ref_blk_row, ref_blk_col) in the reference frame (shown

in orange) goes through the current frame. The distance

that ref_mv spans is denoted by d1. The distance between

the current frame and the reference frame where ref_mv

originates is denoted by d3. The intersection is located at

the block position

�
blk_row

blk_col

�
=

�
ref_blk_row

ref_blk_col

�
+

�
ref_mv.row

ref_mv.col

�
·
d3

d1
. (19)

The motion field motion vector that extends from block

(blk_row, blk_col) in the current frame toward a reference

frame along the motion trajectory, e.g., mf_mv in blue,

is calculated as

�
mf_mv.row

mf_mv.col

�
= −

�
ref_mv.row

ref_mv.col

�
·
d2

d1
(20)

where d2 is the distance between the current frame and the

target reference frame that the motion field is built for.

Fig. 19. Building motion trajectory through motion vector

interpolation.

Fig. 20. Building motion trajectory through motion vector

extrapolation.

Extrapolation: The motion vector from a reference

does not cross the current frame. An example is shown

in Fig. 20. The motion vector ref_mv (in orange) points

from reference frame 1 to a prior frame 1. It is extended

toward the current frame, and they meet at block position

�
blk_row

blk_col

�
=

�
ref_blk_row

ref_blk_col

�
−

�
ref_mv.row

ref_mv.col

�
·
d3

d1
. (21)

Its motion field motion vector toward reference frame 2,

mf_mv (in blue), is given by

�
mf_mv.row

mf_mv.col

�
= −

�
ref_mv.row

ref_mv.col

�
·
d2

d1
(22)

where d2 is the distance between the current frame and

reference frame 2 in Fig. 20. Note that the signs in both

(20) and (22) depend on whether the two reference frames

are on the same side of the current frame.

Typically, interpolation provides better estimation accu-

racy than extrapolation. Therefore, when a block has pos-

sible motion trajectories originated from both, the extrapo-

lated one will be discarded. A coding block uses the motion

field of all its 8× 8 subblocks as its temporal motion vector

reference.

3) Hardware Constraints: The motion information,

including the motion vector and the reference frame index,

needs to be stored for later frames to build their motion

fields. To reduce the memory footprint, the motion infor-

mation is stored in units of 8 × 8 blocks. If a coding

block is using compound modes, only the first motion

vector is saved. The reference frame motion information is

commonly stored in the dynamic random access memory

(DRAM), a relatively cheaper and slower unit as com-

pared to SRAM, in hardware decoders. It needs, however,

to be transferred to SRAM for computing purposes. The

bus between DRAM and SRAM is typically 32 bits wide.
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To facilitate efficient data transfer, a number of data format

constraints are employed. We limit the codec to use motion

information from up to four reference frames (out of seven

available frames) to build the motion field. Therefore, only

2 bits are needed for the reference frame index. Further-

more, a motion vector with any component magnitude

above 212 will be discarded. As a result, the motion vector

and reference frame index together can be represented by

a 32-bit unit.

As mentioned in Section V-A1, hardware decoders

process frames in 64 × 64 block units, which makes the

hardware cost invariant to the frame size. In contrast,

the above motion field construction can potentially involve

any motion vector in the reference frame to build the

motion field for a 64×64 block, which makes the hardware

cost grow as the frame resolution scales up.

To solve this problem, we constrain the maximum

displacement between (ref_blk_row, ref_blk_col) and

(blk_row, blk_col) during the motion vector projection. Let

(base_row, base_col) denote the top-left block position of

the 64 × 64 block that contains (ref_blk_row, ref_blk_col)

base_row = (ref_blk_row ≫ 3) ≪ 3 (23)

base_col = (ref_blk_col ≫ 3) ≪ 3. (24)

The maximum displacement constraints are

blk_row ∈ [base_row, base_row + 8) (25)

blk_col ∈ [base_col − 8, base_col + 16). (26)

Note that all the indexes here are in 8 × 8 luma sample

block units. Any projection in (19) or (21) that goes

beyond this limit will be discarded. This design localizes

the reference region in the reference frame used to produce

the motion field for a 64 × 64 pixel block to be a 64 ×

(64 + 2 × 64) block, as shown in Fig. 21. It allows the

codec to load the necessary reference motion vectors per

64 × 64 block from DRAM to SRAM and process the linear

projection ahead of decoding each 64×64 block. Note that

we allow the width value to be larger than the height since

the shaded portion of the reference motion vector array

can be readily reused for decoding the next 64 × 64.

4) Dynamic Motion Vector Reference List: Having estab-

lished the spatial and temporal reference motion vectors,

we will next discuss the scheme to use them for efficient

motion vector coding. The spatial and temporal reference

motion vectors are classified into two categories based

on where they appear: the nearest spatial neighbors and

the rest. Statistically, the motion vectors from immediate

above, left, and TR blocks tend to have a higher corre-

lation with the current block than the rest and, hence,

are considered with higher priority. Within each category,

the motion vectors are ranked in descending order of their

appearance counts within the spatial and temporal search

Fig. 21. Constrained projection localizes the referencing region

needed to produce the motion field for a 64× 64 block. The

colocated block in the reference frame is at the same location as the

processing block in the current frame. The blue region is the

extended block whose motion vectors are used to estimate the

motion field for the current 64× 64 block.

range. A motion vector candidate with a higher appearance

count is considered to be “popular” in the local region,

i.e., a higher prior probability. The two categories are

concatenated to form a ranked list.

The first four motion vectors in this ranked list will be

used as candidate motion vector predictors. The encoder

will pick the one that is closest to the desired motion

vector and send its index to the decoder. It is not uncom-

mon for coding blocks to have fewer than four candidate

motion vectors, due to either the high flexibility in the

reference frame selection, or a highly consistent motion

activity in the local region. In such a context, the candidate

motion vector list will be shorter than 4, which allows the

codec to save bits spent on identifying the selected index.

The dynamic candidate motion vector list is in contrast

to the design in VP9, where one always constructs two

candidate motion vectors. If not enough candidates are

found, the VP9 codec will fill the list with zero vectors.

AV1 also supports a special intermode that makes the inter-

predictor use the frame-level affine model, as discussed in

Section V-C2.

The motion vector difference will be entropy coded.

Since a significant portion of the coding blocks will find

a zero motion vector difference, the probability model is

designed to account for such bias. AV1 allows a coding

block to use 1 bit to indicate whether to directly use

the selected motion vector predictor as its final motion

vector or to additionally code the difference. The proba-

bility model for this entropy-coded bit is conditioned on

two factors: whether its spatial neighbors have a nonzero

motion vector difference and whether a sufficient number

of motion vector predictors are found. For compound

modes, where two motion vectors need to be specified,

this extends to four cases that cover where either block,

both, or neither one have a zero difference motion vector.

The nonzero difference motion vector coding is consistent

in all cases.

E. Transform Coding

Transform coding is applied to the prediction residual to

remove the potential spatial correlations. VP9 uses a uni-

form transform block size design, where all the transform
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blocks within a coding block share the same transform

size. Four square transform sizes are supported by VP9,

4 × 4, 8 × 8, 16 × 16, and 32 × 32. A set of separable

2-D transform types, constructed by combinations of 1-D

discrete cosine transform (DCT) and asymmetric discrete

sine transform (ADST) kernels [34], [35], is selected based

on the prediction mode. AV1 inherits the transform coding

scheme in VP9 and extends its flexibility in terms of both

the transform block sizes and the kernels.

1) Transform Block Size: AV1 extends the maximum

transform block size to 64 × 64. The minimum transform

block size remains 4×4. In addition, rectangular transform

block sizes at N × N/2, N/2 × N , N × N/4, and N/4 × N

are supported to complement the rectangular coding block

sizes in Section V-A.

A recursive transform block partition approach is

adopted in AV1 for all the intercoded blocks to capture

localized stationary regions for transform coding efficiency.

The initial transform block size matches the coding block

size, unless the coding block size is above 64 × 64; in

that case, the 64 × 64 transform block size is used. For

the luma component, up to two levels of transform block

partitioning are allowed. The recursive partition rules for

N × N , N × N/2, and N × N/4 coding blocks are shown

in Fig. 22.

The intracoded block inherits the uniform transform

block size approach, i.e., all transform blocks have the

same size. Similar to the interblock case, the maximum

transform block size matches the coding block size and can

go up to two levels down for the luma component. The

available options for square and rectangular coding block

sizes are shown in Fig. 23.

The chroma components tend to have much fewer vari-

ations in their statistics. Therefore, the transform block is

set to use the largest available size.

2) Transform Kernels: Unlike VP9 where each coding

block has only one transform type, AV1 allows each trans-

Fig. 22. Transform block partition for square and rectangular

interblocks. R denotes the recursive partition point. Each coding

block allows a maximum two-level recursive partition.

Fig. 23. Transform block size options for square and rectangular

intrablocks.

form block to choose its own transform kernel indepen-

dently. The 2-D separable transform kernels are extended

to combinations of four 1-D kernels: DCT, ADST, flipped

ADST (FLIPADST), and identity transform (IDTX), result-

ing in a total of 16 2-D transform kernels. The FLIPADST

is a reverse of the ADST kernel. The kernels are selected

based on statistics and to accommodate various bound-

ary conditions. The DCT kernel is widely used in signal

compression and is known to approximate the optimal

linear transform, the Karhunen–Loeve transform (KLT),

for consistently correlated data. The ADST, on the other

hand, approximates the KLT where one-sided smoothness

is assumed and, therefore, is naturally suitable for coding

some intraprediction residuals. Similarly, the FLIPADST

captures one-sided smoothness from the opposite end. The

IDTX is further included to accommodate situations where

sharp transitions are contained in the block and neither

DCT nor ADST is effective. Also, the IDTX, combined

with other 1-D transforms, provides the 1-D transforms

themselves, therefore allowing for better compression of

horizontal and vertical patterns in the residual [36]. The

waveforms corresponding to the four 1-D transform ker-

nels are presented in Fig. 24 for dimension N = 8.

Even with modern single-instruction–multiple-data

(SIMD) architectures, the inverse transform accounts for a

significant portion of the decoder computational cost. The

butterfly structure [37] allows a substantial reduction in

multiplication operations over plain matrix multiplication,

i.e., a reduction from O(N2) to O(N logN), where N is the

transform dimension. Hence, it is highly desirable for large

transform block sizes. Note that since the original ADST

derived in [35] cannot be decomposed for the butterfly

structure, a variant of it, as introduced in [38] and also

as shown in Fig. 24, is adopted by AV1 for transform block

sizes of 8 × 8 and above.

When the transform block size is large, the boundary

effects are less pronounced, in which setting the trans-

form coding gains of all sinusoidal transforms largely

converge [35]. Therefore, only the DCT and IDTX are
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Fig. 24. Transform kernels of DCT, ADST, FLIPADST, and IDTX for dimension N � 8. The discrete basis values are displayed as red circles,

with blue lines indicating the associated sinusoidal function. The bases of DCT and ADST (a variant with a fast butterfly structured

implementation) take the form of cos(((2n� 1)kπ)/2N) and sin(((2n� 1)(2k� 1)π)/4n), respectively, where n and k denote time index and the

frequency index, taking values from {0,1, . . . ,N− 1}. FLIPADST utilizes the reversed ADST bases, and IDTX denotes the identity

transformation.

employed for transform blocks at dimension 32 × 32 and

above.

F. Quantization

The transform coefficients are quantized, and the quan-

tization indexes are entropy coded. The quantization para-

meter (QP) in AV1 ranges between 0 and 255.

1) Quantization Step Size: At a given QP, the quantiza-

tion step size for the dc coefficient is smaller than that

for the ac coefficient. The mapping from QP to quanti-

zation step size for both dc and ac coefficients is drawn

in Fig. 25. The lossless coding mode is achieved when

QP is 0. By default, all the ac coefficients will use the

same quantization step size. Since the human visual system

tends to have different tolerance to distortions at various

frequencies, AV1 also supports 15 sets of predefined quan-

tization weighting matrices, where the quantization step

size for each individual frequency component is further

scaled differently. Each frame can optionally select a quan-

tization weighting matrix set for luma and chroma planes,

respectively.

2) Quantization Parameter Modulation: AV1 assigns a

base QP for a coded frame, denoted by QPbase. The QP

values for the dc and ac coefficients in both luma and

chroma components are shown in Table 1. ∆QPp,b are

additional offset values transmitted in the frame header,

Fig. 25. QP and quantization step size maps for dc and ac

coefficients.

where p ∈ {Y, U, V } denotes the plane and b ∈ {dc, ac}

denotes the dc or the ac transform coefficients.

Recognizing that the coding blocks within a frame may

have different rate-distortion tradeoffs, AV1 further allows

QP offset at both superblock and coding block levels. The

resolution of QP offset at superblock level is signaled by

the frame header. The available options are 1, 2, 4, and 8.

The coding block-level QP offset can be achieved through
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Table 1 Frame-Level QP Values (QPframe) for Y/U/V Planes

segmentation. AV1 allows a frame to classify its coding

blocks into up to eight segments; each has its own QP offset

decided by the frame header. The segment index associated

with each coding block is sent through the bitstream to the

decoder.

Therefore, the effective QP for ac coefficients in a coding

block, QPcb, is given by

QPcb = clip(QPframe + ∆QPsb + ∆QPseg, 1, 255) (27)

where ∆QPsb and ∆QPseg are the QP offsets from the

superblock and the segment, respectively. The clip function

ensures it stays within a valid range. The QP is not allowed

to change from a nonzero value to zero since zero is

reserved for lossless coding.

The decoder rebuilds the quantized samples using a

uniform quantizer. Given the quantization step size ∆ and

the quantization index k, the reconstructed sample is k∆.

VI. E N T R O P Y C O D I N G S Y S T E M

AV1 employs an M-ary symbol arithmetic coding method

that was originally developed for the Daala video codec

[39] to compress the syntax elements, where integer M ∈

[2, 14]. The probability model is updated per symbol

coding.

A. Probability Model

Consider an M-ary random variable whose probability

mass function (PMF) at time n is defined as

P̄n =
�
p1(n), p2(n), . . . , pM (n)

�
(28)

and the cumulative distribution function (CDF) given by

C̄n =
�
c1(n), c2(n), . . . , cM−1(n), 1

�
(29)

where ck(n) =
�k

i=1 pi(n). When the symbol is coded,

a new outcome k ∈ {1, 2, . . . , M} is observed. The prob-

ability model is then updated as

P̄n = P̄n−1(1 − α) + αēk (30)

where ēk is an indicator vector whose kth element is 1 and

the rest are 0, and α is the update rate.

To update the CDF, we first consider cm(n) where m < k

cm(n) =

m�
i=1

pi(n) =

m�
i=1

pi(n − 1) · (1 − α)

= cm(n − 1) · (1 − α).

For m ≥ k cases, we have

1 − cm(n) =
M�

i=m+1

pi(n) =
M�

i=m+1

pi(n − 1) · (1 − α)

= (1 − cm(n − 1)) · (1 − α)

where the second equation follows (30) and m + 1 > k.

Rearranging the terms, we have

cm(n) = cm(n − 1) + α · (1 − cm(n − 1)). (31)

In summary, the CDF is updated as

cm(n) =

�
cm(n − 1) · (1 − α), m < k

cm(n − 1) + α · (1 − cm(n − 1)), m ≥ k.
(32)

AV1 stores M-ary symbol probabilities in the form of

CDFs. The elements in (29) are scaled by 215 for integer

precision. The arithmetic coding directly uses the CDFs to

compress symbols [40].

The probability update rate associated with a symbol

adapts based on the count of this symbol’s appearance

within a frame

α =
1

23+I(count>15)+I(count>32)+min(log
2
(M),2)

(33)

where I(event) is 1 if the event is true, and 0 otherwise.

It allows higher adaptation rate at the beginning of each

frame. The probability models are inherited from one

of the reference frames whose index is signaled in the

bitstream.

B. Arithmetic Coding

The M-ary symbol arithmetic coding largely follows [40]

with all the floating-point data scaled by 215 and repre-

sented by 15-bit unsigned integers. To improve hardware

throughput, AV1 adopts a dual model approach to make

the involved multiplications fit in 16 bits. The probability

model CDF is updated and maintained a 15-bit precision,

but, when it is used for entropy coding, only the most

significant 9 bits are fed into the arithmetic coder, as shown

in Fig. 26.

Let R denote the arithmetic coder’s current interval

length, and Value denotes the code string value. The

decoding processing is depicted in Algorithm 1. Note that

the interval length R is scaled down by 1/256 prior to the
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Algorithm 1 Modified Arithmetic Decoder Operations

low ← R

for k = 1; V alue < low; k = k + 1 do

up ← low

f ← 29
− (ck >> 6)

low ← ((R >> 8) × f) >> 1
end for

R ← up − low

V alue ← V alue − low

Fig. 26. Probability model is updated and maintained in 15-bit

precision, while only the most significant 9 bits are used by the

arithmetic coder.

multiplication, which makes the product (R >> 8)×f) fits

into 16 bits.

C. Level Map Transform Coefficient Coding
System

The transform coefficient entropy coding system is an

intricate and performance-critical component in video

codecs. We discuss its design in AV1 that decomposes it

into a series of symbol codings.

1) Scan Order: A 2-D quantized transform coefficient

matrix is first mapped into a 1-D array for sequential

processing. The scan order depends on the transform

kernel (see Section V-E2). A column scan is used for

1-D vertical transform, and a row scan is used for 1-D

horizontal transform. In both settings, we consider that

the use of 1-D transform indicates a strong correlation

along the selected direction and weak correlation along the

perpendicular direction. A zig-zag scan is used for both 2-D

transform and identity matrix (IDTX), as shown in Fig. 27.

Fig. 27. Scan order is decided by the transform kernel.

An example is drawn for 4 × 4 transform blocks. The index

represents the scan order. Left: zig-zag scan for 2-D transform block.

Middle: column scan for 1-D vertical transform. Right: row scan for

1-D horizontal transform.

Fig. 28. Absolute value of a quantized transform coefficient V is

decomposed into BR, LR, and HR symbols.

2) Symbols and Contexts: The index of the last nonzero

coefficient in the scan order is first coded. The coefficients

are then processed in reverse scan order. The range of

a quantized transform coefficient is [−215, 215). In prac-

tice, the majority of quantized transform coefficients are

concentrated close to the origin. Hence, AV1 decomposes

quantized transform coefficients into four symbols.

1) Sign bit: When it is 1, the transform coefficient is

negative; otherwise, it is positive.

2) Base Range (BR): The symbol contains four possible

outcomes {0, 1, 2, > 2}, which are the absolute values

of the quantized transform coefficient. An exception

is for the last nonzero coefficient, where BR∈ {1, 2, >

2}, since 0 has been ruled out.

3) Low Range (LR): It contains four possible outcomes

{0, 1, 2, > 2} that correspond to the residual value

over the previous symbols’ upper limit.

4) High Range (HR): The symbol has a range of [0, 215)

and corresponds to the residual value over the previ-

ous symbols’ upper limit.

To code a quantized transform coefficient V , one first

processes its absolute value. As shown in Fig. 28, if |V | ∈

[0, 2], the BR symbol is sufficient to signal it, and the coding

of |V | is terminated. Otherwise, the outcome of the BR

symbol will be “>2”; in that case, an LR symbol is used

to signal |V |. If V ∈ [3, 5], this LR symbol will be able to

cover its value and complete the coding. If not, the second

LR is used to further code |V |. This is repeated up to four

times, which effectively covers the range [3, 14]. If |V | > 14,

an additional HR symbol is coded to signal (|V | − 14).

The probability model of symbol BR is conditioned on

the previously coded coefficients in the same transform

block. Since a transform coefficient can have correlations

with multiple neighboring samples [41], we extend the

reference samples from two spatially nearest neighbors in

VP9 to a region that depends on the transform kernel,

as shown in Fig. 29. For 1-D transform kernels, it uses three

coefficients after the current sample along the transform

direction. For 2-D transform kernels, up to five neighbor-

ing coefficients in the immediate right-bottom region are

used. In both cases, the absolute values of the reference

coefficients are added, and the sum is considered as the

context for the probability model of BR.

Similarly, the probability model of symbol LR is

designed, as shown in Fig. 30, where the reference region

for 2-D transform kernels is reduced to the nearest three

coefficients. The symbol HR is coded using Exp-Golomb

code [42].
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Fig. 29. Reference region for symbol BR. Left: coefficient (in

orange) in a 2-D transform block uses five previously processed

coefficients (in green) to build the context for its conditional

probability model. Middle and Right: coefficient (in orange) in a 1-D

transform block uses three previously processed coefficients (in

green) along the transform direction to build the context for its

conditional probability model.

The sign bit is only needed for nonzero quantized

transform coefficients. Since the sign bits of ac coeffi-

cients are largely uncorrelated, they are coded in raw bits.

To improve hardware throughput, all the sign bits of ac

coefficients within a transform block are packed together

for transmission in the bitstream, which allows a chunk

of data to bypass the entropy coding route in hardware

decoders. The sign bit of the dc coefficient, on the other

hand, is entropy coded using a probability model condi-

tioned on the sign bits of the dc coefficients in the above

and left transform blocks.

VII. P O S T P R O C E S S I N G F I L T E R S

AV1 allows three optional in-loop filter stages: a deblock-

ing filter, a constrained directional enhancement fil-

ter (CDEF), and a loop restoration filter, as illustrated

in Fig. 31. The filtered output frame is used as a reference

frame for later frames. A normative film grain synthesis

stage can be optionally applied prior to display. Unlike the

in-loop filter stages, the results of the film grain synthe-

sis stage do not influence the prediction for subsequent

frames. It is, hence, referred to as an out-of-loop filter.

A. Deblocking Filter

The deblocking filter is applied across the transform

block boundaries to remove block artifacts caused by the

Fig. 30. Reference region for symbol LR. Left: coefficient (in

orange) in a 2-D transform block uses three previously processed

coefficients (in green) to build the context for its conditional

probability model. Middle and Right: coefficient (in orange) in 1-D

transform block uses three previously processed coefficients (in

green) along the transform direction to build the context for its

conditional probability model.

Fig. 31. AV1 allows three optional in-loop filter stages including a

deblocking filter, a CDEF, and a loop restoration filter. A normative

film grain synthesis stage is supported for the displayed picture.

quantization error. The logic for the vertical and horizontal

edges is fairly similar. We use the vertical edge case to

present the design principles.

1) Filter Length: AV1 supports four-, eight-, and 14-tap

FIR filters for the luma components and four- and six-

tap FIR filters for chroma components. All the filter

coefficients are preset in the codec. The filter length is

decided by the minimum transform block sizes on both

sides. For example, in Fig. 32, the length of filter1 is

given by min(tx_width1, tx_width2), whereas the length

of filter2 is given by min(tx_width1, tx_width3). If the

transform block dimension is 16 or above on both sides,

the filter length is set to be 14.

Note that this selected filter length is the maximum filter

length allowed for a given transform block boundary. The

final filter further depends on a flatness metric discussed

next.

2) Boundary Conditions: The FIR filters used by the

deblocking stage are low-pass filters. To avoid blurring

an actual edge in the original image, edge detection is

conducted to disable the deblocking filter at transitions

that contain a high variance signal. We use notations

shown in Fig. 33, where the dashed line shows the pixels

near the transform block boundary. Denote the pixels on

the two sides p0–p6 and q0–q6. We consider the transition

along the lines p6–q6 high variance and hence disable the

deblocking filter if any of the following conditions is true.

1) |p1 − p0| > T0.

2) |q1 − q0| > T0.

3) 2|p0 − q0| + ((|p1 − q1|)/2) > T1.

Fig. 32. Filter length is decided by the minimum transform block

sizes on both sides.
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Fig. 33. Pixels at a transform block boundary. The dashed line

shows the pixels near the transform block boundary. p0–p6 and

q0–q6 are the pixels on the two sides.

If the filter length is 8 or 14, two additional samples are

checked to determine if the transition contains a high

variance signal.

1) |p3 − p2| > T0.

2) |q3 − q2| > T0.

The thresholds T0 and T1 can be decided on a superblock

by superblock basis. A higher threshold allows more trans-

form block boundaries to be filtered. In AV1, these thresh-

olds can be independently set in the bitstream for the

vertical and horizontal edges in the luma component and

for each chroma plane.

To avoid the ringing artifacts, AV1 further requires that

a long filter is only used when both sides are “flat.” For the

eight-tap filter, this requires |qk − q0| ≤ 1 and |pk − p0| ≤

1, where k ∈ {1, 2, 3}. For the 14-tap filter, the condition

extends to k ∈ {1, 2, . . . , 6}. If any flatness condition is

false, the codec reverts to a shorter filter for that boundary.

B. Constrained Directional Enhancement Filter

The CDEF allows the codec to apply a nonlinear dering-

ing filter along certain (potentially oblique) directions

[43]. It operates in 8×8 units. As presented in Fig. 34, eight

preset directions are defined by rotating and reflecting the

three shown templates. The decoder uses the reconstructed

pixels to select the prevalent direction index by minimizing

E2
d =
�

k

�
p∈Pd,k

(xp − µd,k)2 (34)

Fig. 34. Templates of preset directions and their associated

directions. The templates correspond to directions of 45◦, 22.5◦, and

0◦, as shown by the dash lines. Each preset direction d ∈ {0, . . . ,7}

can be obtained by using the template directly, rotating the

template by 90◦ clockwise (marked by †) or reflecting the template

along the horizontal axis (marked by ⋆).

Fig. 35. Primary filter templates associated with direction

d ∈ {0, . . . ,7} (subject to rotation and reflection), where w1 � 4/16

and w2 � 2/16 for even strength indexes, and w1 � w2 � 3/16 for

odd strength indexes.

where xp is the value of pixel p, Pd,k are the pixels in line

k following direction d, and µd,k is the mean value of Pd,k:

µd,k =
1

|Pd,k|

�
p∈Pd,k

xp. (35)

A primary filter is applied along the selected direction,

while a secondary filter is applied along the direction

oriented 45◦ off the primary direction. The filter operation

for pixel p(x, y) is formulated by

p̂(x, y) = p(x, y) +
�
m,n

wp
d,m,nf(p(m,n) − p(x, y), Sp, D)

+
�
m,n

ws
d,m,nf(p(m, n) − p(x, y), Ss, D)

where wp
d,m,n and ws

d,m,n are the filter coefficients associ-

ated with the primary and secondary filters, respectively,

as shown in Figs. 35 and 36. Sp and Ss are the strength

indexes for the primary and secondary filters, and D is the

damping factor. The f() is a piecewise linear function

f(diff, S, D)

=

���
���

min

�
diff, max

�
0, S − ⌊

diff

2D−⌊log
2

S⌋
⌋

��
, if diff > 0

max

�
diff, min

�
0, ⌈

diff

2D−⌈log
2

S⌉
⌉

��
− S, otherwise

Fig. 36. Secondary filter templates associated with each direction

(subject to reflection), where w3 � 2/16 and w4 � 1/16. The

secondary filter is applied along the direction 45◦ off the

corresponding primary direction d.
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Fig. 37. Bit precision for Wiener filter parameters.

that rules out reference pixels whose values are far away

from p(x, y). Note that the reference pixels p(m,n) are the

reconstructed pixels after the deblocking filter is applied,

but before application of the CDEF filter.

Up to eight groups of filter parameters, which includes

the primary and secondary filter strength indexes of luma

and chroma components, are signaled in the frame header.

Each 64 × 64 block selects one group from the presets to

control its filter operations.

C. Loop Restoration Filter

The loop restoration filter is applied to units of either

64 × 64, 128 × 128, or 256 × 256 pixel blocks, named

loop restoration units (LRUs). Each unit can independently

select either to bypass filtering, to use a Wiener filter, or to

use a self-guided filter [44]. It is applied to the recon-

structed pixels after any prior in-loop filtering stages.

1) Wiener Filter: A 7×7 separable Wiener filter is applied

through the LRU. The filter parameters for the vertical and

horizontal filters are decided by the encoder and signaled

in the bitstream. Due to symmetric and normalization

constraints, only three coefficients need to be sent for each

filter. Also, note that the Wiener filters are expected to have

a higher weight magnitude toward the origin, so the codec

reduces the number of bits spent on higher tap coefficients,

as shown in Fig. 37.

2) Self-Guided Filter: The scheme applies simple filters

to the reconstructed pixels, X, to generate two denoised

versions, X1 and X2, which largely preserves the edge

transition. Their differences from the reconstructed pix-

els, (X1 − X) and (X2 − X), are used to span a sub-

space, upon which we project the differences between the

reconstructed pixels and the original pixels, (Xs − X),

as shown in Fig. 38. The least-squares regression parame-

ters obtained by the encoder are signaled to the decoder,

which are used to build a linear approximation of (Xs−X)

based on the known bases (X1 − X) and (X2 − X).

In particular, a radius r and a noise variance e are used

to generate the denoised versions of the LRU as follows.

1) Obtain the mean µ and variance σ2 of pixels in a

(2r + 1) × (2r + 1) window around every pixel x.

2) Compute the denoised pixel as

x̂ =
σ2

σ2 + e
x +

e

σ2 + e
µ. (36)

The pair (r, e) effectively controls the denoising filter

strength. Two sets of denoised pixels, denoted in the vector

form X1 and X2, are generated using (r1, e1) and (r2, e2),

which are selected by the encoder and are signaled in

the bitstream. Let X denote the vector formed by the

reconstructed pixels and Xs the vector of source pixels.

The self-guided filter is formulated by

Xr = X + α(X1 − X) + β(X2 − X). (37)

The parameters (α, β) are obtained by the encoder using

least-squares regression

�
α

β

�
= (AT A)−1AT b (38)

where

A =

�
X1 − X

X2 − X

�
and b = Xs − X.

The parameters (α, β) are sent to the decoder to formu-

late (37).

D. Frame Super-Resolution

When the source input is downscaled from the original

video signal, a frame super-resolution is natively supported

as part of the postprocessing filtering that converts the

reconstructed frame to the original dimension. As shown

in Fig. 39, the frame super-resolution consists of an upsam-

pling stage and a loop restoration filter [45].

The upsampling stage is applied to the reconstructed

pixels after the CDEF filter. As mentioned in Section III-C,

the downsampling and upsampling operations only apply

to the horizontal direction. The upsampling process for a

row of pixels in a frame is shown in Fig. 40. Let B denote

the analog frame width. The downsampled frame contains

D pixels in a row, and the upscaled frame contains W

pixels in a row. Their sampling positions are denoted by

Pk and Qm, respectively, where k ∈ {0, 1, . . . , D − 1} and

m ∈ {0, 1, . . . , W − 1}. Note that P0 and Q0 are located at

(B/2D) and (B/2W ), respectively. After normalizing the

Fig. 38. Project the gap between the source pixels Xs and

reconstructed pixels X on to a subspace spanned by simple

denoising results, X1 − X and X2 − X. The parameters in red are the

ones configurable through bitstream syntax.
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Fig. 39. Frame super-resolution upsamples the reconstructed

frame to the original dimension. It comprises a linear upsampling

and a loop restoration filter.

relative distance by (B/D), which corresponds to one full-

pixel offset in the downsampled frame, it is straightforward

to show that the offset of Qm from P0 is

Qm − P0 =
D − W

2W
+ m∆Q (39)

where ∆Q = (D/W ).

In practice, these offsets are calculated at (1/16 384)

pixel precision. They are rounded to the nearest (1/16)-

pixel position for interpolation filter. An eight-tap FIR filter

is used to generate the subpixel interpolation. Note that

the rounding error

e = round(∆Q) − ∆Q (40)

is built up in the offset for Qm, i.e., ((D − W )/2W ) +

m(∆Q + e), as m increases from 0 to W − 1. Here,

the function round() maps a variable to the nearest sample

in (1/16 384) resolution. This would make the leftmost

pixel in a row have minimum rounding error in the offset

calculation, whereas the right-most pixel has the maximum

rounding error. To resolve such spatial bias, the initial

offset for Q0 is further adjusted by −(eW/2), which makes

the left- and right-most pixels have equal magnitude of

rounding error and the middle pixel QW/2 close to zero

rounding error. In summary, the adjusted offset of Qm from

P0 is

Qm offset =
D − W

2W
−

eW

2
+ m round(∆Q)c. (41)

The loop restoration filter in Section VII-C is then

applied to the upsampled frame to further recover the

Fig. 40. Frame super-resolution sampling positions. The analog

frame width is denoted by B. The downsampled frame contains D

pixels in a row, which are used to interpolate W pixels for a row in

the upscaled frame.

Fig. 41. Reference region (in blue) is used by the AR model to

generate the grain at a current sample (in orange). The reference

region includes a (2L� 1)× L block above and an L× 1 block to the

left. The total number of reference samples is 2L(L� 1).

Table 2 Capability Comparisons of AV1 Profiles

high-frequency components. It is experimentally shown in

[45] that the loop restoration filter whose parameters are

optimized by the encoder can substantially improve the

objective quality of the upsampling frame.

E. Film Grain Synthesis

The film grain is widely present in creative content,

such as movie and TV materials. Due to its random

nature, the film grain is very difficult to compress using

conventional coding tools that exploit signal correlations.

AV1 provides a film grain synthesis option that builds a

synthetic grain and adds it to the decoded picture prior to

its display. This allows one to remove the film grain from

the source video signal prior to compression. A set of model

parameters is sent to the decoder to create a synthetic grain

that mimics the original film grain.

AV1 adopts an AR model to build the grain signal [46].

The grain samples are generated in raster scan order.

A grain sample in the luma plane is generated using a

(2L + 1) × L block above and an L × 1 block to the left,

as shown in Fig. 41, which involves 2L(L + 1) reference

samples, where L ∈ {0, 1, 2, 3}. The AR model is given by

G(x, y) =
�

m,n∈Sref

am,nG(x − m, y − n) + z (42)

where Sref is the reference region and z is a pseudorandom

variable that is drawn from a zero-mean unit-variance

Gaussian distribution. The grain samples for chroma com-

ponents are generated similar to (42) with one additional

input from the collocated grain sample in the luma plane.
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Table 3 Compression Performance Comparison—Mid-Resolution. The

Average Ratios Between AV1 and VP9 Instruction Counts for Encoding

and Decoding Are Shown in Column “Enc Ins. Count” and “Dec Ins.

Count,” Respectively

The model parameters associated with each plane are

transmitted through the bitstream to formulate the desired

grain patterns.

The AR process is used to generate a template of grain

samples corresponding to a 64 × 64 pixel block. Patches

Table 4 Compression Performance Comparison—High Resolution. The

Average Ratios Between AV1 and VP9 Instruction Counts for Encoding

and Decoding Are Shown in Column “Enc Ins. Count” and “Dec Ins.

Count,” Respectively

whose dimensions correspond to a 32 × 32 pixel block are

drawn at pseudorandom positions within this template and

are applied to the reconstructed video signal.

The final luma pixel at position (x, y) is given by

P̂ (x, y) = P (x, y) + f(P (x, y))G(x, y) (43)
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Table 5 Intraframe Compression Performance Comparison—Mid-

Resolution. The Average Ratios Between AV1 and VP9 Instruction Counts

for Encoding and Decoding Are Shown in Column “Enc Ins. Count” and

“Dec Ins. Count,” Respectively

where P (x, y) is the decoded pixel value and f(P (x, y))

scales the grain sample according to the collocated pixel

intensity. The f() is a piecewise linear function and is

configured by the parameters sent through the bitstream.

Table 6 Intraframe Compression Performance Comparison—HD Resolu-

tion. The Average Ratios Between AV1 and VP9 Instruction Counts for

Encoding and Decoding Are Shown in Column “Enc Ins. Count” and “Dec

Ins. Count,” Respectively

The grain samples applied to the chroma components are

scaled based on the chroma pixel value and the collocated

luma pixel values. A chroma pixel is given by

P̂u(x, y) = Pu(x, y) + f(t)Gu(x, y) (44)

t = buPu(x, y) + duP̄ (x, y) + hu (45)
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where P̄ (x, y) denotes the average of the collocated luma

pixels. The parameters bu, du, and hu are signaled in the

bitstream for each chroma plane.

The film grain synthesis model parameters are decided

on a frame by frame basis and are signaled in the frame

header. AV1 also allows a frame to reuse the previous

frame’s model parameter set and bypass sending a new set

in the frame header.

VIII. P R O F I L E A N D L E V E L D E F I N I T I O N

AV1 defines profiles and levels to specify the decoder

capability. Three profiles define support for various bit-

depth and chroma sampling formats, namely Main, High,

and Professional. The capability required for each profile is

listed in Table 2.

Levels are defined to quantify the decoder performance

in terms of maximum bit rate, maximum samples per pic-

ture, and other characteristics, as shown in [9]. A decoder

that supports a given level should be capable of processing

all bitstreams that conform to the specifications provided

by the level definition. To account for various coding

structure and rate allocation strategies that might be used

to create a bitstream, a decoder model that describes the

smoothing buffer, decoding process, frame buffering, and

display process is provided to verify that a bitstream meets

the level definitions [9], [47].

IX. P E R F O R M A N C E E V A L U AT I O N

We compared the compression performance of libvpx VP9

[48] and libaom AV1 [11]. The source code of libvpx

VP9 can be accessed at [48]. The experiment used the

version with git hash ebac57ce. The source code of libaom

AV1 can be found at [11]. The experiment used the version

with git hash ac2c30ba.

Both codecs used the default two-pass encoding mode

and variable bit-rate control and ran at the highest com-

pression performance mode, i.e., cpu-used=0. To achieve

the compression performance, both VP9 and AV1 encoder

allowed adaptive GOP size, where the decisions were

made based on the first pass encoding statistics. The QP

offsets between different frames within a GOP were also

adaptively optimized based on the first pass coding statis-

tics. The test sets included video resolutions ranging from

480p to 1080p. All the clips were coded using their first

150 frames. The BD-rate reductions in overall PSNR and

SSIM are shown in Tables 3 and 4.

To evaluate the relative encoding and decoding com-

plexity, we gathered the instruction counts for both the

encoding and decoding processes on a single thread at

each operating point. The average ratios between AV1 and

VP9 are shown in column “Enc Ins. Count” and “Dec Ins.

Count” in Tables 3 and 4 to reflect the relative encod-

ing and decoding complexity, respectively. The average

AV1 encoding complexity is roughly 34.6–39.6 times the

VP9 encoding complexity, both at their high compres-

sion performance. The average AV1 decoding complexity,

on average, is about three times of VP9 decoding complex-

ity. Note that we use the instruction count to evaluate the

codec complexity since it closely tracks the actual runtime

on the same computer and is largely invariant in a cloud

computing environment.

We next evaluated the intracoding performance, where

all the 150 frames were coded as intraframes with the same

QP. The same QP set was used for both all intra and video

coding modes. The compression efficiency in overall PSNR

and SSIM BD-rate reductions are shown in Tables 5 and 6.

Similarly, the relative encoding and decoding complexity

between AV1 and VP9 in intracoding mode are provided in

column “Enc Ins. Count” and “Dec Ins. Count” in Tables 5

and 6, respectively.

Note that the results are intended for reference on the

scale of the relative coding gains and complexity. Different

encoder implementations might have different compres-

sion and complexity tradeoff considerations and different

performance results. An extensive codec performance eval-

uation under various encoder constraints is beyond the

scope of this article. Readers are referred to [8] for more

comparison results under encoder constraints. Also, note

that a dedicated decoder implementation might be further

optimized for decoding complexity reduction.

X. C O N C L U S I O N

This article provides a technical overview of the AV1 codec.

It outlines the design theories of the compression tech-

niques and the considerations for hardware feasibility,

which together define the AV1 codec.
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