
A Technique for Detecting New Attacks in
Low-Interaction Honeypot Traffic

S. Almotairi, A. Clark, G. Mohay, and J. Zimmermann
Information Security Institute, Queensland University of Technology

Brisbane, Queensland, Australia
{s.almotairi, a.clark, g.mohay, j.zimmerm}@isi.qut.edu.au

Abstract—Honeypots are flexible security tools for gathering
artefacts associated with a variety of Internet attack activities.
While existing work on honeypot traffic analysis focuses mainly
on identifying existing attacks, this paper describes a technique
for detecting new attacks based on principal component analysis.
The proposed technique requires no prior knowledge of attack
types and has low computational requirements that makes it
suitable for online detection systems. Our method of detecting
new attacks is based on measuring changes in the residual
space using square prediction error (SPE) statistics. When attack
vectors are projected onto the residual space, attacks that are not
presented by the main hyperspace will create new directions with
high SPE values. We demonstrate the usefulness of our technique
by using real traffic data from the Leurré.com project, a world-
wide deployment of low-interaction honeypots, where several
examples of new traffic detected by the system are illustrated.

I. INTRODUCTION

Monitoring and characterizing Internet threats is very crit-
ical in order to better protect production systems by gaining
an understanding of how attacks work, and consequently pro-
tecting systems from them. A honeypot is a security resource
whose value lies in being probed, attacked, or compromised
[1]. Honeypots are very valuable for collecting different types
of attack traffic. However, characterizing attackers’ activities
present in honeypot traffic data can be challenging due to the
high dimensionality of the data, (or large number of variables,)
and the large volumes of traffic data collected. The large
amount of background noise, such as scans and backscatter,
adds to the challenge by hiding interesting abnormal activi-
ties that require immediate attention from security personnel.
Detecting these activities can potentially be of high value and
give early signs of new vulnerabilities or breakouts of new
automated malicious codes, such as worms, if the honeypot
data is handled in time.

Principal component analysis (PCA) is a widely used multi-
variate statistical technique for reducing the dimensionality of
variables and unveiling latent structures and detecting outliers
in data sets [2], [3]. This paper presents a technique for
detecting new attacks in low-interaction honeypot traffic using
PCA. Our method of detecting attacks draws its roots from
anomaly intrusion detection, through building a model of hon-
eypot profile, and multivariate statistical technique capabilities,
namely principal component analysis, in detecting different
types of outliers. New observations are projected onto the
residuals’ space of the least significant components and their

distances from the k-dimensional hyperspace defined by the
PCA model are measured using the square prediction error
(SPE) statistic. A higher value of SPE indicates that the
new observation represents a new direction that has not been
captured by the PCA model of attacks seen in the historical
honeypot traffic.

The rest of the paper is organized as follows. Section II
overviews related work. Section III provides a brief summary
of principal component analysis. The dataset used in this
study and the pre-processing are described in Section IV.
The detection model and the process of applying PCA to
the pre-processed honeypot data are presented in Section V.
The results and the evaluation of the detection technique is
discussed in Section VI. Finally, the paper is concluded in
Section VII.

II. RELATED WORK

The application of PCA to computer network traffic falls
roughly in three categories: detecting the latent structure, re-
ducing the dimensionality of the data, and identifying anoma-
lies. A number of researchers have used principal component
analysis (PCA) to reduce the dimensionality of variables and
to identify attacks. Labib et al. [4] utilized PCA in reducing
the dimensionality of the traffic data and visualizing and
identifying attacks. Bouzida et al. [5] presented a performance
study of two machine learning algorithms, namely nearest
neighbours and decision trees, when used with traffic data with
or without PCA.

Previous research in low-interaction honeypot include de-
signing a low-interaction honeypot daemon [6], improving the
interactivities of the honeypot [7], and generating intrusion
detection signatures of unknown attacks automatically [8].
Traffic analysis of low-interaction honeypots include the man-
ual clustering of traffic that shares similar activity fingerprints,
with the port sequence as a main clustering feature [9], the
use of packet inter-arrival times for investigating unsolicited
internet traffic [10], and identification of repeated use of attack
tools and attack processes [11].

The use of PCA to structure network traffic flow was
introduced by Lakhina [12] where PCA is used to decompose
the structure of Origin-Destination flows, from two backbone
networks, into three main constituents, namely periodic trends,
bursts and noise. In our previous work [13], we have applied
principal component analysis (PCA) to traffic flows of low-

2009 Fourth International Conference on Internet Monitoring and Protection

978­0­7695­3612­5/09 $25.00 © 2009 IEEE

DOI 10.1109/ICIMP.2009.9

7

interaction honeypots to detect the structure of attackers’
activities and to break honeypot traffic into seven dominant
clusters. Shyu et al. [14] proposed an anomaly detection
scheme based on robust principal component analysis. Two
classifiers were implemented to detect anomalies, one was
based on the major components that capture most of the
variation in the data and the second was based on the minor
components or the residuals. A new observation is considered
anomalous when the sum of squares of the weighted principal
components exceeds a threshold in any of the two classifiers.

Lakhina et al. [15] applied the principal component analysis
technique to Origin-Destination (OD) flow traffic counts of
link data bytes. Anomaly is flagged if the value of the square
prediction error exceeds a predefined limit. The subspace
method was extended by the same authors [16] to detect
anomalies in multivariate time series of OD flow traffic with
three features (number of bytes, number of packets, and
number of flows).

Finally, previous applications of PCA treat the network
traffic as either normal or anomalous, and then the detection
model is built on what is believed normal. The notion of
normal and anomalous does not apply in honeypot traffic
where all traffic is potentially malicious. Thus, our technique
is fundamentally different from the above techniques in the
following ways: traffic features are extracted from aggregated
flows, where standard flows from a single IP address are
grouped together to provide sufficient information of attack
patterns; secondly, PCA is used to build a model of existing
attacks that has been seen in the past rather than normal
behaviors, and then any large deviation from the attack model
is considered either a new attack vector or an attack that is
not present in the model. To the best of our knowledge this
is the first time PCA has been used to detect new attacks
using honeypot traffic. As we will show, the technique shows
much promise and pave the way for further applications of the
technique.

III. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a multivariate statis-
tical technique that has been widely used in multi-disciplinary
research areas such as Internet traffic analysis, economics, im-
age processing, and genetics. PCA is mainly used to reduce the
dimensionality of a data set into a few uncorrelated variables,
principal components (PCs), which retain most of the variation
in the original data. The resulting principal components are a
linear combination of the original variables, are orthogonal,
and ordered with the first principal component having the
largest variance. Although the number of resulting principal
components is equal to the number of original variables, much
of the variance in the original set of p variables can be retained
by the first k PCs, where k < p. Thus, the original p variables
can be replaced by the new k principal components.

Given the p-dimensional random variables
X = (X1, .., Xp)T with a sample mean X̄ and a sample
covariance matrix R, we seek to find a lower dimension
vector A = (A1, .., Ak)T of R that has the maximum

variance of the original data with all the Eigenvalues l
being greater than zero. Thus, the first linear function Z1

of X having maximum variance, the second linear function
Z2 is uncorrelated with Z1 and having the second largest
variance and so on until the kth function Zk is found which
is uncorrelated with Z1,...,Zk−1 (see Eq. 1)

Z1 = a11X1 + a12X2 + · · · + a1pXp

...
Zk = ak1X1 + ak2X2 + · · · + akpXp (1)

For the interested reader, a full discussion of principal
component analysis can be found in [2], [3].

IV. DATASET AND PRE-PROCESSING

A. Dataset

The honeypot traffic data used in this analysis comes from
the Leurré.com project [17]. The Leurré.com project was
launched in 2004 for collecting malicious traffic using globally
distributed, identical honeypot environments; currently 50 plat-
forms are deployed in 30 different countries. The Leurré.com
honeypot sensor is based on the open source low-interaction
honeypot honeyd [6]. Each sensor runs on a single host and
emulates three operating systems at the same time (on different
IP addresses): Windows 2003 Professional; Windows 2003
Server; and Linux Red Hat. For the purpose of this study,
only one low-interaction honeypot sensor’s data is used due
to the ready availability of log files from that sensor. Traffic
data for the period of September 15 until November 30, 2007
for two of the honeypot environments was included, namely
Windows 2003 Professional and Windows 2003 Server. Both
environments are identical in terms of open TCP and UDP
ports. Two data sets of traffic data were extracted for the
purpose of this study. Traffic data sets that have been used
in this study are: Data set I for constructing the PCA model;
Data set II for evaluating the model. Table I gives a brief
summary of the used data sets.

Table I
SUMMARY OF THE DATA SETS USED IN THE STUDY

Data
Set

Start
Date

End Date Packets Standard
Flows

Activity
Flows

I 15/09/2007 30/11/2007 839663 562470 5401
II 01/12/2007 31/03/2008 2231245 1586715 7343

B. Pre-processing

Before applying the PCA to the traffic data, the following
steps were performed to process the raw traffic data. First,
raw tcpdump files of daily honeypot data were collected
and merged into a single traffic file. Then packets were
grouped together into basic flows (according to the notation
of flow). Our basic flow conforms to the standard definition
of an IP flow of packets that share the five keys: source IP
address, destination IP address, source port, destination port,
and protocol type. If a packet differs from another packet by
any key field, it is considered to belong to another flow [18].

8

Other features associated with flows were also extracted
to enrich the analysis. These features include number of
packets, number of bytes, total activities, and durations. For
the purpose of this study, we set the timeout of basic flows to a
maximum of five minutes. The five-minute timeout parameter
was selected based on our experiments and the nature of low-
interaction honeypots where the majority of flows were less
than 300 seconds; a higher value of time out has little influence
in the final results.

The second step was to group the basic flows again into
what we call activity flows, where the newly generated flows
were combined based upon the source IP address of the
attacker with a maximum of sixty minutes inter-arrival time
between basic flows. Finally, the data was filtered to re-
move Internet backscatter by examining each flow individually
against common backscatter flags, such as TCP RST and TCP
SYN/ACK [19].

C. Candidate feature selection

We have extracted 18 features from the activity flows.
These traffic features were selected as being representative
of the behavior of the three protocols that are monitored by
the honeypot, namely TCP, UDP and ICMP. Traffic features
computed from the activity flows include: the total number of
basic flows generated by individual IPs and aggregated based
on sixty minutes; total number of open TCP ports targeted;
total number of distinct open TCP ports targeted; total number
of open UDP ports targeted; total number of distinct open UDP
ports targeted; total number of closed UDP ports targeted; total
number of distinct closed UDP ports targeted; total number of
ICMP flows; number of machines targeted per attack; total
duration of basic flows; total number of source packets sent
per IP; total number of source bytes sent; total source rates
which is the sum of the source rates of all the basic flows,
where a source rate is number of source packets in a basic
flow divided by the duration of that flow; sum of the average
packet size per basic flow; total activities as the summation
of source and destination rates; and summation of inter-arrival
times between basic flows.

V. MODEL ARCHITECTURE

The architecture of the detection model is depicted in Figure
1. As the figure shows, the model consists of three main
components:

• Traffic Flow Aggregator: The traffic flow aggregator
accepts Argus traffic flows [20], set to 5-minute maximum
expiration, and then groups the traffic flows into the
activity flows. The newly generated flows, activity flows,
are combined by the source IP address of the attacker
with a maximum of 60 minutes inter-arrival time between
original flows. Internet noise, such as backscatter, is
filtered out in this model.

• PCA Model Extraction: is where the PCA profile is
built from historical honeypot data. This includes the
calculation of the correlation matrix, the extraction of

Honeypot
Traffic Data

Flow Aggregation
&

 Feature Extraction
PCA Model
Extraction

Detection

Standardize
Observation s

Robustness

Extract PCs

Generate
Model

Parameters

Detect

Basic Flow
Extraction

Filtering

Aggregated
Flow

Extraction

Feature
Extraction

New
Attack

PCA Model
Parameters

Historical
Traffic

Test Traffic

Standardized
New

Observation

Phase I Phase II

Honeypot
Traffic Data

Figure 1. Detection model architecture

the Eigenvectors and Eigenvalues, and the generation of
principal components.

• Detection: in the detection model, new observations are
tested against the predefined PCA model parameters for
detecting new attacks.

Our methodology of detecting new attacks in low-
interaction honeypot traffic is adapted from multivariate sta-
tistical process control (MSPC), a widely used statistical
technique in monitoring production processes in industries,
such as chemical industries, to detect manufacturing process
faults. The detection model proposed in this paper is performed
in two phases:

• Phase I: building a PCA profile of the honeypot traffic
from historical data over a defined period of time. This
includes the calculation of the correlation matrix, the
extraction of the Eigenvectors and Eigenvalues, and the
generation of principal component scores.

• Phase II: Detecting new attacks where new observations
are projected onto the residuals of the predefined PCA
model and are tested against a predefined threshold.

A. Processing the flow traffic via PCA

Principal component analysis can be performed using either
the covariance matrix or the correlation matrix. However, PCs
defined using the covariance matrix are very sensitive to the
unit of measurements and are difficult to interpret. In addition,
when the variance of the variables differs widely, which is
the case for the honeypot data, the first few PCs will be
dominated by variables with high variances, as they contribute
little information to the structure of the data set. Thus, the
use of the correlation matrix rather than the covariance matrix
for deriving the PCs was preferred in our analysis. To calcu-
late the PCs from the correlation matrix, the p-dimensional
vectorX = (X1, .., Xp)T is first standardized by:

Ci =
Xi − X̄i√

Si

(2)

for i=1,. . . ,p , where X̄i is the sample mean and Si is the
sample variance for Xi. Let R be the sample correlation
matrix of C with Eigenvalue vector l=(l1,. . . .,lp), then the
principal component analysis

Z = AT C (3)

9

Table II
EXTRACTED PRINCIPAL COMPONENTS

Principal
Component

Eigenvalues % of
Variance

Cumulative
%

1 5.410 30.054 30.054
2 2.374 13.190 43.244
3 2.153 11.959 55.204
4 1.681 9.339 64.543
5 1.432 7.954 72.497
6 1.362 7.567 80.064
7 .959 5.329 85.393

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

Component Number

E
ig

en
va

lu
e

Figure 2. Scree plot of Eigenvalues

where A= (A1, ..,Ak)T is the Eigenvectors of R, with the
first component equal to:

Z1 = a11C1 + a12C2 + · · · + a1pCp (4)

Three factors were considered when we selecting the num-
ber of principal components (PCs) that are representative of
the variables: the Kaisers’ rule [2] for eliminating PCs with
Eigenvalue less than one (see Table 2 for the Eigenvalues); the
extracted commonalities of variables or the amount of variance
within each variable accounted for by the components; the
Scree plot of energy contributed by each PC, see Figure 2. All
of the above suggest that seven principal components retain
over 90% of the total variance of the original data.

B. Robustness

Building a staple detection model requires that the model
parameters to be estimated from a clean data set. Extracting
principal components from a standard correlation matrix is
very sensitive to outliers, where the resulting principal com-
ponents might be determined by their directions. An effective
technique of improving the principal component analysis and
reducing the effect of these outliers is through the robustifica-
tion of the correlation matrix during the model building phase,
Phase I. The robustification works by eliminating observations
with large mahalanobios distance in an iterative process until
the data is believed to be clean or the given number of
iterations is reached [21].

Given a p-dimensional random vectorX = (X1, .., Xp)T of
n samples, where X̄ is the sample mean and S is the sample
variance of Xi. Then T 2, given by Eq. 6, is an ellipsoid
in the p-dimensional space which is centered at the mean
X̄ and the distance to its surface is given by T 2 values(a

contour of constant probability). The constant probability
contour for the distribution of X satisfies T 2≤ χ2

p(α), where
χ2

p(α) is the percentile of a chi-square distribution with p
degrees of freedom. Setting a threshold for detecting outlying
observations based on χ2

p(α) requires the distribution of X to
be a multivariate normal. However, since we do not make any
assumptions about the distribution of our data, the population
ellipsoid is still valid despite any normality assumptions, but
the ellipsoid loses its interpretation as contours of constant
probability of the distribution of X [2]. Accordingly , the
threshold for the robustification process can be determined
from the empirical distribution of T 2.

C. Setting up model parameters

A critical step in designing a detection approach is setting
the limit for judging new observations since it has a dramatic
effect on the quality of the detection. When the limit value
is very narrow, it will frequently be exceeded resulting in a
high rate of false positive alarms, and when the limit is very
wide the limit will never be exceeded, resulting in many false
negative alarms.

Let X be a data matrix of n samples of p-dimensional
random variables, where X̄=(X̄1,..,X̄p)T is the sample mean
vector of X and R is the sample correlation matrix. The sum
of the squares of the weighted principal component scores of
the last q principal components, the residual space, in detecting
outliers is given by:

Qi =

p∑

k=p−q+1

Z2
ik

lk
(5)

where q<p and Zik is the score of the kthPC of the ith

observation and lkis the kthEigenvalue. When q=p, the
previous equation can be represented by of the distance of
the ithobservation from the mean of the data, which is given
by:

T 2
i = (xi − x̄)T S−1 (xi − x̄) (6)

Then T 2 follows a chi-square distribution χ2, for larger
sample size, with p degrees of freedom [22]. Thus the upper
control limit becomes:

UCL = χ2
1−α,p (7)

where χ2
p(α)is the percentile of a chi-square distribution with

p degrees of freedom.

Although we do not make any assumption about the exact
distribution of each of the p variables and we are only
interested in a large values of T 2, the upper limit would be
computed from the empirical distribution of the T 2 population
as follows:

UCL = u + 3s (8)

where u is the sample mean and s is the standard deviation.

Setting the control limit as a multiple of a standard deviation
is a common practice and gives good practical results [23]. The
T 2 test is equivalent to using all principal components in Eq.
5. We use the T 2 test in Phase I to reduce the effect of outliers.
Square prediction error (SPE), or the Q-statistic, is a test

10

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

25

30

35

Observations

M
ag

nit
ud

e

Figure 3. Plot of four-month attack data projected onto the residual space

of how a particular observation fits the principal component
model. SPE is calculated from the sum of squares of the
residuals and it measures the distance from the observation to
the k-dimensional hyperspace defined by the PCA model. A
high value of SPE indicates that the new observation represents
a new direction that is not included in the PCA model. The
Q-statistic of the residual space can be represented by the sum
of the squares of the weighted principal component scores of
the last p− q principal components in Eq. 5. The upper limit
for Q is given by [3]:

Qα = θ1

[
Cα

√
2θ2h2

0

θ1
+ 1 +

θ2h0(h0 − 1)

θ2
1

] 1
h0

(9)

where Cαis the normal deviate corresponding to the upper
(1 − α) percentile, θi =

∑p

i=k+1
lji , for j= 1, 2, 3, and

h0 = 1 − 2θ1θ3
3θ2

2

The use of the upper limit in Eq. 9 assumes that the data
is normally distributed. Alternatively we set the upper limit
based on the empirical distribution of Q of the sample data.
The Q statistic is used in Phase II to detect new attacks with
our detection model.

VI. RESULTS

A. Detection and identification

Four months of real attack evaluation data was extracted
from the honeypot environment and projected into the residual
space, Data set II in Section IV-A. Figure 3 illustrates the SPE
projection of the data stet.

The projection shows observations that have high SPE
values as spikes that rise above the threshold value. These
observations are possibly new attacks and require further
investigations. As the figure shows, there are 81 observations
that have been flagged by our detection algorithm which
violate the structure of the attack model. Moreover, the figure
shows intense attack activities that are obvious in the figure
along the X axis around observation 5000. These activities
reflect a single class of attacks that one of our honeypot sensors
had experienced in late February and early March of 2008.
Details of these attacks and the rest of the attack activities are
discussed in section VI-D, Evaluation by manual inspection
of the detected traffic.

B. Stability of the monitoring model over time

As our technique uses a historical block of data to construct
the PCA detection model, it is very important to evaluate
the stability of the PCA model over time. Our preliminary
investigation, which include the stability of the estimated mean
vectors and the correlation matrix, suggests that there is a
slight variation in some of the variables’ means and also in the
amount of variance contained in the first seven components.
The number of significant components is still the same for
both of the data sets, however the amount of variation in the
first seven components increased slightly in data set II. While
we consider that these changes have little effect on the residual
space, a further investigation is required to assess how these
changes would affect the reliability of the model in terms of
detection rates. Moreover, further work is required in order to
study ways to adaptively update the model parameters, such
as the mean and the correlation matrix over time.

C. Computational requirements

The detection model was developed using a combination of
the open-source programming language Python and the high
level scientific computing environment Matlab. The Python
language was utilized in developing the flow aggregator while
Matlab was used in the development of the detection engine.
Tasks that are required by the detection model include: stan-
dardizing the data, calculating the correlation matrix, finding
the Eigenvectors and the Eigenvalues, extracting the PC scores,
and computing the T 2 and Q statistics. Let X be a data
matrix of n samples of p dimensional random variables, then
the computational requirements for computing the correlation
matrix of X is O(np2) and the extraction of the Eigenvectors
and Eigenvalues are O(p3) [24]. The computational require-
ments are mainly matrix manipulations and are not considered
expensive taking into account the massive reduction in data
records using our aggregation technique of flows. Table III
shows the empirical execution times required by a number of
components of the detection model. The detection model was
tested on a personal computer with a 2.0 GHz Intel dual core
processor.

Table III
AVERAGE EXECUTION TIMES OF THE MAJOR TASKS (SECONDS)

Tasks involved in the detection Time

Calculating the correlation matrix for all data 0.070073
Finding the Eigenvectors and Eigenvalues of
the correlation matrix

0.001322

Calculating the PC scores of X 0.003049
T 2 Test of one vector for all PCs (18 PCs) 0.000142
Q Test of one vector for the residual (11 PCs) 0.000088

To detect new attacks, only the Q statistics needs to be
calculated using parameters from the historical data.

D. Evaluation

Broadly speaking, there are two methods for validating an
attack detection model. The first validation method consists of
manual labeling of attacks in a data set and then testing the

11

model performance, false positive and false negative criteria,
against this labeled data. The second validation approach
is based on testing the model performance against syntheti-
cally crafted attacks that are manually injected into the data
set. Applying these classical validation methods to a low-
interaction honeypot detection model is challenging as the
notion of normal and abnormal does not apply, the nature
of the collected traffic which is considered malicious per se,
and the low level of detail available from the collected traffic.
In this section, we detail our evaluation methodology of the
detection model using the data set described in Section IV-A.

Evaluation by manual inspection of the detected traffic: To
help better understand the nature of the detected observations
and judge their significance, we have carried out a manual in-
spection of every observation that was flagged by our detection
algorithm, 81 observations in total. Our aim is to explain the
reasons that these observations were flagged by our detection
algorithm and to group them according to their similarities into
different classes. The manual validation process consists of
manual inspection and manual classification of these detected
attack observations.

Firstly, we examined all of the 18 traffic features, that have
been used by the algorithm, and then went further by checking
the basic flows for other patterns of attacks such as destination
ports, protocols, and flags. After that, observations were also
checked against the original logs. Secondly, observations were
grouped together into different types of attack clusters based
on their attack port similarities, or port sequences. The port
sequence is a list of targeted honeypot ports that are generated
by a single IP address during the attack period. An example of
a port sequence of an attack that is generated by an IP address
which targeted TCP port 139 ,445, 998, 139, 445, and UDP
137 with ICMP traffic would be: {T139,T445,T998,U137,I}.

Our manual inspection of the detected traffic has found
eight clusters of attack activities. Table IV provides a brief
summary of the results. As Table IV shows, there are four
types of activities that were classified as worm attacks. The
first class, Worm Activity I, is the largest with a port sequence
(T139,T445,T9988,ICMP). This class represents repeated at-
tempts that target two open TCP ports, 139 and 445, and a
single TCP closed port, 9988. These activities resemble a well
known Rahack worm [25], which targets Microsoft OSs.

The second class of worm activities is distinguished by its
port sequence (T1080, T3128, T80, T8080, T10080, ICMP).
The pattern of these activities’ port sequence is similar to
Mydoom worm family [26]. The third class of worm activity,
port sequence (T445, T135, T1433, T139, T5000), is another
automated exploit that targets a Microsoft Windows LSASS
vulnerability [27]. The last worm class of activities targets
TCP port 5900. This class of activities is mainly scans for
Trojans that listen for remote connections on TCP Port 5900,
such as Backdoor.Evivinc [28].

The denial of service activities class comes second in terms
of number of observations. The attacking IPs targeted a single
machine on a single open TCP port, port 80, with very short
time between packets. These attacks were detected by our

Table V
SYNTHETIC ATTACK CLASSES

Attack Class Description

SYN-Flooding A Combination of low and high rate of
SYN-Flooding attacks, using Hping3

Scan Default Nmap SYN scans
OS fingerprinting Operating system identification and TCP/IP

signatures using Xprobe2
UDP attack UDP buffer overflow attack against open

UDP port
Vulnerability
scan

Nessus vulnerability scanns

algorithm as the total activities of the source IP were huge in
addition to other parameters such as number of source packets
sent. The attack mainly caused by a few IP addresses over the
period from 20/02/2008 to 04/03/2008.

The third class of activities that is detected by our model is
scan activities. While low to moderate scanning activities are
very common in our log files, these activities were flagged
by our algorithm as they generated large values on single
or multiple features. Mis-configuration class of activities is
mainly a DHCP request on UDP port 53. The last class of
activities, Miscellaneous, consists of all observations that we
were not able to explain and did not fit in any class. This class
of activities represent short attacks on non standard single TCP,
single UDP ports or both.

Evaluation by synthetic data: Our evaluation methodology
to validate our attack model consists of two parts, manual
generation of attacks in a controlled environment and the
evaluation of the detection model against these attacks. The
synthetic attack scenarios are played against our test environ-
ment, a replica of our honeypot environment that runs under
VMware, logged using Tcpdump, and then processed using
the technique detailed in Section IV. Five attack scenarios
were played against our test environment, Table V details these
scenarios.

Due to the large amount of traffic data and the low inter-
activity of the honeypot, it is very difficult to be assured that
the synthetic attack data does not exist in the training data.
We have conducted a simple, yet an effective methodology
of inserting every synthetic attack that was flagged by the
detection algorithm into the training data set, reconstructing
the attack model, and then projecting these attacks again into
the residual space. For all of the synthetic attacks that were
detected as new, the new projection has produced very low
SPE values, after their inclusion in the training data.

The validation results show that all the synthetic attacks
were detected by our technique as not being seen in the
training data. As mentioned earlier, manual confirmation of
the non existence of these attacks in the training data is not
feasible through manual inspection. As a result, we included
these attacks in the original training data and reconstructed
a new attack model, which we are certain that these attacks
were accounted for. When these attacks were projected into
the residual space of the new model, the Q values were small
and were under the threshold value. These validation results

12

Table IV
CLASSES OF THE DETECTED ATTACK ACTIVITIES

Activities Class Distinct Behaviors Possible Type No.

Worm Activity I Moderate: TF, TCP_O Low: TCP_C, IAT W32.Rahack.W worm 26
Worm Activity II Moderate: TF, TCP_C Low: TCP_O Mydoom worm family 6
Worm Activity III Moderate: TF, TCP_C High: AVG_PK_SIZE Bobax worm family 1
Worm Activity V Low:TF High: IAT Backdoor.Evivinc 2
Denial of Service High: TF, Dur, TCP_O, SPackets,T_ACT Short: IAT Distributed DOS or DOS 21
Scan Activities Large: TF, TCP_C, SPackets Moderate: TCP_O, ICMP Horizontal scan or machine detection 2
Mis-configuration Low: TF,UDP_C DHCP request 8
Miscellaneous LOW: TF, TCP_C,UDP_C Unknown 15

confirm that our detection model is capable of detecting new
attacks that are either new or not present in the training data.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a technique for detecting
new attacks in low-interaction honeypot traffic. The proposed
detection method is performed in two phases. Firstly, traffic
flows are grouped based on IP addresses and then PCA profile
of honeypot traffic is built. Secondly, new traffic vectors are
projected onto the residual space of the PCA attack model and
the square prediction error (SPE) statistic is used to flag new
attacks based on their large deviations from the attack model.
The effectiveness of the proposed technique is demonstrated
through the analysis of real traffic data from the Leurré.com
project and is validated through the use of synthetic attack
data. Our evaluation results show that our technique is capable
of detecting different types of attacks with no prior knowledge
of these attacks and the technique has low computational
requirement that makes it suitable for online detection systems.

Future work includes automating the extraction of the
detection parameters and improving the model capability to
adapt over time to changes in the correlation structure. Another
area for improvement is to develop attack classification models
to help in finding the actual class of the detected attacks
automatically, which would ease the interpretations.

REFERENCES

[1] L. Spitzner, Honeypots: Tracking Hackers. Addison-Wesley, 2003.
[2] I.T.Jollif, Principal Component Analysis, 2nd ed., ser. Springer Series

in Statistics. New York: Springer, 2002.
[3] J. E. Jackson, A User’s Guide to Principal Components, 1st ed. Wiley-

Interscience, 2003.
[4] K. Labib and V. R. Vemuri, “An application of principal component

analysis to the detection and visualization of computer network attacks,”
Annals of Telecommunications, pp. 218–234, 2005, Nov-Dec Issue.

[5] Y. Bouzida, F. Cuppens, N. Cuppens-Boulahia, and S. Gombault, “Ef-
ficient intrusion detection using principal component analysis,” in 3éme
Conférence sur la Sécurité et Architectures Réseaux (SAR), La Londe,
France, Jun. 2004.

[6] N. Provos, “A virtual honeypot framework,” in 13th USENIX Security
Symosium, Aug 2004.

[7] C. Leita, K. Mermoud, and M. Dacier, “Script gen: An automated
script generation tool for honeyd,” in 21st Annual Computer Security
Applications Conference (ACSA), Dec 2005.

[8] C. Kreibich and J. Crowcroft, “Honeycomb - creating intrusion detection
signatures using honeypots,” in Proceedings of the Second Workshop on
Hot Topics in Networks, 2003.

[9] F. Pouget and M. Dacier, “Honeypot-based forensics,” in AusCERT Asia
Pacific Information technology Security Conference, 2004.

[10] J. Zimmermann, A. Clark, G. Mohay, F. Pouget, and M. Dacier, “The
use of packet inter-arrival times for investigating unsolicited internet
traffic,” in First International Workshop on Systematic Approaches to
Digital Forensic Engineering (SADFE’05), 2005 2005.

[11] S. Almotairi, A. Clark, M. Dacier, C. Leita, G. Mohay, V. H. Pham,
O. Thonnard, and J. Zimmermann, “Extracting inter-arrival time based
behaviour from honeypot traffic using cliques,” in The 5th Australian
Digital Forensics Conference, Perth, Australia, 2007.

[12] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk,
and N. Taft, “Structural analysis of network traffic flows,” in ACM
SIGMETRICS, 2004.

[13] S. Almotairi, A. Clark, G. Mohay, and J. Zimmermann, “Characteriza-
tion of attackers’ activities in honeypot traffic using principal component
analysis,” in Network and System Security NSS 2008. IEEE Computer
Society Proceedings, Oct 2008.

[14] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, “A novel
anomaly detection scheme based on principal component classier,” in
Proceedings of the IEEE Foundations and New Directions of Data
Mining Workshop, in conjunction with the Third IEEE International
Conference on Data Mining (ICDM’03), 2003, pp. 172–179.

[15] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” in SIGCOMM ’04: Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer
communications. ACM, 2004.

[16] A. Lakhina, M. Crovella, and C. Diot, “Characterization of network-wide
anomalies in traffic flows,” in ACM-SIGCOMM Internet Measurement
Conference, 2004.

[17] Network Security Team - Eurecom, “The leurre.com project home page,”
available http://www.leurrecom.org/ Last Visited 30/10/2008.

[18] Cisco Systems. (2007) Cisco ios netflow. [Online].
Available: http://www.cisco.com/en/US/products/ps6601/products_ios_
protocol_group_home.html

[19] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
“Inferring internet denial-of-service activity,” ACM Transactions on
Computer Systems, vol. 24, no. 2, pp. 115–139, 2006.

[20] qosient, LLC. (2007) Argus-client 2.0.6. [Online]. Available: http:
//www.qosient.com/argus/

[21] R. Gnanadesikan, Methods for Statistical Data Analysis of Multivariate
Observations, 2nd ed. New York: Wiley-Interscience Publication, 1997.

[22] S. Bersimis, S. Psarakis, and J. Panaretos, “Multivariate statistical
process control charts: an overview,” Quality and Reliability Engineering
International, vol. 23 Issue 5, no. 5, pp. 517–543, 2006.

[23] D. C. Montgomery, Introduction to Statistical Quality Control, 4th ed.
New York: John Wiley & Sons, Inc, 2004.

[24] S. Roweis, “Em algorithms for pca and spca,” in Advances in Neural
Information Processing Systems, M. press, Ed., vol. 10, 1998, pp. 626–
632.

[25] Symantec Security Response. (2007, Jan.) W32.Rahack.W. [On-
line]. Available: http://www.symantec.com/security_response/writeup.
jsp?docid=2007-011509-2103-99&tabid=2

[26] Symantec Security Response. (2004, Jan.) W32.Mydoom.B. [On-
line]. Available: http://www.symantec.com/security_response/writeup.
jsp?docid=2004-012816-3647-99&tabid=2

[27] Bitdefender. (2004, May) Win32.Worm.Bobax. [Online]. Avail-
able: http://www.bitdefender.com/VIRUS-1000045-en--Win32.Worm.
Bobax.A-C.html

[28] Symantec Security Response. (2007, Feb.) Backdoor.Evivinc. [On-
line]. Available: http://www.symantec.com/security_response/writeup.
jsp?docid=2004-042518-0520-99&tabid=2

13

