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Model errors in adaptive controllers for reduction of broadband noise and vibrations may lead to unstable
systems or increased error signals. Previous work has shown that the addition of a low-authority controller

that increases damping in the system may lead to improved performance of an adaptive, high-authority

controller. Other researchers have suggested to use frequency dependent regularization based on mea-
sured uncertainties. In this paper an alternative method is presented that avoids the disadvantages of these

methods namely the additional complex hardware, and the need to obtain detailed information of the un-
certainties. An analysis is made of an active noise control system in which a difference exists between the

secondary path and the model as used in the controller. The real parts of the eigenvalues that determine

the stability of the system are expressed in terms of the amount of uncertainty and the singular values
of the secondary path. Based on these expressions, modifications of the feedforward control scheme are

suggested that aim to improved performance without requiring detailed uncertainty measurements. For an

active noise control system in a room it is shown that the technique leads to improved performance in terms
of robustness and the amount of reduction of the error signals.

1 Introduction

Improved stability is desirable in many implemen-

tations of adaptive control algorithms based on the

filtered-reference LMS algorithm or the filtered-error

LMS algorithm. Preferably, such robustness improve-

ments do not lead to increases of the error signal. In

this document, some techniques for improved robust-

ness are presented. For some control schemes, online

adaptation of the model is possible in principle but a

large amount of additional noise has to be injected in

the system for rapid changes in the model [1]. Fur-

thermore, if the controller uses model-based precon-

ditioning or factorization, then these time-consuming

operations should be performed online as well. Robust

control approaches are described in, for example Ref.

[2]. Probabilistic methods leading to frequency depen-

dent regularization for optimum filtering are described

by [3, 4]. Methods for adaptive control are given in

[5, 6]. Such algorithms can be tuned for a particu-

lar application but require additional effort in the de-

sign stage and presume that sufficient a-priori knowl-

edge is available about the uncertainty. An alternative

approach is to use a high-authority and low-authority

control (HAC/LAC) architecture [7, 8] where the goal

of the low-authority controller is to add active damping

to the structure. Active damping can be implemented

using different strategies. The use of a HAC/LAC ar-

chitecture yields three major advantages [7]. Firstly,

the active damping extends outside the bandwidth of

the HAC control loop, which reduces the settling times

outside the control bandwidth. Secondly, it is eas-

ier to gain-stabilize the modes outside the bandwidth

of the outer loop. And thirdly, the large damping of

the modes inside the controller bandwidth makes them

more robust to parametric uncertainty. In this paper an

example is given of an application in which an alter-

native approach is possible which does not require the

complex hardware of a HAC/LAC scheme nor does it

need detailed a-priori knowledge of the uncertainty.

2 Methods

2.1 Adaptive feedforward controller

The methods are tested in combination with a particu-

lar version of a filtered-error type LMS algorithm [9].

A block diagram of the multiple-input multiple-output

adaptive controller is shown in Fig. 1. A detailed de-

scription of this algorithm can be found in Refs. [10,

11]. For the description of the MIMO controller, we

assume that there are ✁ reference signals, ✂ error sen-

sors and ✄ actuators. The transfer function between

the actuators and the error sensors is denoted by the✂✆☎✝✄ -dimensional secondary path ✞ . Denoting ✟ as

the sample instant, the update rule for the controller

coefficients is

✠☛✡✌☞ ✟✝✍✏✎✒✑✔✓ ✠☛✡✌☞ ✟✕✑✗✖✙✘✛✚✢✜ ✜ ☞ ✟✕✑✤✣✥✜✧✦ ☞ ✟✝✖☛★✩✑✫✪ (1)

in which the ★ -th filter coefficients of the control fil-

ters are represented by the ✄✬☎✭✁ matrix
✠ ✡

, where★✮✓✰✯✲✱✤✱✤✳✵✴✶✖✷✎ , i.e.,
✠✸☞✫✹ ✑✺✓ ✻✽✼✿✾❁❀✡❃❂❅❄ ✹ ✾ ✡ ✠☛✡

, with✹
the unit delay operator. Furthermore, ✚ ✜ ✜ ☞ ✟✕✑ is the✄❆☎✏✎ vector of auxiliary error signals, ✣ ✜ ☞ ✟✕✑ is the✁❇☎❈✎ vector of delayed reference signals, and ✘ is

the convergence coefficient. In the actual implemen-

tation, a normalized LMS update rule was used, com-

bined with ’leakage’ of the control coefficients [6]. An



allpass factor ✞ ✡ and minimum-phase factor ✞❊❉ are

obtained from an inner-outer factorization such that✞❋✓ ✞ ✡ ✞ ❉ . The adjoint ✞❍●✡ is combined with a delay■
of ✳✿❏ samples in order to ensure that

■ ✞✺●✡ is pre-

dominantly causal. The transfer function ✞▲❑◆▼ subtracts

the contribution of the actuators on the reference sig-

nals, as required for internal model control (IMC) [12].

Although the algorithm differs in some aspects from

the standard filtered-reference LMS of filtered-error

LMS algorithms, especially with respect to the speed

of convergence, the stability properties are governed

by the same underlying equations. Therefore, for the

remainder of this paper, it is assumed that the analysis

applies to general filtered-reference LMS or filtered-

error LMS algorithms. Nevertheless, it will be seen

that the algorithm of Fig. 1 allows for the implemen-

tation of the techniques discussed in this document. In

particular, the scheme facilitates the implementation of

frequency dependent regularization techniques, which

can be useful for robust control approaches.

2.2 Uncertainty and eigenvalue conditions

We assume that the uncertainty ❖P✞ in the secondary

path ✞ is such that

✞◗✓❘✞❈✍❙❖P✞ (2)

in which ✞ is the model of the secondary path ✞ . The

condition for stability of the LMS update rule is de-

termined by the minimum real part of any eigenvalue

of a matrix determined by the secondary path and the

model of the secondary path [6]:

❚❍❯✤❱❳❲❳❨❬❩ ✞▲❭ ☞ ✚✢❪❴❫✛✑❵✞ ☞ ✚◆❪✤❫❛✑ ❜❝✯✲✱ (3)

Alternatively,

❚❞❯❴❱❳❲▲❨✒❩ ✞ ☞ ✚ ❪❴❫ ✑❅✍❙❖P✞ ☞ ✚ ❪❴❫ ✑ ❭ ✞ ☞ ✚ ❪❴❫ ✑ ❜❝✯✲✱
(4)

If the system has a single input and a single output

then the matrix ✞ ❭ ✞ is a scalar quantity and it can be

shown that the stability condition is equivalent to the

requirement that the absolute value of the phase differ-

ence between ✞ ❭ ☞ ✚ ❪❴❫ ✑ and ✞ ☞ ✚ ❪❴❫ ✑ is smaller than ❡❬✯✥❢
at all frequencies [6].

A stronger condition is given by the SPR condition

of Ren and Kumar [13]:

❚❞❯❴❱❣❩ ✎❤ ✞▲❭ ☞ ✚✢❪❴❫✛✑❵✞ ☞ ✚◆❪✤❫❛✑❅✍✙✞▲❭ ☞ ✚✢❪❴❫✛✑ ✞ ☞ ✚✢❪❴❫✛✑ ❜❝✯✲✱
(5)

or

❚❞❯❴❱❣❩ ✎❤ ✞ ☞ ✚ ❪❴❫ ✑❅✍❙❖P✞ ☞ ✚ ❪❴❫ ✑ ❭ ✞ ☞ ✚ ❪✤❫ ✑
✍✵✞▲❭ ☞ ✚✢❪❴❫❛✑ ✞ ☞ ✚✢❪❴❫✛✑✗✍✝❖P✞ ☞ ✚◆❪✤❫❛✑ ❜✏✯✲✱ (6)

In the latter two equations, all eigenvalues ❩ are real

since the underlying matrix is Hermitian.

3 Minimum-real eigenvalue for
bounded uncertainty

Let ✞✐✓❥✞ ☞ ✚ ❪❴❫ ✑ , ❖P✞❦✓◗❖P✞ ☞ ✚ ❪❴❫ ✑ and ✞❦✓❥❧♥♠✕♦ ❭
the singular value decomposition of ✞ . The matrix ♠
contains the positive singular values ♣ ❀✙q ♣✒rs✱✩✱t✱ q♣✈✉ . The norm of the uncertainty is bounded such that

for each angular frequency ✇
① ❖P✞ ☞ ✚✢❪❴❫❛✑ ①❳②✭③ ☞ ✇✵✑ (7)

3.1 Stability condition

First, we will study the influence of uncertainty on the

eigenvalues of ✞ ❭ ✞ in Eq. (4). It will be shown that

for any singular value ♣ ✡ the eigenvalues are contained

in a circle with centre ♣ r✡ and radius
③ ♣ ✡ . Previous

work can be found in Refs. [6, 13, 14]. The derivation

below gives a direct proof of the desired property and

avoids implicit or approximate derivations. An eigen-

vector
✹

and corresponding eigenvalue ❩ of Eq. (4)

satisfy

☞ ✞❈✍❙❖P✞✺✑ ❭ ✞ ✹ ✓ ❩ ✹ (8)

Right multiplication with
✹ ❭ leads to

❩✒④ ✖❝✞ ❭ ✞◗✓✆❖P✞ ❭ ✞❣✱ (9)

Use of the singular value decomposition ✞✸✓⑤❧♥♠✕♦ ❭
allows us to write

❩✒④ ✖❝✞ ❭ ✞⑥✓⑦♦ ❩⑧④ ✖✏♠ ❭ ♠ ♦ ❭ (10)

where we have used ❩✒④ ✓ ❩ ♦❍♦ ❭ ✓⑨♦ ❩✒④ ♦ ❭ . Then,

left multiplication with ♦ ❭ and right multiplication

with ♦ shows that

❩⑧④ ✖✏♠✔❭❍♠✏✓⑦♦❊❭▲❖P✞▲❭♥❧♥♠ (11)

The ★ th element on the diagonal of the matrix on the

left hand side is ❩ ✖⑩♣ r✡ . This element is obtained by

selecting the ★ th row ♦ ☞❷❶ ✪❵★✩✑ ❭ of the matrix ♦ ❭ and

the ★ th column ♠ ☞❷❶ ✪❵★✩✑ of the matrix ♠ :

❩ ✖❝♣ r✡ ✓⑦♦ ☞❷❶ ✪❵★✩✑❸❭❳❖P✞▲❭♥❧♥♠ ☞❷❶ ✪❵★✩✑ (12)

The norm satisfies

❹ ❩ ✖❝♣ r✡ ❹❺②✸① ♦ ☞❷❶ ✪❵★✩✑❻❭ ①✒① ❖❼✞▲❭❽❧♥♠ ☞❷❶ ✪❵★✩✑ ① (13)

which, because
① ♦ ☞❷❶ ✪❵★✩✑ ❭ ① ✓ ✎ and

① ❖P✞ ❭ ❧♥♠ ☞❷❶✪❵★✩✑ ①❾②✭③ ♣ ✡ can be written as

❹ ❩ ✖✙♣ r✡ ❹✥②❿③ ♣ ✡ (14)



Hence, the minimum real part of ❩ within the cir-

cle corresponding to singular value ♣ ✡ is obtained for♣ r✡ ✖ ③ ♣ ✡ , and the overall minimum is obtained by eval-

uating all circles:

❚❞❯✤❱❾❲❳❨✒❩ ✓ ❚❞❯❴❱✡ ♣ ✡✌☞ ♣ ✡ ✖ ③ ✑ (15)

If a singular value ♣ ✡ exists for which
③ ❜⑥♣ ✡ then the

system is unstable.

3.2 SPR condition

Next, let us consider Eq. (6). An eigenvector
✹

and

corresponding eigenvalue ❩ of Eq. (6) satisfy

✎❤ ☞ ✞⑦✍✝❖P✞✺✑ ❭ ✞⑦✍✆✞▲❭ ☞ ✞⑩✍✝❖P✞✺✑◆✑ ✹ ✓ ❩ ✹ ✱ (16)

Right multiplication with
✹ ❭ leads to

➀ ❭ ➀ ✍ ✎❤ ➁➃➂ ➀ ✍ ➀ ➂➄➁ ✓ ❩ (17)

in which we have used ➀ ✓❘✞ ✹ and ➁ ✓✆❖P✞ ✹ . Then,

❚❞❯✤❱❣❩ ✓ ❚❞❯✤❱ ➀ ❭ ➀ ✍ ✎❤ ➁ ❭ ➀ ✍ ➀ ❭ ➁ (18)

For the trivial case ➀ ✓⑦✯ , the minimum eigenvalue is

therefore ❩ ✓✙✯ . Furthermore, the method of complet-

ing the squares shows that

❚❞❯✤❱❣❩ ✓ ❚❍❯✤❱ ➀ ✍ ✎❤➅➁ ❭ ➀ ✍ ✎❤s➁ ✖ ✎➆ ➁ ❭ ➁
(19)

Provided there are no constraints for ➀ , the minimum

eigenvalue is obtained for ➀ ✓➇✖ ❀r ➁ . Because
① ➁ ①❞②① ❖P✞ ①❬① ✹ ①❾②❙③

, then also

❚❞❯✤❱❽❩ ✓✷✖ ✎➆ ③ r (20)

for
① ➀ ① ✓ ③✗➈ ❤

. In order to find the minimum eigen-

value in case of constraints for ➀ we will try to find

a relationship between ➀ and ➁ at the minimum. We

assume

➁ ✓⑩✘ ➀ ✍✆✘✥➉ ➀ ➉ (21)

in which ➀ and ➀ ➉ are nonvanishing and in which ➀
and ➀ ➉ are orthogonal, i.e. ➀ ❭➉ ➀ ✓✰✯ . We try to find

the minimizing values for ✘ and ✘➄➉ . Substitution of

Eq. (21) in Eq. (18) shows that

❚❞❯❴❱❣❩ ✓ ❚❞❯✤❱ ➀ ❭ ➀ ✍ ✎❤ ☞ ✘ ➀ ✍✙✘ ➉ ➀ ➉ ✑ ❭ ➀
✍ ➀ ❭ ☞ ✘ ➀ ✍✆✘✥➉ ➀ ➉✵✑ (22)

Hence,

❚❞❯❴❱❣❩ ✓ ❚❞❯✤❱ ① ➀ ① r ☞ ✎❾✍✙✘➊✑ (23)

which has a minimum value for minimum ✘ , which is

also real since ❩ is real. Furthermore,① ➁ ① r ✓ ① ✘ ① r ① ➀ ① r ✍ ① ✘✥➉ ① r ① ➀ ➉ ① r (24)

Therefore, since
① ➁ ① r ②✭③ r

① ✘ ① r ① ➀ ① r ②✭③ r ✖ ① ✘✥➉ ① r ① ➀ ➉ ① r (25)

Hence, the maximum
① ✘ ① r which is required for min-

imum ✘ is obtained if

✘➄➉⑦✓✙✯ (26)

Therefore

❚❞❯✤❱ ✘✭✓❘✖ ③① ➀ ① (27)

Hence, the optimum for ➁ is given by

➁ ✓✷✖ ③ ➀① ➀ ① (28)

and the minimum eigenvalue is

❚❞❯✤❱❣❩ ✓ ① ➀ ① ☞ ① ➀ ① ✖ ③ ✑ (29)

It can be verified that the unconstrained minimum✖ ③ r ➈ ➆ is obtained for
① ➀ ① ✓ ③✗➈ ❤

. If
① ➀ ① is con-

strained then the minimum eigenvalue is a function of① ➀ ① , which in turn depends on the singular values of✞ since
① ➀ ① ✓ ① ✞ ✹ ①❿②➋① ✞ ①

. Therefore, the norm

of ➀ is in the range ♣➌✉ ②➍① ➀ ①➎② ♣ ❀ . For small un-

certainty when the smallest singular value ♣✈✉ is at

least
③❺➈ ❤

then the minimum eigenvalue follows from① ➀ ① ☞ ① ➀ ① ✖ ③ ✑ ❹➐➏ ❑ ➏ ❂❛➑✈➒ i.e.

❚❞❯✤❱❣❩ ✓⑦♣ ✉ ☞ ♣ ✉ ✖ ③ ✑➌✪ ③✝② ❤ ♣ ✉ (30)

For large uncertainty when the largest singular value♣ ❀ is smaller than or equal to
③✗➈ ❤

then the minimum

eigenvalue follows from
① ➀ ① ☞ ① ➀ ① ✖ ③ ✑ ❹➐➏ ❑ ➏ ❂❛➑➌➓ . i.e.

❚❞❯❴❱❣❩ ✓⑦♣ ❀ ☞ ♣ ❀ ✖ ③ ✑➔✪ ③ q ❤ ♣ ❀ (31)

If a singular value ♣ ✡ exists for which the SPR condi-

tion fails, i.e., for which ❚❞❯✤❱❣❩➎→ ✯ , then convergence

of the adaptive algorithm may show overhoot but the

system may still be stable [14].

4 Controller modifications

4.1 Regularization

Regularization can be used to ensure that all real parts

of the eigenvalues are positive. The regularization can

be implemented by defining an augmented plant ✞ ☞✫✹ ✑ :
✞ ☞✫✹ ✑s✓ ✞ ☞❵✹ ✑✞❾➣❻↔❵↕ ☞✫✹ ✑ ✪ (32)



in which the ✂❙☎❞✄ -dimensional secondary path ✞ ☞✫✹ ✑
is augmented with an ✂ ✜ ☎❘✄ -dimensional transfer

function ✞ ➣✧↔❵↕ ☞❵✹ ✑ . This augmented plant allows us to

define a cost function

➙ ✓✆➛ ☞ ✚ ✦ ✚➜✑ (33)

in which

✚❊✓ ✚✚ ➣✧↔❵↕ ✪ (34)

Hence

➙ ✓✙➛ ☞ ✚ ✦ ✚⑧✑❅✍✝➛ ☞ ✚ ✦➣✧↔❵↕ ✚ ➣❻↔❵↕ ✑ (35)

The error signal ✚ is defined as usual

✚❊✓⑦✞✕➝☛✍✆➞ (36)

whereas the regularizing error signal is obtained from

✚✢➣✧↔❵↕✺✓⑦✞❾➣✧↔❵↕t➝ (37)

The requirement for stability now becomes

❚❞❯✤❱❳❲❳❨✒❩ ✞ ❭ ☞ ✚ ❪❴❫ ✑ ✞ ☞ ✚ ❪❴❫ ✑ ❜✙✯➄✱ (38)

in which

✞ ☞✫✹ ✑✔✓ ✞ ☞❵✹ ✑✞ ➣✧↔❵↕ ☞❵✹ ✑ ✱ (39)

The stability condition can be written as

❚❞❯❴❱❾❲▲❨✒❩ ✞▲❭ ☞ ✚◆❪✤❫❛✑✫✞ ☞ ✚✢❪❴❫✛✑❅✍✆✞▲❭➣❻↔❵↕ ☞ ✚✢❪❴❫✛✑❵✞❾➣❻↔❵↕ ☞ ✚◆❪✤❫❛✑ ❜✏✯✲✱
(40)

The SPR condition becomes

❚❞❯❴❱❣❩ ✎❤ ✞ ❭ ☞ ✚ ❪❴❫ ✑ ✞ ☞ ✚ ❪✤❫ ✑❅✍ ✞ ❭ ☞ ✚ ❪❴❫ ✑ ✞ ☞ ✚ ❪❴❫ ✑ ❜✏✯✲✪
(41)

which can be written as

❚❞❯❴❱❣❩ ✎❤ ✞▲❭ ☞ ✚✢❪❴❫❛✑❵✞ ☞ ✚◆❪✤❫✛✑✗✍✙✞▲❭ ☞ ✚✢❪❴❫❛✑ ✞ ☞ ✚◆❪✤❫❁✑ ✍
✞ ❭➣✧↔❵↕ ☞ ✚ ❪❴❫ ✑❵✞ ➣✧↔❵↕ ☞ ✚ ❪❴❫ ✑ ❜✏✯✲✱

(42)

As compared to Eqs. (3) and (5) the eigenvalues of

Eqs. (40) and (42), respectively, are modified by the✄➟☎❼✄ -dimensional matrix ✞ ❭➣✧↔❵↕ ☞ ✚ ❪❴❫ ✑❵✞❾➣✧↔❵↕ ☞ ✚ ❪❴❫ ✑ . The

task is to determine a minimum matrix ➠⑤✓⑤✞ ❭➣✧↔❵↕ ✞❾➣✧↔❵↕
for each ✇ such that the selected condition holds. A

diagonal matrix for ➠ should be sufficient, but the el-

ements on the diagonal are not necessarily identical.
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Figure 1: Regularized modified filtered-error adaptive con-

trol scheme with IMC [10, 11].

Spectral factorization of ➠ then leads to ✞❾➣✧↔❵↕ . In prac-

tical situations, considerable time and effort is required

to obtain sufficient information about the different con-

ditions such that a reliable estimate of ➠ can be ob-

tained. If ➠ is to be determined from the transfer func-

tion deviations for all possible conditions that may oc-

cur during operation, then this approach may be too

time-consuming for many applications since each in-

dividual installation may require such an a-priori pro-

cedure.

4.2 Damping by state feedback

In resonant systems, improved robustness of adaptive

algorithms can be achieved by increasing the damping

of ✞ [15], which can be realized with separate high-

speed control loops in a so-called HAC/LAC strategy

[16]. For an adaptive feedback controller applied to

a panel with piezoelectric actuators it was found [15]

that increased robustness could be obtained if damp-

ing was active in the identification phase only, i.e.,

active damping was not applied during adaptive con-

trol. This implies that improved robustness could also

be obtained if damping is applied numerically to the

transfer function ✞ . The full HAC-LAC control strat-

egy still results in better performance and robustness

properties [15]. Nevertheless, addition of damping to

the transfer functions may lead to useful improvement

of robustness, as demonstrated in the application of

Ref. [15] . In this section we try to realize such a

numerical damping to the model, in this case for an

adaptive feedforward controller.

Let ✣ be the state vector and ➝ the actuator driv-

ing signals. Let ➡▲✪✩➢✺✪✩➤❾✪ ■ be the state space system

describing the system ✞ . Feedback control can be im-

plemented by using an LQR regulator [2] which deter-

mines the feedback gain ✁ defined by

➝➥✓✷✖✿✁➦✣ (43)



minimizing the cost function

➙ ✓ ➧ ✣ ✦ ☞ ✟✕✑❵➨❾✣ ☞ ✟✕✑❁✍P➝ ✦ ☞ ✟✕✑❵➩✽➝ ☞ ✟✕✑ (44)

subject to

✣ ☞ ✟❿✍❝✎❬✑✔✓⑦➡s✣ ☞ ✟✕✑❅✍✆➢❳➝ ☞ ✟✕✑ (45)

The approach to realize damping is to set the feedback

gain to a relatively low value, otherwise additional res-

onances with low damping may be introduced. A rel-

atively low feedback gain ✁ is obtained by setting

the weighting by ➩ relatively high as compared to the

weighting by ➨ . The new state-space system with such

feedback is obtained by setting:

➡ ➫➭➡✙✖❝➢✺✁➢ ➫➭➢➤ ➫➭➤⑩✖ ■ ✁■ ➫ ■ (46)

Alternatively, one could use feedback of the output ➯
such that

➙ ✓ ➧ ➯ ✦ ☞ ✟✕✑✫➨❳✜❴➯ ☞ ✟✕✑✗✍P➝ ✦ ☞ ✟✕✑❵➩➲✜➳➝ ☞ ✟✕✑ (47)

in which ➯✝✓⑩➤✕✣✕✍ ■ ➝ . If ✞ contains significant phase

delays then the LQR regulator could be applied to the

minimum-phase factor ✞▲❉ only.

5 System design based on measured
transfer functions

This section presents a stability analysis for an active

noise control system in a room. The active noise con-

trol system uses 3 loudspeakers and 4 sensors. The

sensor signals are a pressure signal and 3 particle ve-

locity signals. The 4 sensors are positioned very close

to each other using a Microflown USP probe. Experi-

ments were performed to obtain transfer functions un-

der different conditions. The secondary path was es-

timated using subspace identification techniques [17]

based on Slicot (www.slicot.org). The accuracy of the

transfer functions for white noise input was such that

the Variance Accounted For (VAF) was approximately

99 %. The nominal situation consists of a room in

which the door and the window are closed. The di-

mensions of the room are 5m ☎ 3m ☎ 2.6m. The

loudspeakers are located in corners on the floor of the

room, while the sensor is located near the longest wall

at about 1m from the wall and at a height of 1 m. An

example of a transfer function, for actuator 1 and sen-

sor 1, is given in Figs. 2 and 3. The difference of the

phase as compared to nominal condition is shown in

Fig. 4.

The minimum real part of the eigenvalue according

to Eqs. (3) and (5) for different conditions is given
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Figure 2: Magnitude of the transfer function between actua-

tor 1 and sensor 1 for different conditions.
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Figure 3: Phase of the transfer function between actuator 1

and sensor 1 for different conditions.
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Figure 4: Difference of the phase of the transfer function

between actuator 1 and sensor 1 for different conditions as

compared to the nominal condition.
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secondary path ➵ obtained in a room for the nominal situa-

tion and without model mismatch, i.e. ➸➵➻➺❝➵ .

in Figs. 5 - 9. Fig. 5 shows the situation for which✞⑥✓⑦✞ . As a result all real parts of the eigenvalues are

positive and the system is stable. Fig. 6 shows the sit-

uation for which the transfer functions are measured at

two different instants with one hour in between but for

which the conditions are the same. It can be seen that

both for the stability condition and the SPR condition

the minimum real part of the eigenvalues are positive

for all frequencies, i.e., the system is expected to be

stable. Fig. 7 shows the situation for the case that a

door is fully opened. It can be seen that the abscissa

is negative for some frequencies, leading to possibly

unstable behavior. Problematic frequencies according

to the stability condition are 36 Hz and 69 Hz. Prob-

lematic frequencies according to the SPR condition are

37 Hz, 54 Hz, 69 Hz, 109 Hz, and 124 Hz. Fig. 8

shows the results for the minimum real eigenvalue for

the case that a window is opened. In this case stabil-

ity problems are expected at very low frequencies from

0 Hz to 5 Hz according to the stability condition and

from 0 Hz to 7 Hz according to the SPR condition. Fig.

9 shows the minimum real eigenvalue for the case that

both the door and the window are open. According to

the stability condition, problematic frequencies are the

range of 0 Hz to 9 Hz, 36 Hz and 69 Hz. According

to the SPR condition, problematic frequencies are the

range of 0 Hz to 9 Hz, 16 Hz, 36 Hz, 40 Hz, the range

of 54 Hz to 56 Hz, 69 Hz, 108 Hz, 125 Hz and 147 Hz.

Figs. 10 and 11 show the magnitude of the trans-

fer function and the impulse response, respectively, for

the secondary path without damping and the secondary

path with damping. It can be seen that damping partic-

ularly reduces the peaks of the frequency domain re-

sponse. It can also be seen that the impulse responses

become shorter when damping is added.

The minimum real part of the eigenvalue accord-

ing to Eqs. (3) and (5) for different conditions using
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Figure 6: As Fig. 5, except that ➵ is obtained one hour later.
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Figure 7: As Fig. 5, except that ➵ is obtained with the door

open.

0 50 100 150 200 250
−0.5

0

0.5

1

1.5

2

2.5

frequency [Hz]

m
in

 R
e
 λ

 

 

Stability

SPR

Figure 8: As Fig. 5, except that ➵ is obtained with the win-

dow open.
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Figure 9: As Fig. 5, except that ➵ is obtained with the door

and the window open.
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Figure 10: Magnitude of ➵ without damping (solid line) and

with damping (dashed line).
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Figure 11: Impulse response of ➵ without damping (solid

line) and with damping (dashed line).
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Figure 12: Minimum real eigenvalue of Eqs. (3) and (5)

in which ➵ is the original secondary path and in which ➸➵
is the secondary path with damping obtained by LQR state

feedback.

state feedback is given in Figs. 12 - 16. In this case

the weighting matrices ➨ and ➩ for the LQR regula-

tor were ➨➼✓ ④ and ➩➽✓❇✎➾✯✒➚ ④ . These values en-

sure that all real parts of the eigenvalues are positive

and also that the resulting curve of the real part of

the eigenvalue vs. frequency has approximately the

same smoothness as in the nominal situation. The

LQR regulator was applied to the minimum-phase fac-

tor ✞ ❉ , leading to a modified minimum-phase factor✞ ✜ ❉ . Subsequently, the modified transfer function ✞ ✜
was obtained by inclusion of the original all-pass fac-

tor ✞ ✡ from ✞ ✜ ✓➪✞ ✡ ✞ ✜ ❉ . It can be seen that, except

for very low frequencies below 7 Hz, the stability con-

dition is satisfied, i.e. the minimum real part of the

eigenvalues is positive. However, the SPR condition

is not always fulfilled. Nevertheless, the minimum

eigenvalues for the SPR condition have been made

less negative due to the LQR feedback. For the very

low frequencies for which still a negative real part of

the eigenvalues exists, an alternative stabilization tech-

nique is required. Frequency dependent regularization

is considered, which should ensure that the minimum

real part of the eigenvalues becomes positive at the

low frequencies while having a minimum influence at

higher frequencies. The shape of the frequency depen-

dent regularization is shown in Fig. 17. The corre-

sponding transfer function was multiplied with a con-

stant such that a high-frequency regularization level of

-10 dB was obtained. The resulting minimum real part

of the eigenvalues can be found in Fig. 18. Because

all values of the stability curve are positive the con-

troller is stable. However, the SPR condition still re-

sults in negative values for some frequencies with pos-

sible overshoot of the error signal during convergence.
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Figure 13: As Fig. 12, except that ➵ was obtained one hour

later.
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Figure 14: As Fig. 12, except that ➵ is obtained with the

door open.
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Figure 15: As Fig. 12, except that ➵ is obtained with the

window open.
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Figure 16: As Fig. 12, except that ➵ is obtained with the

door and the window open.
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Figure 17: Magnitude of ➵✕➶➐➹❻➘ as used for frequency depen-

dent regularization. In this case, the high-frequency regular-

ization level equals 0 dB.
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Figure 18: As Fig. 16, using the frequency dependent regu-

larization shape of Fig. 17 multiplied by a constant such that

the high-frequency regularization level becomes -10 dB.



6 Simulation results

Using the measured transfer functions as described in

the previous section, simulations were performed to

verify the robustness as predicted by the stability anal-

ysis for different control strategies. Furthermore, the

final reduction of the error signals was determinded for

a converged algorithm in a stationary situation. The

results are shown in Table 1. The nominal condition

denotes the situation in which all windows and doors

are closed. The modified condition denotes the sit-

uation in which the windows and doors are opened.

The nominal controller denotes a controller which uses

the model obtained during the nominal condition and

which uses effort weighting, i.e. frequency indepen-

dent weighting. In the case that damping is used,

damping is applied to the nominal model. Frequency

dependent weighting is also used in combination with

the nominal model, with or without damping. Fre-

quency dependent weighting is based on frequency in-

dependent weighting for frequencies above 20 Hz with

additional amplification for frequencies below 10 Hz

using a 2nd-order filter, as shown in Fig. 17. This regu-

larization technique emphasizes regularization at low-

frequencies while being less conservative at higher fre-

quencies. At low frequencies the gain of the frequency

dependent regularization filter is 12 dB higher than

at high frequencies. The regularization level for fre-

quency dependent weighting as indicated in the table

is the value at high frequencies. The primary field was

obtained by providing three independent white noise

signals with a delay of 20 samples to the inputs of

the nominal model or the modified model, depending

on the condition that was used. The reference signals

were the signals from the noise generators. The al-

gorithm of Ref. [11] was used with affine projection

order ✁♥➴❦✓ ➆
, delay length ✳✵➷⑩✓➭✎➃➬✒✯ , number of

controller coefficients for each channel
✠☛✡ ✓ ❤ ➬✒✯ ,

leakage coefficient ➮✐✓➱✎➾✯ ✾➔✃ , affine projection reg-

ularization parameter ❐⑩✓❒✯✲✱ ❤ ➬ , convergence coeffi-

cient ✘❦✓✶✯➄✱ ✯ ❤ ➬ . A convergence coefficient higher

than 0.025 led to somewhat faster convergence in case

there was no model mismatch. However, such a higher

convergence coefficient resulted in less robustness and

higher error signals in case of model mismatch. The

convergence of the new algorithm is shown in Fig. 19,

whereas the convergence for the old algorithm for the

same situation is shown in Fig. 20.

In Table 1, it can be seen that adding damping to

the secondary path model has a positive effect on the

reduction of the error signals that can be achieved.

Damping also has a positive effect on the stability of

the system in the sense that a lower value of regulariza-

tion level is possible for stabilizing the system. For the

modified condition, the highest reductions of the er-

ror signals are possible when a combination is used of

added damping and frequency dependent regulariza-
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Figure 19: First error signal ❮➌❰❷Ï➐Ð❁Ñ with control and without

control (i.e., ❮ ❰ Ï➐Ð❁Ñ➅➺➻Ò ❰ Ï➐Ð❁Ñ ) for the situation with a model

obtained in the nominal situation and a controller operated

in the modified situation with added damping and frequency

dependent regularization showing stable behavior.

tion, leading to maximum MSE reductions of 21.6 dB

to 26.4 dB (marginally stable). For the nominal con-

troller the maximum reduction for the same condition

is 12.0 dB, i.e. considerably less. Frequency depen-

dent regularization alone does not improve the noise

reduction for this case. The addition of damping leads

to an improvement, in this case 16.8 dB maximum re-

duction. Subsequent addition of frequency dependent

regularization leads to a further possible improvement

of the reduction of the error signals. These results are

in agreement with the stability analysis of the previous

section. Also the regularization levels that are needed

for stabilization are in agreement with the results of

the previous section. Remarkable is that damping also

has a positive effect on the amount of reduction in the

nominal situation. Additional simulations were per-

formed with longer filter lengths, i.e. higher values of✳✵➷ for the realization of the delayed adjoint operator■ ✞ ● . However, this did not result in higher noise re-

ductions. A possible explanation could be that errors

in the modeling of undamped poles is critical and that,

in order to avoid computed gradients with large errors,

it is advantageous to use cautious gradients based on

poles which are assumed to have more damping.

For the present configuration, a high-frequency reg-

ularization level of -10 dB yields good performance

for the nominal situation (21.7 dB reduction) as well

as for the situation with model mismatch (21.6 dB re-

duction). Even when the model of the secondary path

equals the real secondary path, the new scheme out-

performs the nominal controller, which yields 20.7 dB

reduction for the same regularization level at high fre-

quencies.



Table 1: Mean-square reduction of the error signals in dB after 1000 s for different physical situations (Condition), controller

models and control strategies, and high-frequency regularization level. A dash indicates an unstable system, an asterisk indicates

marginal stability.
Regularization level [dB]

Condition Model, control strategy +5 0 -5 -10 -15 -20 -30 -40

nominal nominal 9.7 13.4 17.3 20.7 22.5 23.1 23.2 23.2

nominal freq.dep.reg. 9.5 12.9 16.5 19.6 21.7 22.7 23.2 23.2

nominal damping 9.5 13.6 18.4 23.9 29.4 33.5 36.4 36.8

nominal damping, freq.dep.reg. 9.3 13.2 17.3 21.7 26.3 30.7 35.9 36.8

modified nominal 8.6 12.0 - - - - - -

modified freq.dep.reg. 8.5 11.8 - - - - - -

modified damping 8.5 12.2 16.8 - - - - -

modified damping, freq.dep.reg 8.4 12.0 16.4 21.6 26.4* - - -
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Figure 20: First error signal ❮➌❰✌Ï➐Ð❁Ñ with control and without

control (i.e., ❮ ❰ Ï➐Ð❁Ñ✽➺➻Ò ❰ Ï➐Ð❁Ñ ) for the situation with a model

obtained in the nominal situation and a controller operated

in the modified situation without added damping and without

frequency dependent regularization showing unstable behav-

ior.

7 Concluding remarks

In this paper the performance of an adaptive feedfor-

ward controller was investigated in which the con-

troller was modified with frequency dependent regu-

larization and in which transfer function models with

increased damping were used. It was found that the

combined controller modifications of adding damping

and a frequency dependent regularization lead to im-

proved performance as compared to adding damping

only or regularization only. The scheme improves the

stability for the case that the secondary path model dif-

fers from the real secondary path. Furthermore, the

technique leads to higher possible reductions of the

error signal. For the configuration considered in this

paper good performance is obtained for the nominal

situation as well as for the situation with model mis-

match. Even when the model of the secondary path

is identical to the real secondary path, the new scheme

outperforms the nominal controller. A practical advan-

tage of the scheme is that it does not require detailed

uncertainty models using additional system identifica-

tion cycles for each individual installation of the sys-

tem.
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