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[1] Water managers throughout the western United States depend on seasonal forecasts to
assist with operations and planning. In this study, we develop a seasonal forecasting
model to aid water resources decision making in the Truckee-Carson River System. We
analyze large-scale climate information that has a direct impact on our basin of interest to
develop predictors to spring runoff. The predictors are snow water equivalent (SWE) and
500 mbar geopotential height and sea surface temperature (SST) ‘‘indices’’ developed
in this study. We use local regression methods to provide ensemble (probabilistic)
forecasts. Results show that the incorporation of climate information, particularly the
500 mbar geopotential height index, improves the skills of forecasts at longer lead times
when compared with forecasts based on snowpack information alone. The technique is
general and could be used to incorporate large-scale climate information into ensemble
streamflow forecasts for other river basins.
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1. Introduction

[2] Water resource managers in the western United
States are facing the growing challenge of meeting water
demands for a wide variety of purposes under the stress of
increased climate variability [e.g., Hamlet et al., 2002].
Careful planning is necessary to meet demands on water
quality, volume, timing and flowrates. This is particularly
true in the western United States, where it is estimated that
44% of renewable water supplies are consumed annually,
as compared with 4% in the rest of the country [el-Ashry
and Gibbons, 1988]. The forecast for the upcoming water
year is instrumental to the water management planning
process. In the managed river systems of the West the skill
of a streamflow forecast dramatically affects management
efficiency and thus system outputs, such as crop produc-
tion and the monetary value of hydropower production
[e.g., Hamlet et al., 2002], as well as the sustainment of
aquatic species.

[3] Forecasting techniques for the western United States
have long used winter snowpack as a predictor of spring
runoff. Because the majority of river basins in the West
are snowmelt dominated [Serreze et al., 1999], winter
snowpack measurements provide useful information, up to
several months in advance, about the ensuing spring stream-
flow. More recently, information about large-scale climate
phenomena such as El Niño–Southern Oscillation (ENSO)
and the Pacific Decadal Oscillation (PDO) pattern has been
added to the forecaster’s toolbox. The link between these
large-scale phenomena and the hydroclimatology of the
western United States has been well documented in the
literature [Ropelweski and Halpert, 1986; Cayan and Webb,
1992; Redmond and Koch, 1991; Gershunov, 1998;
Dettinger et al., 1998]. Clark et al. [2001] showed that
including large-scale climate information together with
SWE improves the overall skill of the streamflow predic-
tions in the western United States. Souza Filho and Lall
[2003] show significant skills at long lead times in fore-
casting streamflows in Cearra, Brazil using climate infor-
mation from the Atlantic and Pacific oceans.
[4] These teleconnection patterns, though dominant on a

large scale, often fail to provide forecast skill in individual
basins. For example, while streamflow in El Niño events is
generally below average in the Pacific Northwest and above
average in the desert southwest, ENSO information offers
limited forecast skill in basins outside these core regions
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[McCabe and Dettinger, 2002]. Moreover, relatively minor
shifts in large-scale atmospheric patterns can result in large
differences in surface climate [e.g., Yarnal and Diaz, 1986],
suggesting that predictive indices may need to be basin-
specific.
[5] In this paper we present a generalized framework for

utilizing large-scale climate information to forecast stream-
flows at the basin scale. The framework first identifies the
large-scale climate patterns and predictors that modulate
seasonal streamflows in the given basin. It next uses the
predictors to develop a forecast model of the seasonal flows
and subsequently tests and validates the model. This frame-
work is applied to forecasting spring streamflows in the
Truckee and Carson river basins located in the Sierra
Nevada Mountains.
[6] The paper is organized as follows. Section two

presents a background on large-scale climate and its impacts
on western U. S. hydroclimatology. The study region and
data used are described in sections three and four, respec-
tively. This is followed by the proposed method of climate
diagnostics and identification of predictors for forecasting
spring streamflows in section five. Section six presents the
development of the statistical ensemble forecating model
using the identified predictors. This section also discusses
model testing and verification. Section seven presents the
results and section eight summarzies and concludes the
paper.

2. Large-Scale Climate and Western U.S.
Hydroclimatology

[7] The tropical ocean-atmospheric phenomenon in the
Pacific identified as El Niño–Southern Oscillation (ENSO)
[e.g., Allan et al., 1996] is known to impact the climate all
over the world and, in particular, the western United States
[e.g., Ropelweski and Halpert, 1986]. The warmer sea
surface temperatures and stronger convection in the tropical
Pacific Ocean during El Niño events deepen the Aleutian
Low in the North Pacific Ocean, amplify the northward
branch of the tropospheric wave train over North America
and strengthen the subtropical jet over the southwestern
United States [Bjerknes, 1969; Horel and Wallace, 1981;
Rasmussen, 1985]. These circulation changes are associated
with below-normal precipitation in the Pacific Northwest
and above-normal precipitation in the desert Southwest
[e.g., Redmond and Koch, 1991; Cayan and Webb, 1992].
Generally opposing signals are evident in La Niña events,
but some nonlinearities are present [Hoerling et al., 1997;
Clark et al., 2001].
[8] Decadal-scale fluctuations in SSTs and sea levels in

the northern Pacific Ocean as described by the PDO
[Mantua et al., 1997] provide a separate source of variabil-
ity for the western U. S. hydroclimate. Independence of
PDO from ENSO is still in debate [Newman et al., 2003].
Regardless, the influence of PDO and ENSO on North
American hydroclimate variability has been well docu-
mented [e.g., Ropelweski and Halpert, 1986; Cayan and
Webb, 1992; Kahya and Dracup, 1993; Dracup and Kahya,
1994; Redmond and Koch, 1991; Cayan, 1996; Gershunov,
1998; Kerr, 1998; Dettinger et al., 1998, 1999; Cayan et al.,
1999; Hidalgo and Dracup, 2003].
[9] Incorporation of this climate information has been

shown to improve forecasts of winter snowpack [McCabe

and Dettinger, 2002] and streamflows in the western United
States [Clark et al., 2001; Hamlet et al., 2002] while
increasing the lead time of the forecasts. Use of climate
information enables efficient management of water resources
and provides socioeconomic benefits [e.g., Pulwarty and
Melis, 2001; Hamlet et al., 2002].
[10] Often, however, the standard indices of these phe-

nomena (e.g., NINO3, SOI, PDO index, etc.) are not good
predictors of hydroclimate in every basin in the western
United States, even though these phenomena do impact the
western U. S. hydroclimate. Because the canonical patterns
of these climate phenomena refer to specific regions in the
ocean (e.g., 5�N–5�S and 90�W–150�E for the NINO3
index) slight shifts in the patterns can result in decreased
correlation values between the indices and basin hydro-
climate. Furthermore, certain regions in the western United
States (e.g., basins in between the Pacific Northwest and the
desert Southwest) can be impacted by both the northern and
southern branches of the subtropical jet, potentially dimin-
ishing apparent connections to ENSO and PDO. The
Truckee and Carson basins are two such examples and
previous studies have shown that the Truckee River is not
significantly (or consistently) influenced by ENSO, PDO or
PNA [e.g., Tootle and Piechota, 2004]. Hence predictors
other than the standard indices have to be developed for
each basin.

3. Study Region: Truckee and Carson Basins

[11] The study region of the Truckee and Carson River
basins in the Sierra Nevada Mountains is shown in Figure 1.
The Truckee and Carson rivers originate high in the
California Sierra Nevada Mountains and flow northeastward
down through the semiarid desert of western Nevada. The
Truckee River originates as outflow from Lake Tahoe in
California and terminates approximately 115 miles later in
Pyramid Lake in Nevada. The Carson River has its head-
waters approximately fifty miles south of Lake Tahoe, runs
almost parallel to the length of the Truckee River and
terminates in the Carson Sink area. The two rivers are
connected approximately two thirds of the way down the
system by the one-way Truckee Canal which brings water
from the Truckee River to the Carson River. The basins’
areas are comparable and are approximately 3000 square
miles. The majority of the basins’ precipitation falls as snow
during the winter months (November–March) and the bulk
of the annual streamflow arrives during spring (April–July)
due to the melting of the snowpack. This is evident in the
climatology of monthly precipitation and streamflows for
the Truckee River (inset in Figure 1). The streamflows in
Figure 1 are from the Farad gauging station on the Truckee
River and the precipitation is from the national climatic data
center climate division covering the headwater region of the
basin (details on the data sets are provided in section 4). The
Carson River exhibits similar climatology.
[12] The Truckee and Carson rivers are highly litigated

and managed, and thus require strict planning for efficient
management of the system. The Bureau of Reclamation
(BOR) Lahontan Basin area office manages operations on
the rivers and relies heavily on seasonal streamflow fore-
casts for planning and management. The BOR uses fore-
casts of the spring runoff (April to July volume) that are
issued on the first of each month starting in January. Current
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forecasting techniques use multiple linear regression analy-
sis based on factors related to the existing snowpack and,
hence long-lead forecast skills are limited. Additionally, the
current technique does not provide forecasts prior to Janu-
ary as the snowpack information is only partial. Thus
improvements to the spring forecasts, both in skill and in
lead time, are needed to strengthen planning and operations
in the Truckee and Carson basins.

4. Data

[13] The following data sets for the period 1949–2003
were used in the analysis.
[14] 1. Monthly natural streamflow data for Farad and

Ft. Churchill gauging stations on the Truckee and Carson
rivers, respectively, were obtained from BOR. Natural
streamflows are computed based on inflows to the seven
major storage reservoirs near the top of the basin before any
significant depletion have been made (J. Rieker, U. S.
Bureau of Reclamation, personal communication, 2003).
Spring seasonal (April–July) volume was computed for this
study from the monthly streamflows.
[15] 2. Monthly SWE data were obtained from the NRCS

National Water and Climate Center Web site (http://

www.wcc.nrcs.usda.gov). The SWE data are gathered from
snow course and snotel stations in the upper Truckee Basin
(17 stations) and upper Carson Basin (7 stations). Basin
averages of SWE were calculated for this study using the
method employed by the NRCS for these basins: the SWE
depth from every station in the basin is summed and then
divided by the sum of the long-term averages for each of the
stations (T. Pagano, Natural Resources Conservation Ser-
vice, personal communication, 2003). All values for SWE
are represented as the percent of normal.
[16] 3. Monthly winter precipitation data for the Califor-

nia Sierra Nevada Mountains region were obtained from the
U. S. climate division data set from the NOAA-CIRES
Climate Diagnostics Center (CDC) Web site (http://
www.cdc.noaa.gov).
[17] 4. Monthly values of large-scale ocean atmospheric

variables, SST, geopotential heights, sea level pressure
(SLP), wind, etc., from NCEP/NCAR Re-analysis [Kalnay
et al., 1996] were obtained from the CDC Web site.

5. Climate Diagnostics

[18] The first step in the forecasting framework is to
identify predictors of spring flows in the basin. To this

Figure 1. Truckee and Carson rivers and surrounding area. They gray shading represents rivers and
lakes, and the hatched area represents irrigation areas. Annual hydrographs are shown in the inset; the
dashed line represents the average annual precipitation, and the solid line represents the average annual
streamflow.

W10410 GRANTZ ET AL.: USING LARGE-SCALE CLIMATE IN STREAMFLOW FORECASTS

3 of 13

W10410



end, we first examined the relationship between SWE and
spring runoff in the basins. Next, we correlated spring
streamflows with global climate variables from the preceed-
ing fall and winter seasons. We chose to examine variables
from fall and winter because the state of the atmosphere
during this time affects the position of the jet stream, and
consequently, snow deposition and the resulting spring
runoff. Also, predictors from fall and winter allow for
potential long-lead forecasts.
[19] Scatterplots of the end of winter SWE and spring

runoff in the Truckee River are shown in Figure 2. Results
are similar for the Carson River. As expected, there is a high
degree of correlation between winter SWE and spring
runoff, particularly with 1 April SWE as it provides a more

complete representation of the end of winter snowpack in
the basins. Correlation values for Truckee streamflows are
0.80 and 0.93 with 1 March SWE and 1 April SWE,
respectively, and 0.81 and 0.90, respectively, with the
Carson flows. High correlations of streamflows with 1
March SWE offers the opportunity for at least a 1 month
lead forecast. The 1 January SWE, however, does not
correlate as well with spring streamflows (0.53 for the
Truckee and 0.49 for the Carson) and hence provides poorer
skill as a predictor to spring runoff.
[20] Spring streamflows in the Truckee and Carson basins

are likely modulated by ENSO and PDO, but the standard
indices of these phenomena did not show significant corre-
lations with spring streamflows (0.22 for the December–

Figure 2. SWE, 1 March and 1 April, versus spring runoff volume in the Truckee River for the period
1949 to 2003. SWE is taken as a basin-wide average and represented as a percent of normal value.

Figure 3. Correlation of Carson River spring streamflows with (top) December–February and (bottom)
September–November climate variables: (left) 500 mbar geopotential height (Z500) and (right) SST. See
color version of this figure at back of this issue.
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February NINO3, �0.13 for the December–February PDO,
and �0.21 for the December–February SOI, for the
Truckee; results are similar for the Carson). Thus we
correlated the spring streamflows with the standard ocean-
atmospheric circulation fields (e.g., 500 mbar geopotential
height fields, SSTs, SLPs, etc.) to investigate the large-scale
climate link and potential predictors.
[21] Figure 3 (top) presents the correlations between

spring streamflows in the Carson River and the winter SSTs
and 500mbargeopotential heights, henceforth, referred to as
Z500, in the Pacific Ocean. Strong negative correlations
(approximately �0.7) with Z500 in the region off the coast
of Washington can be seen. The SSTs in the northern mid-
Pacific Ocean exhibit a strong positive (about 0.5) correla-
tion and to the east of this they exhibit a negative correlation.
Similar, but slightly weaker correlation patterns can be seen
for the preceding fall (September–November) Z500 and
SSTs (Figure 3, bottom). This suggests that the physical
mechanisms responsible for the correlations are persistent
from fall through winter. These correlations offer hopes for a
long-lead forecast of spring streamflows; at the least, they
can provide significant information about the upcoming
spring streamflows before SWE data is available.
[22] To understand the physical mechanisms driving the

correlation patterns seen above, a composite analysis was
perfomed. In this, average SST, wind and Z500 patterns for

high and low streamflow years were obtained to identify
coherent regions with strong magnitudes of the variables.
We chose years with streamflows exceeding the 90th
percentile as high years and those below the 10th percentile
as low years. Figure 4 shows the composites of vector wind,
Z500, and SST anomalies during the winter season preced-
ing the high and low streamflow years. The winds in high
streamflow years show a counterclockwise rotation around
the low-pressure region off the coast of Washington state,
the region of highest correlation seen in Figure 3. This
counterclockwise rotation brings southerly winds over the
Trukee and Carson basins. Southerly winds tend to be warm
and moist, thus increasing the chances of enhanced winter
snow and, consequently, higher streamflows the following
spring. The opposite pattern is seen during low streamflow
years when anomalous northeasterlies tend to bring cold,
dry air and, consequently, less snow and decreased stream-
flows. The Z500 patterns and the vector wind anomalies in
high and low streamflow years are consistent with each
other. The SST patterns in high and low streamflow years
(Figure 4) are a direct response to the pressure and winds.
The winds are generally stronger to the east of a low-
pressure region; this increases the evaporative cooling and
also increases upwelling of deep cold water to the surface.
Together, they result in cooler than normal SSTs to the east
of the low-pressure region. The opposite is true on the west

Figure 4. Composites of vector winds, SST, and Z500 during the winter of (left) high and (right) low
streamflow years.
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side of the low-pressure region. Composite maps for the fall
season show similar patterns, indicating that the physical
mechanisms are persistent. Results for the Truckee River
streamflows are very similar [Grantz, 2003].
[23] It is recognized that atmospheric circulation is a

response to some known (or unknown) boundary forcing
(e.g., tropical sea surface temperatures, land surface pro-
cesses, and other boundary forcings that have yet to be
discovered). The known forcings, such as ENSO and PDO,
however, do not have strong signals in all river basins. The
research philosophy taken here is to use low-frequency
variability in atmospheric circulation, i.e., the Z500 pattern,
as a proxy for both known and unknown boundary forcings.

6. Forecast Model Development

[24] The correlation and composite analyses indicate a
potential for long-lead (1 � 2 seasons) forecasts of spring
streamflows. To realize this potential, we first developed
predictors to be used in the ensemble forecast model. This is
the second step in the forecasting framwork and is described
below.

6.1. Selection of Predictors

[25] On the basis of the correlation and composite anal-
yses (Figures 3 and 4) we developed indices specific to the

Truckee and Carson basins by averaging the ocean-atmo-
spheric variables over the areas of highest correlation. These
areas were determined by visual inspection of the correla-
tion maps. Correlations in the selected areas had to be
statistically significant and relatively high compared to
other regions. Specifically, the Z500 was averaged over
the region 225�–235�E and 42�–46�N and the SSTs over
the region 175�–185� E and 42�–47�N. Time series of the
indices were obtained to be used as predictors in the forecast
model.
[26] Figure 5 shows the scatterplot of Z500 and SST

indices from the preceding fall and winter seasons with the
spring streamflows in the Truckee River. We used a local
polynmial technique [Loader, 1999] to fit a smooth curve to
the scatterplot. As expected, a negative relationship exists
between the streamflows and Z500 index and a positive
relationship with the SST index. Slight nonlinearities can
also be seen from the scatterplots. Correlations between
spring streamflows in the Truckee River and the two indices
from preceding seasons show persistence from late summer
and are statistically significant back to the August–October
season [Grantz, 2003]. This supports the potential for
longer–lead time forecasts of spring streamflows. Thus
there are thee potential predictors (Z500 index, SST index,
and SWE) that can be used for streamflow forecast.

Figure 5. Scatterplots of (left) fall and (right) winter (top) geopotential height index and (bottom) SST
index with the spring runoff in the Truckee River.
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[27] The selection of the best subset of predictors to be
included in the model can be determined using several
different approaches. Some of the standard objective meth-
ods for predictor selection are stepwise regression using the
F test, Akaike Information Criteria (AIC), Mallow’s Cp
statistic, and Generalized Cross Validation (GCV) (dis-
cussed in section 6.2). In this study we used the GCV
criteria to evaluate all possible combinations of predictors
and select the best subset. The combination of predictors
that produced the best GCV value was the Z500 index and
SWE. This subset of predictors was used in the ensemble
forecasts.

6.2. Ensemble Forecast Model

[28] Statistical forecast models can be represented as

Y ¼ f x1; x2; x3; . . . xp
� �

þ e ð1Þ

Where f is a function fitted to the predictor variables
(x1,x2,. . .,xp), Y is the dependent variable (in this case the
spring streamflows) and e is the error assumed to be
normally (or Gaussian) distributed with a mean of 0 and
variance s. Traditional regression methods involve fitting a
function, often linear, to the entire data set. The theory
behind these methods and the procedures for parameter
estimation and hypothesis testing are well developed
[Helsel and Hirsch, 1995]. The main drawbacks, however,
are the assumption of a Gaussian distribution of the data
and the fitting a global relationship (e.g., a linear equation
in the case of linear regression) between the variables. If
the linear model is found inadequate, higher-order models
(quadratic, cubic, etc.) have to be considered, which can
be difficult to fit in the case of short data sets and,
consequently, local nonlinear features cannot be well
captured.
[29] Local functional estimation methods, in contrast,

estimate the function f ‘‘locally’’ and this provides the
capability to capture any arbitrary feature (linear or nonlin-
ear) present in the data. There are several local estimation
methods, such as kernel-based [Bowman and Azzalini,
1997], splines, K nearest neighbor (KNN) local polynomials
[Rajagopalan and Lall, 1999; Owosina, 1992], locally
weighted polynomials (LWP) [Loader, 1999], etc. Owosina
[1992] performed an extensive comparison of a number of
regression methods, both local and global, on a variety of
synthetic data sets and found the local regression methods to
generally perform better in capturing the underlying func-
tions of the data. For an overview on local functional
estimation methods and hydrologic applications, see Lall
[1995].
[30] KNN and LWP methods obtain the value of the

function f at any point ‘x*’ by fitting a polynomial to a
small set of neighbors to ‘‘x*.’’ Once the neighbors are
identified, there are two main options: (1) The neighbors
can be resampled with a weight function that gives more
weight to the nearest neighbors and less to the farthest,
thus generating an ensemble [Lall and Sharma, 1996;
Rajagopalan and Lall, 1999; Yates et al., 2003; Souza
Filho and Lall, 2003]. (2) A polynomial can be fit to
the neighbors that can be used to estimate the mean of the
dependent variable [Rajagopalan and Lall, 1998] and the
variance of the errors. The estimate of the error variance can

be used to generate random normal deviates which, when
added to the mean estimate, yield ensembles.
[31] Thus the parameters to be estimated are the size of

the neighborhood (K) and the order of the polynomial (p).
Note that unlike the global regression alternatives, no prior
assumption is made regarding the functional form of the
relationship (e.g., a linear relationship).
[32] In this research, we utilize a modified version of

LWP adapted by Prairie [2002] and Prairie et al. [2005]
and applied to streamflow and salinity modeling. This
method was later implemented by Singhrattna et al.
[2005] for forecasting the Thailand monsoon. This tech-
nique uses the LWP to estimate the mean (expected) value
and the residuals of the fit are bootstrapped (or resampled)
to obtain ensembles. For details on the methodology, see
Prairie [2002] and Prairie et al. [2005]. A brief description
of the methodology is as follows.
[33] 1. For a given data set, the best choice of neighbor-

hood size (K) and the order of polynomial (p) are obtained
using objective criteria such as generalized cross validation
(GCV) or likelihood.
[34] 2. At each observed data point, xj, K nearest neigh-

bors are identified and a local polynomial of order p is
fitted. This fit is then used to estimate the value of the
dependent variable (the conditional mean) at an observed
point. (In this research, the package LOCFIT [Loader,
1999] was used to determine the LWP.) The residual, ej,
is then computed. This is repeated at each data point, thus
obtaining the residual for all data points. This can be
described as the ‘‘fitting’’ process.
[35] 3. For a new data point, xnew, at which a forecast is

required, the conditional mean value, Ynew, is obtained
using step 2.
[36] 4. Next, one of the neighbors of xnew, say xi, and the

corresponding residual, ei are selected. The residual is then
added to the mean forecast (Ynew + ei) thus obtaining one of
the ensemble members. The selection of one of the neigh-
bors is done using a weight function of the form:

W jð Þ ¼ 1

j
Pk
i¼1

1
i

ð2Þ

This weight function gives more weight to the nearest
neighbors and less to the farthest neighbors. The number of
neighbors to be used to resample the residuals need not be
same as the number of neighbors used to perform the local
polynomial in step 1. In practice,

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
is used to

resample the residuals. Note that for small sample sizes it is
not advisable to resample the residuals, but rather to use the
standard error of the distribution. This alternative technique
is discussed later in this section.
[37] 5. Repeat step 4 as many times as required (100 in

this study) to obtain a probability density function (PDF)
that does not change with more sampling. This will result in
the ensemble forecast.
[38] 6. Repeat steps 3–5 for each forecast point.
[39] Figure 6 can be utilized to better visualize these

steps. Figure 6 shows the scatterplot of the historical area-
averaged winter Z500 index and spring runoff for the
Carson River at Ft. Churchill. The solid line is the locally
weighted fit through the scatter. The bootstrapping of the
residuals for the ensemble forecast is depicted in the dashed
box. The main advantage of this modified KNN approach is
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the ability to capture the local error structure and also to
generate values not seen in the historical record unlike the
straight bootstrap techniques [Lall and Sharma, 1996;
Souza Filho and Lall, 2003]. However, with short data sets
the residual resampling (step 4) provides limited variety in
the ensembles and consequently, might not model the local
error structure well. An alternative approach in such cases is
to (1) assume a ‘‘locally normal’’ distribution of the errors,
(2) use the standard errors from the LWP [Loader, 1999] to
generate random normal deviates, and then (3) add these to
the mean estimate from the LWP to generate the ensembles.
In an application of forecasting Thailand summer rainfall
[Singhrattna et al., 2005] with small sample size, this
approach was implemented with good results.
[40] Though the relationships in the Truckee and Carson

basins are not highly nonlinear, we chose the LWP fore-
casting approach because it can be used for any arbitrary
(linear or nonlinear) feature that might be present in the
data, thus making the framework general and readily
applicable to any basin.
[41] In this study, the neighborhood size and the polyno-

mial order for the forecasting model are obtained using the
objective criteria, generalized cross validation (GCV)
[Loader, 1999]. The GCV function is a good surrogate of
predictive error [Craven and Whaba, 1979] of the model,
unlike least squares which is a measure of goodness of fit
and provides no information on the predictive capability.
For a range of values of the neighborhood size (K) and
polynomial order (p) (usually 1 or 2), the combination that
provides the minimum GCV value is selected. This is done
separately for each forecasting lead time. The GCV (K, p)
score function is defined as:

GCV K; pð Þ ¼

Pn
i¼1

e2i
N

1� m
N

� �2 ð3Þ

where ei is the error, N is the number of data points, m is the
number of parameters.
[42] The neighborhood size for the residual resampling

can be the same as obtained from the GCV criteria for fitting
the local polynomial, or it can be different. In this study, the
heuristic approach that calls for the neighbors for the
residual resampling to be

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
was used [Rajagopalan

and Lall, 1999; Yates et al., 2003].

[43] The GCV function described above can also be used
for selecting the best subset of predictors from all predic-
tors. In this, one fits local polynomial for different predictor
combinations along with the polynomial order and the
neighborhood size and calculates the GCV value for each
case. For this, equation 6.3 entails a third parameter, q, for
the combination of predictors: GCV (K, p, q). The combi-
nation that produces the least GCV value is chosen as the
best subset. In this study we used the GCV criteria to select
the Z500 index and SWE as predictors. It is possible to have
GCV models with similar GCV values close to the mini-
mum value. In this situation, one can take all the models
with the similar low GCV values, weight them based on the
GCV value, then resample the models and create a multi-
model superensemble to capture the model uncertainty
[Regonda et al., 2005].

6.3. Ensemble Forecast

[44] Using the model described above, we forecast the
April to July total runoff volume in the Truckee River at
Farad and in the Carson River at Ft. Chruchill. This is the
third step in the forecasting framework. We develop these
ensemble forecasts for the beginning of each month from
November to April. Predictors from the preceeding three
months are used in the model. For example, the forecast
issued on 1 March uses the time-averaged Z500 and SST
indices from the December–February period and the 1
March SWE. Forecasts issued in November and December
use only the Z500 and SST indices as the SWE is not yet
available.

6.4. Forecast and Model Verification

[45] The fourth and final step in the forecasting frame-
work is to verify the forecasting model in a cross-validated
mode. In this, the streamflow value in a given year is
dropped from the data set and an ensemble of predictions
is generated from the model based on the rest of the data.
This is repeated for each year, producing a cross-validated
ensemble forecast for each year for the 1949–2003 period.
Given the relatively small sample size, we performed this
leave-one-out cross validation. A more rigorous cross
validation could be performed by dropping several data
points from the regression, fitting the model and then
forecasting the dropped points.
[46] Apart from visual inspection, the ensembles

are evaluated on a suite of three performance criteria:

Figure 6. Residual resampling to obtain an ensemble forecast.
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(1) correlation coefficient of the mean of the ensemble
forecast and the observed value, which measures the skill
in the mean forecast, (2) ranked probability skill score
(RPSS) [Wilks, 1995], and (3) likelihood function skill score
(LLH) [Rajagopalan et al., 2002]. RPSS and LLH measure
the forecast’s ability to capture the PDF. The RPSS is
typically used by climatologists and meteorologists to
evaluate a model’s skill in capturing categorical probabili-
ties relative to climatology.
[47] For the RPSS and LLH the streamflows are divided

into three categories, at the tercile boundaries, i.e., 33rd
percentile and 66th percentile. Values above the 66th
percentile are in the above normal category, below the
33rd percentile are in the below normal category, and the
remainder fall in the normal category. The categorical
probability forecast is obtained as the proportion of ensem-
ble members falling in each category. The climatology
forecast is the proportion of historical observations in each
category. For the tercile categories presented here the
climatological probability of each category is one third.
[48] For a categorical probabilistic forecast in a given

year, P = (P1, P2, . . . Pk) (where k is the number of mutually
exclusive and collectively exhaustive categories; here it is 3)
the rank probability score (RPS) is defined as

RPSðforecastÞ ¼
Xk
m¼1

Xm
j¼1

Pj �
Xm
j¼1

dj

 !2
2
4

3
5 ð4Þ

The vector d (d1, d2, . . . dk) represents the observations,
such that dk equals one if the observaion falls in the kth
category and zero otherwise. The RPS of climatology is also
calculated using equation (4). The RPSS is then calculated
as [Wilks, 1995]

RPSS ¼ 1� RPSðforecastÞ
RPSðclimatologyÞ ð5Þ

The RPSS ranges from positive 1 (perfect forecast) to
negative infinity. Negative RPSS values indicate that the
forecast has less accuracy than climatology. The RPSS
essentially measures how often an ensemble member falls
into the category of the observed value and compares that to
a climatological forecast.
[49] The likelihood function is also used to quantify the

skill of ensemble forecasts. This function compares the
likelihood of the ensemble forecast falling into the observed
category with respect to climtology. The likelihood skill
score for the ensemble forecast in any given year is
calculated as

L ¼

QN
t¼1

P
^
j;t

QN
t¼1

Pcj;t

ð6Þ

Where N is the number of years to be forecasted, j is the
category of the observed value in year t, P̂j;t is the forecast
probability for category j in year t, and Pcj,t is the
climatological probability for category j in year t.
[50] The LLH values range from 0 to number of catego-

ries (three in this study). A score of zero indicates lack of
skill; a score of greater than 1 indicates that the forecasts
have skill in excess of the climatological forecast and a

score of 3 indicates a perfect forecast. The LLH is a
nonlinear measure and is related to information theory
[Rajagopalan et al., 2002].

7. Results

[51] Using the performance measures described above we
found that a model using SWE and the Z500 index per-
formed very well and that including the SST index did not
significantly improve the performance of the model. Though
SST correlations are statistically significant (Figure 3), the
SST pattern is, at least in part, a response to the pressure and
winds and hence provides little independent information
from the Z500 index. These results corroborate the results
from the GCV predictor selection method (section 6.1)
which also chose the Z500 index and SWE as the best
subset of predictors. Thus SWE and the Z500 index were
used as predictors in the forecasting model.
[52] Figure 7 provides a visual of the ensemble forecasts

over the entire period of record. In Figure 7 the April to July
runoff forecast is issued on 1 April using the SWE and Z500
predictors. The ensemble forecasts are shown as boxplots,
one box for each forecasted year. Asymmetry in the boxes
around the median indicates a skewed ensemble forecast, a
feature that is captured by the residual resampling. The
ensemble forecasts typically capture the observed value
within the interquartile range, providing a visual qualitative
measure that overall forecast skill is good. For a quantitative
measure of forecast skill, we employed the skill measures
described in the previous section.
[53] To validate the use of the Z500 index, we calculated

and compared the skill scores from two forecasting models:
a model that uses both the Z500 index and SWE informa-
tion as predictors and a model that uses only the SWE as a
predictor. All three skill measures were calculated for
forecasts at all lead times for both the Truckee and Carson
rivers and are shown in Figure 8. The results show that
using the Z500 index together with SWE as predictors
provides better skills at all lead times. This is a significant
outcome that clearly demonstrates the importance of incor-
porating basin specific large-scale climate indices in stream-
flow forecasts.
[54] It is also apparent from Figure 8 that the forecast

skills are above climtology at all lead times (the RPSS is
above zero and the LLH is above 1). This indicates the
presence of useful information about the spring streamflows
from as early as fall. As in most forecasting models, the
skills on all the measures improve with decreased lead time.
[55] To assess the performance of the model in extreme

years we calculated the RPSS and LLH for wet and dry
years. For this, we define years with streamflows above the
75th percentile as wet and those below the 25th percentile as
dry. Roughly 12 years fall into each category. Skills for
forecasts issued on 1 April and 1 December are shown in
Tables 1 and 2. It is apparent that the model has a slightly
higher skill in predicting the wet years relative to dry. This
asymmetry in the skills is consistent with the nonlinearities
seen in the relationship between the predictors and the
streamflows (Figure 5). Whereas high streamflow years
exhibit a strong linear relationship with the Z500 index,
this relationship breaks down, i.e., flattens out, in low
streamflow years. Of course, the skill is poorer for forecasts
issued on 1 December.
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[56] Ensemble forecasts provide a PDF, and consequently,
they can be used to obtain threshold exceedence proba-
bilities. This information is very useful for water manag-
ers. Figure 9 presents the PDF of the ensemble forecasts
for 1992 and 1999, below normal and above normal
streamflow years, respectively. The climatological PDF,
i.e., the PDF of the historical data, is overlaid in these
plots. Notice that the PDFs of the ensemble forecasts are
shifted toward the observed values. In 1992, a dry year,
the spring runoff in the Truckee River was 75 kaf, much
below the historical average. On the basis of the clima-
tological PDF the exceedence probability of this value is
0.92, while that from the ensemble forecasts is 0.49,
much closer to the observed. Similarly, for the above
average spring flow of 408 kaf in 1999, climatology
suggests an exceedence probability of 0.17 while the
ensemble forecasts show a much higher probability of
exceedence (0.59), better capturing the probability of the
observed flow value.
[57] The benefit of a forecast from fall is not that water

managers know the exact volume of spring runoff, but that
they have an idea of whether the coming season will be
above average or below average. Because current forecast-
ing techniques use only snowpack information, water man-
gers do not have the opportunity to utilize a fall forecast in
their operations and decision making. BOR engineers,
however, believe that a forecast in fall would be helpful
in planning for the coming water season (T. Scott, U. S.
Bureau of Reclamation, personal communication, 2002).
[58] As seen, incorporating identified large-scale climate

predictors along with SWE information improves forecast
skill. The SWE data provides important information regard-

ing basin initial conditions, i.e., the amount of snow
currently available to affect runoff. The Z500 index, how-
ever, provides information about weather yet to come in
the basin, assuming that atmospheric circulation patterns
persist.

8. Summary and Conclusions

[59] This paper presents a generalized framework to
identify and incorporate large-scale climate information into
ensemble forecasts of seasonal streamflows. The ensembles
can be used to obtain streamflow threshold exceedance
probabilities which are important to water resources man-
agement. The first step in the framework is to identify
climate predictors that modulate the seasonal streamflows.
Next, these predictors are used in stochastic local regression
model to generate seasonal streamflow forecasts. The fore-
casting model uses a local polynomial approach for the
mean forecast and residual resampling to provide ensem-
bles. This approach is data driven with minimal assump-
tions unlike traditional regression alternatives. Being a local
estimation scheme it also has the capability to capture any
arbitrary relationship exhibited in the data. The final step in
the framework presented here is to validate and test the
forecasting model.
[60] The framework was applied to the Truckee and

Carson River Basins located in the Sierra Nevada Moun-
tains. Large-scale climate features in the Pacific Ocean
during the preceding fall and winter seasons were found
to be significantly related to the spring streamflows in the
basins, thus enhancing the prospects for long-lead forecasts.
In particular, the fall and winter 500 mbar geopotential

Figure 7. Time series of spring runoff with ensemble forecasts for each year (1949–2003). The thick
line represents the historical time series. The box plots represent the ensemble forecast issued from
1 April in each year. The thin horizontal lines represent the quantiles of the historical data (5th, 25th,
50th, 75th, and 95th percentiles). (top) Truckee River and (bottom) Carson River.
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height fields in the region off the coast of Washington were
found to modulate the direction of the winds and the amount
of moisture carried to the Truckee and Carson basins and
hence the total spring runoff in the basins. Significant
forecast skills at long lead times (up to 5 months) were

obtained by incorporating the large-scale climate informa-
tion together with the SWE as predictors. Interestingly, this
was true even for the forecasts issued on 1 April. Skills for
the longest–lead time forecasts were greater than climatol-
ogy and the skills progressively increased with the decrease

Table 2. Skill Measure of the Ensemble Forecast Issued on 1

December in All Years, Wet Years, and Dry Years for Truckee and

Carson Rivers

Median Skill Score

RPSS LLH

Truckee Carson Truckee Carson

All years 0.2 0.0 1.1 1.1
Wet years 0.4 0.3 1.1 1.2
Dry years 0.0 0.0 1.1 1.1

Figure 8. Skill scores of forecasts issued from the first of each month November–April for (left)
Truckee and (right) Carson rivers.

Table 1. Skill Measure of the Ensemble Forecast Issued on 1

April in All Years, Wet Years, and Dry Years for Truckee and

Carson Rivers

Median Skill Score

RPSS LLH

Truckee Carson Truckee Carson

All years 1.0 0.9 2.3 2.3
Wet years 1.0 1.0 3.0 2.6
Dry years 0.9 0.8 2.2 2.2
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in lead time. The forecast skills were better in the extreme
streamflow years. These results indicate the potential for
more efficient water management in the basin. Preliminary
results at demonstrating the utility of the ensemble forecasts
to water management in the Truckee and Carson basins
[Grantz, 2003] are very encouraging. Further research is
underway.
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Figure 3. Correlation of Carson River spring streamflows with (top) December–February and (bottom)
September–November climate variables: (left) 500 mbar geopotential height (Z500) and (right) SST.

W10410 GRANTZ ET AL.: USING LARGE-SCALE CLIMATE IN STREAMFLOW FORECASTS W10410

4 of 13


