A technique for separating the galactic thermal radio
emission from the non-thermal component by means of

the associated infrared emission

> A. Broadbent, ${ }^{1}$ C. G. T. Haslam ${ }^{2}$ and J. L. Osborne ${ }^{1}$

> Department of Physics, University of Durham, South Road, Durham DH1 3LE
${ }^{2}$ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Bonn 1, F
> Accepted 1988 September 13. Received 1988 September 13; in original form 1988
August 1

 measured with a similar angular resolution by Reich et al. at 11 cm and Haynes

 кןиә!̣!

 all-sky survey of Haslam et al. into its thermal and synchrotron components.

The problem of distinguishing the thermal and non-thermal components of the radio continuum emission of the Galaxy dates back to the beginnings of radioastronomy. The non-

 non-thermal component. We describe here the application of a technique for identifying the

component may then be subtracted leaving a clearer picture of the synchrotron emission.
The technique has been outlined in the papers by Haslam \& Osborne (1987) (Paper I) and

[^0]between the IRAS $60-\mu \mathrm{m}$ band emission from the galactic plane and most of the features seen

 course, before the $I R A S$ survey was made, that discrete $\mathrm{H}_{\text {in }}$ regions were sources of radio and infrared continuum emission and that the distribution of far-infrared emission along the galactic plane was similar in form to that of the high-frequency radio continuum. The IRAS survey now gives direct evidence through this detailed correlation that an important component of the $60-$ and $100-\mu \mathrm{m}$ band emission from the galactic disc is associated not only with discrete $\mathrm{H}_{\text {II }}$ regions but also with the more extended low-density (ELD) $\mathrm{H}_{\text {II }}$ regions. We contend that the observations show that the ratio of infrared to radio emission from these regions is sufficiently constant that the residual infrared emission, after allowance has been
 component of the radio emission. The procedure for identifying this thermal component is as
 H_{r}-associated dust is modelled and removed. An empirical relation between the residual $60-$
 cal relation is used to subtract the thermal component from radio continuum maps pixel by pixel.
 regions have $60-\mu \mathrm{m}$ to $11-\mathrm{cm}$ flux density ratios $\geqslant 500$, the corresponding ratios for known supernova remnants are <20. This gives a simple way of finding candidate supernova remnants near the galactic plane. This use of the infrared data has also been proposed independently by Fürst, Reich \& Sofue (1987).

The most significant development of the method given in Paper I concerns the treatment of

 Galaxy, we had assumed that the infrared emission per hydrogen atom from the HI_{I}-associated dust would also be constant throughout the Galaxy. This meant that the empirical relation
between the Hi column density and the infrared emission determined at high galactic latitudes,
 Applying this relation to the measured H i column densities in the galactic plane, we found that

 thermal-non-thermal separation, to consider this component in great detail. The more recent work of Cox, Krügel \& Mezger (1986) uses the ISRF as modelled by Mathis, Mezger \&

 э!циәәоұวв

 a minor contribution. As a consequence we need to give further consideration to the modelling
of this emission. The scheme The scheme of this paper is as follows. The components of the infrared emission are
discussed in Section 2. The procedures for removal of zodiacal light and the calculation of the H_{I}-associated component are described. This leads to the problem of accounting for the

UOルコ!̣ய 09

$$
\text { шЈ } 9
$$

 from dust grains, whose composition and size distribution is as prescribed by Mathis, Rumpl \&

 'small grains' which contribute mainly to the $60-\mu \mathrm{m}$ band emission. It is also possible, as pointed out by Harwit, Houck \& Stacey (1986), that infrared line emission gives a contribution sufficient to alter the apparent colour temperatures as measured by the broadband IRAS detectors. Since we regard the uncertainty in the HI_{I}-associated component as the main source of error in our thermal-non-thermal separation, we have taken two limiting cases to define the error bounds. Thus we consider the 'standard grain' case, where the H_{I}-associated emission at $60 \mu \mathrm{~m}$ is as predicted for standard grains only and the line emission contribution to the $100-$ $\mu \mathrm{m}$ band is assumed to account for the colour temperature, and the 'small grain' case where an additional contribution to the $60-\mu \mathrm{m}$ band emission from small grains is invoked. Section 2 concludes with a discussion of whether the residual emission is associated with the ELD and discrete $\mathrm{H}_{\text {II }}$ regions, or with Giant Molecular Clouds.

In Section 3 we turn to the radio emission and derive an empirical relation between it and
 regions. Section 4 presents the results of the thermal-non-thermal separation technique as applied to the all-sky $408-\mathrm{MHz}$ survey by Haslam et al. (1982). A list of supernova remnant candidates from the $6-\mathrm{cm}$ survey is given in the Appendix. In the final section, a comparison is made with thermal-non-thermal separation via spectral index analysis.

Although the main aim of the present work is to use the $\mathrm{H}_{\text {II-associated emission as a tracer }}$ of the thermal radio emission, we do also obtain values for the relative contributions of HI and H_{II}-associated dust to the $60-\mu \mathrm{m}$ emission and the mass of ionized gas in the Galaxy

2 Infrared emission

2.1 IRAS DATA

 and $100 \mu \mathrm{~m}$. Details of the survey are given in the IRAS Explanatory Supplement (1985). We have used the galactic plane version of the sky flux plates in the comparison with the radio continuum emission. Specifically, most of the analysis has been performed using the HCON 1 (first hours confirmed) survey. We have used the HCON 2 survey to fill in some blank areas

 method of scanning, results in an effective angular resolution for the surveys of 4-6 arcmin.
We are concerned with the diffuse infrared emission. This consists of zodiacal light from
 removed, and the galactic component. There is general agreement that the latter comes from

2.2 zodiacal light emission
jsnp әчt woff 山o!̣nq! It is necessary to subtract from the galactic plane survey the contribution from the dust
associated with the Solar System. Here, taking note of the observation by Burton et al. (1986) that the zodiacal emission variation with ecliptic latitude is very similar all along the ecliptic plane, we have taken the simplest model, where it is regarded as a function of ecliptic latitude only. More complex models (e.g. that of Boulanger \& Pérault 1988), in which dependence on such other parameters as solar elongation and time is included, are certainly needed when studying the galactic emission at high galactic latitudes. This zodiacal emission accounts for only a small fraction of the 60 - and $100-\mu \mathrm{m}$ emission near the inner galactic plane on which our study is concentrated, and so an approximate estimate of its intensity is sufficient. The relative importance of the zodiacal emission increases towards the anticentre direction and at high galactic latitudes.
In estimating the $60-\mu \mathrm{m}$ band zodiacal light emission, it is assumed that at high galactic latitudes $\left(|b|>20^{\circ}\right)$ the emission in both $60-$ and $100-\mu \mathrm{m}$ bands is dominated by two components, one emanating from dust in the Solar System and the other from dust associated with
 components, the $60-$ to $100-\mu \mathrm{m}$ band intensity ratios are constant over this area of sky, and that there exists a linear relationship between infrared emission from the HI -associated dust
and the Hicolumn density.
If, in a given direction, I_{60} and I_{100} are the total IR intensities from the $60-$ and $100-\mu \mathrm{m}$ bands respectively, I_{ZL} is the intensity at $60 \mu \mathrm{~m}$ of the zodiacal light and N_{H} is the H I column density then $I_{60}=I_{\mathrm{ZL}}+C N_{\mathrm{H}}$ and $I_{100}=A I_{\mathrm{ZL}}+C N_{\mathrm{H}} / \mathrm{B}$ where A, B and C are constants.
To determine the value of A, the ratio of the $100-$ to $60-\mu \mathrm{m}$ band zodiacal light intensities, an all-sky map of H_{I} column densities on a 1° rectangular grid was used. This map had been created using the Berkeley survey (Weaver \& Williams 1973) and the Durham-Parkes survey (Strong et al. 1982) for the area within 10° of the galactic plane. The data for higher latitudes were from Heiles \& Cleary (1979) and Heiles \& Habing (1974). For each latitude in the range
 of maximum zodiacal light and the other near the minimum. This ensured that the intensity differences at 60 and $100 \mu \mathrm{~m}$ between the two points was as large as possible, minimizing the percentage uncertainty. A value of A for each pair of points was determined using the expres-
sion

$A=\left[I_{100}(1)-I_{100}(2)\right] /\left[I_{60}(1)-I_{60}(2)\right]$,

where $I_{\lambda}(1), I_{\lambda}(2)$ are intensities of the points in the pair at either 100 or $60 \mu \mathrm{~m}$. Values of I_{λ} were obtained from all-sky maps binned in a similar manner to the H_{I} column densities and

 of A thus derived was 0.37 ± 0.05.
In order to proceed, a value is required for B, the $60-100-\mu \mathrm{m}$ intensity ratio for HI_{I} associated emission. In Section 2.3, for the 'standard grain' variant of the IR emission of Hiassociated dust in the galactic disc, we use the model by Cox et al. (1986) in which the cold

Using these values of A and B, the value of C, the $60-\mu \mathrm{m}$ intensity to H I column density

 band IRAS HCON 1 galactic plane survey. In subtracting the zodiacal light contamination in this way, we will also eliminate any isotropic component such as an extragalactic background.
 $\mu \mathrm{m}$ band is only a small contribution to the total emission along the galactic plane in the inner part of the Galaxy (~ 3 per cent at $l=10^{\circ}, b=0^{\circ}$) and justifies the use of such an approximate

 $l=240^{\circ}, b=0^{\circ}$) and errors in the estimation of this contribution are more important.
These results are based on the predicted value, $B=0.1$, obtained using the grain size distribution from Mathis et al. (1977), which we have referred to as the 'standard grain' results. Studies of the intensities in the $60-$ and $100-\mu \mathrm{m}$ bands at high galactic latitudes by Terebey $\&$ Fich (1986), Boulanger \& Pérault (1988) and Low et al. (1984) show the observed ratio to be closer to $B=0.2$. As discussed further in Section 2.3, an explanation of this involves an

 to the assumed ratio of $60-100-\mu \mathrm{m}$ intensities for galactic emission at high galactic latitudes. The ratio is 0.1 for the dashed line ('standard grains') and 0.2 for the solid line ('small grains').

$\stackrel{\circ}{\infty}$
additional population of very small grains. If we repeat the above procedure with this value of B, the value of C, the mean intensity at $60 \mu \mathrm{~m}$ per unit column density of atomic hydrogen, becomes $0.285 \mathrm{MJy} \mathrm{sr}^{-1}\left(10^{20} \mathrm{~cm}^{-2}\right)$. [We note that the corresponding ratio at $100 \mu \mathrm{~m}, 1.4$
 profile of zodiacal emission across the ecliptic plane, which is shown as the solid line in Fig. 1.

 comparing the models of HI_{I}-associated emission with the total galactic emission at higher latitudes.

2.3 Emission from Hi Regions

In modelling the IR emission from H_{1}-associated dust, we have to take into account the variation of emissivity of dust grains per hydrogen atom with galactocentric radius and the threedimensional distribution of HI_{I} in the galactic disc. The velocity information of the Berkeley and Durham-Parkes surveys was used with the galactic rotation curve of Burton \& Gordon (1978) to determine the distribution of H_{I} with galactocentric radius along a given line of sight.

 prediction depends on the dust grain model used. First we show the results of the 'standard
$\angle 8 \mathcal{E}$

2.3.1 The 'standard grain' model

This was derived using the predictions of Cox et al. (1986) for the variation with galactocentric radius of absorption cross-section per H atom and temperature of dust grains. We note that the temperature variation of the dust grains, dictated by the interstellar radiation field, is the major factor causing a steep rise in the emissivity per H atom, towards the Galactic Centre. The variation of absorption cross-section per H atom, which is assumed to follow the metallicity gradient (Güsten \& Mezger 1983), has a much smaller effect. The model of the dust grains used by Cox et al. is that of Mathis et al. (1977) modified by Draine \& Lee (1984), and assumes a mixture of silicate and graphite grains of size distribution $f(a) \propto a^{3.5}$ where a is the grain radius. In a comparison with IRAS data, it is necessary to include a small correction in the predictions to take into account variation of emissivity of the dust grains and relative system response over the IRAS passbands.
We used this method to model the $60-\mu \mathrm{m}$ intensity of the H_{r}-associated dust for the whole of the galactic plane for $|b|<10^{\circ}$, except for the Galactic Centre and anticentre directions. Within a few degrees of these directions, the assumption of circular rotation in obtaining the distance of the emitting H_{I} regions breaks down, and towards the Galactic Centre the H_{I} emission is optically thick. In the anticentre direction one can interpolate the H_{1}-associated dust contribution with sufficient accuracy. We recognize that in the Sgr A source direction,
however, we may not have correctly estimated this emission. It may well be that the relationship between the $60-\mu \mathrm{m}$ band emission and the thermal radio emission which we derive empirically in Section 3.2 for the rest of the Galaxy cannot be applied to the special conditions in the Sgr A source region. We do not therefore claim that our thermal-non-thermal separation technique necessarily applies to this particular region.
We note that both the Berkeley survey and the Durham-Parkes survey are at lower resolu-
tion, 35.5 and 15 arcmin respectively, than the 4 arcmin of the IRAS galactic plane survey. In addition, the Durham-Parkes survey is undersampled. We have not convolved the IRAS data to these lower resolutions before subtracting the H_{1}-associated emission, as we would thereby

 data simply adds noise to the correlation.
Fig. 3 shows the profile, averaged over $|b|<0.5$ for the inner galactic plane, of the $60-\mu \mathrm{m}$ band intensity with the zodiacal light contamination removed, together with the corresponding profile for the predicted H_{1}-associated dust intensity. The averaging should help to reduce the discrepancies introduced because of the different resolutions of the HI and IRAS surveys. Fig. 4 shows six typical cuts across the galactic plane taken at longitudes in all four quadrants. Again, the IRAS $60-\mu \mathrm{m}$ intensity with zodiacal light removed is shown, together with the predicted contribution from H_{I}-associated dust. It can be seen that, at the higher latitudes, where we would expect there to be little ionized hydrogen, the two curves converge remarkably well, considering that at these latitudes the estimated zodiacal light contamination is

 associated $60-\mu \mathrm{m}$ emission differ from the distributions of H_{1} column density at correspond-

 (D)

 $\stackrel{\infty}{\infty}$
to decompose the observed infrared emission into $\mathrm{H}_{\mathrm{I}}-\mathrm{H}_{\text {II }}$ and H_{2}-associated components using the relative scale heights of the corresponding components of the interstellar gas.

2.3.2 The colour temperature of the infrared emission

We applied the same procedure to modelling the emission in the $100-\mu \mathrm{m}$ band for part of the first quadrant $\left(79^{\circ} 5 \geqslant l \geqslant 10^{\circ}\right)$ within 10° of the galactic plane. Fig. 5 shows profiles for the $60-$ and $100-\mu \mathrm{m}$ bands for $53^{\circ} \geqslant l \geqslant 13^{\circ}$. Each line represents an average over ± 0.5 of latitude. The higher profile in each plot is the infrared emission after removal of the zodiacal light әчі ІОд 'шо!̣пq! $60-\mu \mathrm{m}$ band the dotted line is the predicted Hi -associated dust contribution had we assumed that the ratio of $60-\mu \mathrm{m}$ emission to hydrogen column density was constant for the whole of the galactic plane, with the solar neighbourhood value of $0.14 \mathrm{MJy} \mathrm{sr}^{-1}\left(10^{20} \mathrm{~cm}^{-2}\right)^{-1}$ (see Section

Over the area for which both the $60-$ and $100-\mu \mathrm{m}$ band HI -associated dust contributions have been predicted, the IRAS galactic plane maps, with zodiacal emission subtracted, have

 the predicted H_{1}-associated dust emission, and (iii) the residual emission after (ii) has been

 intensity ratios, assuming an emissivity of the dust grains which varies as the inverse square of the wavelength, are also marked.

As has been remarked upon by other authors (e.g. Sodroski et al. 1987), the colour tempera-
 longitude. The peaks in the profile can be identified with large $\mathrm{H}_{\text {II }}$ complexes by referring to

Figure 4. Six cuts across the galactic plane showing the predicted H_{I}-associated component (dashed lines) relative to the total emission. This component fits the observations well at latitudes greater than about 3° for all longitudes except $280^{\circ}<l<300^{\circ}$. It may be that the interstellar radiation field in the Carina arm is higher than
given by the assumed purely radial dependence.

敢

Figure 5. Profiles of $60-$ and $100-\mu \mathrm{m} I R A S$ intensities along the galactic plane averaged over $-0.5<b<+0^{\circ} .5$.
The lower solid lines show the predicted contributions from H I-associated dust, whose variation in temperature
with galactocentric radius follows the model of Cox et al. (1986). The lower dashed line on the upper plot shows
the Hi contribution if the dust was all at the temperature appropriate to the solar neighbourhood.
decreasing galactic longitude from a value of about 18 K at $l=79^{\circ} 5$ to 24 K at $l=10^{\circ}$. This reflects the $17-25 \mathrm{~K}$ temperature variation with galactocentric distance of the graphite grains which dominate the emission at 60 and $100 \mu \mathrm{~m}$ in this model (see Section 2.2).
predicted increase towards lower longitudes for the of $60-100-\mu \mathrm{m}$ total intensities and the ratio for the H_{II}-associated component must necessarily decrease towards lower the implied is illustrated in the third profile of Fig. 6. The colour temperature remains fairly constant at 28 K between $l=79^{\circ} .5$ and 40° but then drops to $\sim 23 \mathrm{~K}$ by $l=10^{\circ}$. the 100 - $\mu \mathrm{m}$. H ways to account for this behaviour. Either there is an additional component in expected or there is an additional which causes its colour temperature to be lower than causes its colour temperature to be higher than the 'standard grain' model predicts. We consider these in turn. Harwit et al. (1986)
regions may be due to the emission line of $\mathrm{O}_{\text {III }}$ at $88.35 \mu \mathrm{~m}$. Th band emission from ionized effect on the $60-\mu \mathrm{m}$ band intensity so that the apparent temperature of the be no appreciable the $60-100-\mu \mathrm{m}$ ratio would be reduced. For the effect to become larger towards the centre of the Galaxy there would have to be an increase in the $\left[\mathrm{O}^{2+} / \mathrm{O}\right]$ abundance ratio towards the from line Centre. The arguments of Terebey \& Fich (1986) against a significant contribution They do not rule out a contribution in regions of higher radiation density in the of the Galaxy.

$\vec{\alpha}$
\bar{n}

Figure 6. Profiles of the ratio of $60-100-\mu \mathrm{m}$ intensity along the galactic plane. The top curve shows the observed values. The middle curve is the predicted ratio for the H i-associated emission. The bottom curve shows the ratio of the residuals when the H i-associated emission has been subtracted from the observed values.
Blank regions appear where the residual $100-\mu \mathrm{m}$ emission is very small and the error in the ratio would be very Blank regions appear where the residual $100-\mu \mathrm{m}$ emission is very small and the error in the ratio would be very
large. The implied colour temperatures are shown on the right-hand side.

Present measurements of the O II line give no conclusive test of this hypothesis. A necessarily rough estimate for M17 using the line measurements by Watson et al. (1981) suggests that,
for this $\mathrm{H}_{\text {II }}$ region, the contribution to the $100-\mu \mathrm{m}$ band IRAS flux from the $88-\mu \mathrm{m}$ line might be about 6 per cent. Attempts to establish the behaviour of $\left[\mathrm{O}^{2+} / \mathrm{O}\right]$ with galactocentric radius have been thwarted by a lack of data for H II regions within 6 kpc of the Galactic Centre. If this line emission did account for the apparent colour temperature of the galactic plane
 H 1 -associated component in the $60-\mu \mathrm{m}$ band.

An alternative explanation of the uniform colour temperature of the total emission was put
 addition to the Mathis, Rumpl \& Nordsieck (1977) grain distribution in order to explain the uniform colour temperature of the emission. Large temperature variations are expected for

N
Ω
very small grains would contribute little to the $100-\mu \mathrm{m}$ intensity but would make a significant contribution to the $60-\mu \mathrm{m}$ band. We need to consider the effect of this 'small grain' model as it increases the H_{1}-associated component to be subtracted from the total $60-\mu \mathrm{m}$ emission when obtaining the residual, $\mathrm{H}_{\text {II-associated, emission. }}$

To investigate the 'small grain' model in detail, one would have to model the emission of the various species of small grains in the ISRF which is varying with galactocentric radius. However, bearing in mind that the properties of these grains have mainly been chosen in order to give a constant colour temperature of the H_{I}-associated emission, we can easily estimate the magnitude of the effect. We use our predictions of the H_{1}-associated emission in the $100-\mu \mathrm{m}$ band described in the previous sections scaled by a factor of 0.2 to model the $60-\mu \mathrm{m}$ band

 observed $60-\mu \mathrm{m}$ band emission with the appropriate 'small grain' solution for the zodiacal emission subtracted, and the dashed line is the predicted $100-\mu \mathrm{m}$ band Hr_{r}-associated

393
Separation of thermal radio emission from synchrotron component
wings $\left(|b| \geqslant 5^{\circ}\right)$ but tends to be higher than the observed total emission at intermediate lati-

$$
2.4 \text { EMISSION FROM MOLECULAR CLOUDS }
$$

Before one accepts from the qualitative evidence of Plate 1 that the residual $60-\mu \mathrm{m}$ emission is from $\mathrm{H}_{\text {it-associated dust, one should consider the possibility that it comes from dust in }}$ molecular clouds. It is clear that, if the dust in the clouds were heated by the general ISRF attenuated by absorption, its temperature would not be high enough to give any significant contribution to the $60-\mu \mathrm{m}$ flux. It is possible, however, that the dust is heated by embedded,

We have used data from the Massachusetts-Stony Brook ${ }^{12} \mathrm{CO}$ survey (Sanders et al. 1986) to give the profile of velocity-integrated CO emission shown in Fig. 8(c). The survey has a sampling interval of 3 arcmin but it is considerably undersampled as the beam size is 45 arcsec . Unfortunately there is at present no fully sampled survey covering an appreciable area of the enabled the distribution of molecular cloud sizes to be determined. The authors of the present survey conclude that their point spacing of 3 arcmin is small enough to resolve clouds containing 85 per cent of the total molecular gas. Our averaging over $|b|<0.5$ to some extent

 traction of the modelled H i-associated component, (b) the $11-\mathrm{cm}$ radio continuum emission from Reich er al Stony Brook survey. All are averaged over $-0.5<b<+0.5$.
compensates also. In principle, the intensity of the CO line emission should vary in proportion to the column density of H_{2} only if the clouds are optically thin. This is not the case for ${ }^{12} \mathrm{CO}$

 of the column density of molecular hydrogen. The similarly averaged profile of $11-\mathrm{cm}$ radio
continuum is shown in Fig. $8(\mathrm{~b})$ and the profile of $60-\mu \mathrm{m}$ infrared emission, after the removal

 radio and infrared that is not at all apparent between the CO and the infrared. The only $11-\mathrm{cm}$
 emission from catalogued supernova remnants.
A quantitative test of the relative correlation is shown in Fig. 9, where scatter plots are given for the region $35^{\circ}>l>29^{\circ},|b|<1.5$. The CO versus $60 \mu \mathrm{~m}$ correlation coefficient is 56 per cent compared with 82 per cent for the 11 cm versus $60 \mu \mathrm{~m}$ plot. The latter has been reduced by the points close to the vertical axis due to the bright SNR W44. If this is omitted, the correlation exceeds 90 per cent. The degree of correlation which is seen between the CO and $60 \mu \mathrm{~m}$
 lar clouds and giant $\mathrm{H}_{\text {II }}$ regions due to their common association with star formation.

2.5 emission from Hii regions

The residual infrared emission which correlates strongly with the thermal radio emission appears to be that which comes from the 'warm' dust component in the model by Cox et al. (1986). This dust is mainly associated with the gas in ELD H in regions which has been ionized by observable O stars. The diameters of the regions range from 20 to 250 pc and the electron
densities are typically $5-10$ electrons cm^{-3}.

395
 and recombination rate of their atoms. The radio continuum emissivity is proportional to the
recombination rate, r. For an $H_{\text {iI }}$ region which is optically thin at a frequency v, the emissivity recombination rate, r. For an $\mathrm{H}_{\text {II }}$ region which is optically thin at a frequency v, the emissivity
is:
$\varepsilon_{\nu}($ radio $)=2 \times 10^{-36} T_{\mathrm{e}}^{0.45} v^{-0.1} r \quad \mathrm{~W} \mathrm{~cm}^{-3} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$
where T_{e} is the electron temperature. The weak dependence on frequency is an approximation to the frequency variation of the Gaunt factor. The summed surface brightness of the H in
region is also proportional to $v^{-0.1}$ and the brightness temperature therefore has a spectral index of 2.1.
Most of the Lyman continuum photons involved in the ionization are eventually degraded
into $\mathrm{L} \alpha$ photons which will be absorbed by the dust grains in the HII region, and their energy into $L \alpha$ photons which will be absorbed by the dust grains in the Hin region, and their energy
will be reradiated in the infrared. This emissivity is enhanced by photons of longer and shorter wavelength than the $\mathrm{L} \alpha$. The enhancement factor, f, is the infrared excess (IRE). The infrared emissivity is thus:

$$
\varepsilon(\mathrm{IR})=f r h v_{\alpha} /(4 \pi)=1.3 \times 10^{-19} f r \quad \mathrm{~W} \mathrm{~cm}^{-3} \mathrm{sr}^{-1}
$$

Using the appropriate emissivity law and grain temperature, the emissivity per unit frequency at $60 \mu \mathrm{~m}$ is:
With $T_{\mathrm{e}}=7000 \mathrm{~K}$ the ratio of emissivities at $60 \mu \mathrm{~m}$ and 11 cm is:
$\varepsilon_{\nu}(60 \mu \mathrm{~m}) / \varepsilon_{\nu}(11 \mathrm{~cm})=190 f$.
If the radio and infrared emitting regions coincide, the ratio of the intensities of emission will be the same as the ratios of emissivity. Thus the intensity ratio which is obtained in Section 3 leads to a value for the IRE of the ELD $\mathrm{H}_{\text {II }}$ regions.

3 Radio continuum emission

3.1 THE RADIO SURVEYS
There are two radio continuum surveys with resolution close to that of the $I R A S$ sky flux plates which between them cover most of the inner half of the galactic plane. These are the $11-\mathrm{cm}$
јо әz! 4.3 arcmin. The presently published part of the survey covers the area $357.4 \leqslant l \leqslant 76^{\circ}$,

[^1]the absolute level of the survey and would have to be precisely determined if a thermal-nonthermal separation were to be attempted based on spectral information only. Our method of fitting a lower envelope to a scatter plot of radio against IR intensities is not sensitive to a The $6-\mathrm{cm}$ survey was made with the Parkes $64-\mathrm{m}$ telescope and has a beam size of 4.1 arcmin. The continuous part of it covers the range of longitude from $l=280^{\circ}$ through the galactic centre to $l=40^{\circ}$. Its zero level was set at the ends of its scans which extend to $|b| \simeq 2.5$. The digitized version that we worked with has a constant offset added. By looking at the temperatures in the wings of a number of cross-cuts over the whole range, we deduced that this constant was $1 \pm 0.1 \mathrm{~K}$. An extrapolation of the $408-\mathrm{MHz}$ data at $|b|=2.5$ indicates that the absolute temperature at these latitudes is of the order of 0.1 K . Subtraction of 1 K from the digitized values thus gives a best estimate of the absolute temperatures.

3.2 correlation of radio continuum with 60- $\mu \mathrm{m}$ IRAS emission

After removal of the zodiacal light and the modelled H_{I}-associated IR emission from the sky flux plates of the galactic plane in the $60-\mu \mathrm{m}$ band, the next step is to investigate the correlation between the radio continuum emission and the remaining IR emission, with the aim of obtaining a numerical relationship between the IR and the thermal part of the radio emission. This is done by plotting the net IR intensity against the radio brightness temperature pixel by pixel for $|b|<1.5$ (pixel size is $2.5 \times 2.5 \operatorname{arcmin}^{2}$). Because of the variation with longitude of the absolute base level of the $11-\mathrm{cm}$ survey, a separate plot was made for each 6° interval of galactic longitude. The scatter plots, such as that illustrated in Fig. 9(ii), have well-defined

 identified by their showing maximum brightness in the $12-\mu \mathrm{m}$ band), and that points on the lower envelope are for directions where the non-thermal emission, above a constant background level for that interval of longitude, is negligible.

Determination of this line objectively is quite difficult. The method adopted here is as follows. Initially, a line is drawn by eye which seems the best representation of the lower

 temperature within 100 mK above the value on the line at the same infrared intensity is counted. Similarly, the number of points within 100 mK below the line is determined. If a line exists, away from the edges of the ranges of intercepts and slopes searched, which has the maximum difference in number of points lying within 100 mK above and below the line, then this line is taken to be the lower envelope. An additional constraint is imposed that the number
 on each plot.)

If $y=A_{0} x+B_{0}$ is the equation of the initial line estimated by eye, then the range and increments in slope and y-intercept are:
$\left(A_{0}-12 \times 10^{-7}\right)<A<\left(A_{0}+12 \times 10^{-7}\right) \mathrm{mK} \mathrm{Jy}^{-1} \mathrm{sr}^{-1}$ $d A=2 \times 10^{-7} \mathrm{mK} \mathrm{Jy}^{-1} \mathrm{Sr}^{-1}$
$\left(B_{0}-1000\right)<B<\left(B_{0}+1000\right) \mathrm{mK}$

 surveys by dividing the data into areas 6° wide in galactic longitude and extending ± 1.5 in galactic latitude. Out of all 33 such areas over the two surveys, there were four for which it was not possible to determine a lower envelope by the above method unless points having slightly negative residual intensities were ignored. Such points would be due to over-estimation of the zodiacal light or HI -associated dust emission in particular directions. At 6 cm , for the area including the Galactic Centre, the lower envelope fitting-procedure failed completely and only an estimation by eye could be made.
The average slope from the 13 plots of $11-\mathrm{cm}$ brightness temperature against residual $60-$ $\mu \mathrm{m}$ intensity is $(6.4 \pm 1.7) \times 10^{-6} \mathrm{mK} \mathrm{Jy}{ }^{-1} \mathrm{sr}^{-1}$ and, for the 20 plots of $6-\mathrm{cm}$ brightness temperature against $60-\mu \mathrm{m}$ intensity, the average slope and intercept are $(1.6 \pm 0.5) \times 10^{-6} \mathrm{mK}$ $\mathrm{Jy}^{-1} \mathrm{sr}^{-1}$ and $1040 \pm 100 \mathrm{mK}$, respectively. We find no systematic variation of slope with galactic longitude. Converting the radio brightness temperatures to intensities in $\mathrm{Jy} \mathrm{sr}^{-1}$, the
$60-\mu \mathrm{m}$ to $11-\mathrm{cm}$ and $60-\mu \mathrm{m}$ to $6-\mathrm{cm}$ intensity ratios are 700 and 810 , respectively. There are seven areas between 41° and 359° in galactic longitude for which the There are seven areas between 41° and 359° in galactic longitude for which the $6-$ and 11-
cm surveys overlap. Hence, for each of these areas, a value for the $11-$ to $6-\mathrm{cm}$ thermal spectral index can be calculated from the slopes of the lower envelopes. The average spectral index, α, where the brightness temperature $T_{b}(v) \propto v^{-\alpha}$ is 2.2 ± 0.4 compared with 2.1 predicted theoretically by the thermal bremsstrahlung mechanism. This gives some support to our method of fitting the lower envelopes.
All of these figures were derived following subtraction of the 'standard grain' variant of the H_{I}-associated component. The effect of the subtraction of the alternative 'small grain' prediction of the HI -associated emission at $60 \mu \mathrm{~m}$ on the radio thermal-non-thermal separation

 intensity, and determined the lower envelope of each plot. The mean gradient of these seven
 This change corresponds to about one standard deviation on the mean gradient of the lower envelope.

3.3 The infrared excess

From our determination of the constant ratio between the $60-\mu \mathrm{m}$ emission due to dust
 excess (IRE), defined in Section 2.5 as the ratio between the total infrared luminosity and the power input into Ly α photons. Since the $11-\mathrm{cm}$ and IRAS surveys are of very similar angular
resolution, we can equate the ratios of the intensities to the ratios of the fluxes. In order to calculate the fraction of the total IR flux emitted in the $60-\mu \mathrm{m}$ band, we assume that the emission is due to dust grains within the H II region which have a temperature of 30 K and fol-

 possible range of temperature and emissivity law for the grains.
These values of the IRE are in accord with the value Mezger (1978) considered reasonable
on theoretical grounds for the ELD H II region. It is, however, only about half of the value he

obtained using the IR intensities of Low et al. (1977) and the diffuse free-free continuum emission at 1390 MHz deduced from the Westerhout (1958) and Mathewson, Healey \& Rome (1962) thermal-non-thermal separations of the galactic emission. Sodroski et al. (1987) found
 subtraction of the Hr -associated emission from the total IR intensities had been performed and thus larger values for the IRE might be expected. The original definition of IRE applies only to compact $\mathrm{H}_{\text {II }}$ regions and the ELD ionized regions in which the O stars are situated, rather than to a combination of these regions with regions of neutral gas whose associated dust is heated mainly by the general ISRF and which presumably are exposed to fewer Ly α photons. Myers et al. (1986) calculated a median value of 6 for the IRE of 25 far-IR sources which had associated $\mathrm{H}_{\text {ir }}$ regions. Unlike Gispert, Puget \& Sera (1982), Myers et al. found no evidence for a longitude dependence of the IRE. This observation supports our use of a constant value for the ratio between $60-\mu \mathrm{m}$ and radio continuum emission, although on smaller scales the IRE probably does vary.

4 Separation of the thermal and non-thermal radio emission

With the relationship between the thermal radio continuum emission and the net $60-\mu \mathrm{m}$ IR emission empirically determined, one can use this IR emission to identify and subtract off the thermal component of the radio emission from the observed total radio emission pixel by pixel. The $11-\mathrm{cm}$ survey in its present form does not contain an accurate representation of the larger-scale structure of the non-thermal emission, so that the resultant maps primarily show the discrete non-thermal sources. Most of these are catalogued supernova remnants (SNR) but we have been able to identify a number of uncatalogued SNR candidates from the $11-\mathrm{cm}$ survey. As was mentioned in Section 1, Fürst et al. (1987) have developed independently a similar procedure based on the ratio of IR to radio emission for identifying discrete nonthermal galactic sources which they are applying to the $11-\mathrm{cm}$ survey. We shall therefore discuss this survey no further here but turn to the $6-\mathrm{cm}$ survey instead.

[^2]The derived thermal component of the $6-\mathrm{cm}$ radio emission has been subtracted pixel by pixel from the total $6-\mathrm{cm}$ emission for all latitudes included in the survey over a longitude range

 flux from the same area in the $60-\mu \mathrm{m}$ band gives the $60-\mu \mathrm{m}$ to $6-\mathrm{cm}$ flux ratio listed in column
 By comparison, the ratio for extended $H_{\text {ir }}$ regions as derived from the lower envelope of the scatter plots is 800 and that of compact $\mathrm{H}_{\text {II }}$ regions is >500.
Of the 44 sources listed, 25 are unresolved (i.e. they have a diameter $<4 \mathrm{arcmin}$). The number counts of radio galaxies at 5 GHz (Wall \& Cooke 1975) indicate that there should be approximately 48 extragalactic radio sources over the 524 square degrees of the survey with

 Swarup \& Subrahmanya (1976) suggests that approximately four should be resolved by the
4.4 -arcmin beam. These estimates are consistent with all of the unresolved sources in the table being radiogalaxies.

399
 galactic plane of the $408-\mathrm{MHz}$ all-sky map of Haslam et al. (1982). The zodiacal light and the Hi-associated emission were removed from all 12 of the $60-\mu \mathrm{m}$ galactic plane maps of the рәи!̣яqо sә!! in Section 3 was applied to give the distribution of thermal emission at 11 cm . This was then scaled to 408 MHz using a thermal spectral index of 2.1. Finally these data were convolved to the 51 arcmin resolution of the $408-\mathrm{MHz}$ survey. The spectral index of 2.1 applies provided

 408 MHz for these sources. Where these fluxes are less than those derived from the IR emission, the observed flux has been used.
The resulting distribution of thermal emission at 408 MHz for $|l|<90^{\circ}$ is shown as the central maps in Figs 10 and 11. This component can then be subtracted from the total are interested in the larger-scale distribution of this emission, we have also subtracted from the lower maps the contributions from all catalogued SNR within 2° of the galactic plane which are
The same data are presented as cuts along $b=0^{\circ}$ in Fig. 12. Interpretation of these results in terms of the distribution of cosmic ray electrons and magnetic field will be given in a future

 dix. This appears to be a definite bright SNR. Its identification may have been hampered by an $\mathrm{H}_{\text {II }}$ region which covers part of its area.

 in a somewhat smaller thermal component. Because the non-thermal component dominates at 408 MHz , the relative uncertainty in this separated component, due to uncertainties in the grain model, amount to no more than about 7 per cent.

5 Discussion

5.1 THERMAL-NON-THERMAL SEPARATION
It is instructive to compare the results of this new method of separating the thermal and nonthermal components of the radio continuum emission of the Galaxy with the results of the
 galactic plane of thermal emission from the diffuse ionized gas at 1390 MHz , which is an

[^3]

thermal emission or that the spectral index technique has in this case overestimated the thermal emission.
Although, from the simple derivation of the infrared excess outlined in Section 2.5, the total
IR emission should scale with the thermal radio continuum regardless of the density of the gas, one would, perhaps, expect the scaling to break down when one considers the IR emission in a specific waveband. The temperature of the dust could be lower near to the edges of the extended low-density regions than near their centres. This would mean that the fraction of the total IR emission falling in the $60-\mu \mathrm{m}$ band would be smaller near the edges. Assuming a λ^{-2} emissivity law for the dust grains, the fraction of the total IR emission in the $60-\mu \mathrm{m}$ band from
 would have been better to correlate the radio emission with the total IR emission estimated from a consideration of the relative and absolute intensities in the $60-$ and $100-\mu \mathrm{m}$ bands. It can be seen from the almost constant ratio of the two observed intensities, however, that this
procedure would have made little difference. There seems to be no direct evidence from a

 effect of averaging along the line-of-sight might conspire to mask it.
As an illustration of some of the problems of the spectral index method for thermal-nonthermal separation, we consider some of the details of its application to the survey of Wester-
 85.5 MHz. In principle, the zero levels and temperature scales of the two surveys have to be known for this method to work. The low-frequency brightness temperatures were assumed to

 extrapolating the brightness temperatures at these limits to 1390 MHz using a non-thermal spectral index of 2.7. This index was the mean of a number of earlier high-latitude measure-

 (0)

It can be seen that both the Westerhout and Mathewson et al. temperatures are significantly higher than the carefully calibrated full-beam temperatures of the Stockert suvey. Assuming that the more recent survey is correct, the spectrum of total emission deduced earlier is too flat, and the fraction of the emission deduced to be thermal is too high. The discrepancies and scale. These can be a major source of uncertainty in applying the spectral index technique. Reich \& Reich (1988) have determined the spectral index of the total emission between the
Haslam et al. survey at 408 MHz and the Stockert survey at 1420 MHz after the latter had been convolved to the 51 arcmin resolution of the former. They have performed a thermal-non-thermal separation over the longitude interval $50^{\circ} \geqslant l \geqslant 10^{\circ}$. In this interval along the galactic plane, the spectral index of the total emission is everywhere >2.6, so that if the nonthermal spectral index of Westerhout had been adopted there would have been no thermal component at all. The authors argued, however, mainly from earlier observations at frequencies between 1.4 and 15.5 GHz that the spectral index of the non-thermal emission should
 that deduced by us, with our estimates having larger excursions from the mean. This would imply, if our separation is correct, that the non-thermal emission does indeed have a rather
steep spectrum between 408 and 1420 MHz but that its spectral index varies somewhat from К
The assumptions of a non-thermal spectral index of 2.6 between 85.5 and 1390 MHz by Westerhout and of a non-thermal spectral index of 3.1 between 408 and 1420 MHz by Reich
 steepens quite sharply at about 408 MHz and that its spectral index is much less than 2.6 between 85.5 and 408 MHz . What is difficult to accept, bearing in mind that the strength of the galactic magnetic field is expected to increase towards the centre of the Galaxy, is that the steepening in the spectrum occurs at the same frequency at all points along the line-of-sight.

405

Figure 14. The distribution with galactocentric radius of the $\mathrm{H}_{\text {II }}$-associated $60-\mu \mathrm{m}$ emissivity. The unfolding
assumes azimuthal symmetry but the presence of some negative emissivities indicate that this is only approximately true. The north and south sides of the Galaxy are treated separately.

dust emissivity per H atom (see Section 2.3), can be used to calculate the total luminosity in the $60-\mu \mathrm{m}$ band of Hi -associated dust in the galactic disc. The results are summarized in Table 2.

Component	Luminosity/ $/ \mathrm{W} \mathrm{Hz}^{-1}$ in IRAS $60-\mu \mathrm{m}$ band	
	Inside solar circle	Outside solar circle
	$(r<R<10 r \mathrm{kpc})$	$(R>10 r \mathrm{kpc})$
	$1.5 \times 10^{23} r^{2}$	$10^{22} r^{2}$
HI-associated	$1.1 \times 10^{23} r^{2}$	$10^{22} r^{2}$
HII-associated		

5.3 MASS OF IONIZED GAS

Another quantity which we can estimate from our deduced thermal component of the radio continuum emission is the total mass of ionized gas in the Galaxy. We use the above radial distribution of $60-\mu \mathrm{m}$ emissivity scaled by 1.4×10^{-3} to give the thermal radio emissivity at 11 cm . Assuming that this emission is due to thermal bremsstrahlung one can derive an rms electron density for each 1 kpc wide annulus about the Galactic Centre. This value must be

 the solar circle was made by assuming that all of the $60-\mu \mathrm{m}$ emission observed outside the longitude range used for the unfolding (i.e. $282^{\circ} \geqslant l \geqslant 76^{\circ}$) emanates from a circular annulus of internal and external radii $10 r$ and $13 r \mathrm{kpc}$ respectively. To calculate the total mass of ionized hydrogen in the Galaxy, excluding the central 1 kpc , we assume a constant scale height $130 r$ pc. Multiplying the derived H mass by 1.4 to include ionized He we obtain the total mass of ionized gas

$M_{\text {ion }}=9.9 \times 10^{8} K^{-0.5} r^{2} M_{\odot} \quad$ for $R \geqslant r \mathrm{kpc}$.

This is a rather crude estinıate, since the assumption of cylindrical symmetry about the Galactic Centre is undoubtedly an over-simplification. A more refined approach would be to consider the spiral structure of the Galaxy. Mezger (1978) deduced from his assumed diffuse free-free continuum galactic flux a total mass of ionized gas between $0.8 r$ and $10 r \mathrm{kpc}$ of $1.0 \times 10^{9} K^{-0.5} r^{2} M_{\odot}$, while our estimate for the same region is $7.8 \times 10^{8} K^{-0.5} r^{2} M_{\odot}$.
5.4 THERMAL AND NON-THERMAL RADIO LUMINOSITY OF THE GALAXY
The thermal part of the total radio continuum luminosity of the Galaxy can be calculated in a similar way to that described in Section 5.2. At 408 MHz the thermal luminosity is 2.1×10^{2} $r^{2} \mathrm{~W} \mathrm{~Hz}^{-1}$, while at 5 GHz it is $1.6 \times 10^{20} r^{2} \mathrm{~W} \mathrm{~Hz}^{-1}$. As can be seen in Fig. 10, the nonthermal component has a much wider distribution of intensity about the galactic plane than the thermal component, and a more complex model of the three-dimensional distribution of emissivity is required. Phillipps et al. (1981), from a detailed consideration of the distribution
 kpc and a lower emissivity non-spherical 'halo' extending to $\sim 10 \mathrm{kpc}$ from the plane. By

LOt
 Hz^{-1} is obtained. Thus the ratio of thermal to non-thermal luminosity at 408 MHz is 2.5 per
 К \lceil әпп

 Galaxy, the thermal-non-thermal separation indicates a spectral index ~ 0.7 between 408 MHz and 5 GHz for the non-thermal component. There are independent indications, however, that the radio spectrum is steeper at higher galactic latitudes and in the outer parts of the Galaxy, and an effective index over the whole sky may be as large as 1.0 . Using these values as limits, the non-thermal luminosity at 408 MHz scales to $(11 \pm 4) \times 10^{20} r^{2} \mathrm{~W} \mathrm{~Hz}^{-1}$ at 5 GHz and the ratio of thermal to non-thermal luminosity is 15 ± 5 per cent.

Duric, Bourneuf \& Gregory (1988) have applied the spectral index technique to thermal-non-thermal separation of the flux from a selection of spiral galaxies. The spectral index of the
 parameter but is assumed to be constant from 0.1 to 10 GHz . For those galaxies to which such model spectra can be fitted, there is a rather wide range of thermal fractions at 5 GHz . The above value for the Galaxy is typical of those for galaxies of similar luminosity class.

 luminosity at $100 \mu \mathrm{~m}$ is 2.0×10^{-3}. We deduce that the corresponding value for the Galaxy is

 the Galaxy where the infrared emission is concentrated.

6 Conclusions

 continuum emission that it must originate in regions of ionized hydrogen. This includes

References

extended low-density Hir regions as well as discrete sources. The corollary of this is that the
$60-\mu \mathrm{m}$ band emission, after due allowance has been made for the Hi-associated emission, can
be used to identify the thermal component of the radio continuum. On a small scale this can be
used to distinguish non-thermal sources (supernova remnants and radio galaxies) from Hif
regions. A list of supernova remnant candidates has been produced for the southern hemi-
sphere. On a larger scale, the technique has been used to remove the thermal contribution from
the $408-\mathrm{MHz}$ all-sky map by Haslam et al. (1982). The more detailed picture of the distribu-
tion of synchrotron radiation near to the galactic plane that this reveals will be dealt with in a
future paper.
The apparent colour temperature of the total infrared emission, based on the $I R A S 60-$ to
$100-\mu m$ band intensity ratio does not agree with that expected if the emission is solely from
graphite and silicate grains in radiative equilibrium with their local ISRF. As an alternative to an
explanation in terms of a component of emission from smaller grains, not in radiative equi-
librium, we suggest that, in the galactic plane in the inner part of the Galaxy, there may be a
significant contribution to the $100-\mu \mathrm{m}$ band from O iII line emission from Hil regions. This
would also be expected to correlate with the thermal radio continuum and could account for
an apparent decrease in colour temperature of the Hi-associated emission with decreasing
galactocentric radius. It is likely that the observed colour temperature is, in fact, due to a
combination of the two effects. These alternatives have a bearing on our procedure for
thermal-non-thermal separation of the radio continuum via their effect on the predicted Hi-
associated component. In order to quantify this, we have performed the separation both for the
model of 'standard grains' plus line emission and for the 'small grain' model.
The thermal component which we have deduced at 408 MHz is somewhat smaller than
inferred from the early spectral index separation of Westerhout (1958), but is at about the
same level as that deduced more recently by Reich \& Reich (1988). The disagreement between
the two distributions derived using the spectral index technique illustrates the problems of
applying it. By embarking on a programme to develop a new procedure using the $I R A S 60-\mu m$
band emission, as described in the present work, we hope to circumvent such difficulties.

Acknowledgments

The authors value the discussions they have had with P. Cox, P. G. Mezger and A. W. Wolfendale. The IPMAF team at the Rutherford Appleton Laboratory are thanked for
providing the IRAS data and software. AB acknowledges SERC for her Research Studentship.
Altenhoff, W. J., Downes, D., Goad, L., Maxwell, A. \& Rinchart, R., 1970. Astr. Astrophys. Suppl., 1, 319.

[^4]

Separation of thermal radio emission from synchrotron component 409 Hummel, E., Davies, R. D., Wolstencroft, R. D., van der Hulst, J. M. \& Pedlar, A., 1988. Astr. Astrophys., 199,
91. IRAS Expla
IRAS Explanatory Supplement, 1985. Eds Beichman, C. A., Neugebauer, G., Habing, H. J., Clegg, P. E. \&
Chester, T. J., JPL D-1855, Jet Propulsion Laboratory, Pasadena.
Li, Ti Pei, Riley, R. A. \& Wolfendale, A. W., 1983. Mon. Not. R. astr. Soc., 203, 87.
Low, F. J., Kurtz, R. F., Pateet, W. M. \& Nishimura, T., 1977. Astrophys. J., 214, L115.
Low, F. J. et al., 1984. Astrophys. J., 278, L19.
Mathewson, D. S., Healey, J. R. \& Rome, J. M., 1962. Aust. J. Phys., 15, 354 and 369.
Mathis, J. S., Rumpl, W. \& Nordsieck, K. H., 1977. Astrophys. J., 217, 425.
Mathis, J. S., Mezger, P. G. \& Panagia, N., 1983. Astr. Astrophys., 128, 212.
Mezger, P. G., 1978. Astr. Astrophys., 70, 565.
Mezger, P. G., Mathis, J. S. \& Panagia, N., 1982. Astr. Astrophys., 105, 372.
Myers, P. C., Dame, T. M., Thaddeus, P., Cohen, R. S., Silverberg, R. F., Dwek, E. \& Hauser, M. G., 1986.
Astrophys. J., 301, 398.
Phillipps, S., Kearsey, S., Osborne, J. L., Haslam, C. G. T. \& Stoffel, H., 1981. Astr. Astrophys., 103, 405.
Reich, W., 1982. Astr. Astrophys. Suppl., 48, 219.
Reich, P. \& Reich, W., 1986. Astr. Astrophys. Suppl., 63, 205.
Reich, P. \& Reich, W., 1988. Astr. Astrophys., 196, 211.
Reich, W., Fürst, E., Steffen, P., Reif, K. \& Haslam, C. G. T., 1984. Astr. Astrophys. Suppl., 58, 197.
Sanders, D. B., Clemens, D. P., Scoville, N. C. \& Solomon, P. M., 1986. Astrophys. J. Suppl., 60, 1.
Shaver, P. G. \& Goss, W. M., 1970. Aust. J. Phys. Astrophys. Suppl., 14, 133.
Sodroski, T. J., Dwek, E., Hauser, M. G. \& Kerr, F. J., 1987. Astrophys. J., 322, 101.
Strong, A. W., 1975. J. Phys. A, 8, 617.
Strong, A. W., Riley, P. A., Osborne, J. L. \& Murray, J. D., 1982. Mon. Not. R. astr. Soc., 201, 495.
Swarup, G. \& Subrahmanya, C. R., 1976. Radioastronomy and Cosmology, IAU Symp. No. 74, p. 125, ed.
Jauncey, D. L., Reidel, Dordrecht.
Terebey, S. \& Fich, M., 1986. Astrophys. J., 309, L73.
Wall, J. V. \& Cooke, D. J., 1975. Mon. Not. R. astr. Soc., 171, 9.
Watson, D. M., Storey, J. W. V., Townes, C. H. \& Haller, E. E., 1981. Astrophys. J., 250, 605.
Weaver, H. \& Williams, D. R. W., 1973. Astrophys. Suppl., 8, 1.
Wendker, H. J., 1970. Astr. Astrophys., 4, 378.
Westerhout, G., 1958. Bull. astr. Inst. Neth., 14, 215.

Appendix

Table Al gives a list of non-thermal radio sources picked out from the 6 -cm survey by Haynes
et al. (1978) by their much lower ratio of $60-\mu \mathrm{m}$ to $6-\mathrm{cm}$ flux than is observed in H il regions.
None of these has been catalogued as a supernova remnant. Two are known to be radio-
galaxies. Statistically, all of those which are unresolved by the 4 -arcmin beam could also be
radiogalaxies. The remaining 17 are prime candidates for supernova remnants.

[^0]:

[^1]:

[^2]: 4.1 SUPERNOVA REMNANT CANDIDATES FROM THE PARKES 6 -cm SURVEY

[^3]:

[^4]: Boulanger, F. \& Pérault, M., 1988. Astrophys. J., 330, 964.
 Broadbent, A., Osborne, J. L. \& Haslam, C. G. T., 1988. In

 Broadbent, A., Osborne, J. L. \& Haslam, C. G. T., 1988. In: Comets to Cosmology, 3rd IRAS Symp., p. 109, ed Burton, W. B. \& Gordon, M. A., 1978. Astr. Astrop

 Burton, W. B., Deul, E. R., Walker, H. J. \& Jongeneelen, A. W. W., 1986. In: Light on Dark Matter, ed. Israel, F. F., Reidel, Dordrecht.
 Cox, P., Krügel, E. \& Mezger, P. G Cox, P., Krügel, E. \& Mezger, P. G., 1986. Astr. Astrophys., 155, 380.
 Draine, B. T. \& Anderson, N., 1985. Astrophys. J., 292, 494. Draine, B. T. \& Anderson, N., 1985. Astrophys. J., 292,
 Draine, B. T. \& Lee, H. M., 1984. Astrophys. J., 285, 89.

