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ABSTRACT

This paper reviews a useful technique for performing zoom transform. 
The method involves recording a long-time signal and transforming it in 
parts, using a smaller transform. Its ability to handle long-time signals 
renders the method attractive to both acousticians and vibration engineers. 
Examples and the listing of a computer program are given to demonstrate the 
technique.

SOMMAIRE

Une technique pratique pour réaliser la transformation avec zoom 
nécessite l’enregistrement d’un signal de longue durée, pour ensuite le 
transposer en parties en utilisant une plus petite transformation. La 
possibilité de traiter des signaux de longue durée accroît 1’intérêt de 
cette technique pour les spécialistes de l'acoustique et des vibrations. 
Des exemples ainsi qu'une liste imprimée d'un programme informatique sont 
donnés pour illustrer cette technique.

The discrete Fourier transform (DFT) has become a very important tool for 
analysis because of the availability of efficient computer algorithms and low priced 
mini- and micro-computers with fast array processors. The efficient method for 
computing DFT is called the fast Fourier transform (FFT). Most machines, however, 
are usually limited to a 1 k or 2 k point transform (k = 1024). This limitation 
often presents problems to acousticians who have to analyse very long time signals 
and to vibration engineers who need fine resolution spectra for modal analysis. 
Although FFT instruments with zoom features are readily available, software can be 
difficult to find. For example, no such programs are listed in "Programs for Digital 
Signal Processing" by the IEEE Press.1

Techniques for zoom transform and for long-time signal analysis are available in 
the literature,2-4 but they involve fairly complicated procedures. There is, 
however, a straightforward method used by the Bruel and Kjaer Type 2033 "High 
Resolution Signal Analyser" to solve both problems. Unfortunately, neither the Bruel 
and Kjaer manual nor Thrane5 give enough information for other researchers to 
implement the technique with their own computers. The procedure involves taking 
smaller transforms on selected data points from different segments of a pre-recorded 
long-time signal. Although Yip4 did not promote this procedure in his paper, the 
mathematical foundation can be gained from his analysis. This paper reviews this 
technique and presents some examples.
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ANALYSIS

Although both the discrete and fast Fourier transform algorithms are, in 
general, considered for complex variables, the following discussion is restricted to 

real input data since all experimental time functions are real. Consider a time 
function x(t) sampled at interval At and starting at t = 0. If N is the total number 
of contiguous data points, the finite discrete Fourier transform of x(t) is given by 
the following equation:6

X(nAf) = Nÿ1 x(kAt) e"j2irnk/N (1)
k=0

where n = 0, 1, ... N-l, and Af = 1/NAt is the spectral resolution.

In practice, the sampling frequency fs(= 1/At) is governed by the highest 
frequency of interest, fm . The sampling theorem requires that fg = 2fm. Thus,

As a result, N has to be large for fine resolution analysis at high frequencies. If 

the hardware limits N to 1 or 2 k, the usual zoom technique by frequency shift has to 
be used. This paper offers a different solution.

Suppose the computer is limited to a P (= 1 k for example) point transform and 
the requirement for N is M (= 10 for example) times P. For some machines these N 
data points have to be stored either in a disk or a tape file first. The proposed 
technique involves performing an ordinary 1 k transform ten times using data selected 
from different parts of the 10 k samples. After the results from the ten smaller 
transforms have been properly combined, the solution is equal to a 10 k transform.
It is also possible to compute, with the same resolution, only a selected portion of 
the whole spectrum. Thus, this technique can be considered as a zoom transform also. 
The mathematical background is given in the following paragraphs.

Let the N data points be divided into P blocks of M points each, such that 
N = MP. Using the following index transformation,14

k = r M + s  (3)

where r = 0, 1, ..., (P-l) 
s = 0, 1, . .., (M—1) .

Equation (1) can be rewritten as

X(nAf) = ?f  x[(rM + s)At]e"j2lTn(rM+s)/N 
r=0 s=0

= Y  e“j2irns/N x[(rM + s)At]e-j2imr/P (4)
s=0 r=0

Another index transformation,

n = a P + 8  ( *5 )

with a = 0, 1, ..., (M—1 )
P * 0, 1, ..., (P-l)
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will recast Eq„ (4) into

X[(oP + g)Af] = Y  e-j2ïïas/M e"j2^ s/N Y  e"j2^ r/P x[(rM + s)At] (6) 
s=0 r=0

The first summation on the index r of Eq„ (6) represents a DFT on the P sampled 
points, x(s), x(M+s)j x(2M+s), etc., to give P complex spectral components. The DFT 
can be carried out by the usual FFT algorithm and this operation has to be repeated M 
times as s changes from 0 to M-l. These intermediate results are termed partial 
spectra. That is

X (gAf) = Y  e"j2lTBr/,px[(rM+s)At] (7)
r=0

where g = 0, 1, (P-l).

As pointed out by Thrane,5 the term exp(-j2irgs/N) represents a phase shift 
correction to the frequency components of each of the M partial spectra. This is 
governed by the index s and is required to compensate for the time shift between the 
M sets of data used in the transform. Thus, Eq. (6) can be rewritten as

x[ ( aP+g)Af ] = V  e-j2ïï01s/M X'(SAf) (8)
s=0 s

where Xg(gAf) = Xg(gAf) e”j2'*Tgs/N arg t^e ^ compensated partial spectra.

There is no mention of the other terra, exp(-j2iras/M), in Thrane's paper, but it 

may be thought of as a weighting function of the M compensated partial spectra. For 
a given value of a, Eq. (8) generates up to P spectral lines. The number selected 
within the range otPAf to [(a+l)P-l]Af is determined by the choice of the range for g. 
This procedure provides a form of zoom transform. By allowing a and g to take on all 
values from 0 to M-l and to P-l, respectively, the full spectrum of N lines can be 
generated if necessary.

To minimize storage space and computing time, Yip1* chose to re-order the 
summation procedure so that data could be used in chronological order. He had to 
treat the phase shift factor exp(-j2irgs/N) as unity, however, and to correct the 
results after the zoom spectrum had been computed. As the correction factor depends 
on the type of signals being analysed, his zoom scheme is less attractive than the 
method presented here.

PROGRAMMING HINTS

The M partial spectra as defined by Eq. (7) can be performed with any available 
FFT program. It is important to note, however, that there are FFT programs for 
complex input data and other programs for real input data only. The two types will 
have different input and output format.

For real input data the frequency spectrum obtained is a conjugate even 
function; that is,

X g[(P-g)Af] = Xs*(gAf) (9)

where * denotes complex conjugate. Some FFT programs intended for use
only with real input may return only P/2 points. As Eq. (8) requires the complete P
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lines of the partial spectra, they must be recreated using Eq. (9). In general, P is 
set by the available software or hardware and is much larger than M. The second 
summation over the index s can be performed in the straightforward manner.

It is important to realize that the DFT is just an approximation of the 
continuous Fourier transform, and that there are problems associated with its usage, 
for example, aliasing, leakage and picket-fence effect. These problems have been 
dealt with in the literature.7 If it is necessary to apply windowing such as 
Hanning to the data, it should be applied to the original N data points. For the 
full spectrum, only the first N/2 frequency lines are independent.

EXAMPLES

To verify the proposed technique, 512 data points are generated using an 
analytical function. First, an ordinary transform on the 512 data points was 
performed to give 256 complex frequency results. The same 512 data points were then 
divided into 128 blocks of four data points each to be used in the proposed transform 
procedure. No significant differences were found between the two results.

To illustrate the zoom capability, a test signal consisting of two sine waves 
(198 Hz and 200 Hz) and a band-limited random noise was used. The test signal was 
sampled at a rate of 1 kHz. Initially, an ordinary 512 point transform was used. A.s 
the spectral resolution for this transform was only 1.95 Hz, it would not be capable 
of resolving the two sine waves (see Fig. 1). Increasing the total number of data 
points to 5120 and using the proposed transform technique with P = 512 and M = 10, 
the spectral resolution became 0.195 Hz and it was possible to resolve the two sine 
waves, as indicated in Fig. 2. The listing of a sample program is given in the 

Appendix.
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Figure 1. Overlapped spectrum obtained 
by the ordinary FFT method using 512 
points. Spectral resolution = 1.95 Hz
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Figure 2» Fine resolution spectrum 
obtained by the proposed transform 
method using 5120 points. Spectral 
resolution = 0.195 Hz
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CONCLUSION

A simple technique for zoom transform and long-time signal analysis has been 
reviewed and examples have been given to illustrate its applications. It is hoped 
that other acousticians and vibration engineers will find it useful,
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APPENDIX

C SAMPLE PROGRAM FOR A 10 k POINT TRANSFORM USING A i k  FFT 
C SUBROUTINE. THE FFT SUBROUTINE CALLED FAST BY BERGLAND AND DOLAN 
C IS FOR REAL INPUT DATA ONLY AND IS LISTED IN THE IEEE BOOK ON 
C PROGRAMS FOR DIGITAL SIGNAL PROCESSING.

COMPLEX C, F, CEXAF, CEXBA
DIMENSION P(10240), PI(1026), C(1024), F(1024)

COMMON/CONS/PII, P7, P7TW0, C22, S22, PI2 
C SPLIT THE 10240 POINTS INTO 1024 BLOCKS OF 10 DATA POINTS EACH. 

NP=1024; // OF BLOCKS GOVERNED BY THE FFT SIZE.
NM=10; # OF POINTS PER BLOCK.
NMH=NM/2
NP1=NP+1

NPHl=NP/2+l
NPH2=NP/2+2

C FOR 'ZOOM* TRANSFORM, ENTER PARTICULAR NAF VALUE FOR ALPHA.
C EXAMPLE GIVEN IS FOR THE COMPLETE SPECTRUM.
C NOTE, A 10 k TRANSFORM GIVES 5 k INDEPENDENT FREQUENCY COMPONENTS 
C ONLY.

DO 20 NAF=1,NMH 
NAF0=NAF-1 
DO 25 NBE=1, NP 
F(NBE)=0.0 

25 CONTINUE
DO 30 NS=1, NM; SET UP EXPONENTIAL ALPHA-S TERM 
NSO=NS-l
ARGAF=2.*3.14159*NAFO*NSO/NM 
EXAFR=COS(ARGAF)
EXAFI=-SIN(ARGAF)
CEXAF=CMPLX(EXAFR, EXAFI)
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C PERFORM 1 k POINT TRANSFORM WITH SELECTED DATA FROM EACH BLOCK 

DO 40 NR=1, NP 
NRO=NR-l 
J=NRO*NM+NS 
PI(NR)=P(J)

40 CONTINUE
CALL FAST(PI, NP)

C SINCE SUBROUTINE FAST GIVES (NP/2+1) FREQUENCY RESULTS ONLY, IT IS 
C NECESSARY TO GENERATE RESULTS FOR THE REST OF THE PARTIAL 
C SPECTRUM 

J=1
DO 50 L=l, NP1, 2 
LC=L+1
C(J)=CMPLX(PI(L), PI(LC))
J=J+1 

50 CONTINUE 
Jl=l
DO 60 J=NPH2, NP 
K=NPH1-J1 
C(J)=CONJG(C(K))
J1=J1+1 

60 CONTINUE
DO 70 NBE=1, NP; SET UP EXPONENTIAL BETA-S TERM 
NBEO=NBE-l
ARGBA=2.*3.14159*NBE0*NS0/N 

EXBAR=COS(ARGBA)
EXBAI=-SIN(ARGBA)
CEXBA=CMPLX(EXBAR, EXBAI)
F(NBE)=F(NBE)+C(NBE)*CEXAF*CEXBA 

70 CONTINUE 
30 CONTINUE

DO 80 1=1, NP 
TOR=REAL(F(I))
TOI=AIMAG(F(I))
TYPE TOR, TOI 

80 CONTINUE 
20 CONTINUE 

STOP 
END
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