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A TECHNIQUE IN PERTURBATION THEORY 
G. S. LADDE, V. LAKSHMIKANTHAM, AND S. LEELA 

Introduction. A study of the effect of perturbations of differential 
equations depends on the method employed and on the nature of per
turbations. One of the most used techniques is that of Lyapunov 
method and the other is the nonlinear variation of parameters formula 
[3]. These methods dictate that we measure the perturbations by 
means of a norm and thus destroy the ideal nature, if any, of the per
turbing terms. Recently an effort was made to correct this unpleasant 
situation [1, 2] . 

In this paper, we wish to develop a new comparison theorem that 
connects the solutions of perturbed and unperturbed differential sys
tems in a manner useful in the theory of perturbations. This compari
son result blends, in a sense, the two approaches mentioned earlier and 
consequently provides a flexible mechanism to preserve the nature of 
perturbations. Our results will show that the usual comparison 
theorem in terms of Lyapunov function is imbedded as a special case in 
our present theorem and that the perturbation theory could be studied 
in a more fruitful way. An example is worked out to illustrate the 
results. 

1. A new comparison result. We consider the two differential sys
tems 

(1.1) y'=f(t,y\ y(to) = xo9 

and 

(1.2) x' = F(t,x), x(t0) = x0, 

where f, F GC[R+ X S(p), Rn]. Here R+ denotes the nonnegative 
real line, Rn the Euclidian n-space, C[R+ X S(p), ftn] the class of con
tinuous functions from R+ X S(p) to Rn and S(p) = [x G Rn : ||x|| < p] 
where || *|| is any convenient norm in Rn. Relative to the system (1.1), 
assume that 

(H) the solutions y(t, t0,x0) of (1.1) exist for all ti^ t0, are unique, 
continuous with respect to the initial data and y(t, t0, x0) is locally 
Lipschitzian in x0. 
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Since (H) implies that \\y(t, t, x)|| < p for t^ t0, for any V £ 
C[R+ X S(p), R+] and any fixed t G (t0, » ), we define 

D+V(s, y(t, s, x)) = lim sup -^ [ V(s -h h, y(f, s+ h,x+ hF(s, x))) 

(1.3) ^ h 

- V(s,y(t,s,x))], 

fort0^= s< t and x G S(p). 

The following comparison result which relates the solutions of (1.2) 
to the solutions of (1.1) is an important tool in our discussion. 

THEOREM 1.1. Assume that 
(i) the hypothesis (H) holds; 

(ii) V Œ C[R+ X S(p), R + ] , V(s, x) is locally Lipschitzian in x and 
fort0^s<t,xE S(p), 

(1.4) D+V(s, y(t, s, x)) ^ g(5, V(s, y(t, s, x))); 

(iii) g G C[R+ X R+, R] and £ne maximal solution r(t, t0, u0) of 

(1.5) t i ' = g(ttt),tf(<b) = Uo^O, 

exists for t è fo
rden ifx(t) = x(f, £0> *o) ™ a n?/ solution of (1.2), a>e hat;e 

(1.6) V(t, x(t, *b, xo)) ^ r(t, fe, "o)> *o ^ * < °°, 

provided V(t0, y(t, t0, x0)) § u0. 

PROOF. Let x(t) = x(t, t0,x0) be any solution of (1.2) existing on 
[to, °° ). We set m(s) = V(s, y(t, s, x(s))) for t0 = s^ t so that m(t0) = 
V(t0, y(t, t0, x0)). Then using the assumptions (H) and (ii), it is easy to 
obtain the differential inequality 

D+m(s) ^ g(s, m(s)), t0^s<t, 

which yields by comparison theorem [3, Th. 1.4.1] the estimate 

(1.7) m(s) g r(s, t0, u0), t0^s<t, 

provided m(t0) = u0. Since m(t) = V(t, y(t, t, x(t))) = V(t, x(t, t0, x0)), 
the desired result (1.6) follows from (1.7) by setting s = t. The proof is 
complete. 

Taking u0 = V(t0, y(t, t0, x0)), the inequality (1.6) becomes 

(1.8) V(t, x(t, t0, x0)) ^r[t, t0, V(t0, y(t, t0, x0))], t0 â t < » , 
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which shows the connection between the solutions of systems (1.1) 
and (1.2) in terms of the maximal solution of (1.5). 

Remarks. A number of comments are in order: 
(i) The trivial function f(t, y) = 0 is admissible in Theorem 1.1 to 

yield the estimate (1.6) provided V(t0, x0) = u0. In this case, y(t0, x0) = 
x0 and thus the hypothesis (H) is trivially verified. Since y(t, s, x) = x, 
the definition (1.3) reduces to 

(1.9) D+V(s, x) = lim sup - f [ V(s + h, x + hF(s, x)) - V(s, x)], 
h-»o+ h 

which is the usual definition of the generalized derivative of the 
Lyapunov function relative to the system (1.2). Consequently, Theorem 
1.1 reduces, in this special case, to a well-known comparison theorem 
(see Th. 3.1.1 in [3] ). Thus it is clear that Theorem 1.1 is a natural 
extension of known comparison results. 

(ii) Suppose that f(t, y) = A(t)y where A(t) is n X n continuous 
matrix. The solutions y(t, t0, x0) of (1.1) then satisfy the relation 
y(t, t0, XQ) = U(t, t0)x0 where U(t, t0) is the fundamental matrix solution 
of y ' = A(t)y, U(t0, t0) = Identity matrix. The hypothesis (H) is clearly 
satisfied. Suppose also that g(t, u) = 0. Then (1.8) yields 

(1.10) V(t, x(t, t0, x0)) a V(to, U(t, t0)x0), t ^ t0. 

If, in addition, V(t, x) = ||x||, (1.10) leads to 

(1.11) ||*(t, to, Xo)|| ^ \\U(t, to)x0\\,t^ t0. 

If, on the other hand, g(t,u) = —au, a> 0, then we get a sharper 
estimate 

(1.12) V(t, x(tf t0, xQ)) ^ V(t0, U(t, t0)x0) e-**-* >, t ^ to, 

which, in the special case V(t, x) = \\x\\, reduces to 

(1.13) ||*(t, to, x0)|| g \\U(t, t0)x0\\e-°«->o \ t g to. 

Clearly, the relation (1.13) helps in improving the behavior of solu
tions of (1.2) relative to the behavior of solutions of (1.1). That this is 
an asset in the perturbation theory can be seen by setting F(t,x) = 
f(t, x) + R(t, x), where R(t, x) is the perturbed term. 

(iii) Suppose that f(t, y) is nonlinear and fy(t, y) exists and is con
tinuous for (t,y) E f i + X S(p). Then it is known [3] that the solu
tions y(t, t0, x0) are differentiate with respect to (£0, *o) a n d 
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(1.14) 

fill 

-~-(tf t0, XQ) = - * ( t , t0, *o) f(to, *o), 
dt0 

^-(t,t0ìx0) = <ì>(t,t0,x0)y 

where <!>(£, t0, x0) is the matrix solution of the variational equation z ' = 
fy(t, y(t, t0, x0))z. If V(s, x) is also assumed to be differentiable, then by 
(1.14) we have, for a fixed t, 

DV(s, y(t, s, x)) = Vs(s, y(t, s, x)) 
(1.15) 

+ Vx(8,y(t,s,x)) -<t>(t,s,x) • [F(*,x) - / ( * , * ) ] . 

The relation (1.15) gives an intuitive feeling of the definition (1.3). If, 
in addition, V(t, x) = ||z||2 and F(t, x) = /(*, x) + R(t, x), (1.15) 
yields D_V(s, y(t, s, x)) = 2y(t, s, x) • <!>(£, s, x)R(s, x) which shows how 
the perturbation terms R(t, x) are involved in the computations. 

(iv) When the solutions of (1.1) are known, a possible Lyapunov 
function for (1.2) is 

(1.16) W(s,x) = V(s9y(t,s,x)), 

where V(s, x) and y(t, s, x) are as before. One could take a convenient 
V(f, s) like V(s, x) = ||x|| so that W(s, x) = \\y(t, s, x)\\ is a candidate for 
Lyapunov function for (1.2). In case y(t, s, x) = x, condition (1.4) re
duces to 

l i m i n f i [ | |x+ hF(t,x)\\- ||x||] ê g(t, ||x||), 
h->0~ n 

which is an often used assumption. 

2. Stability and asymptotic behavior. As an application of the com
parison theorem 1.1, we shall consider in this section some results on 
stability and asymptotic behavior of solutions of (1.2). 

THEOREM 2.1. Assume that 
(1) the conditions (i) and (ii) of Theorem 1.1 hold; 
(2) g G C[R+ X fì+, R],g(t,0) = 0,/(t ,0) = Oand F(f,0) = 0; 
(3) the trivial solution of (1.1) is uniformly stable and u = 0 of (1.5) 

is uniformly asymptotically stable; 
(4) b(l|x||) g V(t, x) g a(||x||), (t,x) G R + X S(p), wfcere o , b £ 

C[ [0, p), R + ] , a(u), fe(ii) are increasing and a(0) = 0. Then the trivial 
solution of (1.2) is uniformly asymptotically stable. 
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PROOF. Let 0 < € < p, t0 G R+ be given. The uniform stability of 
u = 0 of (1.5) implies that given b(e) > 0, t0 G R+ there exists a 6x = 
8i(e) such that 

(2.1) u(t, t0, u0) < fo(e), t ^ «o i f "o ^ «i. 

Let 82
 == a - 1 ^ ) . Since x = 0 of (1.1) is uniformly stable, given 

82 > 0, t0 G R+ there exists a S = 8(e) > 0 such that 

(2.2) \\y(t, t0, x0)\\ <82,t^ t0, if ||x0|| < 8. 

We claim that ||x0|| < 8 also implies that \\x(t, t0, x0)\\ < c, t^ t0, where 
x(t, t0, x0) is any solution of (1.2). If this is not true, there would exist 
a solution x(t, t0,x0) of (1.2) with ||x0|| < 8, a t, > t0 such that 
||*(*i, to, XQ)\\ = €, and \\x(t, t0, x0)\\ < e, 10 ̂  t < t,. Then, by 
Theorem 1.1 we have 

V(t, x{t, t0, xo)) ^ r(t, t0, V(t0, y(t, t0, x0))), t0^t^ t,. 

Consequently, by (2.1), (2.2) and (4), we get 

b(e) ^ Vit,, x(tl910, x0)) ^ r(tl910, a(\\y(tl910, x0)\\)) 

g rit,, to, a(82)) ^ rit,, t0, 8X) < hie). 

This contradiction proves that x = 0 of (1.2) is uniformly stable. 
To show uniform asymptotic stability, we set e = p and 8(p) = 8o-

Then from the foregoing argument, we have 

b(\\x(t, t0, x0)\\) ^ Vit, xit, t0, x0)) ^ rit, t0, V(t09 y(t910, x0))) 

for all t è t0 if ||x01| < So- From this it follows that 

b(\\x(t, t0, *o)||) ^ rit, to, 8,ip)), t S t0, 

which implies the stated result by (3). 

Remark. Setting F(t, x) = fit, x) + Rit, x) shows that although the 
unperturbed system (1.1) is only uniformly stable, the perturbed system 
(1.2) is uniformly asymptotically stable, an improvement caused by the 
perturbing term. 

THEOREM 2.2. Assume that 
(1) the conditions (i) and (ii) of Theorem 1.1 hold with p = 00 ; 

(2) b(||x||) ^ Vit, x) ^ ait, \\x\\), it, x)ER+X Rn, where a G C[R+ 
X R+, R+], ait, u) is increasing inu,b G C[R+, R+], b(u) is increasing 
in u, fo(0) = 0 and b(u) -» 00 as u —» 00 ; 
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(3) the system (1.1) is equibounded for 0 ^ a < ri(t0) and all solu
tions u(t, t0, u0) of (1.5) satisfy limt_>ooW(̂ , t0, u0) = 0. 

Then every solution x(t, t0, x0) of (1.2) satisfies lim,_> ̂ (t, t0, x0) = 0. 

PROOF. Since the system (1.1) is equibounded, given 0 < a < r)(t0), 
t0 G R+, there exists a ß = ß(t0, a) such that 

\\y(t,to,Xo)\\<ß,t^toi£\\xo\\^a. 

Let ||xo|| ^ a so that a(t0, \\y(t, t0, x0)\\) g a(t0, ß) = y(t0, a). This, in 
view of Theorem 1.1 and (2), implies that 

b(\\x(t, t0, Xo)\\) ^ V(t, x{t, t0, xo)) ^ r(t, *o, V(*o> »(*> *o, *o))) 

Now the assumption (3) assures the stated conclusion and the proof is 
complete. 

We may also approach the problem in a more fruitful way by intro
ducing a new concept of stability. Let y(t, t0, x0), u(t, t0, u0) be solu
tions of (1.1) and (1.5) respectively. Then we define 

(2.3) v(t, t0f x0) = u(t, t0, V(t0, y(t, t0, x0))), 

and note that v(t0, t0, x0) = V(t0, x0). 

Definition. The differential equations (1.1) and (1.5) are said to be 
connectively quasi-equi-asymptotically stable if given a= 0, e > 0 
and t0 G R+ there exists a T = T(t0, a, e) such that ||x0|| = a implies 
v(t,to9Xo)<€9t^to+ T. 

Notice that for the foregoing definition to hold it is not necessary 
that equations (1.1) and (1.5) have the trivial solutions. If, on the other 
hand, one assumes that (1.1) and (1.5) have unique trivial solutions and 
also that V(t, 0) = 0, then it is clear from (2.3) that v(t, t0, 0) = 0. 
Consequently, in that case, we have the following definition. 

Definition. The trivial solutions x = 0 and u = 0 of (1.1) and (1.5) 
are said to be connectively equi-stable if given e < 0, t0 G R+, there 
exists a 8 = d(t0, c) > 0 such that \\x0\\ < 8 implies that 

v(ttt0,X0) <€,t^ to. 

Other definitions may similarly be formulated. 

Remark. It is important to realize that the connective stability con
cept is a joint property of the equations (1.1) and (1.5) and it does not 
necessarily imply that each of the equations (1.1) and (1.5) possesses 
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the same kind of stability property. In fact, it is this ingredient that 
offers more flexibility in applications. 

One can easily prove results which are consequences of connective 
stability notions using standard arguments. We merely state a typical 
result. 

THEOREM 2.3. Suppose that the conditions (1) and (2) of Theorem 
2.2 are satisfied. Then the connective quasi-equi-asymptotic stability 
of equations (1.1) and (1.5) implies that the system (1.2) is quasi-equi-
asymptotically stable. 

3. An example. Here we shall present a simple but illustrative 
example. Consider 

(3.1) y' = e-y,y(t0) = xo^0, 

whose solutions are given by y(t,to,x0) = x0l[l + Xo(e~l — e~lo]\. 
Thus the fundamental matrix solution of the corresponding variational 
equation is <!>(£, tQ,Xo) = 1/[1 + Xo{e~l — e~^)]2. Consequently, 
choosing V(t, x) = x2> we see that 

(3.2) D+V = 2y(t, s, x)*(*, s, x)R(s, x)9 

where R(t, x) is the perturbation. Let R(t, x) = — x2/2 so that the per
turbed equation is 

(3.3) x' = e-*x2 - (x2/2), x(t0) = x0 ^ 0. 

Accordingly, it is easily seen that g(t, u) = — u312 and hence the solu
tions of 

(3.4) U'= -H*2,f|(*o) = f io^O, 

are u(t, t0, u0) = 4w0/[2 + u0
l,2(t — t0)]

 2- Thus, by Theorem 1.1, we 
get the relation 

(3-5) K M o , x o ) p g [ 1 + X o ( e , ( _ ^ ; + ( t _ t o ) / 2 ) ] 2 , ^ to, 

which shows that all solutions x(t,t0,x0)—»0 as £—•<», al
though only some solutions y(t, t0, x0) are bounded. For example, set
ting to = 0 and x0 = 1 shows that et is the corresponding solution of 
(3.1) whereas for the same initial conditions the solution of (3.3) is 
2/(2 + t + 2e~t). 
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