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Abstract

In this paper we propose and validate a teleoperated control approach for an anthropomorphic 

redundant robotic manipulator, using magneto-inertial sensors (IMUs). The proposed method 

allows mapping the motion of the human arm (used as the master) on the robot end-effector (the 

slave). We record arm movements using IMU sensors, and calculate human forward kinematics to 

be mapped on robot movements. In order to solve robot kinematic redundancy, we implemented 

different algorithms for inverse kinematics that allows imposing anthropomorphism criteria on 

robot movements. The main objective is to let the user to control the robotic platform in an easy 

and intuitive manner by providing the control input freely moving his/her own arm and exploiting 

redundancy and anthropomorphism criteria in order to achieve human-like behaviour on the robot 

arm. Therefore, three inverse kinematics algorithms are implemented: Damped Least Squares 

(DLS), Elastic Potential (EP) and Augmented Jacobian (AJ). In order to evaluate the performance 

of the algorithms, four healthy subjects have been asked to control the motion of an 

anthropomorphic robot arm (i.e. the Kuka Light Weight Robot 4+) through four magneto-inertial 

sensors (i.e. Xsens Wireless Motion Tracking sensors - MTw) positioned on their arm. 

Anthropomorphism indices and position and orientation errors between the human hand pose and 

the robot end-effector pose were evaluated to assess the performance of our approach.

I Introduction

Teleoperation was introduced for controlling robotic manipulators operating in hazardous 

environment [1]. Later, it was used in many other applications, such as robot-assisted 

surgery [2] and tele-rehabilitation [3]. A telerobotic system is basically composed of a 

master and a slave robot, with the slave usually controlled by a human operator through the 

master interface.
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Always more often, the slave exhibits anthropomorphic kinematic chain (and appearance). 

Indeed, the introduction of anthropomorphic criteria in robot design has several advantages: 

(i) safety improvements during human-robot interaction, since the human subjects can 

predict more easily human-like robot motion, (ii) higher robot acceptance from the human 

beings, (iii) more intuitive control from the user when his/her movements are mapped into 

movements of the slave side [4] [5] [6]. Furthermore, the redundancy of the 

anthropomorphic robots allows to achieve movements that are comparable to the one 

performed by the operator arm (that is a redundant manipulator from a kinematic viewpoint) 

[7].

The input provided by the human operator on the master side can be acquired by different 

devices, which are usually robots, joysticks or other systems, which in general have different 

kinematics, number of Degrees of Freedom (DoFs) and workspace with respect to the slave 

[1]. Therefore, the human operator typically needs a specific training to learn how to control 

the slave.

An alternative approach consists in using a motion tracking system for acquiring the human 

movements (such as cameras [8], magneto-inertial sensors (IMUs) [9]), and map them onto 

robot movements. In this case, the similarity between the human arm and the 

anthropomorphic robot in terms of kinematic chain, allows the user to control more easily 

and intuitively the robotic platform by means of free movements performed on the master 

side, thus not requiring particular skills or training to use the interface.

Once the master movements are acquired, they should be mapped into corresponding slave 

movements by means of an appropriate human to robot motion mapping approach. Several 

mapping strategies are proposed in the literature such as joint-to-joint, fingertip, functional 

pose and object-specific mapping [10] [11].

The fingertips mapping is the most adopted method in the literature since, unlike the other 

methods, it can be easily adapted to a wide range of systems even though it is conceived for 

hand motion mapping. It is based on the computation of forward kinematics for each human 

finger to obtain their positions in 3D space. Then the inverse kinematics for each robotic 

finger is computed, achieving the same 3D positions of the human one [12].

Most of the studies proposed in the literature adopted the fingertip method for mapping the 

motion of a human arm on robotic manipulators, focusing on achieving high accuracy in 

terms of end-effector pose, but without taking into account anthropomorphic criteria not 

allowing to achieve the same configuration for the human and the robot arm in the joint 

space [13].

Therefore, the main objective of this paper is to overcome this limitation by proposing a 

teleoperated control approach for an anthropomorphic robot manipulator that allows 

mapping the motion of the human hand on the robot end-effector by exploiting a fingertip 

mapping method and meeting anthropomorphic criteria in the joint space. Three different 

inverse kinematics algorithms (i.e. Damped Least Squares (DLS) [1], Elastic Potential (EP) 

[1] and Augmented Jacobian (AJ) [14]) are compared in order to find the best method for 
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control the robot arm [15] [16]. The EP and AJ methods basically exploit the robot 

redundancy in order to achieve anthropomorphic configurations of the kinematic chain.

It is interesting to note that the proposed teleoperated control can be intuitively and easily 

used by the subjects since the human motion tracking on the master side is achieved by 

means of magneto-inertial sensors positioned on the subject arm. The user can control the 

robot arm by freely moving his/her own arm guaranteeing in this way a wide extended 

workspace. Furthermore, the setup time is low as well as the costs of the master system. This 

makes the system suitable for industrial environment so as for everyday life contexts, such as 

assistive or rehabilitation scenarios.

The proposed approach has been experimentally validated on the anthropomorphic robotic 

arm Kuka Light Weight Robot (LWR) 4+ [18], controlled by the user through four Xsens 

Wireless Motion Tracking sensors (MTw) [19]. An experimental study on four healthy 

subjects have been carried out in order to compare the performance of the three inverse 

kinematic algorithms. The recruited subjects were asked to control the robotic arm to reach 

three target poses in the robot workspace by using the three teleoperated controls. Position 

and orientation errors between human hand and robot end-effector were evaluated to assess 

task performances. Additionally for the EP and AJ approaches the position error between the 

human and the robot elbow joint was evaluated as anthropomorphism index.

The paper is organized as follows: Section II presents the adopted methodology, the 

experimental setup and describes the implemented algorithms. Section III focuses on the 

results. Finally, in Section IV conclusion and future works are discussed.

II Material and Methods

A Proposed approach

The proposed teleoperated control strategy is based on a forward-inverse kinematics 

approach for human to robot motion mapping. On the master side the human arm motion 

was acquired by a motion tracking system, which provides human arm forward kinematics 

(see Sect. II-C). Then, the inverse kinematics was computed for providing the robot joint 

angle values, achieving a robot end-effector pose equal to the one of the human hand (see 

Sect. II-D). Moreover, taking advantage of the robot redundancy, the initial configuration 

was selected in order to obtain a robot-human joint correspondence. On the slave side three 

different inverse kinematics algorithms were implemented and compared. In particular, 

elbow position data were processed in the EP and in the AJ methods in order to achieve 

human-like robot motion. Indeed, previous studies investigated the human motion, focusing 

on what anthropomorphism means and how it can be measured, expecially for replicating it 

on an arm-hand robotic system [15], [16], [17]. In the end, anthropomorphism and its 

measure have been defined through the comparison between human and robot motion. Many 

comparison criteria have been proposed and analyzed. Among them, the minimization of the 

distance between human and robot elbow joints resulted to be the best criterion for obtaining 

an anthropomorphic motion with the robotic system.
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B Experimental Setup

On the slave side a 7 DoFs robotic arm (i.e. the KUKA LWR4+) was used as the 

anthropomorphic manipulator. It is an anthropomorphic robotic arm, which communicates 

with a remote PC through the Fast Research Interface (FRI) Library, provided by the 

manufacturer. On the master side four wireless Xsens Motion Trackers were positioned on 

the human body in order to acquire human arm motion. MTws are magneto-inertial units and 

make it possible to record orientation data thanks to a Kalman Filter [20].

The four MTws were placed on the human thorax, upper arm, forearm and hand, using click-

in body straps included into the Xsens kit (Fig. 1).

Orientation data were wireless recorded connecting the sensors to the Awinda Station. The 

Station was also connected through USB to an Asus PC with Ubuntu 14.04 OS. The PC 

established an UDP protocol based communication with the robot, through an Ethernet 

cable.

Algorithms, both for recording MTws data and for controlling the robot, were implemented 

in C++ language.

The initial configuration of the human and robot arms was defined in order to obtain a robot-

human joint correspondence. Hence, as shown in Figure 1, the robot second joint coincides 

with the human shoulder joint, the fourth robot joint coincides with the human elbow joint, 

etc. Notice that the KUKA end-effector corresponds to the human palm, in order to avoid 

wrist singularity. Afterwards, both robot and human frames were defined according to 

Denavit-Hartenberg representation.

C Forward Kinematics

Human links orientation data were recorded from MTws at 100 Hz as rotation matrices. 

Since the sensors were placed manually on the human arm, sensor frames turn out to be not 

aligned to the previously defined human frames. Therefore, a calibration procedure was 

executed in order to re-align these frames. The calibration provides the rotation matrix 

between each sensor frame and its related human link frame. The matrices are computed by 

processing accelerometer and gyroscope data acquired during human arm rotation around 

fixed axes (see [21] for details on the calibration procedure).

Afterwards, the human hand pose was computed. Assuming that the sensors were rigidly 

connected to the human links, each human joint position was computed as the product 

between the sensor frame axes aligned with the related link and the link length Llink. All 

measures were referred to the thorax reference frame Rth0 at the time 0, with the operator in 

standing position (see Fig. 1).

Then, as shown in Fig. 1, the hand position phand was computed by means of a vectorial sum 

of human joint positions (pshoulder, pelbow, pwrist), as in Eq. 1-4,

pshoulder
th0

= Rth
th0

* vshoulder (1)
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pelbow
th0

= pshoulder
th0

− Rarm0

th0
* Rarm

arm0
* varm (2)

pwrist
th0

= pelbow
th0

− R f or0

th0
* R f or

f or0
* v f orearm (3)

phand
th0

= p
wrist

th0
− Rhand0

th0
* Rhand

hand0
* vhand (4)

with vshoulder = [0  Lshoulder  0]T, varm = [Larm  0  0]T, vfor = [Lforearm  0  0]T and vhand = 

[0  0  Lhand]T.

Rlink0 represents each link reference frame at the starting time 0 (see Fig. 1). The hand 

orientation was basically provided by the orientation of the corresponding sensor.

Rhand
th0

= Rhand0

th0
* Rhand

hand0 (5)

It is worth noticing that the robot link lengths were used in liue of the human one (i.e. Llink 

in Eq. 1-4), thanks to the initial configuration previously defined (Fig. 1) [15].

Initially, the hand pose was referred to the thorax frame. Then, it was computed with respect 

to the KUKA base frame, taking into account also the rotation between the robot end-

effector and the human hand frames.

phand
BK

= Rth0

BK
* phand

th0 (6)

Rhand
BK

= Rth0

BK
* Rhand

th0
* R

7K
hand (7)

Therefore, starting from the human hand pose referred to the thorax frame, the 

corresponding robot end effector pose with respect to the robot base frame was obtained.

D Inverse Kinematics

In order to control the robot in the joint space taking advantage of the robot redundancy, 

three inverse kinematic algorithms were implemented and compared.

The DLS algorithm reduces the mean joint velocities, accepting a higher error near singular 

configurations. The inverse of Jacobian is replaced by a damped least squares expression 

(Eq. 8 and 9),
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q tk + 1
= q tk + J

DLS
q tk * v + Ke * tk + 1

− tk (8)

J
DLS

= J
T

JJ
T

+ k
2
I

−1
(9)

where q(tk+1) represents the robot joint angles vector for a k + 1 time sample, J is the robot 

Jacobian, v is the desired speed in cartesian space, K is a positive squared matrix, e 

represents the error between the desired and the actual pose in cartesian space, k is a 

damping constant and I is the identity matrix.

In the EP algorithm, the null projector is used to minimize a cost function w. For our 

application, this function is chosen to be an elastic potential, that represents a virtual spring 

connecting robot and human elbows, in order to minimize their distances. The algorithm 

expression is

q tk + 1
= q tk + J * q tk * Ke − In − J * J q̇

0
* tk + 1

− tk (10)

J * = J
T

JJ
T −1

(11)

where In is a squared identity matrix of nxn dimension.

q̇
0

= k
0

δw q

δq

T

; w = kelastic phe − pre

2

(12)

If the robot elbow position pre is the same of the human one phe, the spring is at rest 

position, on the contrary the more is the distance between the joints, the more the spring is 

strained and the elastic potential is high. At the beginning, a symbolic expression of the null 

projector (elastic potential derivative) was computed. Then, numerical solutions were 

calculated for each forward kinematics output according to Equations 10 and 11.

Since the forward kinematics evaluates the desired pose at a frequency of 100 Hz, the 

inverse kinematics output was computed at the same frequency. Each algorithm loop was 

computed N times before providing output, assuming N * t
IK

≤
1

100
, with tIK representing the 

algorithm computational time. This approach was adopted for all the three algorithms. The 

AJ algorithm was implemented using the swivel angle as elbow position measure [14]. This 

angle α represents the elbow position for fixed shoulder and hand positions (see Fig. 2).
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The Augmented Jacobian JA is computed adding to the Jacobian a row which represents the 

relation between the time derivative of α and the joints configuration. Also the cartesian 

pose (and the related v and e values) is augmented with the additional swivel angle value.

q tk + 1
= q tk + JA

−1
q tk ∗ v + Ke ∗ tk + 1

− tk (13)

JA
DLS

= JA
T

JAJA
T

+ k
2
In

−1
(14)

The algorithm was implemented according to Eq. 13 and 14, where In is the nxn identity 

matrix and J
A
−1 is replaced by J

A
DLS in order to avoid singularity.

E Experimental Protocol

Four healthy subjects, 25.4 ± 1.6 years old, volunteered to participate in the study. They 

were asked to use the IMU sensors positioned on their body for controlling the robotic arm 

to reach three target positions in the robot workspace. Each task was repeated 3 times for 

each of the three inverse kinematic approaches (i.e. DLS, EP, AJ).

Before starting the experiments, the subjects were instructed to perform calibration 

movements required to reconstruct arm kinematics (see [21] for further details) and to be in 

standing position (see Fig. 1) for few seconds. Then he/she moved the arm to a comfortable 

configuration (i.e. with the upper arm aligned with the trunk, the elbow rotated roughly at 90 

degrees and the hand palm pointing toward the chest) before starting the task, in order to let 

the robot move to this starting configuration. The data acquired from the IMUs were used 

for moving the robot arm from its initial pose to the human corresponding pose by means of 

a fifth order polynomial interpolation on each joint value. Then the subject started to control 

the robot movements for reaching the target position. During the task execution, the 

participants were located behind the robot in order to continuously see the robot motion.

III Results

The teleoperated controls based on the previously described inverse kinematics algorithms 

were validated in simulation and on a real robotic arm, i.e. the KUKA LWR4+. In 

simulation, the inverse kinematics error was computed, obtaining values lower than one 

millimeter for the position and one degree for the orientation. These preliminary results 

showed the effectiveness of algorithm implementation.

Then, the approaches were validated on the KUKA LWR (Fig. 3). In order to achieve the 

best performance, each algorithm’s gain value was empirically estimated. Performance 

parameters were defined as (i) the error between the human hand and the robot end-effector 

pose and (ii) positional error between the robot end-effector and the three targets.
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For the sake of brevity, only the results obtained by one subject performing one task are 

shown. In particular, the error between human hand and robot end-effector position and the 

SO3 norm of the orientation error between the human hand and the robot end-effector using 

the three inverse kinematics approaches are shown in Figs. 4 and 5, respectively.

The mean estimated performance value for each recruited subject are shown in table I. Mean 

value were computed on the whole task trajectory. Additionally the positional error between 

end-effector and fixed target were reported as general quality indicator of task performance.

As evident from Figs. 4 and 5, comparable performance were obtained for the three 

methods, as revealed also in table I.

The error between hand and end-effector pose deeply decreasing when the target is reached 

and a static pose is maintained, as we can see in the last column of table I. Concerning the 

anthropomorphic indicators, both the swivel angle error measure and the error between the 

human and the robot elbows positions seem to assume high value. Nevertheless, the reason 

is the implementation of moderate anthropomorphic constraints instead of hard constraints, 

in order to achieve human-like behaviour on the slave side, preserving high accuracy on the 

end-effector pose (and the target reaching). The main performance dissimilarity between 

algorithms consists in the target reaching. Indeed, except for subject 2, the EP method 

showed the lowest error between the end-effector and the target positions, suggesting its 

easer use with respect to the other methods. On the other hand, the EP method results to 

have the highest error in static poses. Probably the selected gain values make this method 

lower accurate than the others, but overall more intuitive for subjects. A new selection of the 

gain values could improve the accuracy of the algorithm, preserving his usability.

It is worth noticing that the proposed approach, especially the initial configuration, is based 

on a robot to human joint correspondence. This implies that the robot should be installed 

with the base on the wall, if the subject is standing (or seated). However, we performed the 

task on a robot pre-installed on a table, implying some difficulties for the subjects in 

accomplishing the task and, therefore, decreasing their performance.

IV Conclusions

In this paper we proposed a teleoperated approach for an anthropomorphic manipulator 

using IMUs on the master side and involving anthropomorphic criteria to obtain human-like 

behaviours on the slave side. Using human arm movements as input, and implementing 

anthropomorphism criteria on robot movements allowed the user to control the robotic 

platform more easily and intuitively than traditional master interfaces. A fingertip mapping 

method based on forward-inverse kinematics computed on the master and slave sides was 

adopted. Three different inverse kinematics algorithms (DLS, EP, AJ) were implemented on 

the slave side, two of these involving anthropomorphic constrains in the joint space, based 

on the robot and human elbows position measure. Four Xsens MTws sensors and a KUKA 

LWR 4+ robot arm were used to experimentally validate the teleoperated approach. Four 

subjects were recruited and asked to perform three reaching tasks. The implemented 
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algorithms resulted to have comparable performance in terms of error between hand and 

end-effector pose. For instance, for subject 1, we have the following mean values:

• DLS: 12.34 ± 8.94 mm and 3.81 ± 2.76 deg

• EP: 15.64 ± 8.33 mm and 4.07 ± 2.74 deg

• JA: 11.67 ± 9.02 mm and 2.79 ± 2.12 deg

Nevertheless, the EP method showed the lower position error for targets reaching, 

suggesting its easier use by the subjects with respect to the other methods. On the contrary, 

the EP method showed also the higher static error during the last trajectory’s second. 

Therefore in the future new gain values could be selected in order to improve the EP 

performance, preserving its usability. Future works will be addressed to enhance the system 

performance by adjusting the algorithm gain values and to extend the study on a greater 

number of subjects. Questionnaires for assessing system usability will be also submitted to 

the subjects.
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Fig. 1. 

Initial configuration of the human and robotic arms. On the left side the KUKA initial 

configuration with its base and end-effector reference frames is shown. On the right side the 

human configuration with IMUs placed on thorax, arm, forearm and hand link using click-in 

body straps is shown. Human thorax and hand reference frames are outlined. Hand position 

phand is computed as vectorial sum of each arm joint vector.
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Fig. 2. 

Swivel angle (α) representing the elbow position (e) for fixed shoulder (s) and hand (h) 

positions.
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Fig. 3. 

Experimental validation on the KUKA LWR4+. Four frames of the reaching task performed 

by Subject 1 are shown.
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Fig. 4. 

Error between the human hand and the robot end-effector position using the a) DLS, b) EP 

and c) AJ algorithm. The values were estimated during the reaching task performed by 

subject 1.
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Fig. 5. 

SO3 norm of the orientation error between the human hand and the robot end-effector using 

the a) DLS, b) EP and c) AJ algorithm. The values were estimated during the reaching task 

performed by subject 1.
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Fig. 6. 

Error between human and robot elbow position using the EP algorithm. The values were 

estimated during the reaching task performed by subject 1.
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Fig. 7. 

Error between human hand and robot swivel angle using the AJ algorithm. The values were 

estimated during the reaching task performed by subject 1.
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Table I

Experimental results: (i)‖PosErr‖ is the mean norm error between the human hand and the end-effector 

position during the whole trajectories; (ii)‖R‖SO3 is the mean SO3 norm of the rotation matrix between the 

hand and end-effector in the whole trajectories; (iii)‖ElbowPosErr‖ is the mean norm positional error between 

human and robot elbow joints during the whole trajectories; (iv) SA Error is the mean error value between 

human and robot swivel angle; (v)‖TErr‖ is the mean norm positional error reaching fixed targets; (vi)‖SErr‖ 
is the static position and orientation error (i.e. ‖PosErr‖ and ‖R‖SO3 values for the last trajectory second). 

Clearly (iii) is computed only for EP method and (iv) only for AJ method.

Sub Algorithm ‖PosErr‖[mm] ‖R‖SO3[deg] ‖ElbowPosErr‖[mm] SA Error [deg] ‖TErr‖ [mm] ‖SErr‖ [mm] [deg]

1 DLS 12.34±8.94 3.81±2.76 32.15 2.49±0.55 0.89±0.09

EP 15.64±8.33 4.07±2.74 134.33±208.36 24.07 7.28±0.73 1.57±0.17

AJ 11.67±9.02 2.79±2.12 3.38±2.39 71.58 4.32±0.74 1.38±0.10

2 DLS 9.79±8.30 3.20±2.35 20.79 3.77±0.43 1.80±0.07

EP 13.05±10.20 3.80±1.94 32.42±34.65 22.88 17.24±1.06 2.28±0.06

AJ 10.21±8.12 3.91±2.84 2.99±2.18 19.99 4.2±0.70 1.23±0.12

3 DLS 12.37±9.55 4.73±2.85 48.50 6.43±0.88 2.03±0.26

EP 13.89±12.09 6.58±3.82 140.08±212.02 28.21 23.94±3.61 5.84±0.84

AJ 13.92±11.95 5.91±2.61 3.74±4.29 39.90 12.33±1.73 3.69±0.45

4 DLS 13.94±12.68 8.33±4.17 31.56 15.84±1.84 5.17±0.56

EP 13.69±11.40 11.47±6.34 132.78±208.16 25.29 21.74±4.43 6.14±0.56

AJ 11.45±8.64 2.15±3.29 3.61±8.74 35.12 7.11±1.10 2.69±0.39
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