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ABSTRACT

The pyramid wavefront sensor (PWFS) is the currently preferred design for high-sensitivity adaptive optics (AO) systems for ex-
tremely large telescopes (ELTs). Yet, nonlinearities of the signal retrieved from the PWFS pose a significant problem for achieving
the full correction potential using this sensor, a problem that will only worsen with the increasing dimension of telescopes. This paper
investigates the so-called optical gain (OG) phenomenon, a sensitivity reduction and an overall modification of the sensor response
induced by the residual wavefront itself, with considerable effects in standard observation conditions for ELT-sized AO systems.
Through extensive numerical analysis, this work proposes a formalism to measure and minimize the first-order nonlinearity error
caused by optical gain variation, which uses a modal compensation technique of the calibrated reconstructor; this enables a notable
increase in performance in faint guide stars or important seeing scenarios, for example from 16 to 30% H-band Strehl ratio for a six-
teenth magnitude star in r0 = 13 cm turbulence. Beyond the performance demonstrated by this compensation, a complete algorithm
for realistic operation conditions is designed, which from dithering a few deformable mirror modes retrieves the optimal gains and
updates the command matrix accordingly. The performance of this self-updating technique – which successfully allows automatic
OG compensation regardless of the turbulent conditions, and its minimal interference with the scientific instrument are demonstrated
through extensive end-to-end numerical simulations, all at the scale of an ELT instrument single-conjugate AO system.
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1. Introduction

A continuous effort is being provided by the adaptive
optics (AO) community to drive forward the usability of
the pyramid wavefront sensor (PWFS). Since its introduction
(Ragazzoni 1996) as a high-sensitivity alternative to the Shack–
Hartmann (Ragazzoni & Farinato 1999; Esposito & Riccardi
2001; Vérinaud 2004), the PWFS has been thoroughly assessed
to be the better alternative for high-Strehl AO systems currently
in development, including first-light instruments for all three
extremely large telescopes (ELTs; Véran et al. 2016; Pinna et al.
2014; Neichel et al. 2018; Clénet et al. 2018).

However, mastering the PWFS for such high-order AO sys-
tems comes with a number of theoretical and technological
challenges. In particular, the PWFS exhibits a strongly nonlin-
ear behavior, as in-loop residual wavefronts dramatically alter
the response of the sensor. This response modification between
the calibration and on-sky operations is mainly expressed
through a spatial-frequency-dependent sensitivity reduction, a
phenomenon named optical gain (OG). Numerical values in
median seeing conditions – for example r0 of 14 cm at sensor
visible wavelength – for an ELT typically range within 50–80 %
of perceived attenuation of closed-loop residuals when com-
pared to small-signal calibrations. Furthermore, the fluctuation
of sensitivity with on-sky external parameters prevents a well
adjusted subtraction of the calibrated noncommon path aberra-
tions (NCPAs) through the application of the reference slopes,
with OG affecting the system as an unforeseen transformation
between the acquired setpoint and the runtime measurements.

Both the sensitivity reduction and the NCPA alteration are
critical and must be addressed to obtain efficient AO with a
PWFS.

The PWFS nonlinearities also make the sensor formally
incompatible with the usual process of matrix-vector multipli-
cation (MVM)-based phase reconstruction, which is the core
of most AO real-time computers (RTCs) today as such linear
methods are well proven and computationally efficient. Although
analytically extensive models of the PWFS response have been
proposed (Shatokhina 2014), and inverse methods to these mod-
els are being extensively investigated throughout the AO commu-
nity (Frazin 2018; Hutterer & Ramlau 2018), our research scopes
only within the frame of classical linear reconstruction and sets
aside iterative nonlinear methods, so as to avoid the added com-
putational burden. This work was initiated in Deo et al. (2018a).

To handle OG, Esposito et al. (2015) proposed to adjust
the overall integrator gain of the AO to compensate for tip-
tilt sensitivity in real time. Viotto et al. (2016) suggested to
introduce dithering in different modes to assess the dependence
of the phenomenon across spatial frequencies. We propose to
adapt the RTC control law through a modal gain approach,
which depends – among others – on the current seeing, through
obtaining a linearization of the PWFS response for variations
around AO residuals for a given r0. This approach was initi-
ated by Korkiakoski et al. (2008a), and generalizations based on
a generic framework for Fourier-based wavefront sensors are
being actively researched (Fauvarque et al. 2016, 2019).

We build upon the OG analysis within the modal com-
mand matrix update framework, and derive a compensation
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method and the necessary technical declinations ensuring its
appropriateness for on-sky operations. We numerically investi-
gate the statistical validity of the modal approach and propose a
measure-and-update workflow based on a precomputed database
of appropriate modal gains. The objective of this research is
twofold: to mathematically minimize the nonlinear reconstruc-
tion errors within a well-assessed approximation hypothesis; and
operationally, to provide procedures that enforce this minimiza-
tion automatically and continuously, without requiring operator
intervention.

We first introduce in Sect. 2 our formalism and hypothe-
ses for optimal and realistic OG modal compensation. Section 3
presents the AO system we use for all simulations in this paper,
namely the current design parameters for dimensioning the
MICADO single-conjugate AO (Clénet et al. 2018); Sect. 4 vali-
dates the statistical hypotheses required, providing a quantitative
analysis of sensitivity reduction, optimal gains, and nonlinear-
ity errors and the reduction thereof when applying optimal OG
compensation. Section 5 covers the automatic method for optical
gain modal coefficients to be updated regularly, using a precom-
puted database and performing in-situ measurements through
an optical dithering of the deformable mirror. Sections 6 and 7
present end-to-end numerical simulations, demonstrating the
performance increase using our automatic method and its robust-
ness to turbulence condition variations across a short timescale.
Finally, Sect. 8 offers some discussions and results on key points
raised with our sky-ready method: optical interaction between
dithering and scientific imaging; and appropriate NCPA com-
pensation provided by the improved knowledge of real-time sen-
sitivity.

2. Optical gain: definitions and formalism

2.1. Differential response and interaction matrices

For all analyses and results presented in this paper, our concep-
tual approach to the PWFS is a generic one of some nonlinear
operator between the input wavefront and the normalized pixel
space (referred to as slope space hereafter). The Pyr operator
covers the transformation between a wavefront φ in the entrance
pupil and the slope vector S:

Let Pyr (φ) = S such that:

φ
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where z1, ..., zk are the CCD pixel values for the K valid pix-
els located within the four pupils re-imaged after the pyramidal
prism. The exact expression of the Pyr operator would depend
on several parameters, such as PWFS prism defects, misalign-
ments (Deo et al. 2018b), and notably the modulation radius
used. This generic formalism could also be extended to WFSs
other than a classical four-sided PWFS.

We adopt the global pixel normalization (Vérinaud 2004),
and consider all valid pixels (Clergeon 2014) rather than com-
puting the “normalized differences between opposite pairs of
pupils” as initially suggested by Ragazzoni (1996). The factor
4
K

ensures that the mean value of the slope is 0.25, correspond-
ing to the original definition with a unit flux per subaperture. In
Deo et al. (2018b), we demonstrated that this global normaliza-
tion was more effective in terms of end-to-end system perfor-
mance than the original local alternative (Ragazzoni 1996); and

that using all pixels was altogether equivalent to using the slopes
maps, while being the more generic approach, paving the way
for the application of the methods presented in this paper to sen-
sors other than an ideal four-faced PWFS as we use herein. The
global normalization is also well tailored to locally linearized
interpretations of PWFS behavior, such as the studies provid-
ing theoretical frameworks consistent with the approach detailed
here (Fauvarque et al. 2016; Frazin 2018).

One main step for the calibration of the AO system is to
obtain the interaction matrix as a linearization around the oper-
ating point. Here, we consider the behavior of the PWFS with
some residual phase error due to the AO loop φRes. This can
be done with sufficiently small deformable mirror (DM) modal
pokes ǫ.φ and disregarding noise; one then obtains the derivative
of the PWFS response along a wavefront φ locally around φRes:

dPyr (φ; φRes) = lim
ǫ→0

Pyr (φRes + ǫ.φ) − Pyr (φRes − ǫ.φ)
2ǫ

· (2)

The interaction matrix at φRes: dPyrφRes
is then a collection

of differentiations dPyr (φi; φRes)1≤i≤N for the modal basis
(φ1, ..., φN) of the DM wavefront space. The modal basis to
be used is usually determined beforehand based on criteria other
than OG compensation, and is beyond the scope of this paper.
We simply assume here the use of a nonredundant basis reduced
to a convenient subset of the DM space, free from any PWFS
blind modes.

Among these generically defined interaction matrices, the
one around the unaberrated wavefront φRes = 0 holds a specific
function as the one that is effectively computed and used to cal-
ibrate the AO. When analyzing OG quantitatively, it is observed
that φRes = 0 yields the maximum PWFS sensitivity. Therefore,
we have taken the reference interaction matrix dPyrφRes=0 as a
uniquely defined comparison point for relative assessments of
OG impact.

From dPyrφRes=0, the wavefront reconstructor of the PWFS
is obtained:

Rec = dPyr
†
φRes=0, (3)

where •† is appropriately conditioned matrix generalized inver-
sion. The above defined Rec is effectively the modal command
matrix of the system in the usual acceptance for the selected
DM basis, and the reconstruction is exact for a sufficiently small
wavefront φ generated by the DM:

Rec · Pyr (φ) = φ. (4)

2.2. Optical gain: a turbulence-induced nonlinearity

The reconstruction identity of Eq. (4) generally does not hold in
realistic AO operation conditions when a non-negligible wave-
front aberration reaches the PWFS. This induces a variation in
the PWFS response, this variation being important even when
the residual is dominated by the fitting term. Such a situation is
illustrated through a preliminary example in Fig. 1, displaying
the slopes S (φ) when the PWFS is shown a tilt aberration, with
and without an added 120 nm RMS fitting φRes (top); and the
response curves for a few modes (bottom). This class of effects
is what we name the OG phenomenon: an invalidation of the
calibrated response of the PWFS due to residual wavefronts, a
characteristic not covered by the calibration.

Mathematically, Eq. (4) failing even for small φ signifies that
the Jacobian dPyrφRes

near the residual wavefront differs from the
calibrated dPyrφRes=0, and therefore that the linear reconstructor
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Fig. 1. Top: PWFS slopes vector for a flat wavefront, a 300 nm RMS tilt,
and the same tilt added to a 120 nm RMS fitting error wavefront φRes,
showing the attenuation of the signal. Data are smoothed by a window
of 50 samples in width for clarity. Bottom: recorded PWFS response
curve to three modes – tilt and Karhunen–Loève 20 and 3000 – with
and without the same φRes. The tilt curve without residuals saturates
around 750 nm RMS. The AO setup simulated is described in Sect. 3.

Rec is inappropriate for the AO operating regime. In order to
overcome this issue which impedes the linear wavefront recon-
struction framework, one would ideally always use the appro-
priate command matrix, provided the instantaneous disturbing
wavefront φRes is known. Such continuous measurements and
updates of dPyr

†
φRes

are unfortunately conceptually and compu-
tationally unreasonable.

Modal OG compensation – initiated by Korkiakoski et al.
(2008a) – is a first-order approximation and substitutes the esti-
mation of the instantaneous Jacobian by a modal scaling of the
reference interaction matrix, assuming modal optical gain coef-
ficients (OGCs) may be obtained. For this operation to be pos-
sible, the required property is that for each DM basis mode
φi (1 ≤ i ≤ N), a scalar λi exists such that:

dPyr (φi; φRes) = λi,φRes × dPyr (φi; φRes = 0), (5)

or, spanning the whole basis, for a diagonal matrix ΛφRes =

Diag (λ1, ..., λN) to exist such that

dPyrφRes
= dPyrφRes=0 · ΛφRes . (6)

With Eq. (6) verified, the modal command matrix of the sys-
tem can be updated with Λ−1

φRes
· Rec, that is, with a line-wise

rescaling with the candidate OGCs – ignoring for now cases with
ill-conditioned ΛφRes . Assuming that Λ matrices can be found
that are suitable for most AO operating conditions, this analy-
sis paves the way for an appropriate OG compensation through
regular command matrix updates.
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Fig. 2. Schematic OG-impeded reconstruction of a mirror mode φ =
∑N

i=1 ciφi represented by vector c, around any given nonzero phase φRes

(not shown). The misestimated reconstruction d = Rec · dPyr (φ; φRes)
is the sum of a colinear component d‖ and an orthogonal part d⊥.
Reconstruction errors eRec and eOpt are the first-order nonlinearity errors
with and without application of the appropriate Gopt (φ; φRes) OGC,
respectively.

2.3. Defining the optimal optical gain coefficients

Equation (6) nonetheless represents a strong hypothesis in the
general case, and therefore we propose a phenomenological
approach to quantify the discrepancy between dPyrφRes

and
dPyrφRes=0 · ΛφRes for optimally adjusted λi. Our strategy to cal-
ibrate optimal OGCs is hence to evaluate the impact of residual
wavefronts on DM basis modes, and thereupon to derive the opti-
mal OGC for this mode.

For a DM wavefront φ, represented as vector c =
∑N

i=1 ciφi on
the DM basis φ1, ... , φN , we consider the OG-uncompensated
small-signal reconstruction near a residual wavefront φRes:

d
φRes = Rec · dPyr (φ; φRes). (7)

The vector d
φRes is the DM space wavefront reconstructed from

PWFS measurements, erroneously instead of c. We choose to
decompose it into components colinear and orthogonal to c:

d
φRes = d

φRes

‖ + d
φRes
⊥ , (8)

as illustrated in Fig. 2. From this decomposition, we bring out the
colinear sensitivity reduction coefficient, which traces the core
effect at the origin of the denomination “optical gain”. This is
expressed as:

α‖ (φ; φRes) =
||dφRes

‖ ||
||c||

, (9)

with || • || being wavefront euclidean norm. Similarly, we define
the orthogonal nonlinear coefficient:

α⊥(φ; φRes) =
||dφRes
⊥ ||
||c||

, (10)

as an indicator of the confusion between DM modes arising from
the PWFS nonlinear response.

From α‖ and α⊥, we derive the putative optimal OGC for
wavefront φ:

Gopt (φ; φRes) =
α‖

α2
‖ + α

2
⊥
, (11)

as the minimizing solution for the first-order nonlinearity error
||c − Gopt (φ; φRes) × d||. The original error using the recon-
structor Rec is denoted eRec = d − c, and the minimized one
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eOpt = Gopt×d−c; their normalized lengths are simply expressed
from α‖ and α⊥:

||eRec||
||c||

=

√

(1 − α‖)2 + α2
⊥, and

||eOpt||
||c||

=
α⊥

√

α2
‖ + α

2
⊥

· (12)

The quantitative values of eOpt and eRec – and the statistical dis-
tributions thereof – are investigated numerically in Sect. 4.2, and
prove to be very useful indicators to quantify first-order nonlin-
earity errors when using appropriate OGCs.

To obtain optimal OGCs for all controlled modes φi of the
DM basis, Eqs. (7)–(11) are applied for each φi. Equation (2)
describes the way dPyrφRes

is computed in our simulations, by
freezing the AO loop on a given φRes and introducing small per-
turbations ǫ.φ around it. Using this evaluation of dPyrφRes

, we
may then derive the quantities of Eqs. (7)–(11). The reconstruc-
tor update diagonal matrix Λ−1

φRes
is defined by its diagonal coef-

ficients Gopt (φi; φRes)1≤i≤N .

2.4. Statistics with disturbing wavefronts

In Sect. 2.3, we obtained a candidate set of optimal OGCs
given a residual wavefront φRes. At the current state of this
research, it is unrealistic to measure Gopt (φi; φRes) for every
single turbulent wavefront realization; therefore, it is useful to
define classes of realistic closed-loop wavefronts yielding sim-
ilar Gopt (φi; φRes). This objective is the direct consequence of a
key requirement for modal OG compensation with regular com-
mand matrix updates to perform: OGCs are to be valid for a suf-
ficient duration between updates. Originally, Korkiakoski et al.
(2008b) proposed that OGCs were only dependent on the cur-
rent r0 of the turbulence. It turns out that during the writing of
this article, Fauvarque et al. (2019) came up with the analytical
demonstration that within a convolutional model of the PWFS,
Eq. (6) is exact with Λ depending only on the phase structure
function of the wavefront residual.

Upon this prior, we perform a classification of wavefronts of
interest with a single quantitative parameter: we define a wave-
front class to be the set of wavefronts that share an identical spa-
tial power spectrum density (PSD). Among these infinite classes,
only the ones that are realistic to an AO system are of relevance,
which we parameterize by a single scalar p0.

The wavefronts of class p0 shall be the ones with the PSD
corresponding to a fitting error of Fried parameter r0 – null
power up to the DM cutoff frequency and von Kármán spec-
trum beyond – added to some typical residuals over the DM
modes covering aliasing temporal and nonlinearity error bud-
gets. We therefore reduce the class parameter p0 to the Fried
radius r0. The notation p0 is meant to negate any potential ambi-
guity between the Fried parameter of the turbulence and the
coefficient used for computing OGCs when presenting results
further in this paper, although underlining the conceptual con-
nection in between. While r0 is a physical parameter, p0 is
merely a descriptive label for statistical classification purposes.
The relative composition of the residuals is computed in this
paper through preliminary end-to-end simulations of the AO sys-
tem, which did not simulate noise.

For analyzing the statistical properties of the indicators
defined in Sect. 2.3, we now consider α‖, α⊥, Gopt (φi; p0) for
each φi as scalar random variables depending on the turbulent
realization φRes with p0-parameterized PSD, and eRec and eOpt as
vector random variables. For a unified notation, we refer to their
averages and standard deviations over the p0 wavefront class as

µ
[

•(φi; p0)
]

and σ
[

•(φi; p0)
]

, respectively. Numerical analyses
regarding the significance of these indicators and their behaviors
across p0 classes are presented in Sect. 4.

3. Adaptive optics simulation setup

Advancing in our developments requires numerical simulations,
and this section presents the AO simulation setup used for all
numerical simulations presented in Sects. 4–8. Parameters of the
simulation are synthesized in Table 1; the PWFS samples the
wavefront over 92 pixels across the pupil diameter, at an R-band
median wavelength of 658 nm. To devise significant methods
and provide results meaningful to the ELT instrumental projects,
we considered parameters close to those of the MICADO SCAO
design (Vidal et al. 2017), in which it was in particular demon-
strated that a single modulation radius within the 3–5 λ

D
range

provided maximum performance at all guide star magnitudes.
Given this prior, the modulation radius is henceforth consid-
ered as a design parameter and not as an optimization degree of
freedom.

The telescope pupil is the ESO-defined ELT model, although
with spiders omitted; the DM is the latest known model of the
adaptive mirror M4 of the ELT (Biasi et al. 2016), with a hexag-
onal pattern of pitch 54 cm in M1 space, simplified with a spa-
tially localized influence function model with a coupling of 0.24.
All numerical simulations were performed using the COMPASS
(Ferreira et al. 2018a) simulation package, running on a Nvidia
DGX-1 server equipped with two 20-core Intel Xeon E5-2698
processors and eight Nvidia Tesla P100 graphics boards. Gen-
erating a 4 λ

D
modulated PWFS image on this server typically

requires 60–70 ms.

4. Modal analysis of compensation coefficients

4.1. Sensitivity reduction and optimal gain

This section presents results from numerical simulations regard-
ing the dependence of α‖ and Gopt with turbulence residual
amplitude as characterized by p0. Results shown are extracted
from the abacus precomputed for our simulated ELT AO – a
process covered in detail in Sect. 5.2, which is obtained aver-
aging interaction matrices dPyrφRes

(Eq. (2)) for 15 different
φRes, at each of 15 p0 values log-spaced from 4.0 to 35.0 cm.
These results provide the required consistency check of the key
hypotheses allowing optical gain modal compensation: for a well
chosen set of modes, p0 is a parameter that effectively induces
values that are stable with the phase realization φRes; results in
this section demonstrate that the Karhunen–Loève (KL) basis
fits such a criterion. Stability here is meant in the sense that
the standard deviation measured across the wavefronts of a p0-
labeled class is negligible compared to the variations of the gains
with p0, both for the sensitivity loss α‖ (φi; p0) – as shown in
Fig. 3 – and the optimal gain Gopt (φi; p0) – shown in Fig. 4. This
is shown respectively in Figs. 3 and 4, with the shaded areas
showing ±2 standard deviations around the solid line showing
the average µ

[

α‖
]

or µ
[

Gopt

]

. The constant thickness of theσ bar
in logarithmic scale suggests a rough proportionality between σ
and µ.

All measured values demonstrate the stability of the mea-
surement α‖ for a given p0, with relative standard deviations
σ

[

α‖ (φi; p0)
]

µ
[

α‖ (φi; p0)
] below 3% for all p0 > 7.4 cm, and the possi-

bility of high-confidence estimations of p0 using only α‖ (see
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Table 1. AO numerical simulation parameters.

Numerical simulation configuration

Telescope

D = 39 m diameter
ELT pupil

798 aggregated hexagons
No support spiders

Turbulence layer

von Kármán, ground layer only
r0 at 500 nm: variable in a

useful range of 7.0–35.0 cm
L0 = 25 m
||−→v || = 10 m s−1

PWFS
Subapertures 92 × 92 – pixel size 42 cm.

24 080 useful pixels
Wavelength Monochromatic, 658 nm
Throughput 0.28 (including quantum efficiency)
Modulation Circular, 4 λ

D
radius

Readout noise 0.3 e−

Source On-axis natural guide star
Guide star flux Zero point: 2.6 × 1010 ph s−1 m−2

Adaptive mirrors

Tip-tilt mirror
Hexagonal M4 model pattern

Pitch of 54 cm
Coupling of 0.24
4310 controlled actuators

Both with infinite bandwidth
RTC controller

Loop rate 500 Hz
Method Linear modal integrator
Latency Data flow 1 frame +MVM 1 frame
Basis DM Karhunen–Loève basis (a)

References. (a)Ferreira et al. (2018b).

Fig. 3) – a feature that we look for in Sect. 5. Numerical values
are also insightful on the important impact of OG on sensitivity:
even in extremely good seeing conditions, losses in sensitiv-
ity relative to the calibration of 30−45% are to be expected
(p0 = 25.7 cm in Fig. 3). At the near-median value p0 = 13.8 cm,
low-order modes are attenuated by a factor of 5, and at the
extreme p0 = 7.4 cm by a factor of more than 20.

The sensitivity reduction is well described by two trends,
below and above the modulation radius spatial frequency, cor-
responding for 4 λ

D
to KL mode 30. The sensitivity loss below

this index is homogeneous, then increasing beyond this index up
to maximal values for the highest orders. For modes φi (30 ≤
i ≤ 3000), for which spatial frequencies are entirely within the
DM resolution, the sensitivity reduction coefficient follows a p0-
dependent power-law trend. For φi (i > 3000) modes tend to
resemble waffle modes rather than atmospheric KL modes – due
to the DM resolution limit– and this induces more chaotic varia-
tion between modes, nevertheless without compromising the sta-
bility at a given p0.

The optimal gain Gopt to apply in p0-PSD wavefront condi-
tions is shown in Fig. 4. It generally behaves as the inverse of
α‖, yet with a more discrete cutoff at the modulation radius, the
knee being smoothed out by the relative weight of α⊥ (Eq. (11))
and the desired minimization of ||eOpt|| (Eq. (12)).

Extensive numerical analyses and comparisons for various
DM bases and PWFS modulation radii are not covered in this
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KL mode index i
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Sensitivity reduction  abacus

Fig. 3. Subset of the α‖ abacus data. Solid lines: µ
[

α‖ (φi; p0)
]

; shaded
areas: ±2σ

[

α‖ (φi; p0)
]

, as computed numerically on 15 independent
wavefronts of class p0 in conditions of Table 1, except that no noise is
introduced. Curves are smoothed for improved clarity using an adaptive
recursive filter with window width log (i).
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1.0

10.0

2.0

3.0

4.0
5.0
6.0
7.0
8.0
9.0

20.0

G
op

t(
i;
p 0

)

p0 = 7.4 cm

p0 = 10.1 cm

p0 = 13.8 cm

p0 = 18.8 cm

p0 = 25.7 cm
p0 = 35.0 cm

Optimal gain Gopt abacus

Fig. 4. Subset of the Gopt abacus data. Solid lines: µ
[

Gopt (φi; p0)
]

;

shaded areas: ±2σ
[

Gopt (φi; p0)
]

. Data computed and smoothed as in
Fig. 3.

paper, but were documented in previous work (Deo et al. 2018a).
We showed in this latter publication that the overall sensitivity,
with α‖ factored in, is independent of the modulation radius for
modes bearing frequencies past the modulation-induced cutoff,
while smaller modulations provide greater sensitivity for low-
order modes below this cutoff. This sensitivity analysis has to
be considered alongside dynamic range effects, and an optimal
trade-off has been highlighted near the chosen 4 λ

D
(Vidal et al.

2017).
Regarding modal basis choices, it was shown that both the

Fourier and KL DM bases provide extremely stable α‖ (φi; φRes)
values at a given p0, unlike the natural actuator basis which
proved to be unsuitable for an OGC approach. When comparing
α‖ numerical values between Deo et al. (2018a) and this paper,
data shown here are smaller for an identical p0 parameter. This
difference is well explained by first: the upscaling of the AO
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Fig. 5. Error terms with and without applying static Gopt (φi; p0) OGCs.

Solid lines: µ
[

||eOpt (p0)||
]

(with OGCs); dashed lines: µ
[

||eRec (p0)||
]

(without modal compensation); shaded areas: ±2 standard deviations.
Data computed and smoothed as in Fig. 3.

system considered (18–39 m diameters); and second, the redef-
inition of the p0-class PSD, which now includes DM space loop
residuals instead of being restricted to a fitting error wavefront.

4.2. Nonlinear reconstruction errors

Along with computing α‖ and Gopt in a variety of conditions,
we extract the reconstruction error incurred by DM modes with
and without OGCs (resp. eOpt and eRec), as defined in Sect. 2.3
and depicted in Fig. 2. We reiterate that ||eOpt|| and ||eRec|| are
the RMS errors for each mode of the command matrix Rec
compared to the OG-disturbed effective reconstruction, with and
without an OGC applied. Numerical values for ||eOpt|| and ||eRec||
are shown in Fig. 5, restricted to three p0 values of 7.4, 13.8, and
25.7 cm for clarity.

The error term without OGCs eRec allows for a quantita-
tive analysis of the potential impact of OG on AO performance.
Below the modulation radius cutoff, µ [||eRec||] is shown to have
an approximately flat magnitude of resp. 0.5, 0.8, and 0.95 – in
units of the input magnitude ||φi|| – for p0 values of 25.7, 13.8,
and 7.4 cm. Beyond the cutoff, µ [||eRec||] slowly decreases – alto-
gether by 25–30% for the highest order modes. These surpris-
ingly high values underline that using the calibrated command
matrix Rec along with an analytically derived integrator gain
would not permit an appropriate control of the PWFS, even in
very favorable seeing conditions.

The ||eRec|| metric alone is insufficient to distinguish the col-
inear, OGC-compensable error c − d‖ and the confusion por-
tion d⊥; the optimally reduced reconstruction error ||eOpt|| sheds
light on this repartition. For high frequency modes, ||eOpt|| shows
only a moderate reduction over ||eRec||, from which is under-
stood that a significant OG confusion between modes occurs.
A value of 1√

2
= 0.71 for ||eOpt|| corresponds to α⊥ = α‖, i.e., an

equal weight of the sensibility and the nonlinear confusion. This
value is seldom reached, that is, only for mid-order modes when
p0 = 7.4 cm.

The reconstruction error is significantly reduced for modes
below the modulation cutoff, with data showing that the

orthogonal component increases with spatial frequency, yet that
most of the error is borne by the colinear term; this signifi-
cant reduction is observed regardless of atmospheric conditions.
Noticeably, the optimally reduced error is minimal for the tip-tilt
modes, with an error norm reduced by a factor 5–8, for example
from 0.80 down to 0.10 for median conditions p0 = 13.8 cm.

The error reduction for modes which bear the most power
in the turbulence demonstrates that OG can be well corrected
using modal OGCs, with a significant reduction of the nonlin-
earity error budget to be expected. It should be noted however
that while µ

[

||eOpt||
]

is indicative of the nonlinear behavior of
each mode, it should not be directly interpreted as a nonlinearity
error budget, but merely as an initial step towards its derivation.

5. Leveraging the OG analysis for AO operations

So far, we have derived an analysis in Sect. 2 to obtain error-
minimizing rescaling coefficients for each mode – by applying
Eqs. (2) through (11) – in order to update the PWFS command
matrix with

Rec (p0) = Diag
(

µ

[

Gopt (φi; p0)
]

, i ∈ [1, N]
)

· Rec. (13)

However, this methodology, which is hereafter referred to
as static OGCs, promptly reaches limitations when its applica-
bility is considered beyond a laboratory setup – as the on-sky
turbulence cannot be halted to compute an interaction matrix
as per Eq. (2). It is only properly adequate if the residual PSD
matches the partially corrected turbulence chosen for the p0 = r0
wavefront class – which may not be the case due to the vary-
ing relative weights of nonlinearity, latency, and noise error
budgets. Furthermore, it requires an adequate estimate of the cur-
rent atmospheric Fried radius r0, obtained via a yet-to-be-defined
method of AO telemetry – which will have to face the challenge
posed by the fact that pseudo-openloop wavefronts cannot be
estimated through the PWFS due to OG itself.

5.1. Automatic method for determination of optical gain
coefficients

For AO operations, we set the objective to propose a sky-
ready, fully automated method that proposes an answer to the
two shortcomings mentioned immediately above. This algo-
rithm proceeds to obtain sensitivity reduction statistics through
dithering some DM modes. From there, it deduces the oper-
ating conditions through the parameter p0, and then extrap-
olates corresponding Gopt values for all DM modes from a
precomputed database. Our objective in designing this method
is twofold: First, implement a near real-time, efficient compen-
sation of PWFS nonlinearity. Second, propose an algorithm that
enforces OG compensation automatically, in all expected condi-
tions at the telescope, and that exonerates the operator from any
kind of fine-tuning of one or many AO control parameters so as
to obtain the maximum performance.

Using a sinusoidal dithering followed by a synchronous
demodulation stands as a natural approach to this problem.
Deformable mirror dithering has often been used to retrieve
in-situ values of a variety of turbulence-dependent measure-
ments (Rigaut et al. 2010), or on-sky interaction matrices
(Esposito et al. 2006; Kolb et al. 2012). Dithering, coupled with
synchronous demodulation (Sect. 5.3), allows for an optimized
retrieval of the desired information α‖ using fine-tuned param-
eters for this purpose; in particular the frequency range and the
desired S/N – as is detailed in Sect. 5.4.
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Using DM dithering however adds an intrusiveness issue
between the science and the AO channels, as dithered signals
are forwarded to the scientific instrument. We seek to introduce
the minimal disturbance to the science channel while satisfac-
torily tracking OG fluctuations. Design strategies include using
minimal dithering amplitudes, a well-selected minimal number
of modes, and reduced active duration, possibly synchronized by
the instrument control system with short periods of offline sci-
ence time. Dithering signal parameters and design trade-offs are
presented in Sects. 5.3 and 5.4, and numerical simulation results
on the intrusiveness of the automatic OG compensation into the
scientific imaging are presented in Sect. 8.1.

5.2. Database computation

Database computation is a step that comes offline, well before
any on-sky operations and ideally during the commissioning of
the instrument. This is entirely done by end-to-end numerical
simulations configured to match the optical setup, and consists
in populating a database with OGCs.

For each sampled p0 parameter within the range of
interest – in our case 15 values sampled from r0 = 4.0 to 35.0 cm
at 500 nm, a number of wavefronts are generated with the
selected p0-class closed-loop wavefront PSD, defined using the
method described in Sect. 2.4. An interaction matrix is computed
around each of these wavefronts as per Eq. (2), allowing statisti-
cally converged target values µ

[

α‖ (φi; p0)
]

and µ
[

Gopt (φi; p0)
]

to be to computed for all p0 and all DM modes φi, as already pre-
sented in Figs. 3 and 4. These two compiled p0-labeled abacuses
will allow the interpolation and gain retrieval process described
in Sect. 5.5. Such abacuses must be computed for all determined
operating modes of the system, with noticeably different val-
ues and structure for different modulation radii; otherwise, they
remain unchanged for the lifetime of the system, as they are
mostly dependent on the sampling of the DM and WFS, their rel-
ative positioning, and the modulation radius. We compute aba-
cuses with a simulated star bright enough to disregard noise, and
we use the same abacus during operations regardless of the guide
star being observed.

5.3. Dithering sequence

The dithering sequence now happens on-sky during observa-
tions. Our strategy is to use a cosine-wave pseudo-openloop
dithering of the DM to retrieve the amplitude seen by the PWFS.
For a subset of K modes ψ1, ..., ψK of the DM, a cosine-shape
excitation is introduced for a total added amplitude to the AO
loop integrator output at time step t of:

Dither (t) =
K

∑

i=1

Ai × cos (2π fit) × ψi, (14)

where Ai and fi are the a priori determined dithering amplitudes
and frequencies for each of the ψi modes. From the recorded
PWFS slopes S (t) during the same time frame – re-synchronized
from latency effects, we demodulate the seen amplitude of the ψi

modes at frequencies fi in terms of the reference reconstructor
Rec. For the current α‖ (ψi), this quantity estimates

α⋆‖ (ψi) =
1
Ai

1
T

1
||ψi||2

∣

∣

∣

∣

∣

∣

∣

∑

t

cos (2π fit) ×
[

ψi ⊗ (Rec · S (t))
]

∣

∣

∣

∣

∣

∣

∣

, (15)

with starred values denoting measured or estimated values, ⊗
the inner product in wavefront space, and T the duration of the
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1 = 1243
 A1 = 7.5 nm

2 = 2110
 A2 = 4.0 nm

3 = 3705
 A3 = 1.5 nm

Modal signals during dithering
DM Dithering
Mode ampl. on PWFS
PWFS mode reconstruction

Fig. 6. Typical example of a dithering sequence, as we use for all numer-
ical simulations using the dithering method in this paper. “DM dither-
ing”: ψi amplitude injected Ai × ||ψi|| × cos (2π fit); “Mode ampl. on
PWFS”: true instantaneous component in ψi of the wavefront; “PWFS
reconstruction”: ψi component measured from the slopes, i.e., ||ψi||−2 ×
ψi ⊗ (Rec · S (t) ). For this case, the turbulence r0 is 14.5 cm, with con-
ditions of Table 1 but no noise. Wavefront maps of the ψi are shown in
Fig. 7. Data for ψ1 and ψ3 are offset by +20 and −20 nm, respectively.

Table 2. Parameters used for the dithering signals.

Dithering sequence configuration

Number of modes K 3
Duration T 500 ms – 250 frames
Signal shape Ai cos (2π fit)
ψi gain reduction 8.0
Modes ψi Fig. 7
Frequencies fi 20, 30 and 40 Hz
Amplitude Ai auto. S/N assessment
Min. amplitude 1.5 nm RMS per mode
Max. amplitude 25.0 nm RMS per mode
Noise meas. band ∆ f ±2 DFT bins i.e., ±4 Hz

sequence in samples. A typical example of dithering sequence
and signal retrieval is shown in Fig. 6, with the input ampli-
tude dithered Ai × ||ψi|| × cos (2π fit), the true signal on the
PWFS, and the reconstructed modal signal as used in Eq. (15):
||ψi||−1 × ψi ⊗ (Rec · S (t)). More generally, signals other than a
cosine can be used, and demodulated using cross-correlation in
place of Eq. (15).

5.4. Dithering sequence design and parameters

For an efficient performance of the automatic update method,
suitable amplitudes, frequencies, mode choices, and so on have
to be determined for the AO system. Possible choices are numer-
ous and there are no unique acceptable solutions. We reached a
satisfactory solution through trial and error on simulated systems
of different sizes and now describe the retained decisions and the
various trade-offs considered. The choices of parameters for the
dithering sequence used throughout this project, according to the
constraints detailed hereafter, are synthesized in Table 2.

Obtaining open-loop slopes. The computation of Eq. (15) is
an appropriate estimator if closed-loop rejection of the dithering
signal can be ignored. To access a relevant value for α⋆‖ (ψi), the
AO system consequently behaves in an open-loop mode, albeit in
the small-phases approximation such that rejection of the dither-
ing signals can be ignored. However, completely filtering out ψi

modes from Rec during the dithering allows the atmospheric

A107, page 7 of 18

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935847&pdf_id=6


A&A 629, A107 (2019)

component to build up to nonsmall quantities. Therefore, we
choose to reduce the modal gains of the K modes ψi by a fac-
tor of 8.0 during the dithering sequence, while all nondithered
modes are maintained in nominal closed-loop regime.

Frequencies. Sufficiently low frequencies fi are to be chosen
so as to be well within the bandwidth of the DM, and below the
overshoot band of the feedback loop – as a small amount of the
dithered signal will be injected into all modes through nonlinear
cross-coupling, and will possibly be amplified by the overshoot
as all other modes than the ψi are still operated in close-loop.
Operating well beneath the Nyquist frequency is also meant as a
conservative strategy for real AO systems, considering the pos-
sibility of fluctuating, fractional delays, and possible difficulties
for characterization of DM and telescope control transfer func-
tions close to the Nyquist limit.

Beneath these upper bounds, fi should be as high as possi-
ble in order to escape the massive low-frequency spectrum of
the turbulence and mitigate the impact of lengthy drifts from
the closed loop value on the scientific imaging path. Given that
we operate our AO loop at 500 Hz, with an overshoot band cen-
tered on 50 Hz for a two-frame delay integrator RTC, we select
fi frequencies in the range 20–40 Hz. To avoid fratricide effects
between the ψi due to the unknown d⊥ OG cross-coupling, we
select different, evenly spaced frequencies for all ψi within this
range. We ought to have avoided choosing harmonic frequen-
cies, but frequency-mode analyses showed that this issue was
insignificant given the chosen ψi. The fi values are conserva-
tively within the ELT M4 flat (±1 dB) response band of 200 Hz
(Sedghi et al. 2010).

Amplitudes. Dithering amplitudes Ai must on the one hand
remain small enough as to not perturb the science imaging qual-
ity during the dither sequence, yet be large enough to obtain
a high-confidence measurement of α⋆‖ . In order to always use
appropriate Ai, we perform an automatic S/N assessment imme-
diately before the dithering sequence. The gains for ψi are also
divided by 8.0 during the same duration, and the noise level is
assessed in frequencies within ∆ f of fi through:

ni =
1

2∆ f

1
T

1
||ψi||2

∫ fi+∆ f

fi−∆ f

∣

∣

∣

∣

∣

∣

∣

∑

t

cos (2π f t)
[

ψi ⊗ (Rec · S (t))
]

∣

∣

∣

∣

∣

∣

∣

d f ,

(16)

typically using ∆ f such that it covers a few Fourier transform
bins. From this measured ni noise floor at frequency fi in mode
ψi, the amplitude Ai is obtained relative to a set target S/N of 5
for a lower range α‖ of 0.1, hence:

Ai =
5

0.1
ni. (17)

Finally, to avoid exceptional situations in very high or low
S/N, Ai is clipped to extremal values such that Ai × ψi amounts
to between 1.5 and 25.0 nm of spatial RMS.

Choice and number of modes. In order to obtain estimates
of α⋆‖ (ψi) while properly sampling the spatial frequency range, it
is appropriate to choose a large enough number of modes to span
the entire DM basis, with minimal d⊥-induced cross-coupling.
Conversely, a minimal number of modes guarantees a reduced
total wavefront disturbance during the dithering period – both
from the uncorrected atmospheric drift and the dithering signal
itself. In order to evaluate this compromise, we started with a
choice of K = 20 modes, evenly sampling the frequency plane,

1= 1243

2= 2110

3= 3705

Fig. 7. Wavefront maps (left column) and log-scaled spatial PSD (right)
for the dithered modes ψ1, 2, 3. The displayed area is 39.5 m across for
wavefront maps and 100 λ

D
across for PSD maps. The colormap extent

for PSD maps is 104. Dashed hexagons show the limit of the M4 DM
correction zone.

and gradually monitored the performance while reducing K. A
consistent performance of the procedure was validated down to
K = 3 dithered modes.

The three retained KL modes ψ1,2,3 for the ELT-M4 setup
we use for numerical simulations are shown in Fig. 7, along
with their spatial PSD. An important criterion for the choice
of a mode is to ensure that its PSD energy is well distributed
azimutally in the frequency plane, which ensures that science
path speckles induced by the dithering signal are diluted over
a larger area in the focal plane, rather than building very local-
ized artifacts. Also, the pseudo-openloop drift should not impede
imaging, hence the choice of ψ1 with frequency contents of the
order of 25 λ

D
. This is low enough to extrapolate the gains of the

first optical modes with confidence, yet high enough to leave
the Airy core and the first few rings unaltered.

Duration of dithering. The last design parameter to dis-
cuss is the duration of the dithering sequence; it must be long
enough to achieve the target S/N given by Eqs. (16) and (17),
yet not impede the general workflow of the AO operation. We
opted for 500 msec, i.e., 250 frames at 500 Hz. As discussed in
Sect. 8, this duration is well suited to induce very low dithering
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amplitudes in most situations, and can be well integrated into
scientific operating procedures.

5.5. Interpolation and retrieval of optical gain coefficients

With α⋆‖ (ψi) values obtained from demodulating the recorded
dithering sequence for three modes, the algorithm proceeds to
define appropriate G⋆

opt (φi) values for all DM modes. This pro-
cess is done in three steps, which are depicted with simulation
data in Fig. 8.

For dithered modes ψi, the sensitivity reduction coefficient
α⋆‖ (ψi) is mapped to a p⋆0 (ψi) value using the α‖ abacus. This
measured p⋆0 is representative of the turbulence power in spatial
frequencies borne by mode ψi. As the residual spectrum does
not necessarily match the PSD chosen for a given p0 wavefront
class, it is expected that p⋆0 would differ across dithered modes.
From the measured values p⋆0 (ψi), a value is interpolated for all
modes using a linear interpolation across the spatial-frequency-
sorted natural ordering of the KL modes, and extrapolating with
p⋆0 (φi) = p⋆0 (ψ1) (resp. p⋆0 (ψ3)) for modes with indexes below
ψ1 (resp. beyond ψ3).

Finally, the Gopt abacus is used to obtain putative
G⋆

opt (φi; p⋆0 (φi)) for all modes, interpolating from the precom-
puted p0 values. The command matrix of the system can now be
updated using these OGCs, to be maintained until the next OGC
update sequence occurs.

5.6. Additional weighting of optical gain coefficients

When using either static OGCs – that is, Gopt (φi; p0 = r0)
assuming r0 is known – or automatic OGCs, that is those
obtained through regular dithering and updating sequences, a
nefarious effect arises; this is observed when the scalar integrator
gain is overset beyond some reasonable value ensuring stability,
particularly in above-median seeing conditions with bright guide
stars. Updating the RTC with Gopt coefficients sets all modes to
a comparable level of optimum rejection; if the scalar integrator
gain is then overset, the lowest-order modes – bearing the most
residual and being the most boosted by OGCs (Fig. 4) – enter
first in an oscillatory regime characteristic of a lack of stability.
In particular, the tip-tilt are the most affected modes and the sci-
ence image suffers from jittering and is rendered unexploitable.
The same effect occurs if r0 increases by a significant fraction
between two dithering sequences, with the experienced OG sen-
sitivity reduction becoming less dramatic, hence a response from
the loop equivalent to that caused by a gain increase. This effect
was observed in our simulations, and is discussed in more depth
in Appendix A; it was deemed to be a critical shortcoming for
system robustness, and therefore we devise a workaround to pre-
vent low-order instability.

We circumvented the issue by adding an additional weight-
ing to the Gopt coefficients, allowing us to control which modes
enter oscillatory regime first when an unexpected gain increase
occurs. For all results when referring to weighted OGCs, we add
an additional modal gain multiplier of:

W( i ) = 1−














0.15 − 0.3

√

i

N















×
(

1
2
−

1
π

arctan

(

i − 0.8N

0.035N

))

, (18)

where i is the mode index and N the total number of modes.
Numerical parameters were fine-tuned with the experimental
ELT setup described in Sect. 3, yet were tested and should be
appropriate on other designs as long as a DM-reprojected KL
basis ordered with increasing spatial frequencies (Ferreira et al.
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Fig. 8. Successive steps of the abacus-based interpolation process.
(a) For each of the K dithered modes ψi, the measurement α⋆‖ (ψi)
is mapped to a wavefront PSD class identified by p⋆0 (ψi). (b) p⋆0 is
extrapolated from the dithered ψi to all DM basis modes φi. (c) From
p⋆0 (φi), an optimal OGC G⋆

opt (φi; p⋆0 (φi)) is interpolated for all basis
modes. Figures show actual simulation data processed from the dither-
ing sequence shown in Fig. 6, with α‖ (ψi) = 0.48, 0.54 and 0.58 and
p⋆0 (φi) = 15.0, 15.7 and 16.0 cm. The turbulence r0 is 14.5 cm.

2018b) is used. The weighting function is plotted in Fig. 9, along
with a map of this weighting distribution in the Fourier plane.

Equation (18) corresponds to a square-root shape from 0.85
at lowest orders to 1.15 at highest orders, with the arctan term
bringing W(i) back to 1 across a transition of width 0.035 N cen-
tered on mode number 0.8 N. A square root function corresponds
to a linear increase with the norm of the spatial frequencies borne
by the mode. The arctan term is introduced to cut-off the gain
boost before the highest-order waffle-like modes at the end of
the KL DM basis. These highest-index modes have spatial PSDs
well localized on the corners of the DM rejection domain, and
therefore they quickly induce undesirable artifacts in the point
spread function (PSF) when reaching oscillatory regimes.

Boosting the gain of mid-order modes ensures that if for any
reason some instability is approached, mid-order modes would
be affected first. Low orders, and tip-tilt in particular, would
be shielded, as well as waffle-like modes: the additional mid-
frequency wavefront perturbation will in turn induce a reduction
of the PWFS sensitivity, providing a self-stabilizing regime.
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Fig. 9. Top: corrective OGC weighting W(i), as defined per Eq. (18), for
the ELT simulation with N = 4309 modes. Bottom: distribution of the
weighting W(i) in the Fourier plane of the pupil. At each frequency in
the Fourier plane, the weight shown is the W(i) of the KL mode which
bears the most energy at that specific frequency. This representation is
obtained by computing the Fourier transform of all modes and finding
the mode that is most representative of any given spatial frequency. The
dashed hexagon shows the correction zone of the M4 DM. The dis-
played area is 100 λ

D
across.

6. End-to-end simulation results – stationary r0

turbulence

We now propose to analyze and verify the end-to-end perfor-
mance when switching from the conventional command matrix
Rec to the OGC-updated Λ−1 · Rec. This section covers station-
ary turbulence conditions, where wind speed, r0, and L0 remain
constant over time for each numerical simulation. The simulated
RTC is however not aware of any parameter of the turbulence
and operates autonomously.

A key point to assess is the improvement in end-to-end met-
rics regardless of any other multiplicative factor, typically the
loop scalar gain, which may often be the first parameter manu-
ally or automatically tuned to maximize AO performance. Here,
the AO performance is measured in terms of the science chan-
nel long-exposure Strehl ratio (SR), in the H infrared band
(1650 nm). Section 6.1 presents the simulation protocol used and
Sect. 6.2 covers the results and discussions of these stationary
turbulence cases. Dynamic evolution is treated in Sect. 7.

As discussed in Sect. 4.1, we do not consider the modulation
parameter as an optimization in this paper, and rather base our
choice of 4 λ

D
on previous design analyses. We believe this choice

to be of relevance, as most ongoing AO designs with PWFSs
are sensitivity-driven, and aim for small modulation radii. Fur-

thermore, a demonstration of the benefits of modal OG com-
pensation – whether through the proposed dithering method or
another – at lower modulation radii at which the pyramid is more
prone to nonlinearity provides us with confidence of the applica-
bility for potential improvements at larger modulations.

6.1. Simulation protocol

To describe the numerical simulation protocol used for our
OGC-versus-scalar gain optimization experiments, it is useful to
first describe two sequences that are recurringly used hereafter.
The OGC update sequence is the process of noise assessment,
dithering, and reconstructor update. The bootstrap sequence is
the method by which we obtain condition-appropriate OGCs
when cold-starting the AO system.

OGC update sequence. An OGC update sequence is the
practical implementation of the dithering process described in
Sect. 5. While the AO is operating in closed-loop: (1) The com-
mand matrix is updated so as to reduce the gain of dithered
modes ψi by a factor 8.0. (2) Noise assessment is computed
from a 500 ms (a 500 Hz frame rate is assumed) set of closed-
loop slopes, from which dithering amplitudes are derived, as
per Eqs. (16) and (17). (3) The command matrix is reset to its
original value; the loop is run for 100 ms, catching up any drift
in the ψi modes. (4) The command matrix is updated again to
relieve control of the ψi; the dithering sequence is performed,
lasting 500 ms. (5) New OGCs are computed with the interpo-
lation method described in Sect. 5.5. The new command matrix
is computed using these new modal gain coefficients, possibly
weighted as per Eq. (18).

Bootstrap sequence. When initially closing the loop, we
generally assume we have no prior information on atmospheric
conditions, and therefore we always start with OGCs set to
1. From there, convergence on situation-appropriate automatic
OGCs is achieved through repeating the following sequence
three times: with the integrator gain set to 0.5, we (1) close
the loop with no other action for 0.2 s and (2) perform an OGC
update sequence. We find that 0.2 s is a sufficient time to reach
a steady-state regime from a flat DM, or after any update of the
command matrix. With the three repetitions of the OGC update
sequence, the total length of the bootstrap sequence is 3.9 s; the
repetitions are merely a safeguard to ensure convergence of the
automatic OGCs, yet in most cases the AO is almost optimally
operational after one or two passes, depending on the current
seeing.

Overall, for the end-to-end simulations, we first set the atmo-
spheric r0; then for the automatic, weighted OGCs, a complete
bootstrap sequence is performed. Once OGCs are set, the inte-
grator gain g is set to the test value and the loop is closed from a
flat DM for 200 ms, after which a long-exposure PSF is recorded
lasting one second. Strehl ratios are computed from this PSF, and
error bars are estimated from the standard deviation of wavefront
errors across all frames using the Maréchal approximation.

6.2. Results

We compare the overall performance of the PWFS without modal
OG compensation – that is, flat, unit OGCs – and with auto-
matic, weighted OGCs. Numerical simulations are performed
with atmospheric r0 ranging from 7.0 cm to 14.5 cm. Results are
shown in Figs. 10 and 11, respectively, using guide stars with
magnitudes MR = 0 and MR = 16 – yielding CCD fluxes of
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Fig. 10. Comparison of end-to-end performance with automatic, weighted OGCs (left), and no modal compensation (right), depending on the
integrator scalar gain g, for various atmospheric r0. An MR = 0 guide star is used. Error bars show ±1 standard deviation of the frame-by-frame
SR.
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Fig. 11. Identical to Fig. 10, using a MR = 16 guide star.

respectively 7.0 × 105 and 0.28 photo-electrons pixel−1 frame−1

in the PWFS pupil images.
The maximum SR achievable while sweeping the scalar inte-

grator gain g is increased by the introduction of OGCs in all
the situations simulated. While the improvements are modest for
median seeing in the MR = 0 simulation (Fig. 10), namely 74%
to 78% for r0 = 14.5 cm, the increase in SR is valuable when
r0 is below 10 cm: maximal performances of 7 and 17% for r0
of 7.0 and 8.5 cm are improved to respectively 21 and 38% of
H-band SR.

Significant improvements are also obtained for the high noise
MR = 16 case, as seen in Fig. 11, for all seeing conditions. Over-
all, the use of automatic OGCs is expected to greatly increase the
range of possible sky conditions for a given astronomical obser-
vation with a minimum acceptable SR, thus improving telescope
availability.

Another result is conveyed that has been implicitly lever-
aged when describing the bootstrap sequence in Sect. 6.1. When
using automatic, weighted OGCs, for each Fried parameter r0
the integrator gains gmax (r0) which yield the maximum SR are
within a much narrower range than when not using OGCs. Due
to the loss in sensitivity as seeing degrades, gmax (r0) contin-
uously increases if no modal gain compensation is applied:to

over 1 for r0 ≤ 8.5 cm and to over 1.5 for r0 = 7 cm. This
drift is induced by the strong sensitivity loss for the low-order
modes being compensated overall by increasing gmax (r0), and in
itself requires manual or automatic optimization procedures if
no OGCs are to be used. With the automatic, weighted OGCs on
the other hand, gmax (r0) is bound between 0.45 and 0.6 for both
guide stars and at all r0.

This allows us to choose a nominal integrator gain of 0.5
when using OGCs. With this constant g value set, we can bud-
get that while the OGCs automatically update, the performance
obtained is within 2% SR of the maximum achievable value
when tuning g.

Finally, some selected PSF profiles corresponding to the best
SRs in Fig. 10 are compared in Fig. 12. Additional speckles
when comparing PSFs made without OGCs – but optimizing the
global integrator gain – to those with OGCs are located mainly in
two particular areas of the focal plane: the low-mid-frequencies
(from 4 to 20 λ

D
), and the DM frequency limit (centered on 42–

44 λ
D

); this difference is most clearly seen on the r0 = 10.0 cm and
7.0 cm profiles. These localized degradation zones are a conse-
quence of the impossibility to reach an optimum for all modes by
only tuning the scalar integrator gain, with merely a compromise
achieved. The trade-off induced at gmax when not using OGCs
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Fig. 12. PSF profiles corresponding to the maximum SR attained in
Fig. 10, with and without using OGCs (automatic, weighted), for a tur-
bulence r0 of 14.5, 10.0, and 7.0 cm.

leads to an overshooting regime of the high-frequency modes,
while mid-range modes suffer from under-compensation. At the
crossing of these two regimes – for spatial frequencies of 25 λ

D
–

there are modes for which the optimum rejection regime is
reached, both with and without OGCs; at this location the PSFs
show an identical speckle floor level.

7. End-to-end simulation results – automatic gain

tracking

As we look towards our design for a fully automatic OG compen-
sation process, we have demonstrated that automatic, weighted
OGCs obtained through a bootstrap sequence yield an improved
AO performance in all compared seeing and guide star magni-
tude conditions. We now assess the long-run capacity of regular
command matrix updates to maintain the AO in a near optimum
state when seeing conditions need not remain stationary through-
out an observation.

7.1. Variable r0 – Methods

To demonstrate the robustness of the self-updating OGC method
in telescope-like conditions – in particular regardless of the see-
ing and without intervention of the operator during the acquisi-
tion run – we designed an end-to-end simulation protocol which
covers large variations in seeing. Two simulation runs were per-
formed: (1) where r0 gradually decreases with time from 21 to
7.0 cm over the course of 20 min and (2) the mirrored variation
where r0 increases from 7.0 back to 21 cm. The performance of
several AO optimization strategies is compared across these two
runs.

These strategies, described hereafter, cover what is to be
done with the loop gain g and the OGCs at the beginning of the
experiment, and how to automatically track seeing variations.
During each experiment, the AO loop is run continuously for
20 min; each minute, r0 is increased or decreased by 5.6%, and –
depending on the method – the integrator gain or the OGCs are
updated to track this change. A SR measurement is obtained each
minute from the average of two PSFs exposed for one second
each, taken immediately before and after the control law update,

if any. Four methods for the initial RTC state and the update
sequence are compared:

Method A: complete automatic OGC pipeline. Method A
is the complete development of the automatic OG compensation
process that is proposed in this research. Automatic, weighted
OGCs are set through an initial bootstrap sequence at the start-
ing r0. The integrator gain is set to 0.5 and remains unchanged.
At each minute of the simulation, a single OGC update sequence
is performed that lasts 1.1 s and progressively updates the modal
coefficients while the r0 changes. This method, which is the
product of all the analyses presented in this paper, is expected
to be one of the best possible automatic strategies to go through
the designed experiment with maximum performance.

Method B: initial OGCs, no update. The integrator gain is
set to 0.5 and automatic, weighted OGCs at the starting r0 are
set. No control updates are performed. This method simulates
the impact of a one-shot modal gain optimization upon loop
closing, after which the system is left unattended and unmod-
ified across long acquisition runs. By construction, the initial
state with methods A and B is identical, with an increasing dif-
ference between their performances as r0 drifts from its initial
value.

Method C: initial gMax, no OGCs. The integrator gain is set
to gmax (r0) for the starting r0, as obtained from the results of
Sect. 6.2. No OGCs are used, and no control updates are per-
formed. Altogether, method C is the best effort performance if
restricted to manually tuning the loop gain at the beginning of
an observation and not using modal OG compensation.

Method D: median OGCs, gMax updates. Reference auto-
matic, weighted OGCs are set using the near-median r0 =

14.5 cm. These OGCs are never updated, but the integrator gain
is updated every minute to the appropriate gMax (r0), as tabulated
from stationary end-to-end simulations with a MR = 0 guide
star. This method simulates using some fixed, median optimal
gains deemed almost always adequate, and leaving the final in-
situ optimization to the integrator gain. Method D was suggested
and introduced as a possible technical simplification of method
A.

The end-to-end performance results for the r0-varying exper-
iments with all four methods, using MR = 0 and MR = 16 guide
stars, are shown in Fig. 13.

7.2. Variable r0 – Results

As expected, the automatic pipeline we propose – method A –
satisfactorily maintains AO performance throughout both 20 min
cycles, with identical behavior for improving or deteriorating
turbulence conditions. This demonstrates that recurring OGC
update sequences can satisfactorily maintain the AO in a sta-
ble and efficient state during long closed-loop runs. When com-
paring to the maxima for stationary r0 shown in Figs. 10 and
11, the performance is consistently inferior by 2–5% of the SR
when crossing the given r0 value. When considering this loss
however, the following must be taken into account: (1) the value
of 0.5 not being the exact gMax (r0); and (2) the measurement by
averaging the SR immediately before and after the OGC update.
The choices of the variation speed of r0 and the frequency of
updates are individually somewhat arbitrary, but it is demon-
strated that a single update sequence can efficiently overcome
r0 variations of 5.6%. We acknowledge we are missing statistics
on the temporal variations of r0, but such data are beyond the
scope of the present paper. Anyhow, such statistics are expected
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to be extremely variable depending on the moment in the year,
the site, the telescope, and its dome. Altogether, we estimate that
5.6% ought to be a conservative bound for a one-minute change,
and if this were found not to be the case, the frequency of OGC
update sequences could easily be increased.

On the other hand, the nonupdating methods B and C show
comparable performance for decreasing r0, which is as expected
substantially below that of method A. When r0 deteriorates
below 9.5 and 11.5 cm for magnitude 0 and 16 guide stars,
respectively, the SR drops below 5%, while method A reaches
this level at r0 = 9 cm for MR = 16, and maintains a SR of above
19% for MR = 0. For these methods, the decreasing and increas-
ing r0 experiments are not equivalent. When seeing degrades,
the sensitivity decreases from the initial state at r0 = 21 cm, and
the system suffers an under-compensation. On the other hand, for
increasing r0, the sensitivity of the PWFS continuously increases
as compared to the initial state. Hence, the AO loop quickly
reaches instability regimes, which in turn degrades the wave-
front quality, which in turn stabilizes the loop thanks to the added
residual and its inherent sensitivity reduction. This general over-
shoot trend accounts for the asymmetry of the two experiments
for methods B and C, and is the origin of the dip in method B
data for 10 ≤ r0 ≤ 14 cm. Data for methods B and C for increas-
ing r0 past 10 cm can altogether be disregarded, as the buildup
in focal plane artifacts make it undesirable to do science in such
regimes. This effect is connected to the overshoot regimes which
are described in Appendix A.

Besides method A, method D is the most fitting candidate
for an automatic tracking of optical gain. End-to-end perfor-
mances for MR = 0 are similar within SR measurement uncer-
tainty, and for MR = 16, method D yields better performance
by at most 8% SR when r0 is beyond 17 cm in the decreasing
r0 sequence. This performance improvement is explained by the
shape of the OGC curves used, and their relationship to S/N
optimization: when taking the ratio between automatic OGCs
at r0 > 14.5 cm as used by method A, and automatic OGCs
at r0 = 14.5 cm, one observes that method D benefits – thanks
to the trends of sensitivity measurements with seeing – from a
reduction of the gain of high-order modes relative to that of low-
order modes, which tends to follow the trend for optimum noise
rejection (Gendron & Léna 1994) for high-noise regimes. Exper-
imental data confirm this r0 > 14.5 or < 14.5 cm dichotomy,
with the gap between methods A and D – in the decreasing
r0 case – closing just as r0 reaches 14.5 cm. Noise-dependent
control law optimization has not yet been implemented in
method A.

These results tend to indicate that the simplification of the
update process proposed by method D is attractive in terms of
design, computational burden, and correction performance. As
much as the authors would like to support this strategy, it is to
be noted that method D, not being the core of this paper, has
not been engineered in appropriate detail for this experiment,
and still incurs some shortcomings. First, the update rule used
assumes an immediate and precise knowledge of the current r0;
this may be provided by another channel of telemetry, but this
is yet to be determined. Second, the dithering-based method A
has been designed, using the abacus interpolation method, to
accommodate residual wavefront PSDs which may differ from
the abacus computation regime, in particular when changing the
importance of the various error budget components. On the other
hand, maintaining a permanent OGC curve assumes conditions
compliant with the ones in which it was computed; typically for
method D an r0 close enough to the selected 14.5 cm. Robust-
ness to highly varying noise conditions was demonstrated, yet
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OGC each min. (A)
OGC once (B)
MR = 0

Flat modal gains (C)
OGC once, gMax each min. (D)
MR = 16

Fig. 13. Comparative analysis of end-to-end AO performance through
an observation where (top) r0 decreases and (bottom) r0 increases
between 7.0 cm and 21.0 cm – in steps of ± 5.6% every minute –
depending on the method chosen for integrator gain and OGCs. Results
are compiled for guide stars of magnitude 0 (solid) and 16 (dashed).
Error bars of ±3% of SR are to be assumed for all data. The general
simulation procedure and methods (A–D) are detailed in the main text.

the authors express reservations regarding variations of other
parameters, in particular wind speed and direction; or the spatial
extension of the guide object (multiple stars, planetoids, AGNs,
etc). Finally, using method D also places the AO in a catastrophic
failure regime if g or r0 are overestimated in low-noise cases, as
occurred for unweighted OGCs and was discussed in Sect. 5.6.
An analysis and discussion of this issue with method D are also
included in Appendix A.
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Table 3. H-band SR measurements during and in-between dithering
sequences for various r0 and guide stars, along with mean dithering
amplitudes.

SRs in and out of dithering

r0 MR Dith. 10 s 20 msec
√

∑3
k=1 A2

k
||ψk ||2

cm Y/N SR (%) SR (a) (%) nm RMS (b)

14.5 0 N 77.2 76.9 ± 0.9
Y 77.2 76.9 ± 0.8 5.3

8.5 0 N 34.7 33.0 ± 3.4
Y 35.2 33.8 ± 3.2 5.9

14.5 16 N 36.6 35.5 ± 3.3
Y 36.0 35.1 ± 3.1 25.8

8.5 16 N 4.1 2.7 ± 1.1
Y 4.0 2.9 ± 1.0 25.1

Notes. Dith.: Yes (Y) for data during dithering and No (N) otherwise.
(a)Computed from loop residuals with the Maréchal approximation.
(b)Averages across the 20 dithering sequences.

8. Discussion

8.1. Compatibility with imaging requirements

The automatic OG compensation pipeline was demonstrated to
be satisfactory with an OGC update sequence of 1.1 s performed
every minute. The question remains as to the impact of DM
dithering on the scientific instrument, which might represent
a potential restriction to the practical implementation of this
technique.

Using dithering amplitudes based on in-situ noise assessment
is the key feature: this ensures the dithering is always propor-
tionate to the current image quality. We showed that clipping
the amplitudes between 1.5 and 25.0 nm RMS per mode pro-
vided satisfactory performance, with 1.5 nm occasionally being
reached from the S/N minimum requirement of Eq. (17) for
MR = 0.

Nevertheless, we seek to quantify potential focal plane arti-
facts observed at the spatial frequency locations of the dithered
modes – shown in Fig. 7 – and SR performance losses, if any.
We measured the SR for cases with r0 of 14.5 and 8.5 cm and
guide star magnitudes MR = 0 and 16. During an AO run last-
ing 20 min, the PSF was acquired during all of the 20 dithering
sequences, each 0.5 s long. From these, a ten-second exposure
equivalent PSF was obtained, and identically a nondithered PSF
was compiled after acquiring 20 exposures of 0.5 s each imme-
diately after dithering sequences. Measured short exposure and
overall ten-second SRs are compiled in Table 3, along with the
mean dithering amplitudes for the three ψi modes across the 20
ditherings performed to reach the total ten-second exposure.

Data in Table 3 show that any science channel distur-
bance is beyond SR measurement sensitivity. Long- and short-
exposure SRs are identical within and outside of ditherings,
with nearly identical temporal error bars of the short-exposure
SR. Moreover, quantitative values amount to approximate max-
imal dithered wavefronts of 6 and 26 nm RMS adding the three
modes, for MR = 0 and MR = 16, respectively.

Of the cases measured, only for r0 = 14.5 cm at MR = 16
were we capable of clearly observing dithering-induced struc-
tures in the PSF. The relative difference between dither-
ing and nondithering PSFs is shown in Fig. 14, computed

as:
|PSFdither − PSFno dither|

PSFno dither
.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 14. Relative PSF difference between dithering-only and nondither-
ing acquisitions, for r0 = 14.5 cm and MR = 16. The image is 100 λ

D

across.

The most prominent structure in Fig. 14 are the two side
lobes on the horizontal axis, induced by mode ψ2; they may be
observed on the dithered PSF, with peak magnitude of 0.06%
of the PSF core. These two lobes are complemented by a near-
complete ring of speckles from ψ1 and a partial hexagon of the
spatial frequencies of ψ3. Speckles with higher values within the
ψ1 ring are due to speckle noise between the subtracted PSFs.

Overall, our experiments indicate that the worst case distur-
bances induced by dithering on the science channel would only
matter if contrasts better than 104 could be obtained. While this
is generally not the case with the system studied, it may be for an
AO followed by a coronagraphic second-stage extreme AO sys-
tem. The authors suggest two possible operating modes to ensure
profitable cooperation between an automatically dithering RTC
and the science channel depending on the scientific acquisition
mode. If long-exposure science images are being run, for exam-
ple above 10 s of exposure time, a half-second dithering would
be diluted across the exposure, and the AO would proceed with-
out interrupting the science instrument; if short-exposure shots
are being taken, we suggest that the instrument-control software
would periodically suspend the scientific acquisitions while the
dithering is performed. In such a case, dithering amplitudes can
even be increased and the dithering duration shortened, together
preventing a fratricide effect, with the shortest possible interrup-
tions.

8.2. Compensating noncommon path aberrations

Early in this paper, we mentioned the critical issue of the effect
of OG regarding NCPA subtraction in the AO loop. We unfortu-
nately could not tackle this topic extensively at the time of writ-
ing this paper, and no end-to-end simulations with NCPAs had
yet been performed using the dithering method. NCPA compen-
sation was actually one of the starting points of OG analysis and
gain tracking methods for high-order AO systems with nonlin-
ear WFSs (Esposito et al. 2015). Modal OG compensation works
towards the solution: considering the NCPA measurement not as
reference slopes, a practice inherited from Shack–Hartmann for-
malism and yet unsuitable for nonlinear systems, but rather in
terms of reference wavefront maps. In practice, this means per-
forming the setpoint subtraction not as

Pyr (φ) − Pyr (φNCPA), (19)
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but after the MVM computation, as

Λ
−1 · Rec · Pyr (φ) − φNCPA. (20)

With this new point of view, an appropriate NCPA compensa-
tion can be performed adequately, leveraging the rectification
of the reconstructor, and avoiding the issue of NCPA over-
compensation (Bond et al. 2017) which occurs when an increase
in gain is applied over Eq. (19) to compensate for sensitivity
reduction.

The NCPA subtraction following Eq. (20) is appropriate
regardless of whether φNCPA is calibrated directly as a wavefront
(e.g., with phase diversity), or using the traditional method –
setting the cleanest possible PSF on the imaging channel and
acquiring the WFS slopes for such a wavefront, in which case it
is estimated by

φ⋆NCPA = Rec · Pyr (φNCPA). (21)

The latter case allows for a finer all-in-one estimation of second-
order effects such as aliasing or nonlinearity of the measurement
of the NCPA wavefront.

The nonlinearity induced by the NCPA offset is also to be
considered for OG compensation in its own regard. Regard-
ing the MICADO SCAO system, a total of 120–150 nm RMS
residual NCPA is expected after optical precompensation during
instrument commissioning. This residual NCPA alone modifies
the PWFS response. For the dithering method to be applicable,
we therefore expect that abacuses should be recomputed once
NCPAs are fully characterized, with p0-class wavefronts offset
by the φNCPA.

8.3. Alternative calibration and sensitivity-compensation
methods

To conclude this section, we would like to discuss how the
dithering and OG compensation approach presented in this paper
should compare to current alternatives used to operate PWFSs
on-sky. In particular, on-sky measurements of interaction matri-
ces can be performed (Esposito et al. 2010; Guyon et al. 2011),
or alternatively, adequate synthetic matrices to match on-sky
sensitivity (Héritier et al. 2018).

First, we assume an on-sky interaction matrix can be mea-
sured that is appropriate to the ongoing average turbulent condi-
tions, that is, the mean dPyr for some residual wavefront PSD.
Using the associated reconstructor would then account for both
the sensitivity reduction, as characterized by α‖, and the mean
nonlinear modal crosstalk, quantified by d⊥ as per the definitions
in Sect. 2.3. It is however possible to derive – from data obtained
during the computation of the abacuses shown in Figs. 3 and 4 –
that d⊥ is mainly borne by stochastic fluctuations with the wave-
front realization φRes. Due to this property, the compensation of
the mean d⊥ component for a given p0-PSD class, as could be
expected with obtaining an on-sky interaction matrix, makes lit-
tle to no difference as compared to the sole compensation of the
colinear nonlinearity α‖ as proposed in this paper.

Furthermore, the main criterion to be considered is the actual
capacity to obtain a nearly noiseless and well-conditioned on-
sky interaction matrix, in particular at the ELT scale where matri-
ces reach sizes beyond 4000×20 000, with the acquisition being
all the more difficult on faint guide stars and in sub-median see-
ing conditions. For such reasons, a modal rescaling to be applied
on synthetic interaction matrices is at this stage expected to be
the most robust approach.

Lastly, it is sometimes suggested that a modal gain function
can be directly extrapolated from sensitivity-reduction measure-
ments, such as the ones obtained from demodulating dithered
signal. In such a case, a piecewise-constant or linear curve is
extrapolated, which provides gain values across the modal basis.
We believe this method is numerically efficient and very com-
parable to our approach, and our analysis of the sensitivity as
shown in Fig. 3 should provide input on how to group modes for
interpolation. However, it is still the case that coefficients com-
parable to α‖ have to be measured for a few modes, in which case
the use of a true, realistic abacus, as demonstrated here, is merely
a small extra effort that enables all the features of the used DM
basis to be encompassed.

9. Conclusion

In this work, the authors propose a thorough analysis of the opti-
cal gain phenomenon with the PWFS, OG being defined as a
modification of the first-order response of the sensors between
the calibration regime – with a flat wavefront, and operational
regimes when the PWFS is shown a closed-loop residual wave-
front.

We proposed a numerical approach for obtaining the gain
for each mode that minimizes the first-order nonlinearity error
component for a given wavefront. Through extensive numerical
simulations we confirmed the hypothesis that OGCs only weakly
depend (<3%) on the wavefront, but only on its PSD, a key point
to ensure the time-persistent validity of a set of OGCs. More-
over, our analysis of the residual error after modal compensation
showed that low-order modes see their nonlinearity error budget
greatly reduced.

There are strong variations of the OGCs when r0 varies, and
a sufficiently precise telemetry would be require the appropriate
modal gains to be obtained. We implemented a telescope-ready
method to obtain the optimal modal gains without prior knowl-
edge of the atmospheric conditions. Using an offline-computed
database comprising sensitivity reduction and optimal gains for
a variety of r0, we interpolate the optimal gain for all modes,
using information acquired from the feedback of the dithering of
only three DM modes over 0.5 s. The dithering-sequence mode
choices, signal frequencies, and duration were engineered to pro-
vide meaningful, robust, and consistent results using the ELT AO
setup on which we performed all the validating numerical simu-
lations.

Using automatic OGCs, besides providing a method valid
for a broad range of observation conditions without any operator
intervention or system fine-tuning, was shown to provide valu-
able increases in end-to-end performances in all the configura-
tions tested, mainly for sub-median seeings and near the limiting
magnitude of the instrument. These performances are expected
to provide a valuable increase both in imaging quality and in use-
ful telescope time, by pushing the lower limit of acceptable sky
conditions for scientific observations.

Furthermore, we demonstrated, through end-to-end simula-
tions with a fast, broad-range dynamically varying r0, that the
repetition of the OGC update sequence lasting 1.1 s every minute
was sufficient to maintain the control law in near optimum state,
without ever opening and re-closing the AO loop, even after min-
utes spent at r0 < 8 cm. We also investigated an alternative
simplification of the method, which would optimize only the
integrator scalar gain while maintaining a predefined modal gain
curve. While this simplified process provided results comparable
to our complete OGC automatic method, interrogations remain
at this step on how to engineer a complete automatic pipeline
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following this altogether promising philosophy and avoiding the
instability issue associated with low-order modes.

We propose a robust automatic control law protocol, tailored
for telescope operation conditions, which relieves the burden of
monitoring and adjusting the AO manually, with little to no effect
on the operation of the scientific instrument. We strongly support
the implementation of such a method or its future derivatives in
ELT AO controllers, which will hopefully be a valuable asset in
monitoring and optimizing AO loop internals without increased
operator supervision.
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Appendix A: Stability issues and OGC weighting

For some modal gain coefficient curves, a catastrophic failure of
the AO loop may happen for small increases of the loop gain or
the PWFS sensitivity. This effect is discussed in the main text
in Sect. 5.6, and was the motivation for our introduction of a
weighting of the OGCs defined by Eq. (18).

This appendix documents and discusses how this instability
phenomenon is manifested with some OGC computation tech-
niques, when a sensitivity increase – due to the integrator gain,
or an increase in r0 – sets the lowest-order modes of the DM
into oscillatory regimes. We recall that very low-order modes –
mainly tip-tilt – bear the most turbulence residuals, are most
affected by OG, and therefore most compensated, and suffer
the least reconstruction error when appropriately compensated,
as was discussed in Sect. 4.2. Frame-to-frame oscillations of
these modes are destructive for the imaging quality, with a PSF
core either bearing strong artifacts or tracing patterns in long-
exposure images due to a wandering tip-tilt.

We performed identical experiments to those used to demon-
strate the performance of automatic, weighted OGCs for a given
r0 (Figs. 10 and 11), comparing the long exposure SR with the
varying integrator gain g. Here, we study three OGC methods:
(1) unweighted, automatic OGCs; (2) the sensitivity compensa-
tion coefficients (SCC) proposed in Korkiakoski et al. (2008b),
defined as

SCC (φi; φRes) =
||dPyr (φi; φRes = 0)||
||dPyr (φi; φRes (r0))||

, (A.1)

with the norms taken in the PWFS slope space; and (3) auto-
matic, weighted OGCs measured at r0 = 14.5 cm and then
unchanged, as used in method D of Sect. 7. Results for these
three possible OGC computations are shown in Fig. A.1, using
a MR = 0 guide star, and exhibit the infamous gap effect in
the SR(g) data at the higher r0 values. With the global variation
of sensitivity with r0, dynamic variations in r0 – or misestima-
tions thereof – not accounted for by automatic OGC updates are
equivalent to a left-shift or a right-shift of the SR(g) curves as
r0 increases or decreases, respectively. With g set to gMax (r0), a
sudden r0 increase therefore results in the SR collapsing as tip-
tilt becomes unstable.

For unweighted, automatic OGCs, the gap effect means an
immediate degradation of the SR to below 10% with sensi-
tivity increases, observed for all r0 ≥ 8.5 cm. Similarly, the
OGCs taken for r0 = 14.5 cm and unchanged exhibit a gap for
r0 > 14.5 cm. This effect was not observed in the dynamically
increasing r0 experiments shown in Sect. 7.2, yet only because
the tabulated gmax were taken, conservatively, to be smaller than
the gap edge, hence ensuring the r0 increases of 5.6% each
minute were tolerated by method D.

For the SCCs, it is interesting to note they also exhibit the
gap behavior for r0 ≥ 11.5 cm, although less markedly. We sug-
gest that this is linked to the computation method, performed in
the higher-dimensionality slope space rather than modal space;
this yields OGC curves spanning a larger range across the modal
basis. Hence, for an identical gain of the low-order modes,
highest-frequency modes bear a higher gain than for automatic
OGCs, and in turn provide the self-stabilizing increase in wave-
front residual slightly sooner than our Gopt coefficients.

We wish to mention that similar effects could not be repro-
duced for these SCCs on an 18 m simulated telescope (Deo et al.
2018a), and therefore that the gap effect is thought to be strongly
correlated with the ever-increasing dimensionality – and com-
plexity – of the AO system with telescope size.
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Fig. A.1. End-to-end performance measurements for various OG
modal-compensation techniques, probing for maximum SR depending
on integrator gain g at various stationary r0 from 7.0 to 21 cm, using a
MR = 0 guide star. Top: unweighted automatic OGCs; middle: SCCs
as per Korkiakoski et al. (2008b); bottom: using automatic, weighted
OGCs computed at r0 = 14.5 cm and reused identically at all r0, as per
method D of Sect. 7.1. Labeled markers on top graph: PSFs are shown
in Figs. A.2a–A.2c.

How the gap effect impacts the tip-tilt and its successful
compensation with OGC weighting is best seen using PSFs
corresponding to various g values during the experiments.
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Figures A.2a–A.2c show PSFs taken across the gap for auto-
matic, unweighted OGCs at r0 = 14.5 cm, corresponding to
points labeled (A)–(C) in Fig. A.1 (top). At a gain of 0.60 – in
combination with gmax = 0.46 – the PSF is completely blurred
by tip-tilt oscillations, which smear the core into an elliptic pat-
tern a few λ

D
across. Reaching past this regime at g = 0.68, waffle

modes enter oscillatory regimes, with corresponding artifacts at
the corners of the DM rejection domain, and in turn tip-tilt sens-
ing is sufficiently dampened to induce a stabilized PSF core and
restore a decent SR over 60%.

The PSF in Fig. A.2d is taken with all identical parameters
to those in Fig. A.2b except for the added weighting. This PSF
demonstrates how the image is satisfactorily stabilized, and the
mid-frequency range speckle halos engineered by Eq. (18) and
synthetically imaged in Fig. 9 are clearly noticeable. While this
regime is not meant to be reached and provides a PSF with some
artifacts, it is only transitory with sudden improvements of the
seeing until the following OGC update sequence; weighting sat-
isfactorily prevents the catastrophic failures of the other OGC
computation techniques presented.

(a)
SR 77.73%
gain 0.46

(b)
SR 6.61%
gain 0.60

(c)
SR 64.49%
gain 0.68

(d)
SR 72.56%
gain 0.60

Fig. A.2. Analysis of the PSF structure during the SR gap effect
when continuously increasing the integrator gain. (a)–(c): PSFs from
unweighted OGC runs, corresponding to points labeled (A)–(C) in
Fig. A.1 (top). (d): PSF taken with parameters equivalent to those in
(b) but with weighted OGC, corresponding to Fig. 10. All PSFs are
shown in log scale, with colormaps spanning from 3.10−6 to 1, where 1
is a 100% SR PSF.
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