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Abstract. We present a template-based pipeline that performs real-
time speed-limit-sign recognition using an embedded system with a low-
end GPU as the main processing element. Our pipeline operates in the
frequency domain, and uses nonlinear composite filters and a contrast-
enhancing preprocessing step to improve its accuracy. Running at inter-
active rates, our system achieves 90% accuracy over 120 EU speed-limit
signs on 45 minutes of video footage, superior to the 75% accuracy of a
non-real-time GPU-based SIFT pipeline.

1 Introduction

As object recognition systems continue to increase in accuracy and robustness,
we are beginning to see their deployment in real-time applications. In this work
we target real-time embedded systems: systems that can interact with the real
world at interactive rates using embedded processors. The low cost of embedded
systems—an order of magnitude below typical CPUs—make them suitable for
use in a variety of domains, including the automotive application space that
we analyze here. However, meeting real-time performance requirements with the
modest computational resources of these embedded processors, particularly with
a parallel processing model, presents an important research challenge.

In this study, we aim to address this challenge and perform real-time speed-
limit-sign recognition on an embedded platform. To achieve our goal, we leverage
the inherent parallelism in the recognition task using Graphics Processing Unit
(GPU) computing and construct our pipeline from modular components. The
data-parallel nature of recognition tasks is an excellent fit for an embedded,
low-power, parallel processor such as the low-end GPU we use in this study.
In addition, the GPU offers superior price-performance and power-performance
to comparable processors. Hence, in our pipeline we implement template-based
recognition techniques that are well-suited to the GPU architecture. In addition,
we built our approach from modular parts that can be extended or contracted.
We discuss how one can make the best use of the limited resources of underlying
hardware by fine-tuning the parameters of these separate components based on
the tradeoff between the runtime and success rate in Section 5.
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As GPUs have become programmable, they have been increasingly used for
applications beyond traditional graphics that require general-purpose computa-
tion [1]. The computer vision domain is one of the domains GPUs have provided
significant performance improvements (e.g. Fung et al.’s OpenVIDIA project [2]).
The advent of GPU computing has also allowed researchers to revisit older
and simpler, but very effective, data-parallel techniques that have fallen out
of favor due to their compute demands. Template-based object recognition in
the computer vision literature is one of these techniques. For instance, several
other template-based road sign recognition approaches (Section 2) have lever-
aged template-based techniques. However, to the best of our knowledge, none
of these previous studies provided real-time recognition of road signs on an em-
bedded system. They employed commodity computers or optical devices to meet
the compute demands of their approaches. Using GPU computing, we parallelize
the time-consuming computation of template-based recognition and provide real-
time performance on an embedded domain. In addition to being suitable to the
GPU architecture, another advantage of using a template-based approach is that
our pipeline can be easily modified to recognize other objects, such as US speed-
limit signs or other salient road features.

In the computer vision literature, the Scale Invariant Feature Transform
(SIFT) [3] is a commonly used method for performing object recognition. Hence,
in order to evaluate our template-based approach, we also implement a SIFT-
based speed-limit-sign recognition system on the GPU and compare these two
approaches. Our results (Section 5) show that the template-based pipeline pro-
vides a higher success rate and faster runtime than the SIFT-based pipeline.

2 Previous Work

One of the approaches used for template-based road sign recognition is conven-
tional template matching, in which cross-correlation is calculated between the
template and the part of the scene of the same size to measure the match. In
the literature, several studies use conventional template matching in the final
classification stage of the recognition pipeline, after the candidate road signs
are detected [4, 5]. Conventional template matching is not the preferred tech-
nique for sign detection because searching the candidate road sign location with
this approach needs many cross-correlation computations between the templates
and different parts of the scene of the same size. Since this is a convolution-type
operation, it requires a long computation time. In order to reduce the search
space and thus, the runtime of the conventional template matching, Betke and
Makris [6] proposed using simulated annealing.

There are other template-based approaches that also involve a convolution-
type operation. To detect the potential road signs, Gavrila [7] proposed matching
the template and the scene using distance transforms; Cyganek [8] presented a
system that operates on the Gaussian scale-space and does template matching
in the log-polar domain.

Several studies in the field of optics have also investigated the template-based
recognition of road signs in the frequency space [9,10,11]. They proposed systems
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that perform FFT correlation between the scene and the filters generated from
the templates. Drawing upon this technique, Javidi et al. [12] presented an offline
system to perform speed-limit-sign recognition that is most similar in spirit to
our implementation.

Some other studies in the literature make use of color information to perform
template-based road sign recognition [13,14]. In our approach we cannot utilize
these techniques, since we are working with grayscale videos.

3 Approach

With our approach, we have chosen to perform template-based matching in the
frequency space, since it provides a faster runtime than the approaches that
perform convolution-type operations. FFT correlation involves taking the FFT
of both the template and the scene, multiplying the complex conjugate of the
FFT of the template with the FFT of the scene, and taking the inverse Fourier
transform of the product. Hence, instead of computing many match values using
a convolution, we can perform one multiplication in the frequency domain, which
is more efficient. Another advantage of working in the frequency space is that
it allows us to perform some operations in the Fourier domain to improve the
matching performance (e.g. kth-Law, explained below).

FFT-based recognition studies in the optics literature propose correlating the
scene with composite filters instead of the templates. Composite filters are gener-
ated from several templates and can be thought of as “combination templates”.
The advantage of one composite filter instead of several templates is that it re-
duces the number of correlations we need to perform and thus, provides faster
runtime.

Synthetic discriminant functions (SDF) [15] are one of the popular techniques
for generating composite filters. From the several variations of SDF filters, we
have chosen to work with the MACE (Minimum Average Correlation Energy)
SDF filter [16] due to its low false alarm rate. On the road, several objects may
look like a speed-limit sign. The MACE filter provides a high discrimination
ability against these impostor objects.

Performing a FFT correlation between the scene and the composite filter pro-
duces a correlation plane. The MACE filter minimizes the average correlation
energy of the correlation plane and produces a sharp distinct peak where the ob-
ject is located. We first Fourier-transform the templates we would like to include
in the filter and then perform MACE filter synthesis using these transforms.

Although the MACE filter provides good discrimination, it alone does not
provide sufficient accuracy. In addition, we needed to improve the illumination
invariance of our system. To address these challenges, we extend the MACE filter
by applying kth-Law nonlinearity [17], which improves the peak sharpness. The
nonlinear operation raises the magnitude of the Fourier transform to the power
of k, while keeping its original phase. In order to compute a FFT correlation
between the scene and a kth-Law MACE filter, we apply a kth-Law nonlinear
operation to the FFT of the scene before it is multiplied with the complex
conjugate of the kth-Law MACE filter.
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Several metrics can evaluate the goodness of the match in correlations. Since
the kth-Law MACE filter is designed to suppress the sidelobes adjacent to peaks
in the correlation plane, we use PSR (Peak-to-Sidelobe Ratio) [18], which mea-
sures the peak sharpness by taking into account the small area around the peak.

K th-Law nonlinearity produces enhanced illumination invariance, but still
misses many cases with low contrast. Hence, we add a histogram equalization
preprocessing step in our system to improve the contrast of the scene. This
technique involves adjusting the intensity values of the scene to equally dis-
tribute intensities throughout the whole brightness scale. However, since his-
togram equalization adjusts the values based on the statistics collected from the
entire image, it misses some details. Speed-limit signs usually appear in small
regions of the scenes. Hence, it is critical for us to bring out as much image detail
as possible: we thus use “Contrast Limited Adaptive Histogram Equalization”
(CLAHE) [19] to enhance the contrast of the scene. This algorithm divides the
image into small tiles and performs histogram equalization on these small local
regions instead of the entire image, thus bringing out more small-scale detail.

4 Implementation

Template-based speed-limit-sign recognition pipeline. The template-based pipeline
has four main stages: preprocessing, detection, classification, and temporal inte-
gration. Figure 1.a shows the overview of this pipeline. We generate composite
filters offline and input them to our system.

The composite filters used in the detection stage are more general than the
ones used in the classification stage. They are generated from the templates 00
and 100, which helps with detecting two-digit and three-digit signs, respectively.
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On the other hand, we generate a different set of classification filters for each
speed-limit sign we would like to recognize. Both detection and classification
filters integrate different out-of-plane rotations of the templates. This allows
the system to have rotation invariance along the X and Y axes. In addition,
both type of filters have different sizes, which allows the system to have scale
invariance. For each size, we have classification filters with different in-plane
rotations, which provides the system with rotation invariance along the Z axis.
EU speed-limit signs have circular shapes, which are somewhat insensitive to in-
plane rotations when the number inside the sign is not considered. To recognize
signs with shapes that are more sensitive to in-plane rotations (e.g. triangles),
we can also generate in-plane rotations of detection filters to improve accuracy.
We set the background of the templates to gray, which helps in recognizing
signs of both dark or light backgrounds. We do not include different sizes and
in-plane rotations of the templates in the creation of composite filters, because
these images typically have higher changes in energy when compared to images
that represent different out-of-plane rotations of the templates. Moreover, the
number of images we can include in a composite filter is limited.

The effect of the preprocessing stage is shown in Figures 1.c–d. After CLAHE
is applied to the scene, the speed-limit sign becomes more visible. Although
the “after” scene looks fairly different than the “before” scene due to the noise
introduced by CLAHE, the template-based approach we pursue works very well
with these kind of preprocessed images.

In the detection stage, we first perform a FFT correlation between the scene
and the detection composite filters. Then, we determine the detection filter that
returns the maximum PSR. The location of the peak value in the correlation plane
generated by this detection filter indicates the location of the candidate sign. Like-
wise, the size of this composite filter indicates the size of the candidate sign.

We start the classification stage by performing FFT correlations between the
classification composite filters and the part of the scene that includes the can-
didate sign. We only use the classification filters that have the same size as the
candidate sign. Then, we determine the classification filter that returns the max-
imum PSR. If this value is below a certain threshold, we conclude that there is
no speed-limit signs in the scene and start processing the next frame. If not, the
classification filter with the maximum PSR indicates the number displayed by
the speed-limit sign in the current scene. In addition, the in-plane rotation of
this filter indicates the in-plane rotation of the sign. Due to various factors (e.g.
the sign is partially occluded), it is possible to misclassify the signs in the scene.
Hence, providing a result that only depends on the findings of the current frame
is not reliable.

In the temporal integration stage, we increase the reliability of our results
by accumulating the findings from the sequence of frames. For this purpose, we
employ a majority voting technique similar to the one used by Keller et al. [20].
Each frame votes for the speed-limit number indicated by its classification stage.
The maximum PSR determined at this stage is used as the base vote value.
If the previous frame also voted for the same number, the vote is increased
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by multiplying the base value with a constant factor when one or both of the
following conditions are met: 1) the size of the sign is not decreasing; 2) in-plane
rotation of the sign remains the same. After all the frames in the sequence are
processed, we display the speed-limit number that collected the most votes over
a given threshold as the final result.

Since most operations of our implementation of a template-based approach
are data-parallel, this pipeline is suitable to be implemented on the GPU. We use
NVIDIA’s CUFFT library to take inverse and forward FFTs. We wrote kernels
to apply kth-Law nonlinearity to the FFT of the scene, to take the complex
conjugate of the composite filter in frequency domain, to multiply these two
FFTs, and to normalize the result of this product. In addition, we find the peak
in the correlation plane with a GPU kernel that performs a reduction operation.
Currently, we use optimized C code to apply CLAHE. However, this operation
has several data-parallel parts and could be mapped to the GPU to further
improve runtime.

SIFT-based speed-limit-sign recognition pipeline. The SIFT-based pipeline has
two main stages: identification and temporal integration. Figure 1.b shows the
overview of this pipeline. We extract the SIFT features of the templates offline
and input them to our system. The templates we use in this pipeline are the same
templates we use in the template-based pipeline to generate the composite filters.

In the identification stage, we first extract SIFT features of the scene. Then,
we perform SIFT matching between the features of the scene and templates.
We use SiftGPU [21], an open source GPU implementation of SIFT, for feature
extraction and matching. To improve the performance, we reject a match if the
orientation difference of the matched keys is larger than a certain threshold (as
proposed by Kuş et al. [22]). Next, we search for a template that returns the
maximum number of matches over a certain threshold to determine whether
we have a speed-limit sign in the current frame. Finally, we accumulate findings
from a sequence of frames in the temporal integration stage by employing similar
techniques we use in the template-based pipeline.

5 Results and Discussion

Template-based versus SIFT-based pipeline. Our EU speed-limit-sign recognition
test data is a collection of grayscale videos recorded in different weather (e.g.
sunny, foggy, rainy, and snowy) and road (e.g. highway, in the city, and coun-
try) conditions in Europe. In total, we use footage captured from 45 minutes
of driving that includes 120 EU speed-limit signs. Video size is 640x240. We
have run our experiments on a laptop equipped with an Intel Core2 Duo P8600
2.4 GHz CPU and a GeForce 9600M GT, a laptop graphics card comparable in
performance to next-generation embedded GPUs.

The runtime of the template-based pipeline is 18.5 fps. Since our video capture
rate is slower, we are able to process all frames in real time with template-based
approach. Computation time for the SIFT-based pipeline increases with the
number of keypoints extracted from an image and for a frame with moderate
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complexity the runtime is around 120 ms/frame (∼8 fps), which is slower than
the video capture rate. Hence, the SIFT-based pipeline does not provide real-time
performance. The SIFT-based approach has a slower runtime than the template-
based one on our resource-constrained GPU, since it consists of different stages
that are computationally intensive and require a large GPU memory.

The template-based pipeline returned a 90% success rate with no misclassifi-
cations or false positives. An offline run of the SIFT-based pipeline provided a
75% success rate with four misclassifications and nine false positives. The SIFT-
based approach has a lower success rate mainly due to two reasons. First, SIFT
recognition works best when objects have some complexity. However, speed-
limit signs have simple shapes and constant color regions and do not have any
texture. In addition, they usually appear small in the videos. Thus, often SIFT
cannot extract enough distinct features from these signs and the same number of
matches are returned by different templates. Secondly, we could not use CLAHE
in the SIFT-based pipeline. Applying CLAHE on the template-based pipeline
improved our success rate from 65% to 90% and eliminated all misclassifications
and false positives. However, since SIFT cannot handle the noise introduced by
CLAHE, we could not utilize this technique in the SIFT-based pipeline.

Both pipelines perform well in simple cases as well as several challenging cases.
Both reject signs that have a dominant difference. Because of the thick line that
crosses the whole sign, an end-of-50 sign (Figure 2.1) can be distinguished from
a speed-limit sign. Both also recognize signs with insignificant modifications.
Figure 2.2 depicts a speed-limit sign with a small stain in the digit 0.

We see several cases where the template-based pipeline succeeds and the SIFT-
based pipeline fails:

• The template-based approach capably recognizes small signs (e.g. Figure 2.3).
As the sign gets closer, we see a larger viewpoint change and thus, recognition
becomes harder. As a result, in some cases the SIFT-based pipeline misclassifies
the speed-limit sign, since it does not start recognizing the sign when it is far and
small. In the SIFT-based pipeline, in order to recognize small signs, we doubled

1) none, none 2) 60, 60 3) 30, none 4) 100, none 5) 30, none

6) 60, none 7) 120, none 8) none, 20 9) none, 70 10) none, none

Fig. 2. Scene examples: Template-based and SIFT-based pipeline results shown in
bold and italic, respectively.
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the image size and reduced the initial Gaussian blur. Even if these improvements
were helpful, they were not effective enough to recognize smaller signs such as the
one in Figure 2.3.

• The template-based pipeline is better at handling different kind of noise
introduced by effects such as motion blur (Figure 2.4) and partial shade (Fig-
ure 2.5). Our template-based approach is resistant to noise, allowing us to use
CLAHE. By applying CLAHE, we can recognize hard cases such as when the
sun is behind the sign (Figure 2.6) or a light beam effect (Figure 2.7). In order to
recognize low contrast cases with a SIFT-based pipeline, we have decreased the
threshold used to select potential keypoints. Although this change has provided
some improvement, it was not effective enough for recognizing very-low-contrast
cases such as Figure 2.6.

• The template-based approach is better at recognizing signs as a whole. Since
the SIFT-based pipeline deals with features that are local, it can misclassify
signs that look like only part of a sign. For instance, a 2-meter-width-limit sign
in Figure 2.8 is misclassified as a 20 km/h speed-limit sign by the SIFT-based
approach, since the digit “2” in both signs looks very similar.

We also see cases where the SIFT-based pipeline succeeds and the template-
based pipeline fails:

• Although dealing with local features causes the SIFT-based approach to
miss the big picture and fail in Figure 2.8, it becomes an advantage for recogniz-
ing partially occluded signs. For instance, SIFT-based pipeline performs better
than template-based approach in Figure 2.9, where the sign is partially occluded
by snow.

• The SIFT-based pipeline is good at recognizing signs with large rotations
as well as the ones that initially appear large in the videos. In order to recognize
these signs with the template-based pipeline, we need to cover larger rotations
and bigger sizes with composite filters, which in turn would increase our runtime.

In some cases, both template-based and SIFT-based approaches fail:
• Although the template-based pipeline succeeds where the SIFT-based ap-

proach has problems recognizing small signs (e.g. Figure 2.3), if the signs get
even smaller, template-based also starts missing them. Including an additional
composite filter with smaller sizes does not help since it introduces misclassifi-
cations and false positives.

• Both pipelines perform poorly when a big part of the sign is missing. For
instance, in Figure 2.10 a big part of the sign is not visible due to the bright
sunshine.

Template-based pipeline parameter study. With additional computational re-
sources, we could perform more computation and achieve higher accuracy. With
an embedded system and its limited computational capabilities, however, we in-
stead conducted a parameter study to answer the question “given a fixed amount
of compute resources, what is the best way to allocate those resources to achieve
maximum accuracy?” We thus varied our base configuration, which consisted
of five sizes [25 30 35 40 45], three in-plane rotations [−6◦ 0◦ 6◦] = [0◦ ∓6◦],
seven out-of-plane rotations along the Y-axis [0◦ ∓10◦ ∓20◦ ∓30◦], and three
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out-of-plane rotations along X-axis [0◦ ∓10◦], all run on a 4-SM GPU. We found
these parameters were well-suited for maximum accuracy on our base hardware
platform.

Varying each of these parameters allowed us to extend or contract different
modules of our template-based pipeline. Hence, this parameter study also pro-
vides insights for making recommendations to achieve optimum performance
when we are given less or more compute power. Space prevents us from de-
scribing the detailed results, but we draw the following conclusions from these
experiments. With less compute power available, we could choose to reduce the
number of frames per second that we analyze, but instead a better option is to
process only the smaller sizes of signs at a higher frame rate. With more compute
power, we can achieve higher accuracy in three principal ways: increase the pro-
cessing frame rate, add larger sizes of signs, and generate additional composite
filters with larger out-of-plane rotations.

6 Conclusion

Our work addresses the main challenge of meeting the real-time performance re-
quirements of speed-limit-sign recognition with limited hardware resources. To
achieve this goal, we exploit the inherit parallelism in this task using GPU com-
puting and build our pipeline from parameterized modules. Our template-based
pipeline is suitable to be implemented on the GPU and can be easily modified
to recognize other salient road features. Our future work includes expanding the
breath of detected objects (US signs and other signs of different types), investi-
gating other vision tasks (such as optical flow to detect potential collisions), and
developing software support for our data-parallel embedded system that can run
multiple tasks simultaneously (such as vision, graphics, and speech recognition)
while delivering throughput and/or latency guarantees.
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