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Abstract—This paper deals with testing distributed software systems. In the past, two important problems have been determined for

executing tests using a distributed test architecture: controllability and observability problems. A coordinated test method has

subsequently been proposed to solve these two problems. In the present article: 1) we show that controllability and observability are

indeed resolved if and only if the test system respects some timing constraints, even when the system under test is non-real-time; 2)

we determine these timing constraints; 3) we determine other timing constraints which optimize the duration of test execution; 4) we

show that the communication medium used by the test system has not to be necessarily FIFO; and 5) we show that the centralized test

method can be considered just as a particular case of the proposed coordinated test method.

Index Terms—Conformance testing, distributed systems, controllability, observability, reaction time, waiting time.
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1 INTRODUCTION

TESTING, which aims to ensure the quality of the
implementation, is realized by generating test se-

quences and applying them to the implementation which
is referred to as an Implementation Under Test (IUT ). In this
article, we consider the case when the IUT is distributed
and we study the test execution phase (i.e., the phase when
test sequences are applied). Here are the few works which
inspired us:

. In [1], a distributed architecture for testing distrib-
uted IUT s has been studied. In this architecture, the
IUT contains several ports and the test system (T S)
consists of a local tester for each port of the IUT .
Each local tester communicates with the IUT
through its corresponding port (see Fig. 1b). Two
important problems which occur in the phase of test
execution are determined in [1]: synchronization and
fault detectability problems.

. In [2], [3], the problems of synchronization and fault
detectability have been defined in terms of controll-
ability and observability, respectively, and a coordi-
nated test architecture is proposed to solve them (see
Fig. 1c). The approach of resolution consists of
allowing the local testers to exchange coordination
messages with one another, through a reliable
communication medium which is independent of
the IUT .

. In [4], certain timing constraints are given and it is
stated, without any proof, that controllability and
observability problems can actually be resolved if
and only if the T S respects these timing constraints.

In this article, we propose a testing method which

validates and improves [4] as follows:

1. Correctness of all timing constraints of [4] are
proven. In other words, we prove that the timing
constraints of [4] solve controllability and observa-
bility problems. Certain errors in [4] have also been
corrected.

2. We determine other timing constraints which opti-
mize duration of test execution. More precisely, we
determine the minimal times the T S has to wait for
expected outputs of the IUT before deducing
whether the IUT is faulty.

3. We show that our test method does not require a
FIFO communication medium.

4. We show that the centralized test method can be
considered just as a particular case of the proposed
coordinated test method. This implies that:

- it is useless to do another study for a centralized
test architecture and

- the T S must respect timing constraints even
when the test architecture is centralized.

Several other works have been written for testing

distributed systems [5], [6], [7], [8], but they do not resolve

the problems we will consider. In [5], the authors propose a

coordination procedure between testers and they study

how the test is affected by the transmission between the T S
and the IUT . In [6], the authors more thoroughly study the

influence on testing of the transmission between the T S and

the IUT . There are several limitations of [5], [6] in

comparison with our study. First, in [6], concrete results

are obtained only when the IUT and the T S communicate

through a single port. Second, in [5], [6], only the order of

events is taken into account, while the causality relation

between inputs and outputs is ignored. A consequence of

this limitation is that controllability and observability

problems are not resolved. Third, in [5], [6], the duration

of test execution is not studied.
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In [7], the authors study the generation and selection of test
cases which maximize resources utilization. In [8], the
authors study the generation of test cases for a particular
distributed routing protocol for Internet. In comparison
with our article, in [7], [8], the execution of test cases and the
coordination of testers are not studied.

The rest of this article is structured as follows: In
Section 2, we introduce the communication model, the
model used to describe the IUT , and several hypotheses
and concepts related to testing. In Section 3, we present in
more detail the concepts of controllability and observability.
In Section 4, we give a few definitions and present our
objective. In Section 5, we present the coordinated test
method, define reaction times and waiting times of the T S,
and define our objective more accurately. In the same
section, we prove that our method is insensitive to the fact
that the communication medium respects or does not
respect the FIFO discipline (first-in, first-out). In Section 6,
we present constraints of reaction times and waiting times
of the T S which resolve controllability and observability
problems and optimize duration of test execution, respec-
tively. We also show that the centralized test method can be
considered just as a particular case of the coordinated test
method. In Section 7, we conclude by summarizing our
contributions and discussing some future research issues.
For clarity, the proofs of all results of Sections 5 and 6 have
been put in Appendices A, B, and C.

2 MODELING AND TESTING CONCEPTS

As we will see later, in this study, we adopt a coordinated
test architecture. In the present section, we first present the
communication model used in this architecture. Then, we
present the np-FSM model that is used to describe the
specification of the IUT . After that, we present hypotheses
and concepts related to testing.

2.1 Communication Model

A local Testerp communicates with port p of the IUT
through a reliable communication medium denoted as
CMp. Two testers Testerp and Testerq communicate with
one another through a reliable communication medium
denoted as CMts

p;q. Each CMp and CMts
p;q is assumed reliable

(i.e., no message loss and finite transmission delay).
The transfer times in all CMp (respectively, CMts

p;q) are
assumed bounded by a finite value TTmax (respectively,
TTmaxts ) that can be determined. This hypothesis is realistic

because the advent of real-time middlewares such as real-
time CORBA [9] is foreseen, probably in a near future.

We assume that each tester and each port of the IUT
uses its own local clock and that the local clocks are not
synchronized, that is, there is no global clock. This
implies that the transit time of a message (in CMp or
CMts

p;q) cannot be measured by reading the local clocks of
the sender and of the receiver, at instants of sending and
reception, respectively.

As we will prove it in Section 5.6, our test method
guarantees that at any time each CMp and CMts

p;q contains at
most a single message and, thus, our method is insensitive
to the fact that the communication medium respects or does
not respect the FIFO discipline.

2.2 Finite State Machine with n Ports np-FSM

A np-FSM is a 6-tuple ðQ; I;O; �; �; q0Þ, where n � 1 and:

. Q is a finite set of states and q0 2 Q is the initial state.

. I is a n-tuple ðI1; I2; . . . InÞ, where Ii is a finite set of
inputs of port i, Ii \ Ij ¼ ; for i 6¼ j and i; j ¼ 1;    ; n.
Then, let I ¼ I1 [ I2 [ . . . [ In.

. O is a n-tuple ðO1; O2; . . .OnÞ, where Oi is a finite set
of outputs of port i, Oi \Oj ¼ ; for i 6¼ j and
i; j ¼ 1;    ; n. Then, let

O ¼ ðO1 [ f"gÞ � ðO2 [ f"gÞ � . . .� ðOn [ f"gÞ;

where " stands for the empty output.
. � is a transition function: D�!Q, and � is an output

function: D�!O, where D � Q� I .

Two 3p-FSMs are represented in Fig. 2, with I1 ¼ fag,
I2 ¼ fbg, I3 ¼ fcg, O1 ¼ fw; xg, O2 ¼ fyg, and O3 ¼ fzg. The
nodes are the states and the directed edges are the
transitions linking the states. A label �=� on an edge
linking q and q0 means �ðq; �Þ ¼ q0 and �ðq; �Þ ¼ �. For
example, if q0 is the current state and the input a is received,
then the state changes to q1 and the outputs x and z are sent
in ports 1 and 3, respectively.

Notation 1 (!x, ?x, �, yk, !�, ?�). The sending (respectively,

reception) of an input or output x is denoted !x (respectively,

?x). Let � ¼ ðy1;    ; ynÞ be a n-tuple, where yk is an output
(possibly empty) in port k. Formally, � 2 O. The sending by

the IUT (respectively, reception by the T S) of all the outputs
of �, in any order, is denoted !� (respectively, ?�).

2.3 Hypotheses and Concepts of Testing

Conformance testing consists of checking whether an IUT
conforms to a specification SPEC.
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Fig. 1. Architectures for testing distributed systems. (a) Centralized test
architecture. (b) Distributed test architecture. (c) Coordinated test
architecture.

Fig. 2. Two examples of np-FSMs. (a) Specification and (b) faulty
implementation.



Hypothesis 1. Similarly to [1], [2], [3], SPEC is assumed to be

described by a deterministic np-FSM. And similarly to [10],

we assume that the behavior of the IUT (even when it is

faulty) can be described by the model used to describe its

specification SPEC, in our case a deterministic np-FSM, but

the latter can be unknown.

Property 1. From the assumption that the IUT can be described

by a np-FSM, we deduce that the IUT is reactive, that is,

outputs are sent only in response to the reception of an input.

In other terms, outputs are not spontaneous.

Property 2. From the assumption that the IUT can be described

by a np-FSM, we deduce that the IUT reacts to an input by

sending at most a single output in each port.

In the following two definitions, we consider an np-FSM
A ¼ ðQ; I;O; �; �; q0Þ which describes SPEC (specification of

the IUT ), and ! ¼ hx1=�1ihx2=�2i    hxt=�ti which is a
transition sequence of A, where xi 2 I and �i 2 O.

Definition 1 ("ð!Þ; conformance). We consider the sequence

"ð!Þ ¼ ?x1!�1?x2!�2    ?xt!�t. A IUT is conformant to !

iff: When the IUT receives the input sequence x1; x2   xt,
then it executes "ð!Þ.

Definition 1 holds only with Hypothesis 1. An IUT is
conformant to A iff it is conformant to every transition
sequence ofA.

Definition 2 (!ð!Þ, global test sequence (GTS)). The

sequence !ð!Þ ¼ !x1?�1!x2?�2    !xt?�t is called global test

sequence (GTS).

"ð!Þ and !ð!Þ can be defined intuitively as follows:

. The IUT is conformant to ! if the IUT can execute
"ð!Þ.

. With a centralized test method (see Fig. 1a), the T S
deduces that the IUT is conformant to ! if the T S
can execute !ð!Þ.

The centralized test method is therefore correct if we

have the following equivalence: The IUT executes "ð!Þ iff

the T S executes !ð!Þ. Actually, the equivalence holds iff

certain timing constraints are satisfied by the T S. An

example of timing constraint will be given in Example 4

(Section 5.5).
Let us consider the IUT of Fig. 2b, which contains four

faults (which are underlined) with regard to the specification

of Fig. 2a. Let us consider the following sequence which
corresponds to the sequence of transitions Tr1 Tr3 Tr2 Tr4 Tr5
of Fig. 2a:

! ¼ ha=ðx; "; zÞihb=ðx; y; "Þihc=ðw; "; zÞiha=ðx; "; zÞihc="; y; zÞi:
ð1Þ

Its corresponding GTS is:

!ð!Þ ¼ !a?ðx; "; zÞ!b?ðx; y; "Þ!c?ðw; "; zÞ!a?ðx; "; zÞ!c?ð"; y; zÞ:
ð2Þ

With a centralized test method, the conformance of the
faulty IUT to ! can be checked as follows, according to
!ð!Þ. The IUT being initially in state q0, the T S sends a and
then receives the expected outputs x and z, in ports 1 and 3,
respectively (transition Tr1). After that, the T S sends b and
receives the outputs w and y, in ports 1 and 2, respectively.
The nonconformance is detected because the expected
output in port 1 is x instead of the received w.

Definition 3 (Local test sequence LTS in a distributed

architecture). With a distributed test architecture (see
Fig. 1b), conformance to a sequence ! cannot be checked by
using directly the corresponding GTS !ð!Þ. Instead, each
Testerp (tester in port p) uses a local test sequence (LTS)
which is obtained by projecting the GTS in port p. We might
think that a IUT is conformant to a sequence ! iff each
Testerp executes its LTS. We will see in Section 3 that this
view is incorrect.

The LTSs obtained from the GTS (2) are represented in
Fig. 3, where each input is linked by arrows to the outputs
of the same transition.

We obtain therefore the following LTSs !1, !2, and !3 for
testers 1, 2, and 3, respectively:

!1 ¼ !a?x?x?w!a?x
!2 ¼ !b?y?y
!3 ¼ ?z!c?z?z!c?z:

8<
: ð3Þ

3 CONTROLLABILITY AND OBSERVABILITY ISSUES

In this section, we present controllability and observa-
bility that are two important issues in testing because
they have an effect on the capability of the T S to check
the conformance of an IUT . In this section, we assume a
distributed test architecture and the use of LTSs. For
clarity, we will consider the specification and the faulty
IUT of Fig. 2.

Definition 4 (Controllability). Controllability is the cap-
ability of the T S to force the IUT to receive inputs in a
given order. During conformance testing to a given sequence
! ¼ hx1=�1ihx2=�2i    hxt=�ti, a controllability problem
arises when the T S cannot guarantee that the IUT will
receive xi before xiþ1, for i < t. With a distributed test
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architecture, such a problem arises when there exists i < t
such that the port q of xiþ1: 1) is different from the port p
of xi (i.e., q 6¼ p) and 2) is not included in the set of ports
of �i (i.e., yqi ¼ ") [1].

Example 1 (Controllability problem). The sequence (1)
requires that when state q1 is reached (see Fig. 2a), the
IUT receives b (sent by Tester2) before it receives c (sent
by Tester3). To guarantee this order, Tester3 needs to
receive a message informing it that b has been received
by the IUT . With a distributed architecture, such a
message may only come from the IUT . Since Tester3
does not receive any output of the IUT in response to b
(see Tr3 of Fig. 2a), then Tester3 cannot receive the
information it needs. In other terms, Tester3 has no
means to determine the order of inputs b and c. Here is
an example which shows the effect of this problem on
fault detectability. From state q1, the three testers (i.e., the
T S) observe the same outputs in the following two
situations: 1) a correct IUT receives c before b and 2) the
faulty IUT receives b before c. The T S cannot deduce
whether the IUT is correct or faulty because it is not
aware of the order of inputs b and c.

Definition 5 (Observability). Observability is the capability of
the T S to observe the outputs of the IUT and to determine the
input which is the cause of every output. During conformance
testing to a given sequence ! ¼ hx1=�1ihx2=�2i    hxt=�ti,
an observability problem arises when the T S receives a 2 �i
and cannot determine whether a has been sent by the IUT
after the latter has received xi and before it (the IUT ) receives
xiþ1 [1]. With a distributed test architecture and with our

model where a transition contains at most a single output for
each port, such a problem arises when, for a port p, ! contains
two consecutive transitions such that only one of the two
transitions contains an output in port p [1].

Example 2 (Observability problem). In Fig. 2b, let us
consider the consecutive transitions Tru and Trv, from q1
to q2 and from q2 to q0, respectively. If we compare with
the specification of Fig. 2a, x has been “shifted” from Tr4
to Tr5, and y has been “shifted” from Tr5 to Tr4. With a
distributed architecture, these faults are not detected
because, although the IUT is faulty, all the testers
execute (and observe) exactly the LTSs (3) generated
from GTS (2).

4 CERTAIN TIMING DEFINITIONS

AND OUR OBJECTIVE

Here are a few definitions and conditions which will be
necessary to define our objective in a clear and concise
manner. We consider a sequence

! ¼ hx1=�1ihx2=�2i    hxt=�ti:

Definition 6 (Instant, &e and &E). In this article, the term
“instant” means “instant relatively to a fictitious global
clock.” This implies that the delay which separates two of any
events (possibly distant) is the difference of their instants.
Since the local clocks of the ports of IUT and of the testers are
not assumed synchronized, the delay between two distant

events cannot be measured just by reading the local clocks
corresponding to the two events at their instants of occurrence.

Let e be an event and E be a set (or n-tuple) of events. &e
denotes the instant of e and &E denotes the instant when all the
events of E have occurred.

Definition 7 (Reaction time of the IUT , RTiut). Reaction
time of the IUT , denoted RTiut, is an upper bound of the time
separating: 1) any instant when an event e is received by the
IUT and 2) the instant when the IUT has terminated to send
all the outputs (if any) in response to the reception of e. We
emphasize the word “all” (also in Definition 8) because the
definition includes possible unexpected outputs (in the case of
a nonconformant IUT ). In an execution conformant to !, this
definition implies, for i � t: RTiut � ð&!�i � &?xiÞ. RTiut,
which is guaranteed by the IUT , is assumed finite.
Intuitively, RTiut quantifies the promptness of the IUT to
react to an input.

Definition 8 (Waiting time of the IUT , WTiut). Waiting
time of the IUT , denoted WTiut, is an upper bound of the time
separating: 1) any instant when the IUT has terminated to
send all the outputs (if any) in response to the reception of an
input a and 2) the instant when the next input must be
received by the IUT . If there is no output in response to a,
then WTiut is an upper bound of the time separating the
instant when the IUT receives a and the instant when it must
receive the next input. In an execution conformant to !, this
definition implies, for i < t: if �i 6¼ +: WTiut � ð&?xiþ1

� &!�iÞ
and if �i ¼ +: WTiut � ð&?xiþ1

� &?xiÞ. WTiut, which is
required by the IUT , is not assumed necessarily finite.
Intuitively, WTiut quantifies the patience of the IUT for
receiving the next input after it has finished to sent its outputs
(if any) or after it has received an input (if the latter causes no
output). Therefore, an infinite WTiut means that the IUT is
infinitely patient.

Definition 9 (Transfer time between the IUT and the T S,
½TTmin;TTmax�, 4TT ). Transfer time between the IUT and
the T S is assumed to fall within a bounded interval
½TTmin;TTmax�. Formally, TTmin � ð&?e � &!eÞ � TTmax,
where e is any input or output. We use notation
4TT ¼ ðTTmax � TTminÞ. Intuitively, the transfer time of
every message exchanged between a tester and a port of the
IUT is bounded by finite values.

Definition 10 (Transfer time between testers, ½TTmints ;
TTmaxts �, 4TTts). Assuming a coordinated test architecture,
transfer time between testers is the time which separates
the sending and the reception of a message exchanged
between two testers. This time is assumed to fall within a
bounded interval ½TTmints ;TTmaxts �. We use notation
4TTts ¼ ðTTmaxts � TTmints Þ. Intuitively, the transfer time
of every message exchanged between two testers is bounded
by finite values.

Remark 1. TTmin; TTmax; TTmints ; TTmaxts make sense because
the communication between testers and between the
IUT and testers is assumed reliable. Recall that the FIFO
assumption is not necessary for the reason given in
Section 2.1.

Condition 1. During conformance testing to every sequence
!: 1) the IUT receives inputs in the desired order

1088 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2002



(controllability) and 2) output faults are detected by the

T S (observability). This condition means a resolution of

controllability and observability problems.

Condition 2. Waiting time WTiut (when it is finite) is a

requirement of the IUT and must be guaranteed by the

T S. Note that this condition may be guaranteed only if

TTmax is finite. More intuitively, we have to respect the

upper bound of the patience of the IUT .

Condition 3. The T S waits for every expected output of the

IUT during a delay which is necessary and sufficient

before to deduce whether the IUT is faulty. The term

“necessary” means an optimization of the test duration.

Note that this condition may be guaranteed only if RTiut
and TTmax are finite.

We can now define our objective as follows:

Hypothesis. RTiut,WTiut, ½TTmin; TTmax�, and ½TTmints ;TTmaxts �
are given.

Objective 1. To use a T S with a coordinated architecture (see

Fig. 1c) and determine timing constraints of the T S which

guarantee Conditions 1, 2, and 3.

For simplicity, the objective presented in the abstract and

in Section 1 did not include the guarantee of Condition 2.

5 COORDINATED TEST METHOD, REACTION, AND

WAITING TIMES OF THE T S
In this section, we first present the coordinated test method

which has been proposed in [2], [3] to solve controllability

and observability problems which may arise in a distrib-

uted test architecture and we show that this method may

generate incorrect results. Then, we propose a modification

of coordination messages. After that, we define reaction

times and waiting times of the T S. We then propose

another objective which guarantees Objective 1 presented at

the end of Section 4. We terminate the section by proving

that our method is insensitive to the fact that the commu-

nication medium respects or does not respect the FIFO

discipline. In the present section, conformance is implicitly

checked with regard to a given transition sequence

! ¼ hx1=�1ihx2=�1i    hxt=�ti.

5.1 Coordinated Test Method Proposed in [2], [3]

5.1.1 Approach to Solve the Controllability Problem

The controllability problem arises when, for a i < t, the
tester which sends xiþ1 cannot know whether xi has been
received by the IUT . The solution proposed by [2], [3] can
be explained as follows, for every i < t. Let Testerh and
Testerk be the testers sending xi and xiþ1, respectively. If
�i 6¼ +, let Testerm be defined as follows:

. if yki 6¼ ": Testerm ¼ Testerk;

. if yki ¼ ": Testerm is any tester (arbitrarily selected)
such that ymi 6¼ ".

The controllability problem is then resolved by the use of a
message C (Control) as follows:

. if ((�i ¼ +) and (h 6¼ k)): after it sends xi, Testerh
sends a message C to Testerk;

. if ((�i 6¼ +) and (m 6¼ k)): after it receives ymi , Testerm
sends a message C to Testerk.

In the above two cases, after it receives message C, Testerk
sends xiþ1.

This approach may generate incorrect results. For exam-
ple, when �i ¼ + this approach guarantees (&!xi � &!xiþ1

),
while controllability problem is resolved if (&?xi � &?xiþ1

).
This incorrectness is illustrated in Fig. 4, where each event is
represented with its instant of occurrence relative to a
fictitious global clock (see Definition 6). �Ck means “send
coordination message to Testerk,” and þCh means “receive
coordination message from Testerh.” Intuitively, in certain
cases, the above approach guarantees only the order in
which inputs are sent by the T S, instead of guaranteeing the
order in which inputs are received by the IUT . Recall that
the local clocks of Porth and Portk are not synchronized
and, thus, the incorrectness represented in Fig. 4 is not
observable by reading the local clocks of Porth and Portk at
the moment of time when ?xi and ?xiþ1 occur, respectively.

5.1.2 Approach to Solve the Observability Problem

The observability problem arises when, for a port p and
i < t, either �i or �iþ1 (this is an exclusive OR) contains an
output in port p [1]. The solution proposed in [2], [3] can be
explained as follows, for every i < t. Let:

. Testerk be the tester sending xiþ1;

. Testerp be any tester such that p 6¼ k, ypi 6¼ ", y
p
iþ1 ¼ ",

and, after it receives ypi , Testerp does not send a
message C to Testerk;
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. Testerq be any tester such that: q 6¼ k, yqi ¼ ", and
yqiþ1 6¼ ".

Before it sends xiþ1, Testerk sends a message O (Observa-
tion) to every Testerp and Testerq. In [2], the following
proposition is stated:

Proposition 1. In an execution conformant to !, every Testerp
receives ypi before it receives O and every Testerq receives

yqiþ1 after it receives O.

With Proposition 1, the T S can determine the input
which is the cause of every output, i.e., output faults are
detected. Henceforth, messages C and O are called
coordination messages.

Example 3 (Adding coordination messages). For the
example of Fig. 3, the obtained messages C and O are
represented in Fig. 5. �Xa (respectively, þXa) means
“message X is sent to (respectively, received from)
Testera,” for X ¼ C;O.

This approach may generate incorrect results. In fact, with

Proposition 1, the authors of [2], [3] assume (implicitly and

unduly) that “crossings,” like the one represented in the

example of Fig. 6, are impossible. In this example, xiþ1 is

sent by Testerk to the IUT , yqiþ1 is sent in Portq by the IUT
in response to the reception of xiþ1, and we assume that

yqi ¼ ". Since Testerq expects no output of �i and an output

of �iþ1, then Testerk sends O to Testerq just before sending

xiþ1 to the IUT . The crossing of Fig. 6 illustrates the fact

that Proposition 1 does not hold. We see that this crossing

can be avoided if the delay between �Oq and þOk is smaller

than the delay between !xiþ1 and ?yqiþ1. Intuitively, this

implies that crossings can be avoided if the transmission

time between testers is always smaller than the response

time of the IUT . Since we do not use this (unrealistic)

hypothesis, we consider that crossings are possible.
Therefore, the method in [2], [3] does not guarantee

Condition 1. In Section 6, we will show how this condition
can be guaranteed.

5.2 Enrichment of Coordination Messages with
Information

Let us now enrich coordination messages with information
as follows:

Messages C: The sending by Testera of C is replaced by:

. the sending of C1 if it is preceded by !xi (corre-
sponds to Case �i ¼ + of Section 5.1.1),

. the sending of C2 if it is preceded by ?yai
(corresponds to Case �i 6¼ + of Section 5.1.1).

Messages O: The sending by Testera of O is replaced by:

. the sending of O1 if it is preceded by !xi,

. the sending of O2 if it is preceded by ?yai ,

. the sending of O3 if it is preceded by the reception of
C1, and

. the sending of O4 if it is preceded by the reception
of C2.

Intuitively, a tester that receives an enriched coordination
message X is informed about the type of event that
precedes the sending of X. The interest of this enrichment
is that it will allow us to obtain weaker timing constraints of
the T S that guarantee Conditions 1 and 2.

5.3 Reaction Times of the T S
During the testing of any ! ¼ hx1=�1ihx2=�2i    hxt=�ti, we
have determined eight possible situations of xi;�i, xiþ1;�iþ1,
for i < t. From these situations, we have determined 14 types
of reaction times of the T S. Each reaction time separates
instants of events of a same tester. For a given i < t, let Testerh
and Testerk be the testers sending xi and xiþ1, respectively,
and let Testerm (if any) be the tester which must receive an
output ymi 2 �i and send a message C to Testerk.

Situation 1 (�i ¼ +, h ¼ k, and 8p 6¼ k : ypiþ1 ¼ +). In this
situation, there is neither message C nor message O (see
Fig. 7a). We have determined one type of reaction time,
illustrated in Fig. 7a by rt!x;!x which separates !xi and
!xiþ1. Let ½RTmin!x;!x; RT

max
!x;!x � denote an interval which

contains rt!x;!x.

Situation 2 (�i ¼ +, h ¼ k, and 9p 6¼ k such that ypiþ1 6¼ +). In
this situation, there is no message C and at least one
message O1 (see Fig. 7b). We have determined two types
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Fig. 5. Adding coordination messages.

Fig. 6. Incorrect resolution of the problem of observability.



of reaction times, illustrated in Fig. 7b by 1) rt!x;�O1 which
separates !xi and �O1p and 2) rt�O1;!x which separates
�O1p and !xiþ1. Let ½RTmin!x;�O1;RT

max
!x;�O1� and

½RTmin�O1;!x;RT
max
�O1;!x�

denote two intervals which contain rt!x;�O1 and rt�O1;!x,
respectively.

Situation 3 (yki 6¼ " and 8p 6¼ k : ðypi ¼ "Þ , ðypiþ1 ¼ "Þ. In this
situation, there is neither message C nor message O (see
Fig. 8a). We have determined one type of reaction time,
illustrated in Fig. 8a by rt?y;!x which separates ?yki and
!xiþ1. Let ½RTmin?y;!x;RT

max
?y;!x � denote an interval which

contains rt?y;!x.

Situation 4 (yki 6¼ " and 9p 6¼ k such that ðypi ¼ "ÞXORðy
p
iþ1 ¼

"Þ (XOR denotes the exclusive OR). In this situation, there

is no message C and at least one message O2 (see Fig. 8b).

We have determined two types of reaction times,

illustrated in Fig. 8b by 1) rt?y;�O2 which separates ?yki
and �O2p and 2) rt�O2;!x which separates �O2p and !xiþ1.

Let ½RTmin?y;�O2;RT
max
?y;�O2� and ½RTmin�O2;!x;RT

max
�O2;!x� denote two

intervals which contain rt?y;�O2 and rt�O2;!x, respectively.

Situation 5 (�i ¼ +, h 6¼ k, and 8p 6¼ k : ypiþ1 ¼ "). In this
situation, there is a message C1 and no message O (see
Fig. 9a). We have determined two types of reaction times,
illustrated in Fig. 9a by 1) rt!x;�C1 which separates !xi and
�C1k and 2) rtþC1;!x which separates þC1h and !xiþ1. Let
½RTmin!x;�C1;RT

max
!x;�C1� and ½RTminþC1;!x;RT

max
þC1;!x� denote two

intervals which contain rt!x;�C1 and rtþC1;!x, respectively.

Situation 6 (�i ¼ +, h 6¼ k, and 9p 6¼ k such that ypiþ1 6¼ "). In
this situation, there is a message C1 and at least one
messageO3 (see Fig. 9b). We have determined three types
of reaction times, illustrated in Fig. 9b by 1) rt!x;�C1 which
separates !xi and�C1k, 2) rtþC1;�O3 which separatesþC1h
and �O3p, and 3) rt�O3;!x which separates �O3p and !xiþ1.
L e t ½RTmin!x;�C1;RT

max
!x;�C1�, ½RTminþC1;�O3;RT

max
þC1;�O3�, a n d

½RTmin�O3;!x;RT
max
�O3;!x� denote three intervals which contain

rt!x;�C1, rtþC1;�O3, and rt�O3;!x, respectively. Note that
rt!x;�C1 and ½RTmin!x;�C1;RT

max
!x;�C1� have already been defined

in Situation 5.

Situation 7 (�i 6¼ +,yki ¼ ", and8p 6¼ k: (ðypi ¼ "Þ , ðypiþ1 ¼ "Þ)
or (p ¼ m). In this situation, there is a message C2 and no
messageO (see Fig. 10a). We have determined two types of

reaction times, illustrated in Fig. 10a by 1) rt?y;�C2 which

separates ?ymi and �C2k and 2) rtþC2;!x which separates

þC2m and !xiþ1. Let

½RTmin?y;�C2;RT
max
?y;�C2�

and ½RTminþC2;!x;RT
max
þC2;!x� denote two intervals which contain

rt?y;�C2 and rtþC2;!x, respectively.

Situation 8 (�i 6¼ +, yki ¼ ", and 9p 6¼ k such that

(ðypi ¼ "ÞXORðy
p
iþ1 ¼ "Þ) and (p 6¼ m). In this situation,

there is a message C2 and at least one message O4 (see

Fig. 10b). We have determined three types of reaction

times, illustrated in Fig. 10b by 1) rt?y;�C2 which

separates ?ymi and �C2k, 2) rtþC2;�O4 which separates

þC2m and �O4p, and 3) rt�O4;!x which separates �O4p
and !xiþ1. Let ½RTmin?y;�C2;RT

max
?y;�C2�, ½RTminþC2;�O4;RT

max
þC2;�O4�,

and ½RTmin�O4;!x;RT
max
�O4;!x� denote three intervals which

contain rt?y;�C2, rtþC2;�O4, and rt�O4;!x, respectively. Note

that rt?y;�C2 and ½RTmin?y;�C2;RT
max
?y;�C2� have already been

defined in Situation 7.

The eight situations are illustrated in Fig. 11, by adding

coordination messages to the transition sequence
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Fig. 7. Reaction times in Situations 1 and 2: �i ¼ + and there is no
message C.

Fig. 8. Reaction times in Situations 3 and 4: �i 6¼ + and there is no

message C.

Fig. 9. Reaction times in Situations 5 and 6: �i ¼ + and there is a
message C.



! ¼ha1="ihb1="ihc1=ð�1; 02Þihd1=ð�1; �2Þi
he1="ihf2="ihg1=ð"3Þihh1=ð42; 53Þihk1="i;

where the superscript of each event indicates the tester
which sends or receives it.

5.4 Waiting Times of the T S
During a testing process, every tester may receive two types
of events: outputs of the IUT and coordination messages.
The aim here is to define the amounts of time testers have to
wait for receptions before considering that an execution is
nonconformant.

Theorem 1. If a tester does not receive an expected coordination
message, then there exists at least another tester which has not
received an expected output of the IUT .

Let us prove this theorem ad absurdum.

Proof.

1. We assume that Theorem 1 does not hold, that is,
the following two points 1a and 1b are satisfied.

a. There exists a Testerp1 that does not receive
an expected coordination message from a
Testerp2 .

b. There exists no tester which does not receive
an expected output of the IUT .

2. A tester does not receive an expected coordina-
tion message X from another tester iff the latter
does not send X.

3. A tester does not send an expected coordination
message iff it has not received an expected output
of the IUT or a coordination message.

4. Items 3 and 1b imply that a tester does not send
an expected coordination message iff it has not
received an expected coordination message.

5. Items 2 and 4 imply that any Testerpi which has
not received an expected coordination message is
preceded chronologically by another Testerpiþ1

which has not received an expected coordination
message.

6. Items 1a and 5 imply that there exists an infinite
chronological suite:

   ; Testerpiþ1
; Testerpi ; Testerpi�1

;

. . . ; Testerp2 ; Testerp1

of testers which have not received expected

coordination messages.
7. Item 6 is an absurdity because it means that the

testing has begun in an infinite past. tu
From Theorem 1 and the fact that the IUT is

considered faulty iff at least one tester generates a verdict

fail, we will only consider waiting times for the

receptions of outputs of the IUT . For a given test

sequence ! ¼ hx1=�1ihx2=�2i    hxt=�ti, we will consider

waiting times for the receptions of outputs of �i, i � t.
We have determined four situations. Let Testerh and

Testerk be the testers sending xi and xiþ1, respectively,

and let Testerm be any tester which must receive an

output ymi 2 �i. In all of these situations, ymi 6¼ ".
Situation A (m 6¼ h and i ¼ 1 (see Fig. 12a)). Let the starting

instant be the instant of !x1. We assume that there exists a

mechanism which allows Testerm to know the starting

instant. WT";?y is an upper bound of the time wt";?y
separating the starting instant and ?ym1 . If Testerm cannot

know the starting instant, a solution consists of trans-

forming this Situation A into Situation C as follows:

Before it sends x1, Testerh sends a coordination message

O (O can be O1; O2; O3, or O4) to Testerm.

Situation B (m ¼ h (see Fig. 12b)). WT!x;?y is an upper

bound of the time wt!x;?y separating !xi and ?ymi .

Situation C (m 6¼ h, i > 1, and ymi�1 ¼ " (see Fig. 12c)).

WTþO;?y is an upper bound of the time wtþO;?y separating

þOh and ?ymi .
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Fig. 10. Reaction times in Situations 7 and 8: �i 6¼ + and there is a

message C.

Fig. 11. The eight situations illustrated in one view.



Situation D (m 6¼ h, i > 1, and ymi�1 6¼ " (see Fig. 12d)).

WT?y;?y is an upper bound of the time wt?y;?y separating

?ymi�1 and ?ymi .

The four waiting times are illustrated in Fig. 13, by

adding coordination messages to the transition sequence

! ¼ ha1=ð�1; 02Þihb1=ð�2; �3Þi.

5.5 Objective 2

Let us now propose another objective which guarantees

Objective 1 (see end of Section 4).

Proposition 2. The T S sends an input to the IUT only after it

has received all the outputs (if any) of the IUT in response to

the preceding input. We emphasize the word “all” because

there may be possible unexpected outputs (in the case of a

nonconformant IUT ). In an execution conformant to !, this

proposition implies for i � t: &!xiþ1
� &?�i . When this proposi-

tion is not satisfied, controllability and observability problems

may arise, even with a centralized test method (see Example 4).

Example 4 (Fault detectability problem resolved by

Proposition 2). We consider the specification and the

faulty implementation of Fig. 14, where a and x

(respectively, b and y) are the input and output of the

IUT on port 1 (respectively, port 2). We assume a

centralized test architecture and we consider the se-

quence: !0 ¼ ha=ðx; "Þihb=ð"; yÞi. With the faulty imple-

mentation, a possible “scenario” is the following:

instant | event

0 | !a * !a and ?a (resp. !b

and ?b) denote

1 | ?a + the sending of a

(resp. b) by the TS

and

2 | !x + its reception by

the IUT,

respectively.

3 | ?x * !x and ?x (resp. !y

and ?y) denote

4 | !b * the sending of x

(resp. y) by the IUT

and

5 | !y + its reception by

the TS,

respectively.

6 | ?y * Events of TS are

indicated by *

7 | ?b + Events of IUT are

indicated by +

According to Definition 1, this execution is nonconfor-

mant to !0 because the IUT does not execute the sequence

of events "ð!0Þ ¼ ?a!x?b!y (see events “+”). The fault is not

detected because the T S executes the GTS !ð!0Þ ¼ !a?x!b?y

(see events “*”). Intuitively, the T S cannot determine that y

is a response of the IUT to a and not to b. When

Proposition 2 holds, the above scenario never occurs

because the T S sends b only after it has received all outputs

in response to a, i.e., x (expected) and y (unexpected). The

fault is detected because the T S receives an unexpected

output.

Theorem 2. With the coordinated test method, Propositions 1

and 2 guarantee Condition 1.1
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Fig. 12. Waiting times in Situations A, B, C, and D.

Fig. 13. The four waiting times illustrated in one view.

Fig. 14. Example of fault detectability problem resolved by Proposition 2.

1. See proof in Appendix A.



Objective 2. With Theorem 2, Objective 1 (see end of

Section 4) is achieved if Propositions 1 and 2 and

Conditions 2 and 3 are guaranteed. Our new objective

(which guarantees Objective 1) is as follows:

1. In Section 6.1, we determine constraints of reaction
times of the T S which guarantee: Proposition 2 and
Condition 2 in all cases, and Proposition 1 when a
message O is used.

2. In Section 6.2, we determine waiting times of the T S
which guarantee Condition 3.

5.6 FIFO Communication not Required

We have now all the elements which allow us to prove the
following lemmas and theorem which were already
introduced in Section 2.1.

Lemma 1. Let CMp denote the reliable communication medium

through which Testerp communicates with port p of the IUT .

At any time, each CMp contains at most a single message.

Proof of Lemma 1. Let us prove that, between the sendings

of any consecutive inputs xi and xiþ1, each CM$ contains

at most a single message. (“$” means “any value � n,”

where n is the number of ports). Let Testerp and Testerq
be the testers which send xi and xiþ1, respectively.

Proposition 2 implies that Testerp sends xi to the IUT
(through CMp) only when all the CM$ (including CMp)
are empty. Therefore, Property 1 implies that, while xi is
in CMp (i.e., before the reception of xi by the IUT ), CMp

does not contain another message and all the other CM$
are empty. When CMp becomes empty (i.e., when xi is
received by the IUT ), Property 2 implies that the IUT
sends at most a single output to each tester and, thus,
each CM$ will contain at most a single message.
Proposition 2 implies that Testerq sends xiþ1 to the
IUT (through CMq) only when all the nonempty CM$
become empty (i.e., after the receptions by the T S of all
the outputs in response to xi). tu

Lemma 2. Let CMts
p;q denote the reliable communication medium

through which Testerp and Testerq communicate with one

another. At any time, each CMts
p;q contains at most a single

message.

Proof of Lemma 2. During the testing of any

! ¼ hx1=�1ihx2=�2i    hxt=�ti;

the eight possible situations of xi;�i, xiþ1;�iþ1 are
presented in Section 5.3 and illustrated in Figs. 7, 8, 9,
and 10. We clearly see in these figures that in none of the
eight situations does a Testerp send a message to a
Testerq before the reception by Testerq of a previous
message from Testerp. This implies that, at any time,
each CMts

p;p contains at most a single message. tu

Theorem 3. From Lemmas 1 and 2, we deduce that our method is

insensitive to the fact that the communication medium either

respects the FIFO discipline or does not.

Proof of Theorem 3. The FIFO discipline is not relevant
because, at any time, the communication medium
between a sender and a receiver contains at most a
single message. tu

6 CONSTRAINTS OF REACTION TIMES

AND WAITING TIMES OF THE T S
6.1 Constraints of Reaction Times of the T S and

Their Resolution
In this section, we reach Point 1 of Objective 2. The reader
who is just interested by a systematic method to compute
constraints of reaction times, without any explanation, may
directly go to Section 6.1.9. In the following, for each
situation, the reader may refer to the corresponding figure
of Section 5.3. supða; bÞ denotes the greatest of a and b.

6.1.1 Situation 1: Constraints of ½RTmin!x;!x ;RT
max
!x;!x �

Proposition 2 is guaranteed by2

RTmin!x;!x � ðTTmax þRTiut þ TTmaxÞ:

Condition 2 is guaranteed by3

RTmax!x;!x þ TTmax � TTmin �WTiut:

These two inequations may therefore be combined as
follows:

½RTmin!x;!x ;RT
max
!x;!x � � ½RTiut þ 2TTmax;WTiut �4TT �: ð4Þ

Solutions exist for (4) iff:4

WTiut � ðRTiut þ 3TTmax � TTminÞ: ð5Þ

6.1.2 Situation 2: Constraints of ½RTmin!x;�O1;RT
max
!x;�O1� and

½RTmin�O1;!x;RT
max
�O1;!x�

By analogy with Situation 1,5 Proposition 2 and Condition 2
are guaranteed if:

½RTmin!x;�O1 þRTmin�O1;!x;RT
max
!x;�O1 þRTmax�O1;!x�

satisfies the same constraints for ½RTmin!x;!x ;RT
max
!x;!x � (see (4)).

Therefore, Proposition 2 and Condition 2 are guaranteed by:

½RTmin!x;�O1 þRTmin�O1;!x;RT
max
!x;�O1 þRTmax�O1;!x� �

½RTiut þ 2TTmax;WTiut �4TT �:
ð6Þ

Since there is a message O, we must also guarantee
Proposition 1, i.e., þO1k is before ?ypiþ1. A sufficient
condition for that is:6

RTmin�O1;!x � ðTTmaxts � 2TTminÞ: ð7Þ

Solutions exist for (6) and (7) if and only if:7

WTiut � sup

ðRTiut þ 3TTmax � TTmin;TTmaxts þ TTmax � 3TTminÞ:
ð8Þ

6.1.3 Situation 3: Constraints of ½RTmin?y;!x;RT
max
?y;!x �

Proposition 2 is guaranteed by8

ðTTmin þRTmin?y;!xÞ � ðRTiut þ TTmaxÞ:
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2. See proof in Appendix B.1.1
3. See proof in Appendix B.1.2.
4. See proof in Appendix B.4.
5. For details on the analogy, see Appendix B.2.1.
6. See proof in Appendix B.2.2.
7. See proof in Appendix B.2.3.
8. See proof in Appendix B.3.1.



Condition 2 is guaranteed by9

ðTTmax þRTmax?y;!x þ TTmaxÞ �WTiut:
These two inequations may therefore be combined as

follows:

½RTmin?y;!x;RT
max
?y;!x � � ½RTiut þ4TT ;WTiut � 2TTmax�: ð9Þ

Solutions exist for (9) iff (5) of Section 6.1.1 holds.10

6.1.4 Situation 4: Constraints of ½RTmin?y;�O2;RT
max
?y;�O2� and

½RTmin�O2;!x;RT
max
�O2;!x�

By analogy with Situation 3,11 Proposition 2 and Condition 2

are guaranteed if:

½RTmin?y;�O2 þRTmin�O2;!x;RT
max
?y;�O2 þRTmax�O2;!x�

satisfies the same constraints for ½RTmin?y;!x;RT
max
?y;!x � (see (9)).

Therefore, Proposition 2 and Condition 2 are guaranteed by:

½RTmin?y;�O2 þRTmin�O2;!x;RT
max
?y;�O2 þRTmax�O2;!x� �

½RTiut þ4TT ;WTiut � 2TTmax�:
ð10Þ

Since there is a message O, we must also guarantee

Proposition 1, i.e.,

. þO2k is after ?ypi (if any). A sufficient condition for
that is:12

RTmin?y;�O2 � ðRTiut þ4TT � TTmints Þ: ð11Þ

. þO2k is before ?ypiþ1 (if any). A sufficient condition
for that is:13

RTmin�O2;!x � ðTTmaxts � 2TTminÞ: ð12Þ

Solutions exist for (10), (11), and (12) if and only if:14

WTiut � supðRTiut þ 3TTmax � TTmin;TTmaxts þ
24TT ;RTiut þ 34TT þ4TTtsÞ:

ð13Þ

6.1.5 Situation 5: Constraints of ½RTmin!x;�C1;RT
max
!x;�C1� and

½RTminþC1;!x;RT
max
þC1;!x�

By analogy with Situation 1,15 Proposition 2 and Condition 2

are guaranteed if:

½RTmin!x;�C1 þ TTmints þRTminþC1;!x;RT
max
!x;�C1 þ TTmaxts þRTmaxþC1;!x�

satisfies the same constraints for ½RTmin!x;!x ;RT
max
!x;!x �. Therefore,

Proposition 2 and Condition 2 are guaranteed by:

½RTmin!x;�C1 þRTminþC1;!x;RT
max
!x;�C1 þRTmaxþC1;!x� �

½RTiut þ 2TTmax � TTmints ;WTiut �4TT � TTmaxts �:
ð14Þ

Solutions exist for (14) if and only if:16

WTiut � supðRTiut þ 3TTmax � TTminþ
4TTts;4TT þ TTmaxts Þ:

ð15Þ

6.1.6 Situation 6: Constraints of ½RTmin!x;�C1;RT
max
!x;�C1�,

½RTminþC1;�O3;RT
max
þC1;�O3�, and ½RTmin�O3;!x;RT

max
�O3;!x�

By analogy with Situation 5,17 Proposition 2 and Condition 2
are guaranteed if:

½RTmin!x;�C1 þRTminþC1;�O3 þRTmin�O3;!x;

RTmax!x;�C1 þRTmaxþC1;�O3 þRTmax�O3;!x�

satisfies the same constraints for

½RTmin!x;�C1 þRTminþC1;!x;RT
max
!x;�C1 þRTmaxþC1;!x�

(see (14)). Therefore, Proposition 2 and Condition 2 are
guaranteed by:

½RTmin!x;�C1 þRTminþC1;�O3 þRTmin�O3;!x;RT
max
!x;�C1þ

RTmaxþC1;�O3 þRTmax�O3;!x� � ½RTiut þ 2TTmax�
TTmints ;WTiut �4TT � TTmaxts �:

ð16Þ

Since there is a message O, and by analogy with
Situation 2,18 RTmin�O3;!x must satisfy the same constraint for
RTmin�O1;!x (see (7)). Therefore, we obtain:

RTmin�O3;!x � ðTTmaxts � 2TTminÞ: ð17Þ

Solutions exist for (16) and (17) if and only if:19

WTiut � supðRTiut þ 3TTmax � TTmin þ4TTts;4TTþ
TTmaxts ;TTmax � 3TTmin þ 2TTmaxts Þ:

ð18Þ

6.1.7 Situation 7: Constraints of ½RTmin?y;�C2;RT
max
?y;�C2� and

½RTminþC2;!x;RT
max
þC2;!x�

By analogy with Situation 3,20 Proposition 2 and Condition 2
are guaranteed if:

½RTmin?y;�C2 þ TTmints þRTminþC2;!x;RT
max
?y;�C2 þ TTmaxts þRTmaxþC2;!x�

satisfies the same constraints for ½RTmin?y;!x;RT
max
?y;!x �. Therefore,

Proposition 2 and Condition 2 are guaranteed by:

½RTmin?y;�C2 þRTminþC2;!x;RT
max
?y;�C2 þRTmaxþC2;!x� �

½RTiut þ4TT � TTmints ;WTiut � 2TTmax � TTmaxts �:
ð19Þ

Solutions exist for (19) if and only if:21

WTiut � supðRTiut þ 3TTmax � TTminþ
4TTts; 2TTmax þ TTmaxts Þ:

ð20Þ

6.1.8 Situation 8: Constraints of ½RTmin?y;�C2;RT
max
?y;�C2�,

½RTminþC2;�O4;RT
max
þC2;�O4�, and ½RTmin�O4;!x;RT

max
�O4;!x�

By analogy with Situation 7,22 Proposition 2 and Condition 2
are guaranteed if:
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9. See proof in Appendix B.3.2.
10. See proof in Appendix B.4.
11. For details on the analogy, see Appendix B.5.1.
12. See proof in Appendix B.5.2.
13. See proof in Appendix B.5.3.
14. See proof in Appendix B.5.4.
15. For details on the analogy, see Appendix B.6.1.
16. See proof in Appendix B.6.2.

17. For details on the analogy, see Appendix B.7.1.
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19. See proof in Appendix B.7.3.
20. For details on the analogy, see Appendix B.8.1.
21. See proof in Appendix B.8.2.
22. For details on the analogy, see Appendix B.9.1.



½RTmin?y;�C2 þRTminþC2;�O4 þRTmin�O4;!x;

RTmax?y;�C2 þRTmaxþC2;�O4 þRTmax�O4;!x�

satisfies the same constraints for

½RTmin?y;�C2 þRTminþC2;!x;RT
max
?y;�C2 þRTmaxþC2;!x�

(see (19)). Therefore, Proposition 2 and Condition 2 are
guaranteed by:

½RTmin?y;�C2 þRTminþC2;�O4 þRTmin�O4;!x;

RTmax?y;�C2 þRTmaxþC2;�O4 þRTmax�O4;!x� �
½RTiut þ4TT � TTmints ;WTiut � 2TTmax � TTmaxts �:

ð21Þ

Since there is a messageO and by analogy with Situation 4:23

. RTmin?y;�C2 þ TTmints þRTminþC2;�O4 must satisfy the same
constraint for RTmin?y;�O2 (see (11)). A sufficient condi-
tion is therefore:

RTmin?y;�C2 þRTminþC2;�O4 � ðRTiut þ4TT � 2TTmints Þ:
ð22Þ

. RTmin�O4;!x must satisfy the same constraints for
RTmin�O2;!x (see (12)). A sufficient condition is therefore:

RTmin�O4;!x � ðTTmaxts � 2TTminÞ: ð23Þ

Solutions exist for (21), (22), and (23) if and only if:24

WTiut � supðRTiut þ 3TTmax � TTminþ
4TTts; 2TTmaxts þ 24TT ;RTiutþ
34TT þ 24TTts; 2TTmax þ TTmaxts Þ:

ð24Þ

6.1.9 A Scenario for Resolving Constraints

of Reaction Times

We have determined seven conditions for existence of

solutions: (5), (8), (13), (15), (18), (20), and (24). Actually, (24)

is the global condition for existence of solutions because it

implies the other six equations.25 Here is a scenario of

resolution of reaction times constraints.

Step 1: Check the existence of solutions. If (24) holds then
continue, Else send a message “There is no solution !”
and terminate.

Step 2: Resolve constraints of Situation 2. Compute intervals
½RTmin!x;�O1;RT

max
!x;�O1� and ½RTmin�O1;!x;RT

max
�O1;!x� which satisfy

(6) and (7).

Step 3: Resolve constraints of Situation 1. Compute an
interval ½RTmin!x;!x ;RT

max
!x;!x � which satisfies (4). By analogy

with Situation 2, we can take:

½RTmin!x;!x ;RT
max
!x;!x � ¼ ½RTmin!x;�O1 þRTmin�O1;!x;RT

max
!x;�O1 þRTmax�O1;!x�:

Step 4: Resolve constraints of Situation 4. Compute intervals
½RTmin?y;�O2;RT

max
?y;�O2� and ½RTmin�O2;!x;RT

max
�O2;!x� which satisfy

(10), (11), and (12).

Step 5: Resolve constraints of Situation 3. Compute an
interval ½RTmin?y;!x;RT

max
?y;!x � which satisfies (9). By analogy

with Situation 4, we can take:

½RTmin?y;!x;RT
max
?y;!x � ¼ ½RTmin?y;�O2 þRTmin�O2;!x;RT

max
?y;�O2 þRTmax�O2;!x�:

Step 6: Resolve constraints of Situation 6. Compute
intervals ½RTmin!x;�C1;RT

max
!x;�C1�, ½RTminþC1;�O3;RT

max
þC1;�O3�, and

½RTmin�O3;!x;RT
max
�O3;!x� which satisfy (16) and (17).

Step 7: Resolve constraints of Situation 5. Compute an
interval ½RTminþC1;!x;RT

max
þC1;!x� which satisfies (14). (Note

that ½RTmin!x;�C1;RT
max
!x;�C1� has been computed in Step 6). By

analogy with Situation 6, we can take:

½RTminþC1;!x;RT
max
þC1;!x� ¼½RTminþC1;�O3 þRTmin�O3;!x;

RTmaxþC1;�O3 þRTmax�O3;!x�:

Step 8: Resolve constraints of Situation 8. Compute
intervals ½RTmin?y;�C2;RT

max
?y;�C2�, ½RTminþC2;�O4;RT

max
þC2;�O4�, and

½RTmin�O4;!x;RT
max
�O4;!x� which satisfy (21), (22), and (23).

Step 9: Resolve constraints of Situation 7. Compute an
interval ½RTminþC2;!x;RT

max
þC2;!x� which satisfies (19). (Note

that ½RTmin?y;�C2;RT
max
?y;�C2� has been computed in Step 8). By

analogy with Situation 8, we can take:

½RTminþC2;!x;RT
max
þC2;!x� ¼½RTminþC2;�O4 þRTmin�O4;!x;

RTmaxþC2;�O4 þRTmax�O4;!x�:

Recall that the obtained constraints of reaction times of the
T S must be guaranteed by the T S. The problem was not
simple because RTiut requires lower bounds and WTiut
requires upper bounds on the reaction times of the T S. The
obtained conditions for the existence of solutions guarantee
that the lower bounds are smaller than the upper bounds.
The problem is significantly simplified in the particular case
where the waiting time of the IUT (WTiut) is infinite (i.e.,
the IUT is infinitely patient).

6.2 Resolution of Waiting Times of the T S
In this section, we reach Point 2 of Objective 2 (presented at
the end of Section 5.5).

Situation A (WT";?y (see Fig. 12a)). We assume here that
Testerh sends x1 and Testerm starts waiting for ?ym1 at the
same time. The least restrictive constraint ofWT";?y is:26

WT";?y ¼ RTiut þ 2TTmax: ð25Þ

Situation B (WT!x;?y (see Fig. 12b)). Similarly to the preceding
case, the least restrictive constraint ofWT!x;?y is:27

WT!x;?y ¼ RTiut þ 2TTmax: ð26Þ

Situation C (WTþO;?y (see Fig. 12c)). The least restrictive
constraint of WTþO;?y is:28

WTþO;?y ¼RTiut þ 2TTmax � TTmints þ
supðRTmax�O1;!x; RT

max
�O2;!x; RT

max
�O3;!x; RT

max
�O4;!xÞ:

ð27Þ
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23. For details on the analogy, see Appendix B.9.2.
24. See proof in Appendix B.9.3.
25. See proof in Appendix B.10.

26. See proof in Appendix C.1.
27. See proof in Appendix C.2.
28. See proof in Appendix C.3.



Situation D (WT?y;?y (see Fig. 12d)). The least restrictive

constraint of WT?y;?y is:29

WT?y;?y ¼2RTiut þ 3TTmax � TTminþ
TTmaxts þRTmax?y;�C2 þRTmaxþC2;!x:

ð28Þ

The obtained waiting times of the T S determine the
delay the T S has to wait in each situation before declaring
the IUT nonconformant (if the T S does not receive all the
expected outputs).

Remark 2. If Situation A is replaced by Situation C by
sending a first coordination message O before to send
x1 (see Section 5.4), the delay separating the sendings
of O and of x1 must respect (7). The similarity of (7),
(12), (17), and (23) shows that this first O can be any of
O1; O2; O3, or O4.

6.3 About the Centralized Test Method

With the centralized test method, a single tester commu-
nicates with all the ports of the distributed IUT (see Fig. 1a).
As we will see, the centralized test method can be
considered as just a particular case of the coordinated test
method. In fact, with the centralized test method:

. Among Situations 1 to 8 of Section 5.3, the only
situations which may occur are the situations where
a single tester is involved, that is Situations 1 and 3.
Two reaction times are therefore defined: rt!x;!x 2
½RTmin!x;!x ;RT

max
!x;!x � and rt?y;!x 2 ½RTmin?y;!x;RT

max
?y;!x �. rt!x;!x

has the same semantics as in Situation 1 and,
therefore, the constraint of ½RTmin!x;!x ;RT

max
!x;!x � is (4).

rt?y;!x has different semantics than in Situation 3. In
fact, contrary to Situation 3 where Testerk receives a
single output yki , the centralized tester receives all
the outputs of �i. rt?y;!x is now the delay which
separates the last output of �i from !xiþ1. Despite
this difference, the constraint of ½RTmin?y;!x;RT

max
?y;!x � is (9)

which is obtained by using the proofs of Situation 3
in Appendices B.3.1 and B.3.2.

And similar to Situations 1 and 3, solutions exist

for (4) and (9) iff (5) is satisfied.
. Among Situations A to D of Section 5.4, the only

situation which may occur is the situation where a
single tester is involved, that is Situation B. One
waiting time WT!x;?y is therefore defined.
WT!x;?y does not have the same semantics as in

Situation B. In fact, contrary to Situation B where
Testerm receives a single output ymi , the centralized
tester receives all the outputs of �i.WT!x;?y is now an
upper bound of the time separating !xi from the last
output of �i. Despite this difference, WT!x;?y is
resolved by (26) which is obtained by using the proof
of Situation B in Appendix C.2.

7 CONCLUSION AND FUTURE WORK

7.1 Contributions

In this study, we propose a test method for distributed
systems. The main novelty aspects can be summarized by
the following points:

1. Controllability and observability problems are
resolved.

2. The finite waiting time of the IUT is respected.
3. The duration of test execution is minimized.
4. No global clock is required.
5. The communication medium used by the T S is not

necessarily FIFO.

We also show that the centralized test method can be
considered just as a particular case of the coordinated test
method and correctness of all our results is proven.

Recall that the problem resolved in this article is much
simpler when the waiting time of the IUT (WTiut) is
infinite, that is, if the IUT is infinitely patient. In fact, in this
case, there is no required upper bounds for reaction times of
the T S. Therefore, conditions for the existence of solutions
are always satisfied and do not need to be checked.

7.2 Future Work

In the near future, we intend to investigate the following
research issues:

1. Theorem 2 states that Propositions 1 and 2 imply
Condition 1. The fact that the inverse is not true,
implies that Objective 2 (at the end of Section 5.5 ) is
more restrictive than Objective 1 (at the end of
Section 4). Our method allows us to obtain optimal
solutions which guarantee Objective 2. These solu-
tions guarantee Objective 1 but are not necessarily
the optimal solutions which guarantee Objective 1.
We intend to investigate the computation of optimal
results which guarantee Objective 1.

2. The application of our study to complex examples.
We intend to consider the areas of communications
and robotics.

3. The extension of our study for testing real-time
distributed IUT s. Although the present test method
uses a temporal approach, the IUT is not real-time,
in the sense that there is no explicit timing
constraints between transitions of the np-FSM that
describes the specification of the IUT .

APPENDIX A

PROOF OF THEOREM 2

We consider the coordinated test method and we assume
that Propositions 1 and 2 hold. Our aim here is therefore to
prove that Condition 1 holds.

Let ! ¼ hx1=�1ihx2=�2i    hxt=�ti be the used GTS, and
b be any response of the IUT to a given xi.

1. 8� : &!� � &?�.
2. Since b is a response to xi, &?xi � &!b.
3. Proposition 2 implies &?b � &!xiþ1

.
4. Items 1, 2, and 3 imply &?xi � &!b � &?b � &!xiþ1

� &?xiþ1
.

Therefore, &?xi � &?xiþ1
.

5. Item 4 means that controllability is guaranteed.
6. Proposition 2 assumes that the T S observes all the

outputs of the IUT .
7. Items 1, 2, and 3 imply

&!xi � &?xi � &!b � &?b � &!xiþ1
:

Therefore, &!xi � &?b � &!xiþ1
.
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29. See proof in Appendix C.4.



8. Proposition 2 and item 7 imply that b is caused by xi.
9. Item 8 and Proposition 1 imply that, when the T S

observes an output b, it can determine the input xi
which is the cause of b.

10. Items 6 and 9 mean that observability is guaranteed.
11. Items 5 and 10 mean that Condition 1 holds.

APPENDIX B

CONSTRAINTS OF REACTION TIMES

B.1 Situation 1 (Proof of (4))
For clarity, we use the diagram of Fig. 15, where there is
no expected output and zi represents a possible un-
expected output (if the IUT is faulty). In this figure,
tt1; tt2; tt3 2 ½TTmin; TTmax�, wt!x;?y �WT!x;?y, rtiut � RTiut,
wt!x;?y ¼ tt1 þ rtiut þ tt2, tt1 þ wtiut ¼ rt!x;!x þ tt3, and

rt!x;!x 2 ½RTmin!x;!x ;RT
max
!x;!x �:

B.1.1 Proposition 2

The time separating !xi and !xiþ1 is rt!x;!x. Since

rt!x;!x � RTmin!x;!x;

then a lower bound of this time is LB ¼ RTmin!x;!x .
The time separating !xi and any unexpected ?zi is

tt1 þ rtiut þ tt2. Since tt1, tt2 � TTmax, and rtiut � RTiut, then
an upper bound of this time isUB ¼ TTmax þRTiut þ TTmax.
Proposition 2 is guaranteed by UB � LB.

B.1.2 Condition 2

The time separating ?xi and ?xiþ1 is wtiut ¼ tt3 þ rt!x;!x � tt1.
Since tt3 � TTmax, tt1 � TTmin, and rt!x;!x � RTmax!x;!x , then an
upper bound of this time is UB ¼ TTmax þRTmax!x;!x � TTmin.

Condition 2 is guaranteed by UB �WTiut.

B.2 Situation 2

B.2.1 Analogy between Situations 1 and 2 (Proof of (6))

In Situation 1 (see Fig. 7a), Proposition 2 is guaranteed by

constraints on the delay rt!x;!x (see (4)). In Situation 2 (see

Fig. 7b), this delay is split by�O1p into two delays rt!x;�O1 and

rt�O1;!x. Proposition 2 is therefore guaranteed if rt!x;�O1 þ
rt�O1;!x satisfies the same constraints as rt!x;!x in Situation 1.

Therefore, ½RTmin!x;�O1 þRTmin�O1;!x;RT
max
!x;�O1 þRTmax�O1;!x� must sa-

tisfy the same constraints as ½RTmin!x;!x ;RT
max
!x;!x �.

B.2.2 Proposition 1 in Situation 2 (Proof of (7))

For clarity, we use the diagram of Fig. 16. In this figure, the
time separating �O1p and ?ypiþ1 is rt�O1;!x þ tt2 þ rtiut þ tt3.
Since tt2; tt3 � TTmin, rtiut � 0, and rt�O1;!x � RTmin�O1;!x, a
lower bound of this time is:

LB ¼ RTmin�O1;!x þ TTmin þ 0þ TTmin:

The time separating �O1p and þO1k is tt4. Since

tt4 � TTmaxts , an upper bound of this time is UB ¼ TTmaxts .
The fact that UB � LB is a guarantee of Proposition 1,

i.e., þO1k is before ?ypiþ1.

B.2.3 Existence of Solutions in Situation 2 (Proof of (8))

Let a; b; c be three constants and �; 0; �; � be four positive

variables. There exist solutions for:

½�þ �;0 þ �� � ½a; b�
c � �

if and only if b � supða; c; 0Þ. If, for instance, a � 0, then the

condition becomes b � supða; cÞ. In (6) and (7),

. a ¼ ðRTiut þ 2TTmaxÞ � 0, b ¼ ðWTiut �4TT Þ, and
c ¼ ðTTmaxts � 2TTminÞ;

. � ¼ RTmin!x;�O1, 0 ¼ RTmax!x;�O1, � ¼ RTmin�O1;!x, and

� ¼ RTmax�O1;!x:

Therefore, b � supða; cÞ is equivalent to (8) (in Section 6.1.2).

B.3 Situation 3 (Proof of (9))

For clarity, we use the diagram of Fig. 17 where yki is the

last output of �i to be received by the T S. In this figure,

tt1; tt2; tt3 2 ½TTmin;TTmax�, wt!x;?y �WT!x;?y, rtiut � RTiut,
wt!x;?y ¼ ðtt1 þ rtiut þ tt2Þ, wtiut ¼ ðtt2 þ rt?y;!x þ tt3Þ, and

rt?y;!x 2 ½RTmin?y;!x;RT
max
?y;!x �.

B.3.1 Proposition 2

The time separating !xi and !xiþ1 is tt1 þ rtiut þ tt2 þ rt?y;!x.
Since tt2 � TTmin, rtiut � 0, and rt?y;!x � RTmin?y;!x then, for a

given tt1, a lower bound of this time is:

LB ¼ tt1 þ 0þ TTmin þRTmin?y;!x:

The time separating !xi and ?yki (possibly unexpected) is

tt1 þ rtiut þ tt2. Since tt2 � TTmax and rtiut � RTiut then, for

a given tt1, an upper bound of this time is:

UB ¼ tt1 þRTiut þ TTmax:

Proposition 2 is guaranteed by UB � LB.

B.3.2 Condition 2

The time separating !yki and ?xiþ1 is wtiut ¼ tt2 þ rt?y;!x þ tt3.

Since tt2; tt3 � TTmax and rt?y;!x � RTmax?y;!x , then an upper

bound of this time is UB ¼ ðTTmax þRTmax?y;!x þ TTmaxÞ.
Condition 2 is guaranteed by UB �WTiut.
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Fig. 15. Situation 1.

Fig. 16. Situation 2.



B.4 Existence of Solutions in Situations 1 and 3
(Proof of (5))

Let a; b be two constants and �; 0 be two positive variables.

There exist solutions for ½�;0� � ½a; b� if and only if:

b � supða; 0Þ. If, for instance, a � 0, then the condition

becomes b � a.

In Equation 4 (Situation 1), � ¼ RTmin!x;!x , 0 ¼ RTmax!x;!x ,

a ¼ ðRTiut þ 2TTmaxÞ � 0, and b ¼ ðWTiut �4TT Þ.
In Equation 9 (Situation 3), � ¼ RTmin?y;!x, 0 ¼ RTmax?y;!x ,

a ¼ ðRTiut þ4TT Þ � 0, and b ¼ ðWTiut � 2TTmaxÞ.
In both cases, b � a is equivalent to (5) (in Section 6.1.1).

B.5 Situation 4

B.5.1 Analogy between Situations 3 and 4 (Proof of (10))

In Situation 3 (see Fig. 8a), Proposition 2 is guaranteed by

constraints on the delay rt?y;!x (see (9)). In Situation 4 (see

Fig. 8b), this delay is split by�O2p into two delays rt?y;�O2 and

rt�O2;!x. Proposition 2 is therefore guaranteed if rt?y;�O2 þ
rt�O2;!x satisfies the same constraints as rt?y;!x in Situation 3.

Therefore, ½RTmin?y;�O2 þRTmin�O2;!x;RT
max
?y;�O2 þRTmax�O2;!x�must sa-

tisfy the same constraints as ½RTmin?y;!x;RT
max
?y;!x �.

B.5.2 Proposition 1 in Situation 4: First Case

(Proof of (11))

For clarity, we use the diagram of Fig. 18. The time separating

?xi and þO2k is rtiut þ tt1 þ rt?y;�O2 þ tt4. Since tt1 � TTmin,

tt4 � TTmints , rtiut � 0, and rt?y;�O2 � RTmin?y;�O2, then a lower

bound of this time is LB ¼ 0þ TTmin þRTmin?y;�O2 þ TTmints .
The time separating ?xi and ?ypi is: rt0iut þ tt2. Since tt2 �

TTmax and rt0iut � RTiut, then an upper bound of this time is

UB ¼ RTiut þ TTmax.
The fact that UB � LB is a guarantee of Proposition 1,

i.e., þO2k is after ?ypi .

B.5.3 Proposition 1 in Situation 4: Second Case

(Proof of (12))

For clarity, we use the diagram of Fig. 19. The time

separating �O2p and ?ypiþ1 is rt�O2;!x þ tt2 þ rt0iut þ tt3. Since

tt2; tt3 � TTmin, rt0iut � 0, and rt�O2;!x � RTmin�O2;!x, then a

lower bound of this time is:

LB ¼ RTmin�O2;!x þ TTmin þ 0þ TTmin:

The time separating �O2p and þO2k is tt4. Since

tt4 � TTmaxts , then an upper bound of this time is

UB ¼ TTmaxts .
The fact that UB � LB is a guarantee of Proposition 1,

i.e., þO2k is before ?ypiþ1.

B.5.4 Existence of Solutions in Situation 4 (Proof of (13))

Let a; b; c; d be four constants and �; 0; �; � be four positive

variables. There exist solutions for:

½�þ �;0 þ �� � ½a; b�
c � �
d � �:

if and only if b � supða; c; d; cþ d; 0Þ. If, for instance,

a � supðc; 0Þ, then the condition becomes

b � supða; d; cþ dÞ:

In (10), (11), and (12):

. a ¼ ðRTiut þ4TT Þ, b ¼ ðWTiut � 2TTmaxÞ,

c ¼ ðRTiut þ4TT � TTmints Þ;

and d ¼ ðTTmaxts � 2TTminÞ; (Note that a � supðc; 0Þ).
. � ¼ RTmin?y;�O2, 0 ¼ RTmax?y;�O2, � ¼ RTmin�O2;!x, and

� ¼ RTmax�O2;!x:

Therefore, b � supða; d; cþ dÞ is equivalent to (13) (in

Section 6.1.4).

B.6 Situation 5

B.6.1 Analogy between Situations 1 and 5 (Proof of (14))

In Situation 1 (see Fig. 7a), Proposition 2 is guaranteed by

constraints on the delay rt!x;!x (see (4)). In Situation 5 (see

Fig. 9a), this delay is split into three delays rt!x;�C1, ttts, and

rtþC1;!x, where ttts is the delay separating �C1k and þC1h.

Proposition 2 is therefore guaranteed if rt!x;�C1 þ ttts þ
rtþC1;!x satisfies the same constraints as rt!x;!x in Situation 1.

Therefore,
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½RTmin!x;�C1 þ TTmints þRTminþC1;!x;RT
max
!x;�C1 þ TTmaxts þRTmaxþC1;!x�

must satisfy the same constraints as ½RTmin!x;!x ;RT
max
!x;!x �.

B.6.2 Existence of Solutions in Situation 5 (Proof of (15))

The proof here is quite similar to the proof in Section B.4.
Let a; b be two constants and �; 0 be two positive variables.
There exist solutions for ½�;0� � ½a; b� if and only if
b � supða; 0Þ. In (14),

. a ¼ ðRTiut þ 2TTmax � TTmints Þ and

b ¼ ðWTiut �4TT � TTmaxts Þ:

. � ¼ ðRTmin!x;�C1 þRTminþC1;!xÞ and

0 ¼ ðRTmax!x;�C1 þRTmaxþC1;!xÞ:

Therefore, b � supða; 0Þ is equivalent to (15) (in Section 6.1.5).

B.7 Situation 6

B.7.1 Analogy between Situations 5 and 6 (Proof of (16))

In Situation 5 (see Fig. 9a), Proposition 2 is guaranteed by
constraints on the delay rt!x;�C1 þ rtþC1;!x (see (14)). In
Situation 6 (see Fig. 9b), the delay rtþC1;!x is split into two
delays, rtþC1;�O3 and rt�O3;!x. Proposition 2 is therefore
guaranteed if rt!x;�C1 þ rtþC1;�O3 þ rt�O3;!x satisfies the same
constraints as rt!x;�C1 þ rtþC1;!x in Situation 5. Therefore,

½RTmin!x;�C1 þRTminþC1;�O3 þRTmin�O3;!x;

RTmax!x;�C1 þRTmaxþC1;�O3 þRTmax�O3;!x�

must satisfy the same constraints as

½RTmin!x;�C1 þRTminþC1;!x;RT
max
!x;�C1 þRTmaxþC1;!x�:

B.7.2 Analogy between Situations 2 and 6 (Proof of (17))

In Situation 2, Proposition 1 is guaranteed by a constraint on
the lower bound RTmin�O1;!x of rt�O1;!x (see (7)). The proof (see
Section B.2.2) depends only on instants of events occurring
after �O1p relatively to the instant of �O1p.

Situations 2 and 6 (see Figs. 7b and 9b) are similar from
the instant when a message O is sent. The only difference is
the use of messages O1 and O3, respectively.

Therefore, in Situation 6, the lower bound RTmin�O3;!x of
rt�O3;!x must satisfy the same constraint as RTmin�O1;!x in
Situation 2.

B.7.3 Existence of Solutions in Situation 6 (Proof of (18))

The proof here is quite similar to the proof of Section B.2.3 .
Let a; b; c be three constants and �; 0; �; � be four positive
variables. There exist solutions for:

½�þ �;0 þ �� � ½a; b�
c � �

if and only if b � supða; c; 0Þ. In (16) and (17),

. a ¼ ðRTiut þ 2TTmax � TTmints Þ,

b ¼ ðWTiut �4TT � TTmaxts Þ;

and c ¼ ðTTmaxts � 2TTminÞ;
. � ¼ ðRTmin!x;�C1 þRTminþC1;�O3Þ,

0 ¼ ðRTmax!x;�C1 þRTmaxþC1;�O3Þ;

� ¼ RTmin�O3;!x, and � ¼ RTmax�O3;!x.

Therefore, b � supða; c; 0Þ is equivalent to (18) (in
Section 6.1.6).

B.8 Situation 7

B.8.1 Analogy between Situations 3 and 7 (Proof of (19))

In Situation 3 (see Fig. 8a), Proposition 2 is guaranteed by
constraints on the delay rt?y;!x (see (9)). In Situation 7 (see
Fig. 9a), this delay is split into three delays, rt?y;�C2, ttts, and
rtþC2;!x, where ttts is the delay separating �C2k and þC2m.
Proposition 2 is therefore guaranteed if rt?y;�C2 þ ttts þ
rtþC2;!x satisfies the same constraints as rt?y;!x in Situation 3.
Therefore,

½RTmin?y;�C2 þ TTmints þRTminþC2;!x;

RTmax?y;�C2 þ TTmaxts þRTmaxþC2;!x�

must satisfy the same constraints as ½RTmin?y;!x;RT
max
?y;!x �.

B.8.2 Existence of Solutions in Situation 7 (Proof of (20))

The proof here is quite similar to the proof in Section B.4.
Let a; b be two constants and �; 0 be two positive variables.
There exist solutions for ½�;0� � ½a; b� if and only if
b � supða; 0Þ. In (19),

. a ¼ ðRTiut þ4TT � TTmints Þ and

b ¼ ðWTiut � 2TTmax � TTmaxts Þ;

. � ¼ ðRTmin?y;�C2 þRTminþC2;!xÞ and

0 ¼ ðRTmax?y;�C2 þRTmaxþC2;!xÞ:

Therefore, b � supða; 0Þ is equivalent to (20) (in Section 6.1.7).

B.9 Situation 8

B.9.1 Analogy between Situations 7 and 8 (Proof of (21))

In Situation 7 (see Fig. 10a), Proposition 2 is guaranteed by
constraints on the delay rt?y;�C2 þ rtþC2;!x (see (19)). In
Situation 8 (see Fig. 10b), the delay rtþC2;!x is split into two
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delays rtþC2;�O4 and rt�O4;!x. Proposition 2 is therefore
guaranteed if rt?y;�C2 þ rtþC2;�O4 þ rt�O4;!x satisfies the same
constraints as rt?y;�C2 þ rtþC2;!x in Situation 7. Therefore,

½RTmin?y;�C2 þRTminþC2;�O4 þRTmin�O4;!x;

RTmax?y;�C2 þRTmaxþC2;�O4 þRTmax�O4;!x�

must satisfy the same constraints as

½RTmin?y;�C2 þRTminþC2;!x;RT
max
?y;�C2 þRTmaxþC2;!x�:

B.9.2 Analogy between Situations 4 and 8 (Proofs of (22)

and (23))

In Situation 4, Proposition 1 is guaranteed by constraints on
lower bounds RTmin?y;�O2 and RTmin�O2;!x of rt?y�O2 and rt�O2;!x,
respectively (see (11) and (12)).

Constraint of RTmin?y;�O2: We obtain Situation 8 from
Situation 4 by splitting the delay rt?y;�O2 into three
delays rt?y;�C2, ttts, and rtþC2;�O4, where ttts is the delay
separating �C2k and þC2m. Therefore, in Situation 8, the
lower bound RTmin?y;�C2 þ TTmints þRTminþC2;�O4 of rt?y;�C2 þ
ttts þ rtþC2;�O4 must satisfy the same constraint as
RTmin?y;�O2 in Situation 4.

Constraint of RTmin�O2;!x is computed by using an analogy
between Situations 4 and 8 similar to the analogy
between Situations 2 and 6 (see Section B.7.2 ). Therefore,
in Situation 8, the lower bound RTmin�O4;!x of rt�O4;!x must
satisfy the same constraint as RTmin�O2;!x in Situation 4.

B.9.3 Existence of Solutions in Situation 8 (Proof of (24))

The proof here is quite similar to the proof in Section B.5.4.
Let a; b; c; d be four constants and �; 0; �; � be four positive
variables. There exist solutions for:

½�þ �;0 þ �� � ½a; b�
c � �
d � �

if and only if, b � supða; c; d; cþ d; 0Þ. If, for instance, a � c,
then the condition becomes b � supða; d; cþ d; 0Þ. In (21),
(22), and (23):

.

a ¼ ðRTiut þ4TT � TTmints Þ;
b ¼ ðWTiut � 2TTmax � TTmaxts Þ;
c ¼ ðRTiut þ4TT � 2TTmints Þ;

and d ¼ ðTTmaxts � 2TTminÞ; (Note that a � c).
.

� ¼ RTmin?y;�C2 þRTminþC2;�O4;

0 ¼ RTmax?y;�C2 þRTmaxþC2�O4;

� ¼ RTmin�O4;!x;

and � ¼ RTmax�O4;!x.

Therefore, b � supða; d; cþ d; 0Þ is equivalent to (24) (in
Section 6.1.8).

B.10 Global Condition

For clarity, we first define the following parameters:

1. K1 ¼ RTiut þ 3TTmax � TTmin,
2. K2 ¼ RTiut þ 3TTmax � TTmin þ4TTts,
3. K3 ¼ RTiut þ 34TT þ4TTts,
4. K4 ¼ RTiut þ 34TT þ 24TTts,
5. L1 ¼ TTmaxts þ TTmax � 3TTmin,
6. L2 ¼ TTmaxts þ4TT ,
7. L3 ¼ TTmaxts þ 24TT ,
8. L4 ¼ TTmaxts þ 2TTmax,
9. L5 ¼ 2TTmaxts þ TTmax � 3TTmin,
10. L6 ¼ 2TTmaxts þ 24TT .

Equations (5), (8), (13), (15), (18), (20), and (24) may then
be written as follows:

1. Equation 5: WTiut � K1,
2. Equation 8: WTiut � supðK1;L1Þ,
3. Equation 13: WTiut � supðK1;K3;L3Þ,
4. Equation 15: WTiut � supðK2;L2Þ,
5. Equation 18: WTiut � supðK2;L2;L5Þ,
6. Equation 20: WTiut � supðK2;L4Þ,
7. Equation 24: WTiut � supðK2;K4;L4;L6Þ.
Therefore,

1. Equation 8 is stronger than (5) (trivial).
2. Equation 13 is stronger than (8) because L3 � L1.
3. Equation 15 is stronger than (8) because K2 � K1

and L2 � L1.
4. Equation 18 is stronger than (15) (trivial).
5. Equation 20 is stronger than (15) because L4 � L2.
6. Equation 24 is stronger than (13) because K2 � K1,

K4 � K3, and L6 � L3.
7. Equation 24 is stronger than (18) because L4 � L2

and L6 � L5.
8. Equation 24 is stronger than (20) (trivial).

Using transitivity of relation “is stronger than,” we can
easily prove that (24) is stronger than (5), (8), (13), (15), (18),
and (20).

APPENDIX C

CONSTRAINTS OF WAITING TIMES

For clarity, we use diagrams of Fig. 20.

C.1 Situation A (Proof of (25))

For clarity, we use the diagram of Fig. 20a. WT";?y is an

upper bound of the time wt";?y ¼ tt1 þ rtiut þ tt2 separating

the starting instant (i.e., the instant of !x1) and ?ym1 . Since

tt1; tt2 � TTmax and rtiut � RTiut, an upper bound of wt";?y is

TTmax þRTiut þ TTmax.

C.2 Situation B (Proof of (26))

For clarity, we use the diagram of Fig. 20b. WT!x;?y is an
upper bound of the time wt!x;?y ¼ tt1 þ rtiut þ tt2 separating
!xi and ?ymi . Since tt1; tt2 � TTmax and rtiut � RTiut, an
upper bound of wt!x;?y is TTmax þRTiut þ TTmax.

C.3 Situation C (Proof of (27))
For clarity, we use the diagram of Fig. 20c. WTþO;?y is an
upper bound of the time wtþO;?y separating þOh and ?ymi ,
where O may be O1; O2; O3, or O4.
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The time separating �Om and ?ymi is:

rt�O;!x þ tt1 þ rtiut þ tt2:

Since tt1; tt2 � TTmax, rtiut � RTiut, and

rt�O;!x � supðRTmax�O1;!x;RT
max
�O2;!x;RT

max
�O3;!x;RT

max
�O4;!xÞ;

an upper bound of this time is:

UB ¼ supðRTmax�O1;!x;RT
max
�O2;!x;RT

max
�O3;!x;RT

max
�O4;!xÞ

þ TTmax þRTiut þ TTmax:

The time separating �Om and þOh is tt3. Since

tt3 � TTmints , a lower bound of this time is LB ¼ TTmints .
The value UB� LB is an upper bound of the time

separating þOh and ?ymi . We have:

UB� LB ¼ supðRTmax�O1;!x;RT
max
�O2;!x;RT

max
�O3;!x;RT

max
�O4;!xÞ

þ TTmax þRTiut þ TTmax � TTmints :

C.4 Situation D (Proof of (28))

For clarity, we use the diagram of Fig. 20d. WT?y;?y is an
upper bound of the time wt?y;?y separating ?ymi�1 and ?ymi .

The time separating ?xi�1 and ?ymi is:

rtiut þ tt3 þ rt?y;�C2 þ tt6 þ rtþC2;!x þ tt4 þ rt0iut þ tt5:

Since tt3; tt4; tt5 � TTmax, tt6 � TTmaxts , rtiut; rt
0
iut � RTiut,

rt?y;�C2 � RTmax?y;�C2, and rtþC2;!x � RTmaxþC2;!x, an upper bound
of this time is:

UB ¼ðRTiut þ TTmax þRTmax?y;�C2 þ TTmaxts þ
RTmaxþC2;!x þ TTmax þRTiut þ TTmaxÞ:

The time separating ?xi�1 and ?ymi�1 is rt00iut þ tt2. Since
tt2 � TTmin and rt00iut � 0, a lower bound of this time is
LB ¼ ð0þ TTminÞ.

The value UB� LB is an upper bound of the time
separating ?ymi�1 and ?ymi . We have:

UB� LB ¼ðRTiut þ TTmax þRTmax?y;�C2 þ TTmaxts þ
RTmaxþC2;!x þ TTmax þRTiut þ TTmax � TTminÞ:
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