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Abstract 

In this paper, parsimonious covering theory is extended in such a way that temporal 

knowledge can be accommodated. In addition to causally associating possible manifestations 

with disorders, temporal relationships about duration and the time elapsed before a 

manifestation comes into existence can be represented by a graph. Precise definitions of the 

solution of a temporal diagnostic problem., as well as algorithms to compute the solutions are 

provided. The medical suitability of the extended parsimonious cover theory is studied in the 

domain of food-borne disease. 0 1997 Elsevier Science B.V. 

Keywords: Parsimonious cover theory; Temporal abductive diagnosis; Automated medical 

diagnosis; Temporal reasoning 

1. Introduction 

Diagnostic reasoning is a complex cognitive process that involves knowledge 

about a particular domain, general and domain specific heuristics about the 

diagnostic reasoning itself, and constrains imposed by cognitive limitations of the 

human diagnosticians. Parsimonious covering theory (PCT) [12] is an attempt to 
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formalize diagnostic reasoning, with the advantage that domain knowledge, domain 

heuristics, and general diagnostic problem solving methodology are clearly sepa- 

rated from each other. 

Briefly, the basic version of PCT defines the domain specific knowledge as a set 

of disorders (causes), a set of manifestations (effects), and a causal relation between 

disorders and manifestations. The causal relation associates each disorder with the 

manifestations it may cause. If one or more of those manifestations are actually 

present in a diagnostic case, then the disorder may be used to ‘explain’ those 

manifestations. A particular diagnostic problem is defined by a set of manifesta- 

tions that are actually observed in the patient, and the solution to that problem 

consists of sets of disorders where each set explains all the manifestations present, 

with some restrictions on these sets of disorders. A limitation of PCT is that the 

domain specific knowledge is atemporal, that is, one associates each disorder with 

a set of manifestations, but it is not possible to specify how these manifestations 

evolve with time. Due to this atemporallity PCT can only be used to solve 

diagnostic problems in which all relevant symptoms are observable at the moment 

of diagnosis. In many medical domains, and we expect in other diagnostic domains 

as well, that is not the case. 

In this paper, PCT is extended in such a way that it is possible to associate with 

manifestations knowledge about their evolution in time. We call this extension 

temporal PCT (t-PCT). The need for temporal information in diagnostics systems 

has been recognized for some time [5,8], and temporal reasoning has been combined 

with diagnostic reasoning in other work, e.g. [2,3]. This research is the first in which 

temporal reasoning is combined with PCT. 

The semantics of the causal relation in PCT is that a disorder may cause an 

associated manifestation. This means that although the disorder explains the 

manifestation, i.e. if the manifestation is present then the presence of the disorder 

is a possible explanation for that, the fact that the manifestation is not present is 

not taken as evidence against the disorder. 

In a second extension of PCT, we allow for both necessary and possible causal 

connections between disorders and manifestations. Thus, it is possible to state that 

a disorder necessarily causes a particular manifestation, or that it just may possibly 

cause the manifestation. This necessary/possible distinction in the causal relation is 

called categorical information. Other researchers have proposed the inclusion of 

categorical information in diagnostic reasoning [7,16], but we are particularly 

interested in the interference between categorical information and temporal reason- 

ing, which has not been addressed by the research mentioned above. This second 

extension to PCT combines categorical and temporal information, and is called 

categorical/temporal PCT (ct-PCT). 

The next section describes the basic PCT; it is a summary of ([12], Ch. 3). Section 

3 discusses the temporal PCT and Section 4 discusses the categorical/temporal PCT. 

Section 5 reports on the implementation of a diagnostic system for food-borne 

diseases using ct-PCT, and compares its efficiency with a standard PCT implemen- 

tation of the same diagnostic system. Finally Section 6 discusses the limitations of 

the model proposed, and explores some future research topics. 
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2. Basics of parsimonious covering theory 

The basic version of PCT [12] uses two finite sets to define the scope of diagnostic 

problems (see Fig. 1). They are the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, representing all possible disorders dl that 

can occur, and the set M, representing all possible manifestations mj that may occur 

when one or more disorders are present. 

The relation C, from D to it4, associates each individual disorder with its 

manifestations. An association (d,, mj) in C means that d, may directly cause mj 

Together the set of disorders D, the set of manifestations M, and the causal relation 

C constitute the knowledge base KB. More formally, a knowledge base is defined 

as a triple KB = (D, M, C). 

To complete the problem formulation we need a particular diagnostic case. We 

use M+, a subset of M, to denote the set of observations, which are manifestations 

present in a particular patient case. 

Definition 1. A diagnostic problem P is defined as a pair (KB, Ca) where: 

l KB = (D, M, C) is a knowledge base, with D a finite, non-empty set of elements, 

called disorders, M a finite, non-empty set of elements, called manifestations, and 

C G D x M is a binary relation called causation; 

l Ca = (M+ ) denotes case information, where M + E M is the set of observations. 

Disorders (manifestations) are usually denoted by the letter d(m), possibly supplied 

with a subscript. 

2.1. Solution of a diagnostic problem 

In order to formally characterize the solution of a diagnostic problem, PCT 

defines the notion of cover, based on the causal relation C, the criteria for 

parsimony, and the concept of an explanation (explanatory hypothesis). 

Fig. 1. Causal network of a diagnostic knowledge base KB = (D, M, C). 
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Definition 2. For any ~,ED and mjEM in,a diagnostic_qroblem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 

l effects(dJ = {m&d,, m,>EC} 

l causes(mj) = (d,l(d,, mj>EC} 

The set effects(d[) represents all manifestations that may be caused by disorder dk 

The set causes(mj) represents all disorders that may cause manifestation mi These 

functions can be easily generalized to have sets as their arguments by taking the 

union of the function values associated with elements. 

Definition 3. The set D, E D is a cover of MJ G M if MJ c effects(D,). 

Definition 4. A set E E D is an explanation of M+ for a diagnostic problem if E 

covers M+ , and satisfies a given parsimony criterion. 

In the following definition we present some possible parsimony criteria ([17] 

describes other criteria as well). 

Definition 5. 

l A cover D,, of MJ is said to be minimal if its cardinality is the smallest among 

all covers of &fP 

l A cover D,, of iWJ is said to be irredundant if none of its proper subsets is also 

a cover of M,; it is redundant otherwise. 

l A cover D,, of MJ is said to be relevant if it is a subset of cau.ses (M,); it is 

irrelevant otherwise. 

In many diagnostic problems, one is interested in knowing all plausible explana- 

tions for a case, rather than just a single explanation because they, as alternatives, 

can affect the course of actions taken by the diagnostician. This leads to the 

following definition of the problem solution: 

Definition 6. The solution of a diagnostic problem P = (KB, Ca), designated 

Sol(P), is the set of all explanations of M + 

In this paper we will use irredundancy as the parsimony criterion, as suggested by 

[12]. If one is interested in developing general algorithms for diagnostic problems, 

irredundancy seems to be the preferable choice since from the set of all irredundant 

explanations one can mechanically generate the set of all minimal explanations (by 

selecting the sets of minimal cardinality) and the set of all relevant explanations (by 

systematically adding new disorders to some of the irredundant explanations). It is 

important to notice that minimal cardinality, which is a natural criterion for 

parsimony, based on the idea that one should not diagnose more disorders than the 

necessary, is not a general heuristic, but a domain specific choice. For example, in 

domains where disorders have different likelihoods or prior probabilities it may be 

more plausible to say that two fairly common disorders are responsible for a set of 

observations, than to say that a single extremely rare disorder is the cause. 
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For example, if the knowledge base is equal to the diagram represented in Fig. 1, 

and iU+ = {m,, m,}, then {&} is a minimum explanation, {d,, d3} is an irredundant 

explanation, (d,, d2, d4} is a relevant explanation, and ({d4}, (d2, dJ, (d,, d3>} is the 

solution for the problem using irredundancy as the parsimony criterion. 

2.2. Al’gorithms for PCT 

Thelre are basically two approaches for developing algorithms for PCT, depend- 

ing on how the set M+ is presented. The set could be presented a priori to the 

algorithm, in which case it will be said that the algorithm is noninteractive. This 

seems appropriate in situations when one can monitor all possible manifestations, 

so that the knowledge of which manifestations are present in the case is readily 

available. In the second alternative, the observations in M+ are presented to the 

algorithm one at a time, possibly as answers to a question posed by the diagnostic 

system. This approach seems more appropriate in situations where it may be costly 

to obtain all observations. . 

Algorithms may also differ in the parsimony criterion used to define an explana- 

tion: irredundancy or minimal cardinality. [14] discusses two algorithms that use 

minimal cardinality as the parsimony criterion: HT, an interactive algorithm, and 

SOLVE, a non-interactive algorithm. [12] presents the interactive algorithm BI- 

PARTITE which uses irredundancy as the parsimony criterion, and which will be 

the basis for the algorithms presented in this paper. 

BIP.4RTITE makes use of generators, a compact representation of alternative 

explanations for a case. For the sake of completeness, and to be able to use them 

in our modifications of the BIPARTITE algorithms, we will very briefly describe 

some concepts and operations on generators. The reader should consult [12] for 

more details. 

Ifg,,g,, . . . , g, are pairwise disjoint subsets of D, then G1 = {gi, g,, . . . , g,} is 

a generator, and the class generated by G1 is [GJ = {{d,, d2, . . . , &} 1 dicgi}. G = 

{G,, Gz,. . . , GN} is a generator-set if each G, is a generator, and [GJ n [GJ] = 0. 

We define the operations yes, div, augres, and revise, where G and Q are 

generator-set, G*E G and QJe Q are generators, SD c_ D is a set of disorders, and 

qj E Q, is also a set of disorders. Although defined in terms of generator and 

generator-set, the operation div is better understood in terms of sets of explana- 

tions. Given a set of explanations for a set of manifestations (M+), represented as 

a generator set, and the disorders evoked by a new manifestation m, represented as 

a set of disorders, the div operator returns the explanations of the original M+ that 

would also explain a new manifestation m. 

a’iv(G, S,) = u div(G,, S,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Gr”  G 

a’ iv(& SD) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Qk 1 Qk = ial, qk2, . . . , qknll 

where 
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1 

g,--SD ifj<k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

qkj = gjnsD ifj=k 

gj ifj>k 

The operation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAres is in some way the dual of div, given a set of explanations of M+ 

and the disorders evoked by a new manifestation m, the res operator returns the 

explanations of M+ that did not explain the new manifestation. 

res(G, SD) = u res(G,, SD) 
G,EG 

res(G,, SD) = 

i  

{Cl?, -sm..., g,-SD}} ifgi-SD#O, 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAliln 

0 otherwise 

The operations div and res are then extended to deal with sets of sets of disorders 

(represented as generator and generator-set) as their second argument. 

div(G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQJ> = u div(G, QJ> 
G,EG 

div(G1y “) = 

iGIl if QJ=fa 

div(div(GI, qj), Q,-- (qj)) otherwise 

res(G’ ‘) = 

G if Q=fa 

res(res(G, QJ), Q -  {QJ}) otherwise 

res(G QJ> = 0 r&G,, QJ> 
GIsG 

rest% Q,> = 
0 if Q=@ 

res(G, qj) u res(div(G,, qi), QJ - {qj}) otherwise 

The augres operator is a modification of the res operator so that instead of 

returning the sets of explanations of M+ that do not explain the new manifestation 

m, it adds new disorders to those explanations so that now they also explain 

M+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu {m}. 

augres(G, SD) = u augres(G,, SD) 
GIsG 

augres( GI, SD) = 
{cgl -sm.., gn-SD,All ifgi-SDfO,A#O 

0 otherwise 

where 

A=S,-- fi gj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i=l 

Thus, given a set of explanations of M+, and a set of disorders evoked by a new 

manifestation m, the set of explanations of M+ u {m} can be obtained by a 

combination of the div operator and the augres operator. This is done by the revise 

operator: 
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reuise(G, SD) = Qnres(Q’, Q), where Q = dio(G, SD) and Q’ = augres(G, SD) 

2.3. Limitations of PCT 

PCT is a conceptually simple and powerful theory of diagnostic reasoning. It 

clearly separates the role of domain knowledge (sets M, D and principally the 

relation C), the role of general diagnostic reasoning (the parsimony criteria and the 

definition of cover), and domain heuristics. This separation allows one to gather 

and express domain knowledge separately from domain heuristics, as opposed to 

rule-base diagnostic systems [15,18], for example. On the other hand, PCT can also 

be seen as a limited form of an abductive causal theory [6,7,9]. 

It has been pointed out that PCT has some limitations to represent more complex 

forms of causal relationships among disorders and manifestations. The most severe 

one, for the purpose of this research, is the fact that PCT assumes that two 

disorders to not interfere with each other. It is not possible to represent that the 

presence of a disorder will change the manifestations of another disorder, or that if 

two disorders occur simultaneously they will cause manifestations that none would 

cause without the presence of the other. An extension of PCT that allows for the 

representation of the interaction among disorders is discussed in [9]. 

Another problem of PCT is that the solution of a problem tends to have many 

alternative explanations. Irredundancy as parsimony criterion is too weak to 

significantly reduce the number of alternative explanations, as the experimental 

results reported in [17] confirm. An approach for reducing the size of the solution 

of a diagnostic problem is to add probabilistic information to the causal relation, 

as shown in [12,13] among others, and to compute only the most probable 

explanations. 

Givien the lack of probability information about disorders and manifestations in 

some domains, another useful approach is to develop domain specific heuristics that 

selects from the set of irredundant explanations a subset of more ‘plausible’ ones. 

Conceptually, the solution generated by the diagnostic system using irredundancy 

would be filtered by the domain-specific heuristics. As other explanations can be 

mechanically generated from irredundant explanations, this approach is feasible, 

althou.gh not efficient. Once the appropriate domain-specific heuristics have been 

found., it may be possible to incorporate them directly into the algorithm that 

generates the solution, improving its efficiency. 

3. Temporal PCT 

The aim of this paper is to extend PCT so that instead of associating to each 

disorder a set of manifestation, one could associate an evolution of manifestations. 

Thus, a knowledge base could state that disorder d, causes first m, which will last 

between 2 and 5 days, followed in 7-14 days by m, which may last an undeter- 

mined amount of time, and will be followed at any moment by m3, and so on. We 

accomplish this temporal representation using a graph, in which nodes are manifes- 
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tations and directed arcs between nodes represent temporal precedence. If there is 

quantitative information about the duration of the manifestation, it is associated 

with the corresponding node; if there is quantitative information about the elapsed 

time between the start of two manifestations, it is associated with the corresponding 

arc. Furthermore, quantitative information is not represented as a single number, 

but as an interval. The knowledge base associates each disorder with one such 

temporal graph. 

A similar representation is used for case information. It is possible then to state 

that for a particular patient, manifestation WL, started sometime between 2 and 3 

weeks ago, and it lasted for l-2 days, and that the patient has manifestation m5 but 

there is no information on when it started. 

3.1. Temporal representation 

Time points, or moments, are the primitive objects to represent temporal informa- 

tion. An interval is defined as non-empty convex set of time points, or in other 

words, as a continuous set of moments. An interval is determined by two time 

points, its lower and upper extremes, and denoted as Z = [I-, I+], where I- is the 

lower extreme and I+ the upper extreme. Usually, I- I I+; if I- = Z+ then the 

interval reduces to a time point, and if I- > I+ then the interval is empty. 

An intervals will be used as a range for temporal measures: to state that a 

temporal measure must be within an interval Z = [I-, Z+] is to state that the actual 

value d for that measure must be such that I- I d I I+. If the measure is not given 

precisely, as a single number, but as an interval K, then we will say that the measure 

interval is compatible with the interval Z if there are time points common to both 

intervals, that is, if In K # a. If Z= [I-, I+] and .Z = [J-, J+], we define the 

following operations on intervals: 

0 Z+J=[Z- +J-,z+ +J+]; 

0 ZnJ= [max(Z-, J-), min(Z+, .I+)]; 

and use the abbreviation Z < t, where t is a time point, to mean I+ < t. 

A temporal graph is a direct, acyclic, transitive, not necessarily connected graph 

where the nodes are manifestations. The existence of an arc from mi to mj in a 

temporal graph denotes the fact that the beginning of the occurrence of manifesta- 

tion mi must precede the beginning of the occurrence of mj. 

Definition 7. The temporal graph of a disorder dl E D, G, = (V,, A,), is a direct, 

transitive and acyclic’graph defined by 

l V, G A4 is the set of manifestations directly caused by d[, and 

l A, = {(m, mj) 1 the beginning of mi occurs before the beginning of mi when the 
disorder dl is said to be present}. 

The impossibility of defining cycles is a major restriction on the expressive power of 

this temporal representation formalism. In other words, it is not possible to 

represent recurring events. Nevertheless, this restriction is important since it reduces 

the complexity of the reasoning process [2]. 
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The temporal distance between manifestations and the duration of a manifestation 

are re:presented by funtitions on the graph, denoted by DIST and DUR, respec- 

tively. The temporal distance function DIST associates an interval R = [R -, R +] 

with each arc of a temporal graph GP DIST(G,, (m, mj)) = R for (mi, mj) E A,, which 

we will abbreviate as DIST,(m,, mj) = R, states that the elapsed time between the 

beginning of mj and the beginning of mi in the temporal graph Gl of d, must be 

within the interval R. The duration function DUR associates with each node mi of 

a temporal graph G, an interval J, that specifies that the duration of mi must be 

within the interval J. 

The transitivity of the temporal graph must be consistently carried over to 

the DIST function: if DIST,(m, m,) = R, and DIST,(mj, m,J = R, then 

DIST,(m, m,J = R, + R,. 

3.2. Temporal diagnostic problem formulation 

Definition 8. The knowledge base of a temporal diagnostic problem is the tuple 

KB = (D, 44, G, DIST, DUR) where D and A4 are defined as before, G is a set of 

temporal graphs, each one associated with one disorder of D, DIST and DUR are 

the temporal information functions defined above. 

In order to represent the case information, we will need a set of observations 

Mf , as before, supplemented with two temporal functions BEG + and DUR + . 

The function BEG+ associates an interval with some of the observations in M+ . 

BEG’-(m) = I states that m started at any time within interval I. The origin of the 

time line for describing BEG+ is arbitrary, provided the same origin is used in all 

temporal information for the given case. 

Similarly, the function DUR + associates a duration interval with some of the 

obsenations in M+, such that the actual duration of the observation is anywhere 

within that interval. It is important to notice that the model allows for incomplete 

knowledge about the observations. Both the beginning and the duration of an 

obsemation can be stated as an interval or they may not be stated at all. 

Definition 9. A temporal diagnostic problem P is a pair (KB, Ca) where KB is 

defined above, and Ca = (M+ , BEG + , DUR + ) is case information. 

One can define the effects and causes functions in a similar way to Definition 2. 

For example causes(m) = {d[ 1 m E V,, for any temporal graph G, = (I’, A,) E G}, 

represents the set of disorders that may cause m. 

3.3. Solution of a temporal diagnostic problem 

In order to define the solution of a temporal diagnostic problem, a set of 

concepts about temporal inconsistency needs to be defined. These definitions will 

allow us to remove from the solution all explanations that contain disorders in 

which the evolution of manifestations contradicts the evolution of the observations 
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in the case. For example, if for the disorder d6 the manifestation m, precedes m2 but 

in the case, the occurrence of m, started after the occurrence of m,, then one can 

disregard all explanations that contain d,, since it contradicts the temporal informa- 

tion of the case. 

Definition 10. For a temporal diagnostic problem P, let Gl = (VI, A,), (m, mj) E Al, 

and m, mjg AI+. The arc (m, ml) in graph G[ is temporally inconsistent with the 

case if 

(BEG + (m,) + DIST,(m, mj)) n BEG + (mj) = 121 

(BEG + (m,) + DIST,(m, mj)) is according to d,, the possible range for the beginning 

of manifestation mj, or in other words, the set of time points in which disorder d1 

expects mj should begin. On the other hand, BEG + (mj) is the range of uncertainty 

for the real starting point of mj, that is, all time points in BEG+(mj) could have 

been the moment in which mj really stated. If there is no intersection between these 

two sets then what the disorder expects are the starting times for the manifestation 

do not correspond to the real starting times, and the arc (m, mj) should be 

considered temporally inconsistent with the case. 

Definition 11. For a temporal diagnostic problem P, let G* = (VI, A,) be the tempo- 

ral graph of a disorder d/ E D. The disorder d1 is temporally inconsistent with the case 

Ca = (M+, BEG+, DUR+) if, 

l there exists at least one arc (m, mj) E A, temporally inconsistent with respect to 

the case, or 

l there exists at least a node m E VI, such that, m E M+ and DUR,(m) n DUR + 

(m) = 0. 

Thus, a disorder is temporally inconsistent with the case information, if it has a 

temporally inconsistent arc, or if the range of the duration of one of its manifesta- 

tions does not agree with the range of the duration of the corresponding observa- 

tion. 

Finally, based on the above definitions, we formalize the notions of temporally 

consistent explanation and temporally consistent solution. 

Definition 12. A set E E D is said to be a temporally consistent explanation of the 

case for a temporal diagnostic problem P if 

fi) E covers M+, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(ii) E satisfies a given parsimony criterion, and 

(iii) for all dt E E, d, is not temporally inconsistent with the case. 

Definition 13. The temporally consistent solution of a temporal diagnostic problem 

P = (KB, Ca), designated by Sol(P), is the set of all temporally consistent explana- 

tions of the case. 
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3.4. Aigorithm 

245 

We present here an interactive algorithm that computes all explanations of a 

temporal diagnostic problem. The algorithm is a modification of the BIPARTITE 

algorithm in [12]. The important aspect of the algorithm is that temporal consis- 

tency :is not implemented as a filter, that is, it is not applied after the original 

BIPAFLTITE algorithm has generated the solution, but it is incorporated very early 

into the process of merging the causes on the ‘new’ observation into the set of 

current explanations. Thus the algorithm deals with smaller sets of explanations. 

function t-BIPARTITE (KB) 

1 

2 

3 

4 

5 

6 

I 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

21 

28 

29 

30 

31 

variables 

m: manifestation; (* new observation *) 

hypothesis: generator-set; (* all explanations *) 

D, (* consistent disorders *) 

D, (* inconsistent disorders *) 

H, (* disorders evoked by m *) 

I,, (* inconsistent disorders due to BEG *) 

I,: set-of-disorder; (* inconsistent disorders due to DUR *) 

M+ : set-of-manifestation; 

BEG+, 

DUR+: function; 

begin 

hypothesis = {a}; 

DC= 0; 
&= 0; 
M+=0; 
while MoreObservations do 

&=0a; 

L=0; 
m= NextObservation; (* obtain next observation *) 

M+ =M+u{m}; 

H = causes(m)- Or; 

if DUR+(m) is defined 

then 

ID = {d, 1 d,EH, and DUR,(m) n DUR+(m) = @}; 

endif 

if BEG+(m) is defined 

then 

I, = temp_inc((H- I,,) n D,, M+, m); 

endif 

hypothesis = res(hypothesis, Z,u I,); 

DI=DIuZBuZD; 

D, = (D,u H) - (Z, u I,); 

if (H- 0,) = 0 or (hypothesis = 0 and M+ # 0) 

then 

return nil (* there is no consistent explanation *) 

else 

hypothesis = revise(hypothesis, H-D,); 

endif 

endwhile 

return hypothesis 

end. 
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The function temp_inc in line 18 is defined as follows: given a set of disorders 

S, and a new manifestation, the function returns the disorders from the set S, 

that are temporally inconsistent with the new manifestation. In order not to 

clutter the notation, we assume that the knowledge base KB = 

(D, M, G, DIST, DUR) and the case information Ca = (M+ , BEG + , DUR + ) 

are globally accessible to this function. 

temp_inc(S,, m) = 

(d[E S, 1 there exists (m, m) E A, and miE M+ and 

(BEG+(mJ + DIST,(m, m)) n BEG + (m) = @ 

or 

there exists (m, mj) E A, and mj E M+ and 

(BEG + (m) + DIST,(m, mj)) n BEG + (mj) = @} 

The functions MoreObservations and NextObservation are entry-points for 

the module that interacts with the patient, probably through the physician, asking 

questions about the presence of manifestations. In order to ask effective questions 

this module must have access to the current set of explanations, the knowledge base 

and very likely will use domain-specific heuristics to select the next question to ask. 

At the beginning of a new cycle, a new observation (m) is entered (line 9), and 

the disorders known to be inconsistent with the temporal information of the case so 

far (01) are removed from the disorders evoked by m (line 1 l), resulting in a set of 

consistent disorders evoked by the new observation (H). If there is duration 

information for the new observation, the set of disorders in H that are inconsistent 

with the duration information is collected in IB (line 14); if there is starting time 

information for the new observation, the set of disorders in H which are inconsis- 

tent with this information are collected in IB (line 18). Explanations that contain 

such disorders are eliminated from the current hypothesis (line 20). The sets of all 

inconsistent and consistent disorders so far are updated (lines 21 and 22) and the 

set of explanations is updated to include the consistent disorders evoked by the new 

observation (line 27). 

3.5. Discussion 

We have presented our first extension to PCT, which adds temporal represen- 

tation of manifestations and observations to the original PCT. The temporal 

representation used here is similar to the ones used by other researchers both 

in medical domains [2,3] and robotics [4]. The temporal inconsistency criterion 

is equivalent to the one described in [3]. 

As discussed earlier, this temporal representation allows for many forms of 

uncertainty. Time information may be expressed as intervals or may not be 

expressed at all, both in a knowledge base and for a case. In fact, the t-PCT 

is a true extension of the original PCT, since by not providing any temporal 

information one has both a PCT knowledge base and a PCT case, and in this 

case the definition of a solution of a temporal diagnostic problem will coincide 

with PCT’s definition of solution of a diagnostic problem. 
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This true extension property is a positive trait since many diagnostic domains 

(including some medical domains) are atemporal in the sense described above, 

and t-PCT could be the appropriate diagnostic theory for them as well. How- 

ever, 1:he true extension property restricts some possible useful forms of uncer- 

tainty in describing the case. For example, it is not possible to state that an 

obsemation has already occurred and that it is not present anymore, without 

explicitly stating its starting time and duration. 

4. Categorical/temporal PCT 

The semantics of the causal relation in PCT (and t-PCT) is that a disorder 

may cause a manifestation. An important extension is to distinguish between a 

possible causation and a necessary causation [7]. For example, botulism may 

cause nausea and vomiting, but necessarily causes some form of paralysis. This 

distinction between necessary causation and possible causation will be called 

categorical information. 

By taking into consideration this categorical information, it is possible to 

reduce the number of explanations for a particular diagnostic problem: if d, 

necessarily causes m2, and if m2 is not one of the manifestations observed in the 

diagnostic case, then no explanation for the case can contain the disease d,. We 

call this reasoning categorical rejection. When a temporal dimension is added, 

one h,as to be careful about categorically rejecting a disorder. Even if d1 neces- 

sarily causes m2, and if m2 is not observed in the case, one should not categori- 

cally reject d, without checking whether m2 had time to develop, given the 

current stage of the disorder d,. 

4.1. Problem formulation and its solutions 

In order to provide categorical information, the function POSS is added to the 

knowledge base. It attributes to each node of each temporal graph either the 

label IV, for necessary, or the label P, for possible. POSS(G,, mi) = N, abbreviated 

as POSSl(mj) = N, states that disorder d, necessarily causes the manifestation mj 

In categorical diagnostic problems, one is interested in manifestations known 

to be absent in the diagnostic case, called negative observations. M-, the set of 

negative observations, and I,,,, the time point that represents the moment of 

diagnosis, are added to M+, BEG + , DUR + as the components of the patient 

case information, Ca. 

Definition 14. Let P = (KB, Ca) be a categorical diagnostic problem and G, = 

(V,, A,) E G. The disorder dI is categorically inconsistent with the case if there 

exists m E V, such that POSS,(m) = N, and m E M- and 

(i) there exists (m, mj) E A,, such that mi E M+, or 

(ii) there exists (m, m) E A,, such that, mi E M+ and BEG+ (m,) + DIST(m, m) 

5 Lw 
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For a disorder d, to be categorically inconsistent a necessary manifestation 

must not be present in the case (POSS,(m) = N and m E M-), but also 

there must have been enough time for the manifestation to occur. In the 

first case above, a later manifestation has already occurred ((m, mi) in A, 

and rnjc M+), so we can be sure that m should already have occurred. In 

the second case above, that is warranted because there has been enough 

time (BEG +(mi) + DIST(m, m) I I,,,) since the occurrence of a preceding 

manifestation that did occur in the case ((m, m) E A, and miE M+) and the 

necessary manifestation that is not present. 

Finally, we define an explanation of a categorical diagnostic problem. 

Definition 15. A set E E D is said to be a consistent explanation of the 

case for an categorical diagnostic problem P = (KB, Ca) if 

l E covers M+ , and 

l E satisfies a given parsimony criterion, and 

l for all d, E E, d, is not temporally inconsistent, and 

l for all d,E E, d, is not categorically inconsistent. 

4.2. Algorithm 

We present below an algorithm that interactively solves a categorical/tem- 

poral diagnostic problem. The algorithm makes use of two auxiliary data 

structures CCR, and CCR,, which mainly store disorders that are candi- 

dates for categorical rejection, that is, disorders that have a necessary man- 

ifestation not present in the case, but cannot be categorically rejected 

because the conditions (i) or (ii) in Definition 14 are not true yet. CCR, 

stores disorders for which the condition (i) in Definition 14 was not ver- 

ified and CCRl stores disorders for which the other condition was not 

verified. 

CCR, is a set of elements of the form (d, {m,, . . . , mk } ) where d is a 

candidate for categorical rejection and (m,, . . . , mk} are manifestations that 

should occur after a necessary manifestation of d that is not present in 

the case. CCR, is a set of elements of the form 

(d, {(mb,, m,,), . . . , (mbk, m,,)}) where each (mb,, m,,) is an arc in the tem- 

poral graph of d, and each m,i is a necessary manifestation of d that is 

not present in the case, mbi is a manifestation for which the system has 

no knowledge whether it occurred in the case or not, and that should 

have occurred before the corresponding m,,. 

The operations on CCR, and CCR, are defined below. The operator 

cat_rej returns the set of disorders that can be categorically rejected once 

the manifestation m is known to have occurred. The operator remove re- 

moves a set of disorders from the corresponding list, and add adds a new 

set of disorders to the list. For these operators we assume that the knowl- 

edge base and the case information are globally accessible. 
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cut_rej(CCR,, m) = {d&d,, Ml) E CCR, and m E M,> 

mt_rej(CCR,, m, t,,,.,) 

= {d&d,, A,) E CCR, and there exists (m, m,,) E A, and BEG+(m) 

+ DIST,(m, m,J I t,,> 

n!moue(CCR, SD) = ((d, X)j(d, X) E CCR and d$S,} 

add(CCR, S) = {(d, X)\(d, X) E CCR and (d, Y)$S} 

u{(d, Y)l(d, Y)ES and (d, Y)#CCR} 

u {(d, Xv Y)l(d, X) E CCR and (d, Y) E S} 

function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAct-BIPARTITE(KB) 

variables 

M: manifestation; (* new observation *) 

hypothsesis: generatorset; (* all explanations *) 

D, (t consistent disorders (temp. and categ.) *) 

D, (* inconsistent disorders (temp. and categ.) *) 

H, H, (* disorders evoked by m +) 

ZB, (* inconsistent disorders due to BEG *) 

ID, (* inconsistent disorders due to DUR *) 

I,: set-of-disorder; (* categorically rejected disorders *) 

CCR,., CCR,: set; 

M+: set-of-manifestation; (* observations *) 

BEG+, DUR+: function; 

t “OW : time point; (* now *) 

BEG+, 

DUR -+ : function; 

1 begin 

2 hypothesis = {a}; 

3 D,=@ ; 

4 D,= 1zI; 

5 CCR, = 0; 

6 CCR, = @; 

7 hi-+=@; 

8 t now = Now; 

9 wbileMoreObservations do 

10 m = NextObservation; 

11 H = causes(m) - Dr; 

12 if NextObservation. status = present (*mj’i hf+*) 

13 then 

14 M+ =M+u{m} 

15 &=0; 
16 b=0; 
17 I, = cat_rej(CCR,, m)~cat_rej(CCR~, m, t,,,); 
18 CCR, = remove(CCR,, I,-); 

19 CCR, = remove(CCR,, I,-); 

20 if DUR+(mj) is defined 

21 then 
22 I,, = {d, 1 d,e (H-I,), and DUR,(m)nDUR+(m) = 0); 

23 endif 

24 if BEG+(mj) is defined 
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25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

3.5 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

41 

48 

49 

50 

51 

52 

53 

54 

55 

then 

Z,=temp_inc((H-(Z,,uZ,))nD,,M+,m); 

endif 

hypothesis = res(hypothesis, I, u Is u I,); 

D,= D,uZ,uZ,uZ,; 

D, = (D,u H)-(Z,u ZBuZD); 

if (H- DI) = @  or (hypothesis = 12( and M+ # 0) 

then 

return nil (*there is no consistent explanation*) 

else 

hypothesis = revise(hypothesis, H-D,); 

endif 

else ( *mj E M- *) 

H, = {d, 1 d, E H, and POSS,(m) = N}; 

I, = {d, 1 d E H, and there exists (m, mk) E A, such that mk E M+} 

u {d,ld, E H, and there exists (m, mk) E A, such that 

BEG+(mi)+DISTl(mi, m)< t,,,}; 

hypothesis = res(hypothesis, I,); 

DI= D,uZ,; 

D,= D,-D,; 

CCR, = add(CCR,, {(d,, S,) 1 d, E H, -I, and 

SM = {m&m, mk) E A11 I); 
CCR, = add(CCR,, {(d,,S,)ld,E H, -I, and 

SA = {(mj, m)l(m, m) E A,) I); 
if hypothesis = @  and M+ # @ 

return nil 

endif 

endif 

endwhile 

return hypothesis 

end. 

In its main loop, the algorithm is divided into two segments: lines 14 to 36 process a new 

observation (m E M+), while lines 38 to 51 process a negative observation (m$M+). If 

the manifestation is present then line 17 collects into the set Zc all disorders in CCR, and 

CCR, that indeed became categorically inconsistent by the presence ofm. Lines 18 and 19 

update the lists CCRl and CCR, by removing the categorically rejected disorders from 

them. Lines 20 to 36 basically repeat the correspondent segment of code in the algorithm 

t-BIPARTITE, taking also into consideration the categorically inconsistent disorders. 

When the manifestationm is not present (m E M- ), the algorithm collects in HI the set of 

disorders evoked by m, which has m as a necessary manifestation. From this set, the 

categoricallyinconsistentdisordersarecollectedinZ,, whichisusedtoupdatethecurrent 

hypothesis (line 42), update the set of inconsistent disorders (line 43), and update the set 

of consistent disorders (line 44). Finally the sets CCRl and CCR, are updated with the 

disorders in H, which are not yet categorically inconsistent with the case. 

5. Diagnosis of food-borne disease using ct-PCT 

Food-bornediseases([lO], Ch. 81)resultfromtheingestionoffoodcontaminatedwith 

pathogenic microorganisms, toxins or chemicals, and their symptoms are 
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primarily gastrointestinal or neurological. This domain is well suited to test both 

t-PCT and ct-PCT because not only temporal information about the evolution of 

symptoms and categorical information are available, but they are necessary for a 

correct diagnosis. For example, Stuphylococcus uureus and short-incubation Bacillus 

cereus are the only possible bacterial causes of nausea and vomiting occurring 

within l-6 h after the ingestion of the contaminated food. On the other hand, a 

patient with botulism (Clostridium botulinurn) will only have nausea and vomiting 

in 18-36 h after the ingestion. Not taking into consideration the elapsed time from 

ingestion to the symptoms might result in incorrect diagnoses. 

Furthermore, food-borne diseases also include examples in which the categorical 

rejection must be performed carefully because of temporal considerations. For 

example, the ingestion of poisonous mushrooms from the species Amunita phal- 

loides, A. virosu, and A. vernu, will necessarily cause in 6-24 h abdominal cramps 

and di,arrhea, which will last for up to 24 h, followed by a l-2 days period of no 

symptoms, followed by hepatic and renal failure (which in almost 50% of the cases 

leads t’o death). One should not categorically reject this disease for a patient that is 

not showing signs of renal failure without taking into consideration whether there 

has be’en enough time for that symptom to develop. 

We implemented a diagnostic system for food-borne diseases in order to: 

l test the theory, 

l verify the adequacy of the temporal representation for representing diseases, 

l compare the precision and efficiency of PCT and ct-PCT (and the corresponding 

algorithms) in solving some diagnostic problems in this domain. 

It was not our goal to construct a diagnostic system to be used in clinical settings. 

The implemented system has not been verified and validated appropriately for 

clinical use. 

5.1. The knowledge base 

The knowledge base contained 28 of the food-borne infections described in ([lo], 

Ch. 81), amounting to around 60 different symptoms. The entire knowledge base 

was developed in 4 days, based mainly on that medical manual. A specialist was 

consulted once during the development phase, mainly to provide categorical 

information on the symptoms of each disease, since such information was not 

always available (or it was unclear) in the manual. The specialist also verified the 

temporal graphs for some of the diseases. The total time of consultation with the 

specialist was around 2 h. 

Foo’d-borne diseases usually have a simple temporal structure consisting of the 

event of ingestion of the contaminated food and a set of cotemporal symptoms that 

occur after the incubation period. Fig. 2 represents the temporal graphs of the 

symptoms caused by Y. enterocoliticu and by the A. phulloides, A. virosu, and A. 

uerna mushrooms. 
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Y. enterocolitiu 

Fig. 2. Temporal graphs of some food-borne diseases. 

The Y. enterocolitica graph is typical for food-borne disease. The manifestation 

m, is not really a manifestation but the event of ingestion. The necessary mani- 

festations are fever (m,), abdominal cramps (m,), and mesentic adenitis (m3); and 

the possible manifestations are nausea (m4) and vomiting (mJ. The manual does 

not provide information about the elapsed time between ingestion and manifesta- 

tions m3, m4, and m5, so we defined the DIST function for those arcs to be 

[0, co], which only means that those manifestations occur any time after m,. The 

duration of all manifestations is [l day, 28 days]. 

The graph for A. phalloides is more complex from the temporal point of view. 

The arcs from m, to m, and from mO to m, are not represented in the graph. m, 

again is the ingestion event, m6 and m7 are abdominal cramps and diarrhea, and 

m, and mg are renal and hepatic failure. The durations of m6 and m, are [6 h, 24 

h] and the duration of m, and m, are not defined, and thus set to be [0, co]. 

Other diseases, like paralytic shellfish poisoning (PSP) have a temporal graph 

similar to the one for Y. enterocolitica, but with 10 necessary symptoms and 25 

possible symptoms. 

We encountered two examples of disease for which ct-PCT was inadequate to 

represent the development of the manifestations or the causal relation between 

the disease and its manifestations. These two examples will be discussed in 

Section 6. 
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5.2. Implementation and comparison between PCT and ct-PCT 

In the domain of food-borne diseases, the appropriate parsimony criterion is that 

of single-disorder explanations. This is an extreme form of the minimum cardinality 

criterion, which requires that the explanations should contain only one disorder. 

This criterion was implemented as a filter that runs after the programs have 

computed all h-redundant explanations. Furthermore in order to collect information 

about the precision of ct-PCT in comparison with PCT, we also registered the 

number of irredundant solutions each program computed before the filter was 

applied. 

Both the ct-BIPARTITE (for ct-PCT) and the BIPARTITE (for PCT) algorithms 

were implemented in Prolog, almost straightforwardly from their definition. 

We tested the systems with seven artificial (non-clinical) cases created by the 

specialists. The set of observations and negative observations, together with their 

temporal information, were given to the program as a list, so the function 

NextObservation in ct-BIPARTITE (and BIPARTITE) would just read in the 

next element on the list. The same list, stripped of temporal information and 

negative observations was the input for the BIPARTITE program. 

On average, the number of single-disorder diagnosis computed by ct-BIPAR- 

TITE was less then half of the number of single-disorder diagnosis computed by 

BIPARTITE, and considering irredundant explanations, ct-BIPARTITE generated 

less then one third of the irredundant solutions generated by BIPARTITE. In terms 

of execution time, on the average, ct-BIPARTITE computed all irredundant 

explanation in 70% of the time it. took BIPARTITE to process the same example. 

In a particular example, ct-BIPARTITE computed only a single one-disease 

diagnosis, and 2 multiple diseases diagnosis against 6 one-disease diagnosis and 73 

multiple-diseases diagnosis computed by BIPARTITE. For this example, ct-BI- 

PARTITE completed its execution in 30% of the time it took to BIPARTITE to 

complete. 

6. Conclusions 

l%is work has presented two extensions of the original Parsimonious Covering 

Theory. The first extension t-PCT allows one to associate to each disorder an 

evolution of manifestations, and the second ct-PCT adds categorical information 

about the necessity or possibility of a disorder causing a manifestation to the 

temporal reasoning. These two extensions include the original PCT, in the sense 

that if the knowledge base contains no temporal or categorical information then 

t-PCT, ct-PCT and PCT will compute the same solution for all diagnostic prob- 

lems. 

A ldiagnostic systems for food-borne diseases was developed. The experimental 

results showed that in that domain, and we expect in all temporally rich domains, 

the mmporal and categorical information allow for a faster and more precise 

diagnosis than the standard PCT. 
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The temporal/categorical extension to PCT possesses some limitations in repre- 

senting both the knowledge base and case information in some diagnostic domains. 

Overcoming these limitations are possible areas of future research. 

As discussed in Section 3.5, temporal graphs do not allow for cycles. In medical 

diagnosis few but important diseases have recurrent events. Malaria is one of them: 

one distinguishes different forms of malaria by the period between the re-occur- 

rence of the fever episodes [l]. 

Also discussed in Section 3.5, ct-PCT does not allow to state that an observation 

has already happened and is not longer present without stating explicitly the time 

and duration of the observation. 

The semantics of arcs in temporal graphs, and the DIST function, refer to the 

beginning of the manifestations, that is, DIST&z,, m,) = Z means that the elapse 

time between the beginning of manifestation m, and my should fall within the 

interval I. This semantics of associating the beginning of the manifestations was 

appropriate for most of the examples, but not for all of them. In the example of 

intoxication by A. phalloides, A. virosa, and A. verna mushrooms (Fig. 2), the 

hepatorenal failure will occur l-2 days after the end of the cramps and diarrhea 

symptoms. In that case, because the duration of the cramps and nausea symptoms 

were given, we could determine an interval from the beginning of the corresponding 

symptoms. 

In the food-borne disease domain we encountered an example of categorical 

information that could not be represented in ct-PCT: representing that a disorder 

necessarily does not cause a manifestation. Uncomplicated developments of vero- 

toxigenic stains. of E. coli infections will cause bloody diarrhea but not fever. 

PCT’s incapacity to represent the interference of disorders may be particularly 

severe in ct-PCT. In the presence of temporal information it is very unlikely that 

two disorders will not interfere with each other. As an example, let us suppose that 

di causes m with duration Z and 4 causes m with duration J. Then certainly the 

presence of both disorders simultaneously will cause some change on the duration 

of m (the same can be true for the temporal relation of m with other manifestations 

in both di and dj). In the area of medical diagnosis, this has been documented in 

[ll]. If either Z and J are mutually inconsistent (Zn J= a), or either one is 

inconsistent with the duration of the observation m (DUR + (m) n In J = a) then 

the hypothesis that contains both di and dj will be discarded as temporally 

inconsistent with the case. 

An interesting extension of the ct-PCT theory, suggested to us by the specialists, 

is the incorporation of fuzziness into the idea of temporal inconsistency. The 

specialists were willing to accept a temporally inconsistent disease as part of a 

diagnosis provided its temporal information would not ‘disagree much’ with the 

case information. This indicates that temporal consistency should not be modeled 

as a boolean attribute, but as a fuzzy one. If a measure falls within the interval it 

is fully consistent, and its degree of consistency would decrease the further away it 

goes from that interval. The idea of fuzziness must then be carried over to all other 

concepts in the theory. 
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