
A TEMPORAL LOGIC OVER PARTIALORDERS FOR ANALYSIS OF
REAL-TIME PROPERTIES OF DISTRIBUTED PROGRAMS

R Mall* and L.M. Patnaik*'**

* Dept. of Computer Science and Automation
** Microprocessor Applications Laboratory, and
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore, 560 012, INDIA

E-mail: lalit@vigyan.ernet.in

Abstract
Temporal logic is widely acclaimed to be a highly successful tool for
analyzing non-real-time properties of programs. However, a few
fundamental problems arise while designing temporal logic-based tech-
niques to verify real-time properties of programs. In this context, we
formulateamodallogiccalleddishibufed Iogic (DL) byusingideas from
both the interleaving and partial ordering approach. This logic uses
spatial modal operators in addition to temporal operators for repre-
senting real-timed concurrency. In additikn to the syntax and semantics
of the logic, a programming model, and a formal proof technique
based on the logic are also presented. FmaUy, use of the proof method
is illustrated through the analysis of the real-time properties of a generic
multiprocess producer/consumer program.

Key Words: Distributed systems, modal and temporal logics, real-
time behavior, verification, proof theory.

1 .O Introduction
Temporal logic is widely acclaimed to be a highly useful for-

malism for analyzing non-real-time properties of systems [5,7,8,10].
However, the underlying computational models of most temporal
logics ignore details of process executions (real concurrency). For
example, the interleaving model idealizes a distributed program
execution essentially into a multiprogramming scenario where con-
current tasks are executed one at a time. Such models of concurren-
cy are quite acceptable for analysis of non-real-time ro erties is
concerned; however satisfactory analysis of real-time8beiavior of
distributed s stems in this model is very difficult, since global states
are very difzcult to observe in distributed s stems [ll].

A distributed system usually consists or a set of cooperating
rocesses running at the spatially separated nodes of the system.

k e s e processes can run at greatly varying speeds and execute
either m an inde endent manner or in synchronization with some
other process(esf)by exchangin messages. The message transmis-
sion delays are usually not neg&ible compared to the inter-event
time intervals. Thus, it is often impossible to say which one of two
events occurred first (ie., some events are incomparable). Conse-
quently, a distributed s stem can be viewed as a partial1 ordered
collection of events [11. However, in the framework o r classical
temporal logic, a concurrent/distributed system is usually repre-
sented by a monolithic state; and the system is assumed to evolve
from one state to another by state trunsifions. Thus, a lobal clock
and a central control are either explicitly or im licitfiy assumed.
Consequently, a total ordering of various spatialfy separated and
causally inde endent set of events is implicitly assumed. Concur-
rency is moglled b allowing concurrent events to occur in any
order. Although suci representations of concurren offers many
advantages, includin conce tual simplicity and flemqility; they do
not provide a naturaf modefof real-timed behavior of distributed
programs is concerned [2,7].

An alternative representation of concurrency is by a partial or-
dering model - Petri nets are probably one of the best-known
formalisms incorporating this model of concurrency. Petri nets are
based on nondeterministic automata and are capable of undergoing
transitions involving only some of the processes at any time, mde-
pendent of the transitions of other processes. Thus, representation
of real-timed concurrency in this framework is facilitated by the fact
that neither a global state nor a global clock need to be assumed.
However, Petri nets suffer from several shortcomings includin the
state e losion problem. In this context, we formulate a modal yogic
calledxtribufed logic by using ideas from both the interleavlng

and the partial ordering models. The ordering among events ii
central to the semantics of the distributed logic. A total order is
assumed to exist among the events that occur at an sin le node of
a distributed system. Apart from that, the,event ozsenfiing a mes-
sage at one node is assumed to precede the event of its reception at
another node.

The rest of this aper is organized as follows. The distributed
logic is defined in %&on 2. In Section 3, a programmin model
is introduced; while in Section 4, a proof scheme for ana f ysis of
real-time properties of distributed programs i s presented. In Sec-
tion 5, use of the formalism is illustrated through analysis of a
sample program. Section 6 presents a comparison of our work with
the related work. Section 7 concludes this paper.

2.0 Distributed Logic
2.1 Preliminaries

Distributed Logic (DL) assumes an underlying distributed sys-
tem. A computation is considered to be a set of interleaving sequen-
ces which reflects a partial ordering among the states of the different
interleaving sequences from the underlying distributed system
model. Thus, a computation (u) of a rogram P in the logic is a

number of linear brpnches corresponding to process executions in
different nodes of the system. The partial ordering among the states
of the linear branches in a computation arises due to exchange of
mesa es among processes running on different nodes of the sys-
tem. &r a s stem with n nodes (nzl), we can have a computation
as shownin Fig. 1, where the Si."S are states, the thin lines represent
state transitions, and the thick lines represent aprecedence ordering

partially ordered structure of states. 5% is structure consists of a

."-............I... " -.,, ~ among states (events).'I "..

L," " , ~ " " ~̂..X

Figure 1. A Computation in the Logic

Detinition 2.1: We represent the under1 in distributed system by
a structure Z=(N,C,S,G) such that 5.3 is a countable set of
elements representing the nodes of the system, Z.C represents the
set of commiinicatinn channels in the system. Each channel CEZ.C
connects exactly two nodes of the system, Z.S is the speed assign-
ment to the individual node rocessors ZS: Z . N 4 (8 is the set of
positive real numbers), a n 8 Z.G represents the interconnection
among the nodes by a partial mapping Z.G: Z.Cx2.N-Z.N. Intui-
tively, for each node neZ.N and channel ceZ.C, Z.G c,n) if
defined) is the node connected to node n by the channel c. ' k e no6k
interconnection function Z.G can be extended to the domain of
transitive closure of channels Z.C such that Z.G(r,n) = n, and
Z.G(ci.m+n) =Z.G(ci,Z.G(c;z,n)), where E is the empty string, and

Definition 2.2: An event serves as a temporalmarker. Events mark
points on a branching time structure and are of importance in
describing the real-timed behavior of a system. Events can be

c1,neZ.C.

335

an action becomes ready

ii) Start action event: This event occurs when an action is scheduled
for execution by the scheduler (see def. 2.5).
iii) End action event: This type of events occur due to the completion
of actions.
iv) Exfemal event: Events of this type occur due to actions of the
environment of the embedded system, e.g. an interrupt signalling
some service routine to be invoked.
v) Notifer event: This event occurs when a message is placed on a
communication channel due to a process sending a message to
another process.
vi) Notification event: This event occurs when a message after

traversing the communication channel arrives at its destination.
Definition 23: Each linear brunch of a computation (Fig. 1) in
DL is called a Path, and represents interleaved executions at a
node processor. Thus, there exists a path (oi) corresponding to each
node niEZ.N. Consequently, the number of paths of a com utation

length 10; I of a path ai is the number of states in that ath. I L i is

number of states in any path is infinite, then the path length is
denoted by loit =a. It should be noted that we use the termpath
to represents part of computation in a com onent of the system and
is in variance with the meaning of a put{ as used in CTL [12],
ISTL[2], etc.

Definition 2.4: Each state sij, niEZ.N, j 4 [ui 1 ; is a value assignment
to all variables associated with the processes statically assigned to a
node niE%.N, and also interprets a clock function (defined later).

Intuitively, the states are snapshots of task executions in the
individual nodes. A state Si.j can evolve into the succeeding state
Si.(j+1) by a state transition. A state transition occurs due to the
occurrence of some event. Thus, time elapses in states, and the
occurrence of an event instantaneously transforms a state S i . into
the succeeding state Si .0 + 1). In general, an arbitrary amount ottime
may elapse in a state; thus, no restrictions have been imposed on
the speeds of the individual node processors.
Definition 2.5: An action T re resents a finite progress made by

some program instruction(s). For a set of states S in a path ai, an
action T is formally defined as a six-tuple: T = < tu, tl, h, er, es, ee > ,
tu and ti are the upper and lower time-bounds associated with the
action, h:S-.S called transformation function which denotes that the
effect of an zction is to transform a state into another state, er is the
activation event, es and e e are the start action and end action events
(see def. 2.2) respectively. We will refer to any component x of an

is given by the number of node processors IZ.NI. T R e ath

finite (Le., ui:Si.O,&j.l, Si.k for some k), then)uil = R + 1. If the

some process in the system, an B thus represents the execution of

action r , by TX
Definition 2.6: A precedence relation (L) among the events in a
distributed system is defined as follows.
i.) If e i and e2 are two events occurring in the same node of a

system, and el occurs before e2, then ei L e2 (to be read as - el
irecedes e2).
ii.) If el is a notifier event and e2 the corresponding notifration

event, then e i~e2 .
iii. If e i ~ e 2 and e ~ ~ e j then e i~e3 .

kwo events are unrelated (or concurrent) if ei&e2 and e2xei .
The concurrent events occur on different paths of a computation -
they may or may not be simultaneous. For any event e, we do not
asmme eLe, since a system in which an event can occur before itself,
is not physically meaningful. Thus, our precedence relation L is
irrejlawe and is similar to Lamport's "hppened b@ore" relation
111. p e transitive closure of this precedence relauon represents a
partial ordering of the states belonging to different paths and a total
ordering of the states in any sin le path.

as $.jL sl.k, iff an event el is kmwn to not yet have occurred 111
' state si. and another event e2 is known to have occurred in state su, suci that e l ~ e 2 .We assume the existence of a clock% at each
node ni EZ.N of the system. Each clock Ti ranges over an infinite
set (TIME) of positive real values and assigns time values to the
events occurring at the local node. The clock function assigns a value
00 to events that have not yet occurred at any state. The system of
clocks is assumed to be synchronized within Ad tindunits (maxi-
mum clock skew). The entire system of clocks i s represented by a
function T, such that for an event b occurring at a node nit T(b) =
Ti(6); and for any two events Q and 6, if a ~ b then T(u) < T(b).

A state Si.j is said to temporal f y precede another state S1.k. wri t tp

2.2 Syntaxof DL

given below
Alphabet

The formulas of DL are built up from an alphabet of symbols

. ."
(i)

(ii)
(iii)

A denumerable set constant symbols, local and global variable

a denumerable set of function and predicate symbols,
operator symbols Xi, Fi, Gi, and Uij for ni,njEZ.N, cEZ.C, V,

symbols, and the parenthesis symbols (,),

7 andv .
The global variables represent the time-independent variables,

and the local variables represent the time-dependent ones which
can change from state to state. The set of predicate symbols in-
cludes s, =, <, and other usual predicates on numbers. The set of

redicates also includes redicates of the type: at Ili, in Ii, and afer E, where li is the label o?a program instruction. Informally, these
predicates mean that an instruction labelled li is ready to execute,
it is under execution, and that execution of the instruction labelled
1i has been completed, respectively. The meanings of the standard
logical operators are assumed and those of the other operators are
explained subsequently.
Terms

-̂."̂ _...._.I ---.-.-.-" _I^_

(i)
(G)

Every constant and variable is a term
Iff is an n-ary function, then f(ti,tz ..., tn) is a term, where tr,tz ta . ~. . ~~

- -__--_______-----_-_____ are hms Of aPR<@riate&i.-: __--: ---- -_--_: ___-------_- ---__-_-
Atomic formulas are obtained by application of predicates to t e r m
of a proptiate sorts.
Wei-Formeci Formulas . , ~~$~

(i)
(G)

(iii)

.. ..
Every atomic formula is a wff,
if p is a wff, then -p, cp for cEZ.C, and

if p and q are wffs, then p v q , and PUij q for ni,njEZ.N are wfk,
Xi(p), Gi(p), and Fi(p) for niG5.N are wffs,

ii9 - -__ . . i f P - ~ - a w f f a n d x ~ s - a 9 l ~ ~ ~ - . a ~ ~ ~ ! ~ ~ ~ ~ ~ ! ~ ~ ~ ~ ~ - ~ ~ ~ - ~ - ~ - - ~ : __- __-
Informally, the formulas X I ~ , fip, Gip, and PUij q, are read as "over
path i nexttime p holds," "?ver ath i eventually p holds," "over path
1 henceforth p holds," and hoTi"ds over path i until q holds over path
j," respectively. Each CEZC is a s atial modal o erator: the for-
mula cp is read as "p holds across t g e channel c". #he until operator
(Uij) is useful for representing and studying synchronizabon and

communication behavior of distributed programs. The formula cp
captures the fact that the formula p holds in a nei hbor node
according to the latest mesa e. Further operators &r arbitrary
formulas p and q may be introtuced as abbreviations for particular
formulas.
Abbreviations
. _..............I ^ .

P-V 'PV9
P W - . (P - - O
P-l (P - . d A (P P)

3x:p 0 -(vx:-p)

true u p V-p
false 0 -true

Gp 0 3 niEZ.N: (Gi(C1pVQpV ...)), where~i,cz, ... EZ.C*
(henceforth p holds over some path)

Op 0 3 niE2.N: (Xip) (nexttime p holds over some path)
F p e 3niEZ.N: (Pip) (eventually p holds over some path)
pU q 9 3ni,njEZ.N (p &j q)

The basic semantic notion of DL is the interpretation of for-
mulas in a rnodeL A model M is a quadruple (s, A ,Z, u), where
i) s is a structure (D, a, B) consisnng of a countable domain D of
values, an interpretation (a) for functlon and redicate symbols, and
value assignments (B) to the constant s boys over the domain D;
ii) A is a vahe assignment to the lobapariables in domain D;
iii) Z is a distributed system as deined earlier;
iv) u is a computution as defined earlier.

We use an anchored interpretation of formulas [4]. In contrast
to the froatin interpretation where validity and satrrfiability are

[4], the interpretation of is anchored at the initial state of the
com utation. We use an anchored inte retation primarily due to
the Act that the sartial ordering amom$e states makes it difficult
to comder suf i closure of com utahons. Other advantages or
usin anchored interpretation can%e found in [4].
2.3.9 interpretation of Formulas

Let M = (S , A , Z, u) be a model, then the interpretation of a
term t at a state Si-j is denoted by (M,i,j)(t), and is defined inductively
as followc

evaluated at a kq 1 states of a computation, in anchored interpretation

336

.
if t is a constant symbol k, then (M,ij)(tj =' $ (k),
if t is a global variable x, then (M,ij)(t) = A(x),
if t is a local variable symbol v, then (M,ij)(t) = Si,j(V),
i f f is a k-ary function symbol and ti&, ..., tk are terms of appropriate

if n is a k-ary predicate symbol and tl,t2, ..., tk terms of appropriate sorts, then
~ M ~ ~ ~ - ~ ~ (t ~ ~ ~ Z ~ ~ ~ ~ ~ k ~) - ~ ~ ~ ~ - ~ ~ ~ ~ M ~ ~ ~ - ~ t ~ ~ ~ ~ M ~ i ~ ~ ~ ~ ~ - ~ - ~ ~ ~ - ~ M ~ ~ ~ ~ ~ ~ ~ ~ ~ € a(?)---

sorts, then (M,i,j)(f(ti,tz, ..., tk)) = a(f)((M,ij)(tl) ,... (M,ij)(tk)).

Given a model M = (S , A , Z, u) and an atomic formula p, (M,ij)
t= p denotes that (M,ij)()t= true. An inductive definition for
interpretation of formulas follows. k t p and q be arbitrary for-
mu!as.and. .x bea.g!oba!.variab!e, then: ..

(M,ij) c -p o it is not the case that (M,ij) I= p,

(M,i,j) 6 Vx: p o (M,i,j) != p for each yED, y+x:M'(y) =M(y),
(M,i,j) t=*p * j < luil and(M,ij+l) I= p,
(M,i,j) I= cp Z.G(c,ni) =nk, and

(M,ij) c Fi p 0 for some k: j< k < loil : (M,i,k) I= p,
(M,ij) c Gip 9 for all k j s k <
(M,ij) F pUik q oforsomecEZ.Candsome1,] < I < 1-1,

The arentheses in a formula can be omitted, whenever the
impliezparsing of the formula is understood from the context. If a
formulap holds at some position s i j on some model, i.e., (M,i,j) I=
for some niEZ.N and some j <A "1, we say p is satisfiable. A form&
is called to be temporally vali i it holds at all times in a model,

for some niEZ.N. A formula is called valid
in all models. The following theorems are

easily provable.

'123: c(G(p)) * G(c(P))

(M,i,j) != p v q 0 (M,i,j) I= P or (M,$ t= q,

for some 1 < lq I, skj L s i : (M,k,l) k= p

l:(M,i,k) I= p,

_ _ " _ _ _ _ _ _ _ _ _ _ _ - z ~ G ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ M ~ ~ ~ - ~ - ~ ~ ~ ~ d - ~ ~ ~ ~ ~ ! m ~ j ~ m ~ - ~ - ~ M ~ ~ ~ m) - ~ ~ . - - -

Tz.1: If Z.G(ni,c) =nj, thenFi(c(Fj(w))) * fi(c(w)
T22: PUij p A C(P + Gjp) + Gi p)

Tz.4 If e is any event, and Z.G(c,ni) =nj, then c(Fi(e) * Fj(e))

3.0 Programming Model
We consider a programmin model supporting distributed

processes which communicate onfy by exchanging messages. The
communication mechanism is similar to remcte procedure calls
where only the receiving process blocks. It is assumed that the
communication system is reliable and that there are known u per
bounds on transmission delays. The syntax and semantics o?this
programming model are given below.
3.1 Syntax
m.e !ass,c?f?!?teme?ts s considered.is, as. fO!?@WS*.
s:: x: =t I* assignment *I

delay d
jC!t I* send command *:
C?Y /* receive command *I
s1;s2 /* sequential composition */

Iibi -++SA\,

/* delay command "I

/* guarded command *I
............... (b!. !* .'!erative comma?!!. *!..
where t denotes a term built up from programvariables and function
y b o l s , x and are variables, Si's are rogram statements, and bi

domain of positive reafvalues.
3.2 Semantics

The informal meanings of the prwramming constructs are as
usual; however some assumptions nee$to be stated. The statements
of the language can be classified into atomic and compound state-
ments. The atomic statements can further be subdivided intoprimi-
tive and synchronization statements. An atomic instruction com-
pletes execution once it starts executin , i.e., it cannot be inter-
rupted. fimifive statements have predelned maximum and mini-
mum execution times. The assignment, delay, and send statements
are primitive statements. We also consider boolean evaluations in
the guarded and iterative statements as primitive statements. This
assumption is necessary only for simplification of the proof theory.
Thus, the guarded and iterative statements can be considered to be
composed of a boolean evaluation statement and other atomic
statements. Aprogram statement is of the form P :: PI 1 I P2 1 1 ... I 1 Pk,
where each Pi is a static process definition. The compound state-
ments are composed of atomic statements. Sequentlal composi-
tion, guarded, iterative, and program statements are compound
statements.

The only synchronization statement is the receive statement.
Areceive statement blocks until the corresponding message arrives.
Thus, the execution time of a synchronization statement depends
on the satisfaction of the synchronization condition and does not
have an a prion' upper time-bound. After a message is sent by a

enotes a boo Y ean ex ression, d E %ME which represents a

sending process (marked by a not$er event), it takes Atr time to
arrive at the receivine node. Also, we assume arnaximum clockskew
of Acl [1,14]. Thus, if at time t i a notifier event occurs, and at t2
the corresponding notification event occurs, then I ti-t21 I

Each statement in a program is assumed to have a unique label.
A statement labelled l i can be represented by an action T i . The
following equivatences are assumed to hold.
El: If an action T represents a guarded statement b-S, and action
sb represents the boolean evaluation b and the statement S is
represented by an action T ~ , then
(a) ~ . e s =Tb.es

El(a) implies that the start event of a guarded statement is
equivalent to the start event of the corresponding boolean evalua-
tion statement. El(b) states that the end action event of a guarded
statement is equivalent to the occurrence of either the end action
event of the boolean evaluation when the boolean condition is false
or to the occurrence of the end event of T ~ .
E 2 If an action T represents an iterative Statement *(b-S), T b

represents the boolean evaluation, and T S represents the statement
S, then

Atr + A d .

(b) r.ee FG 0 ((-b ATb.ee) V Ts.ee)

(a)
(b)

Vi > 0 (r.es,i) E (rb.eS, i)
Vi > 0: (Ts.ee,i) 5 [s.es,i + 1)

(C) T.ee 3 0 ('b hTb.ee)
E2(a) states that the start action of an iterative statement is
e uivalent to the start action event of its boolean evaluation part.
E%b, states that the end action event of the the statement S is
equivalent to the next instance of the start action event of the
iterative statement. E2(c) states that the end action event of an
iterative statement is equivalent to the end action event of the
boolean evaluation when the boolean condition is false.
E3. Let the sequential composition S1;S2 be represented by an
action 5, and let the action TI represent the statement Si and r;!
represent the statement S2, then
(a) TI.% = rz.er

E3(a) formalizes the fact that a statement becomes ready as soon
as the revious instruction completes executing. E3(b) states that
the eniaction event of sequential composition is equivalent to the
end action event of its last com onent statement.

to, and let action ri represent process Pi, then
(a) ro.er wer A T2.Q A ... A T n S r

(b)
E4(a) states that all the parallel processes of a ro ram statement
become ready as soon as the program is ready. &(b5 states that the
end action of the program statement is equivalent to the end action
of all its constituent statements.

(b) T.% = T2.ee.

E4. Let a program P :: P i] I Pz I f ... I I Pn be represented by an action

To& I Ti& A r2.Q A ... A Tn.%

4.0 Proof System
A number of axioms and rules are necessary to formalize the

deductive proof system for the programmin model. The axioms
and deduction rules translate the structure o fa program into basic
DL statements about its real-time behavior. The statements thus
derived, are then combined into proofs to establish the real-time
properties. The basic axioms for a process Pi statically allocated to
a node nk, are given below.
PA1: For an action T of the process Pi,

where SP is a predicate denoting the scheduling policy of the system.
This axiom states that an action starts executing as soon as it is ready
and is selected by the scheduler.
PA2a. Let aprimitive instruction (other than a delay instruction) be
represented by a transition T , then

This axiom implies that if a start action event for a (nonblocking)
instruction occurs, then the corresponding end action event occurs
within the time bounds of the action as determined by the speed of
the corresponding node processor.
PA2b. Let a delay instruction of the form li: delay d be represented
by an action T then

This axiom is similar to the axiom PMa, however; it formalizes the
fact that the time to complete execution of a delay statement is
independent of the processor speed.
l'm: Gk((T(emr) St) +(c(T(ems) 5 t-Atr-Acl)) MSA (Message Send Axiom)

Gk(T(T.er)It A SP(T) -, Fk(T(t.es)St))

Gk((T(T.es)5t) *Fk(t+T.tl*Z.S(nk 5 T(r.&) St+T.tu*Z.S(nk))

Gk(T(t.es) = t + Fk(T(T.ee) = t + d))

337

where ems is a notifier event and emr is the corresponding notifica-
tion event. This axiom formalizes the assumption that if a message
is received, then it must have been sent by the sender process at
most Atr i- Acl time units earlier, since a mesa e takes Atr time to
travel to its destination, and two adjacent clock differ by at most
Acl time units.
PA4: k t an action Tr represent amessage receive statement, then

where emr is the notification event. This axiom formalizes the
assum tion that after a receiving process is ready and the re-
quirecfnotification event occurs, another Ac units of time are
re uired to com lete execution.

rence of events, then

G k(Fk(T(Tr.es) S t l AT(emr) Stz) + Fk(T(Tr.ee) Smax{ti,tz} + hc))
MRA (Message Receive Axiom)

SC It (Sequentid? Composition Rule): Let el, e2, e3 be any occur-

G(((t i5T el S t z -+ F t i + d i ST ez Stz+dz)))
G G.ysti-q& t i ST[ez\Std] -2y2 -qT((fi + F[[ti+d3 q-6-T-di-2 sTb)Stz+dd)J ij)-SiiT- iT'a;c)'i)

SCR is the only rule of the proof system. There is no rule for parallel
composition in accordance with the underlying partial order seman-
tics.
4.1 Soundness and Completeness of Proof System

We show that the roof system is sound, i.e., every formula
derivable in the proofsystem is indeed valid, and that the proof
system i s complete relative to provability of DL formulas.

Theorem 4.1: Theproof system is sound.
Proof: We have to show that all axioms arevalid, and that whenever
the premise of the inference rule is valid, so is the conclusion. For
most axioms and for the inference rule, soundness follows directly
from the definition of the semantics of the programming model and
the distributed lo ic Here we sketch :he soundness of the messa e

Lemma 4.2: The message receive ariom MRA is sound.
Proof: From the premise of MRA: Fk(T(sr.es) St l A T(ema)~t2)).
The premise implies that the receive statement becomes ready
before time t i and that the corresponding notification event occurs
before time t2. Thus, the time at which copying of the message to
the buffer can start is given by max{ti,t2}. The receiving pfocess
requires Ac units of time to complete execution. Thus, the time at
which the end action event occurs is given by max{ ti&} + Ac. This

Theorem 4.3: neproof system is complete relative to theprovability
o valid ormulas in DL.
Look {he proof can be constructed by using the idea of a precise
specification [13]. The axioms can be shown to give precise
specifications and the roof rule can be shown to be precise preserv-

receive axiom (&A). IF

precisely is what stated by MRA. H

ing from which the refative completeness follows.

We will illustrate the use of the proof theory by analyzing the
real-time propert of a sample problem.
5.1 Producedonsumer Problem

The generic multiprocess roducer/consumer problem is very
important to the analysis of many real-time control problems.
Usual1 , real-time control programs consist of a pi eline of roces-
ses [111 Such pipelines of real-time rocesses canie consi&ed as
chains of real-time producers anfconsumers [ll]. In order to
illustrate how the real-time behavior of a pipeline of processes can
be analyzed, let us first consider a generic two-process
producer/consumer problem. Subsequently, we will generalize this

5.0 Example

problem to an n-process producerlconsumer chain.
In: P:. /* Producer/Consumer Proaram *I "
P1:: I* Process PI */

111: *((bl:true) +

112: produce iteml;
113: cl!iteml; I* send iteml to P2 * I

! IP2:: I* Process Pz *I
1; ' . *((bz:true) + /* for ever */

cl?itemi;
I_. produce ikomn; /* final result */
124 m!itemn;

I* for ever *I

114:)

/* receive itemi from Pi */

125
iis program has two iterative processes P i and P2 running on

tw*- nodes ni and n2 of a d is t r ibuted svstem with
Z.f::(nl) = Z.S(n2 = 1. The process P i produces itemi and sends
t h item (result] to P2 which uses item1 to produce item2. An
ir ,mtant timing property of this producer/consumer system is the

rate at which the tinal result (item;?) is produced. The analysis of this
problem involves analysis of two cooperating processes. First, we
analyze process Pi to determine the arrival rate (AR1) of itemi at
P2 and then using this result, we analyz? process P2 to find the
production rate PR1) of item2.
Arrival Rate ((ARI)
&(Vi>OT(ema,i) =t + Fz(T(ema,i+l)St +hi))

Production Rate (PR1)
Gz(Vi > OT(sza.ee,i) S t + Fz(T(sza.ee,i + 1) 5 t + A3))

1. G2 (Vi > O:T(tlz.ee,i) S t + F?(T(sz3.ee, i) 5 t + tz3 tu)) E3(a),PA2(a)
2. G2 (tli>O:T(r23~,i)St + F2(T(t2a.ee,i)St+Tza.t,)) E3(a),PA2(a)
3. G2(Vi>O:T(s2a.ee, i)5t + F2(T(T2i.ee, i+ 1)St +Tb.tu)) E2(b),PA2(a)
4. c&(Vi/iO:T(s21.e~, i)5t +F2(T(szz.er,i +I)St))
5. GzCJi > O:T(szz.ee, i) S t + Fz(T(szz.eni + 1) C t + A2)) 1,2,3,4,SCR

6. Gz(Vi>O: T(e,,,i)St +F2(T(ema,i+l)st +Ai))) AR1
7. Gz ((T(T22.ee,i)St) + F2((T(r22.ee,i+l)St+max(Ai,A2)+Ac))
8. (T(tzt.ee,i) _c t) + F2(T(r%.ec,i) S t + &)) 1,2,SCR

where h4 =T23.tu +TM.tu
9. Gz (T(~zz.%,i)St) +Fz(T(r~.ee,i+ l) S t + A 3 + A 4))

where A3 = max(Ai,A2) + Ac

10. Gz (T(Tza.ee,i)St) ~F2(T(sz4,ee , i+l)St+A3)) 8,9

where ema is the nofzficafion event.

Proof:

E3(a)

where A2 'Tb.tu + T23.t" + TXSu

7,8,SCR

5.2 Producer/Consumer Chain
The basic structure of this program has the same form as the

two-process producer/consurner problem. Each process in the chain
acts as a consumer to the previous process and as a roducer to the
next process. The program for an n-mocess DroLcericonsumer
chain is outlined below.
lo P:.
p1 I* Process P i *I

111. *((bl true) +

/* Program for producerlconsumer chain *I

I* for ever */
112: produce iteml;
113: cl!iteml; I* send iteml to Pa *I
114:)
I1 ...
Pi:: I* Process Pi *I
lil: *((bi:true) 4

li2: ci-i?itemi.i; I* receive itemi.1 from Pi.1 */
I* f or ever *I

113' produce item];
li4: c,!itemi; I* send itemi to Plc1 *I
115:)
1 1
I IPn;
hi: ((bn.true) + I* forever*/
ln2. ~n-l?itemn-i,
ln3' produce itemn; /* final result *I
ins cnlitemn;
ins: 1

/* Process Pn *I

I* receive itemn-i from Pn-1 *I

Analysis of the timing behavior of this program can be done
similar to the analysis of the two-process producer/consumer prob-
lem, and induction can be done on the number of processes in the
producerlconsumer chain to obtain the finaI result, which is of the
O m :

Gn(W > O:T(sns.ee,i) S t+Fn(T(Tfi.ee,i + 1) C t + rnax(Al+ n*Ac,
Az*(n-l)'Ac, ... , An + Ac))) H

6.0 Related Work
The model proposed by Koymans et al., is based on linear

temporal lo ic augmented with a global clock having a dense time
domain [3f Using their proof system, the safety and liveness
roperties of general message- assing systems can be proved. A

keal-Time Temporal Logic (kITL) was introduced in [9] for
specifying and verifying the timing properties of real-time proces-
ses; this method uses an interleavlng semantics. In another related
work [6], syntactic extensions to temporal logic are made through
the introduction of time-bounded temporal operators called in-
range (A) and all-range (V), for facilitating analysis of real-time
properties of rograms. The proof method presented in [6] is based
on a maximaiy parallel model of computation. A compositional

roof system for a CSP-like programming language is reported in P 131. A mapping from time to a set of channel states is used to
analyze the communication behavior of a pro ram. This technique
is also based on a maximally parallel model &. All these re orted
proof methods.[1,3,6,9,13] attempt to analyze real-timed beRavior
of programs based on models idealizing real-timed concurrency.
Idealizing the details of process executions, execution speeds, task

338

scheduling olicy of the s stem, etc. makes analysis of real-timed
behavior o? rograms diflcult and often unrealistic. D L takes care
of these proglems by defining a real-timed concurren

There are a number of similarities between DL a n d ~ ~ $ $ n
Set Temporal Logic (ISTL) [2], both the distributed logic and I S d
are based on ideas from interleaving and partial order semantics.
However, the distributed logic differs in several important ways
from ISTL [2]. ISTL concentrates on developing a natural model
for distinguishing nondeterminism due to concurrency and, non-
determinism arising out of local nondeterministic choices. DLviews
a computation as a set of interleaving sequences with a partial
ordering among the states of these sequences, whereas ISTL views
a computation as a partial order representing a set of interleaved
computatiozis. Further, DL does not sup ort the concept of a global
state, unlike ISTL which represents &bal state as global snap-
shots; also ISTL does not support quantitative reasoning about time.

7.0 Conclusions and Discussions
An important question that is often asked of a real-time program

is whether an implementation of it would satisfy the timing con-
straints. However, the classical temporal logics do not model
reul-timed concurrency, which makes it djfficult to anal ze the real-
time behavior of distributed rograms. To overcome t x is problem,
we have introduced a modaf logic having features from both the

artial order and interleaving models. With the established logical
Yramework, it is straightforward to develop a conprehensive
theory for formal analysis of real-time behavior of distri!;:eodf
programs for various programming models sup orting different
communication mechanisms. The use of the prooFtheory has been
illustrated through the analysis of the real-time properties of a
sample program requiring communication among multiple proces-
ses. Our current work is in the direction of realizing an executable
specification tool based on the presented logic.

Ref ere n ces
[1] L. Lamport, "Time, clocks, and the ordering of events in a

distributed system," Communications of the ACM, Vol. 21, No.

[2] S. Katz and D. Yeled, "Interleaving set terLlporal logic,"Theoreti-
cal Computer Science, Vol. 75, 1990, pp. 263-287.

[3] R. Koymans, "Specifying message passing and real-time qsterns
with ,a]-time temporal logic," Technical Report X6!01,
Eindhoven University of Technology, The Netherlands, 1987.

[4] Z. Manna and A. Pnueli, "The anchored version of temporal
framework,"In Linear Time, Branching Time, and Partial Order
Logics and Models of Concurrency, Lecture Notes in Computer
Science, Vol. 354, Springer-Verlag, 1989, pp. 201-284.

[5] F. Kroger, Temporal logic of progrunzs, EATCS Monographs
on Theoretical Computer Science, Vol. 8, Springer-Verlag,
Heidelberg, FRG, 19E7.

[6] Karen J. Hay, Sanjay Manchanda, and Richard D. Schlichting, "
Proving real-time properties of distributed programs," Research
Report TR 88-40b, Dept. of Computer Science, University of
Arizona, Dec. 1989.

[7] F.B. Schneider, "Criticai (of) issues in real-time systems," Tech-
nical Report 88-914, Dept. of Computer Science, Cornell
University, May 1988.

[g] z. Manna and A. Pnueli, "How to cook a temporal Proof system
for your pet language," Proceedings of the Symposium on Prin-
ciples of Programming Languages, Austin, Texas, Jan. 1983, PP.

[9] J.S. Ostroff, "Real-time computer control of discrete event
systems modelled by extended state machines: a temporal logic
approach," ph. D. thesis, University of Toronto. Canada,
January, 1987.

[lo] A. Pnueli, 'The temporal logics of programs," in Proceedings
of the 18th IEEE Symposium on the Foundations of Computer
Science, Providence, RI., NOV. 1977, pp. 46-57.

p i] L.M. Patnaik and R. Mall, "Critical iSSUeS in real-time software
development," in Proc, National Conference on Real-Time
Systems, Indore, India, Feb. 1991.

7, July 1978, pp. 558-565.

14 1- 154.

121 E.M. Clarke and E.A. Emerson, "Design and synthesis of
synchronization skeletons using branching time temporal logic,"
in Proceedings of the IBM Workshop on Logics of Programs,
Lecture Notes in Computer Science, Vol. 131, Springer-Verlag,

131 J. Hooman and J. Widom, "A temporal logic-based composi-
tional proof system for real-time message passing," Technical
R e p o r t l X 88-919, Dept. of Computer Science, Cornell Univer-
sity, June 1988.

[14] R. Mall and L.M. Patnaik, "Specification and verification of
Liming properties of distributed real-time systems," in Proc.
IEEE TENCON, Hong Kong, Sept. 1990.

1981, pp. 52-71.

339

