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Abstract

Temporal logic is widely acclaimed to be a highly successful tool for
analyzing non-real-time properties of programs. However, a few
fundamental problemsarise while designing temporal logic-based tech-
niques to verify real-time properties of programs. In this context, we
formulate a modallogic called distributed logic (DL) by usingideas from
both the interleaving and partial ordering approach. This logic uses
spatial modal operators in addition to temporal operators for repre-
senting real-timedconcurrency.In addition to the syntax and semantics
of the logic, a programmingmodel, and a formal proof technique
based on the logic are also presented. Firally, use of the proof method
isillustratedthrough the analysis of the real-time properties of ageneric
multiprocess producer/consumer program.

KeyWords: Distributed systems, modal and temporal logics, real-
time behavior, verification, proof theory.

1.0 Introduction

Temporal logic is widely acclaimed to be a highly useful for-
malism for analyzingnon-real-timeproperties of systems([5,7,8,10].
However, the underlying computational models of most temporal
logics ignore details of process executions (real concurrency). For
example, the interleaving model idealizes a distributed program
executionessentiallyinto a multiprogrammingscenariowhere con-
current tasks are exécuted one ata time. Suchmodels of concurren-
cy are quite acceptable for analysis of non-real-time properties is
concerned; however satisfactoryanalysis of real-timed behavior of
distributed systems in this model is very difficult, since global states
are very difficult to observe in distributed systems [11]. )

A distributed system usually consists of a set of cooperating
rocesses running at the spatially separated nodes of the system.
hese processes can run at greatly varylnﬂ speeds and execute

either in an independent manner or in synchronizationwith some
other process(es) by exchangimg messages. The message transmis-
sion delays are usually not negligible compared to the inter-event
time intervals. Thus, ‘it is often impossibleto say which one of two
events occurred first(i.e., some events are incomparable). Conse-
quently, a distributed system can be viewed as a partially ordered
collection of events [1{. However, in the framework of classical
temporal logic, a concurrent/distributed System is usually repre-
sented by a monolithic state; and the system is assumed to evolve
from one state to another by state transitions. Thus, a global clock
and a central control are éither explicitly or im?licit y assumed.
Consequently, a total ordering of various spatially separated and
causally independent set of events is implicitly assumed. Concur-
rency is modelled b?; allowing concurrent events to occur in any
order. Although such representations of concurrency offers many
advantages, incl conceptual simplicity and flexibility; they do
not provide a natural model of real-timed behavior of distributed
programs is concerned {2,7}. ) )

An alternative representation of concurrency is by a partial or-
dering model — Petri nets are probably one of the best-known
formalisms incorporating this model of concurrency. Petri nets are
based on nondeterministic automata and are capable of undergoing
transitions involving only some of the processes at any time, inde-

pendent of the transitions of other processes. Thus, representation
of real-timed concurrency in thisframework is facilitated by the fact
that neither a global state nor a global clock need to be assumed.
However, Petri nets suffer from several shortcomingsincluding the
state explosion problem. Inthis context,we formulate a modal Iogic
called distributed logic by using ideas from both the intetleaving

and the partial ordering models. The ordering among events is
central to the semantics of the distributed logic. A total order is
assumed to exist among the events that occur at any single node of
a distributed system. Apart from that, the event of sending a mes-
sageat one node is assumed to precede the event of its reception at
another node. ) ) o

The rest of this paper is organized as follows. The distributed
logic is defined in Section 2. In Section 3, a programming model
is Introduced; while in Section 4, a proof scheme for analysis of
real-time properties of distributed programs is presented. In Sec-
tion 5, use of the formalism is illustrated through analysis of a
sample program. Section 6 presents a comparison of our work with
the related work. Section 7 concludesthis paper.

2.0 Distributed Logic
2.1 Preliminaries

Distributed Logic (DL) assumes an underlying distributed sys-
tem. A computation is considered to be aset of interleavingsequen-
ceswhichreflects apartial orderingamongthe states of the different
interleaving sequences from the underlying distributed system
model. Thus, a computation (¢) of a program P in the logic is a
partially ordered structure of states. ThiS structure consists of a
number of linear branches corresponding to process executions in
different nodes of the system.The partial ordering amongthe states
of the linear branches’in a computation arises due to exchange of
messages among processes running on different nodes of the SR’S-
tem. For a s}¥stem with nn nodes (n=1), we can have a computation
asshownin Fig. 1,where the sij’s are states, the thin linesrepresent
state transitions,and the thICkl]ines represent aprecedenceordering
among states (events).

“Eigure T A Computation in the Logic

Detinition 2.1: We represent the underl i?\jg distributed system by
a structure Z=(N,C,S,G) such that % is a countable set of
elements representing the nodes of the system, Z.C represents the
set of communication channels in the system. Each channel c€Z.C
connects exactly two nodes of the systém, Z.S is the speed assign-
menttothe individualnode rocessors Z.S: Z.N-% (st isthe set of
positive real numbers), an8Z.G represents the interconnection
among the nodes by a partial mapping Z.G: Z.CxZ.N-Z.N. Intui-
tively, for each node neZ.N and channel ceZ.C, Z.G(¢,n) gif
defined) isthe node connected to node n by the channel ¢c. The node
interconnection function Z.G can he extended to the domain of
transitive closure of channels Z.C such that Z.G(e,n) =n, and
Z.G(c1.c2,n) =Z.G(c1,Z.G(c2,n)), where « is the empty string, and
c1,02€Z.C.

Definition 2.2: An event servesasatemporalmarker. Events mark
points on a branching time structure and are of importance in
describing the real-timed behavior of a system. Events can be
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categorized into the following six types: .

i) Activation event: This event occurs when anaction becomes ready
‘for execution (see def. 2.5). ) )

i) Start action event: This event occurswhen anaction is scheduled
for execution by the scheduler (see def.2.5).

iii Ert1_d actionevent: This type of eventsoccur due to the completion
of actions.

iv) External event: Events of this type occur due to actions of the
environment of the embedded system, e.g. an interrupt signalling
some service routine to be invoked. )

V) Notifier event: This event occurswhen a message is placed on a
communication channel due to a process sending a message to
another process. )

Vi) Notification event: This event occurs when a message after
traversing the communication channel arrives at its destination.
Definition 23:Each linear brunch of a computation (Fig. 1) in
DL is called a Path, and represents interleaved executions at a
node processor. Thus, there existsa path (i) corresponding to each
node nieZ.N. Consequently, the number of paths of acomputation

is given by the number ‘of node processors |Z.N|. The path

length |eijof a path of is the number of states inthatgg]gh. Itaiis
finite (i.e., 0i:si08i.1, -..sik for some k), then jei] =k T 1 If the
number of states in any path is infinite, then the path length is
denoted by |eil =w. It should be noted that we use the term path
to represents part of computation in a component of the systemand
is in variance with the meaning of a patt as used in CTL [12],
ISTL[2}, etc.

Definition 2.4:Each states;j, ni€Z.N, j < |oi|; isavalue assignment
to all variables associated with the processes statically assignedto a
node nieZ.N, and also interprets a clock function (defined later).
Intuitively, the states are snapshots of task executions in the
individual nodes. A state sij can evolve into the succeeding state
si{j+1) by a state transition. A state transition occurs due to the
occurrence of some event. Thus, time elapses in states, and the
occurrence of an event instantaneously transforms a state sij into
the succeedingstate Si,({ +1). In general, an arbitrary amount of time
may elapse in a state; thus, no restrictions have been imposed on
the speeds of the individual node processors.
Definition 2.5: An action = represents a finite progress made by
some process in the system,and thus represents the execution of
some program instruction(s). For asetof states Sinapath o, an

action 7 isformally defined as asix-tuple: v =< ty, t1, h, er, €5, €e >,
ty and g are the upper and lower time-bounds associated with the
action, h:S-S$ calledtransformationfunctionwhich denotes that the
effect of an action is to transform a state into another state, er is the
activation event, es and ee are the starr action and end action events
(see def. 2.2) respectively. We will refer to any component x of an
actionr , by r.x ) )

Definition™ 2.6: A precedence relation (L) among the events in a
distributed systemis defined as follows.

i) If e7 and €2 are two events occurring in the same node of a
system, and ez occurs before e2, then er £'e2 (to be read as — ez
precedes e2). e

ii.) If es 1S a rotifier event and ez the corresponding nofification
event,thenejze2.

iii.) Ifezce2 and e2ze3 thenejzes. )

‘wo events are unrelated (or concurrent ) if ezxe2 and e2Xez .
The concurrent events occur on different paths of a computation —
they miay or may not be simultaneous. For any event e, we do not
assume e Ze, since asysteminwhichanevent can occur beforeitself,
is not physically meaningful. Thus, our precedence relation 4 is
irreflexive and_is similar t0 Lamport’s "happened before" relation
[1)- The transitive closure of this precedence relation represents a
partial ordering of the statesbelonging to different paths and a total
ordering of the states inany single path. )

A statesi; IS said to temporally precede another statesLk, written
assije stk iffanevente; is known to notyet have occurred in
-state sij and another event ez is known to have occurred in state
sik, such that e12e2 We assume the existence d a ¢lock Ti at each
node ni €Z.N of the system. Each clock Ti ranges over an infinite
set (TIME) of positive real values and assigns time values to the
events occurringat the local node. The clock function assignsavalue

@ to events that have not yet occurred at any state. The system of
clocks is assumed to be synchronized within acl time unifs (maxi-
mum clock skew). The entire system of clocks is represented by a
function T, such that for an event b occurring ata node ni, T(b) =
Ti(b); and forany two eventsa and 6, if azb then T(a) < T(b).
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2.2 Syntax of DL

_ The formulas of DL are built up from an alphabet of symbols
given below
Alphabet

(i) A denumerable set constant symbols, local and global variable
symbols, and the parenthesis symbols (,),
(i) adenumerable set of function and predicate symbols,

(iiiy ~ operatorsymbols Xi, Fi, G, and Ujj for ni,nj€ZN, cEZ.C, V¥,

The global variables represent the time-independent variables,
and the local variables represent the time-dependent ones which
can change from state to state. The set of predicate symbols in-
cludes s, =, <, and other usual predicates on numbers. The set of

redicates also includes predicates of the type: a¢ L, inli, and after
i, where 1 is the label of a program instruction. Informally, these
predicates mean that an instruction labelled 1; is ready to execute,
it is under execution, and that execution of the instruction labelled
1i has been completed, respectively. The meanings of the standard

logical operators are assumed and those of the other operators are
explained subsequently.

Terms
(i) Every constant and variableisaterm i .
(id) 1ff 1S an n-ary function. then f(t1,ta, ...ta) ISaterm, wheretitz, ..in

Atomic formulas are obtained by application of predicates to terms
of appropriate sorts.
Well-Formed Formulas (wifs)

() Every atomic formulais a wff,
(6) if p sawff, then —p, cp for c€Z.C, and
Xi(p), Gi(p), and Fi(p) form&€ZN are wifs,
(iii) if p and g are wffs, then pvq, and pUj g for ni,n;EZ.N are wils,
(v)_____pisawifandxis a global variable symbol, thenVx: p is a_wif. - -
Informally, the formulas X 1 ~Eip, Gip, and pUjj q, are read as "over
path inexttime p holds," "over path i eventually p holds," "overpath
1henceforth p holds," and "p holds over pathi until g holds over path
j," respectively. Each ceZ.C is asgatial modal operator; the for-
mula cp isread as “p holds acrossthe channel ¢". The until operator
(Uij ) 1s useful for representing and studying synchronization and
communication behavior of distributed programs. The formula cp
captures the fact that the formula p holds in a neighbor node
according to the latest message. Further operators for arbitrary
gormullasp and q may be introduced as abbreviations for particular
ormulas.

Abbreviations

p*q < —pvq

PAqQ = ~{p>~q)

peq @ (P~ A (g+p)

true e pV-p

false < —true

3x: p @ X :—‘p) =

Gp <« AmEZN: (Gi(cipVeapV ...)), where ¢1,02, EZ.C
(henceforth p holds over some path)

Op - 3 ni€Z.N: (Xjp) (nexttime p holds over some path)

Fp - In€Z.N: (Fip) (eventually p holds over some path)

pUq e I, €Z.N: (p Ujj q)

......................... {p.holds over some path until g holds on some other) _
2.3 Semantics of DL

The basic semantic notion of DL is the interpretation of for-
mulas in amodel. A model M is a quadruple(s, A,Z, o), where
i) sis a structure (D, a,f) consisting of a countable domain D of
values,an interpretation (aYor function and predicate symbols,and
value assignments (5) to the constant symbols ever the domain D;
ii) Ais a value assignment to the global variables in domain D;
ii1) Z js a distributed system as defined earlier;

iv) o isa computation as defined earlier.

We use ananchored interpretation of formulas [4]. In contrast
1o the floating interpretation’ where validity and satisfiability are
evaluated at all statesof @ computation, inanchored interpretation
[4], the interpretation of is anchored at the initial state of the
computation, We use an anchored interpretation primarily due to
the fact that the sartjal ordering amone the states makes it"difficult
to consider suffix closure of computations. Other advantages or
using anchored interpretation can be found in [4].

2.3.1 interpretationof Formulas

Let M= (s ,A ,Z u)beamodel, then the interpretation of a

termt at a statesij isdenoted by (M,1,j)(t), and isdefined inductively
as follows:



if t is a constant symbol k, then (M,i,j)(t) = B8 (k),

if t is a global variablex, then (M,i,j}(t) = A(x),

if t is a local variable symbolv, then (M,i,j)(t) = sij(v),

iffis a k-ary functionsymbol and ti,ta, ...tk are terms of appropriate

sorts, then (M,i,j)(f(t1,t2, i) = @B ((M,i]){t),-» (MLi)(tK))-
if 7z is a k-ary predicate symbol and ty,tz, ...tk terms of appropriatesorts, then
ML (0,8, -.00) = troe ML) X (MAD(0R)X .. X(ME)(te NE a(@)___
GivenamodelM=(s ,A ,Z,0) and an atomic formulap, (M,i,j)

= p denotes that (M,ij)( )&=true. An inductive definition for
interpretation of formulasfollows. Let p and q be arbitrary for-
mulas and x be a global variable, then: ...

(M,ij) & —p < itis not the case that (M,1,j) &= p,

M) F pVvg e (Mij) Ep or Mij) =q

(M,i]) & VYx:p  (M,i)) = p for eachyED, y#x:M'(y) =M(y),

Mij) = Xip j<|oi| and (M)ij+1) & p,

M,ij) = cp < Z.G{c,n;)=ng, and

for somel< {ox/|, sy £ sij :(M)k]) E=p

(M,i,}) &= Fip & forsomek: j<k<|oi] :(M)ik) &= p,

(M,ij) = Gip = forallk j=k<|oi|:M,ik) & p,

M) F pUik g < for some cEZ.C and some 1,j <1< |ai],

The paféntheses in a formula can be omitted, whenever the
impliedp parsing of the formula is understood from the context. If a
formula p holds at someposition sij on some model, i.e., (M,i,j) &= p,
for some nieZ.N and some j <J ai_}, we say p issatisfiable, A formula
iscalled tobe temporall¥/ valid it it holdsatall times inamodel,
ie. if (M,i,0) F Gi(p)for somenjeZN. A formulais called valid
iff 1t is temporally valid in all models. The following theorems are
easily provable.

T21:  If Z.G(nj,c) =nj, then Fi(c(Fj(w))) = Fi(c(w)

T2.2: pUiip A c(p = Gj ) > Gip)

T3 (OB = Gle) ,

T2.4: Ifeisanyevent, and Z.G{¢,ni) =nj, then c(Fi(e) - Fi(e))

3.0 Programming Model

We consider a programming model supporting distributed
processes which communicate only by exchanging messages. The
communication mechanism is similar to remete procedure calls
where only the receiving process blocks. It is assumed that the
communication system is reliable and that there are known upper
bounds on transmission delays. The syntax and semantics of this
programming model are given below.

Syntax

The class of statements S considered isas follows. .

S X =t I* assignment /
delay d /* delay command #/
clt /* send command */
c?y I* recelve command */
$1;82

/* sequential composition*

Sy, I* q%%rgeé commen */ !

........... 0> Sy [dterative command Y/

where tidénotesa term built up from programvariables and furiction

(Sf'mbOlS, x and y are variables, Si’s are pregram statements, and b;
enotes a boq?_’ean expression, d € TIME which represents a

domain of positive reaf values.

32 Semantics

The informal meanings of the programming constructs are as
usual; however some assumptionsneed to be stated. The statements
of the language can be classified into atomic and compound state-
ments. The atomic statements can further be subdividedinto primi-
tive  and synchronization statements. An atomic instruction com-
pletes execution once it starts exeeuting, i.e., it cannot be inter-
rupted. Primitive statements have predefined maximum and mini-
mum executiontimes. The assignment, delay, and send statements
are primitive statements. We also consider boolean evaluations in
the guarded and iterative statements as primitive statements. This
assumption is necessary only for simplification of the proof theory.
Thus, the guarded and iterative statementscanbe considered to be
composed of a boolean evaluation statement and other atomic
statements. Aprogramstatementisofthe formP :P1}|P2| ] ...} | Px,
where each Pi is a static process definition. The compound state-
ments are composed of atomic statements. Sequential coOmposi-
tion, guarded, Iterative, and program statements are compound
statements. o . .

The only synchronization statement is the receive statement.
Areceive statementblocks until the corresponding messagearrives.
Thus, the execution time of a synchronization statement depends
on the satisfaction of the synchronization condition and does not
have an a priori upper time-bound. After a message is sent by a
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sending process (marked hy a rofifier event), it takes Aty time to
arrive at the receiving node. Also, we assumea maximum clockskew
of Acl [1,14]. Thus, if at time ti a notifier event occurs, and at 2
the corlresponding notification event occurs, then {t1-t2| =
Aty TACL
Each statement in a program is assumed to have a unique label.
A statement labelled 1i can be represented by an action ri. The
following equivalences are assumed to hold. .
El: If an‘action T represents a guarded statement b—S, and action
b represents the boolean evaluation b and the statement S is
represented by an action s, then
@ T.8s =Tp.Cs
b) 1.6c = @ ((mb Arp.ec) V Ts.ee)
El(a) implies that the start event of a guarded statement is
equivalent to the start event of the corresponding boolean evalua-
tion statement. E1(b) states that the end action event of a guarded
statement is equivalent to the occurrence of either the end action
event of the boolean evaluationwhen the boolean condition is false
or to the occurrence of the end event of zs.
E2 If an action t represents an iterative Statement *(b-S), b
rseprr]esents the boolean evaluation, and s represents the statement
, then
@) Vi>0: (T.e5,1) = (tb-cs, i)
(b) Vi>0: (Ts.el) = (T.65,i T 1)
) T.€e 3 ® (b Atp.Ce)
%—:2(;1) states that the start action of an iterative statement is
€quivglent to the start action event of its boolean evaluation part.
states that the end action event of the the statement S is
equivalent to the next instance of the start action event of the
iterative statement. E2(c) states that the end action event of an
iterative statement is equivalent to the end action event of the
boolean evaluation when the boolean condition is false.
E3. Let the sequential composition S$1;52 be represented by an
action =, and let the action =1 represent the statement S1 and =2
represent the statement Sz, then
@ T1.€e = T2.8r
(b) T.6e = T2.Ce.
E3(a) formalizes the fact that a statement becomes ready as soon
as the previous instruction completes executing. E3(b) states that
the em? action event of sequential composition s equivalent to the
end action event of its last component statement. .
E4. Letaprogram P ::Pi]|P2]]| ..} |Pabe represented by anaction
g, and let action zj represent process Pi, then
(@) T0.6r = T1.€r A T2.€r A ... A Tn.€r
g)) T70.6e = T1.e A 7T2.€e A ... A Tn.€e
4(a) states that all the parallel processes of a é’ro ram statement
become ready as soon as the program is ready. E4(b) states that the
end action of the program statementis equivalent to the end action
of all its constituent statements.

4.0 Proof System

A number of axioms and rules are necessary to formalize the
deductive proof system for the programming model. The axioms
and deduction rules translate the structure ot a program into basic
DL statements about its real-time behavior. The statements thus
derived, are then combined into proofs to establish the real-time
properties. The basic axioms for a process Pi statically allocated to
anode nk, are given below. )

PA1: For anaction T of the process Pi,

Gi(T(r.er)st A SP(r) = Fi(T(r.e5) <t))

where SPisa predicate denoting the schedulingpolicy of the system.
Thisaxiom states that an action starts executingassoonas it isready
and is selected by the scheduler. ) ]
PA2a. Let aprimitive instruction (other than a delay instruction) be
represented by atransition r, then

Gi((T(r.es)<t) = F(t+.1*Z.S(nk < T(7r.ee ) St+7.1,"Z.5(nk))

This axiom implies that if a start action event for a (nonblocking)
instruction occurs, then the corresponding end action event occurs
within the time bounds of the action as determined by the speed of
the corresponding node processor.

PA2b. Letadelay instruction of the formli: delay d be represented
by an actiont , then

Gk(T(T.cs) =t » Fk(T(‘!.Ce) = t+d))

This axiom is similar to the axiom PA2a, however; it formalizes the
fact that the time to complete execution of a delay statement is
independent of the processor speed.

PA3: Gi((T(emr) st) »(c(T(ems) < t-Atr-Acl)) MSA (Message Send Axiom)



where ems is a notifier event and emr is the corresponding notifica-
tion event. This axiom formalizes the assumption that if a message
is received, then it must have been sent by the sender process at
most Atr + Acl time units earlier, since a message takes Atr time to
travel to its destination, and two adjacent clocks differ by at most
Acl time units.

PA4: Letan action r represent amessage receive statement, then
G k(Fr(T(rr.es) <ti AT(emr) <t2) - Fi(T(rr.ee) Smax{ty,t2} +Ac))

MRA (Message Receive Axiom)
where emy is the notification event. This axiom formalizes the
assumption that after a receiving process is ready and the re-
quired notification event occurs, another Ac units of time are
required to complete execution.

S(?R (Sequential Composition Rule): Let e1, e2, e3 be any occur-
rence of events, then

G ST?“ stz% -~ F€§t1+41 <T(c2) St2+da)))
G ﬁ'_s_%e;_ 37
2

P (P e T(eaes <61 )2 1))
=T(ey) <t 32T (es)sn+d:
SCRisthe onlyrule of the proof system.There isno rule for parallel
compositionin accordancewith the underlyingpartial order seman-
tics.
4.1 Soundness and Completeness of Proof System
We show that the ptoof system is sound, i.e., every formula

derivable in the proof system is indeed valid, and that the proof
systemis complete relative to provability of DL formulas.

Theorem 4.1: The proof system issound.

Proof:We have to show that all axioms arevalid, and that whenever
the premise of the inference rule isvalid, so is the conclusion. For
most axioms and for the inference rule, soundness follows directly
from the definition of the semantics of the programming model and

the distributed logic. Here we sketch the soundness of the mess%e
receive axiom (MRA).

Lemma 4.2: The message receive axiom MRA Bsound.

Proof: From the premise of MRA: Fk(T(rr.es) st1 A T(ema)st2)).
The premise implies that the receive statement becomes ready
before time t1and that the corresponding notification event occurs
before time t2. Thus, the time at which copying of the message to
the buffer can start is given by max{t1,t2}. The receiving process
requires Ac units of time to complete execution. Thus, the time at
which the end action event occurs is given by max{t1,t2} +ac. Tﬂis
precisely is what stated by MRA.

Theorem 4.3: The proof system is completerelative to the provability
%f valid formulas in DL.

roof: The proof can be constructed by using the idea of a precise
specification {13]. The axioms can be shown to give precise
specificationsand the proof rule canbe showntobe precise presw-
ing fromwhich the reEm've completeness follows.

5.0 Example

We will illustrate the use of the proof theory by analyzing the
real-time property of a sample problem.

51 Producer/Consumer Problem .

The generic multiprocess producer/consumer problem is very
important to the analysis of many real-time control problems.
Usually, real-time control programs consistofapi%eline of proces-
Ses[ll{. Such pipelines of real-time processes can be considered as
chains of real-time producers and consumers {11]. In order to
illustrate how the real-time behavior of a pipeline of processes can
be analyzed, let us first consider a generic two-process
producer/consumer problem. Subsequently,we will generalize this
problem to an n-process producer/consumer chain.

In: P

/* Producer/Consumer Program *|
/* Process Py */

P1::
111: *((b1:true) » /* for ever*/

hz: produce iteml;

II1;;: cilitems; /* send itemltoP2 */

14:

1|Pa:: /* Process P2 */

Lo *((baitrue) - [* for ever */
c1?itemy; /* receive itemi from Pi*/
produce itemg; /* final result */

l2a colitemg;

125
ais program has two iterative processes P1 and P2 running on
twe nodes m1 and n2 of a distributed svstem with
5{n1) =Z.S(n2_=1.The process P1 produces itemi and sends
th item (result] to P2 which uses itemi to produce itemz. An
ir portant timing property of this producer/consumer systemisthe
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rate atwhich the tinal result (itema) isproduced. The analysisof this
problem involves analysis of two cooperating processes. First, we
analyze process P1 to determine the arrival rate (AR1) of itemi at
P2 and then using this result, we analyz= process P2 to find the
production rate %PRI) ofitema.
Arrival Rate (AR1)
G2(Vi>0:T(emal) =t = Fo(T(ema,i+ 1) <t +A1))

WHEre ema is the notification event.
Production Rate (PR1)
Ga(Vi>0:T(T2.ce,i) <t -» Fo(T(t24.6¢,i T st +A3))
Proof:

1Ga (Vi>0:T(r22.e¢,0) <t = Fo(T(v23.8¢, i) St TT2310)) E3(a),PA2(a)

2. G2 (Vi>0:T(z23.8¢,0) St = F2(T(T24.8¢,1) St+7124.t0)) E3(a),PA2(a)

3. Ga(Vi> 0:T(124.6¢, 1) St > Fa(T(121.€¢, i+ 1)<t +70.ty)) E2(b),PA2(a)

4, ng\/i > O:Tgrn.ee, st - Fo(T(z2n.epi+1)<t)) E3(a)

5. G2(Vi> 0:T(t22.€e, ) St > F2(T(r22.6551 T st TA2)) 1,2,3,4,SCR
where Az2=tp.tu+723.tu +724.tu

6. G2(Vi>0: T(ema,i) st = F2(T(ema,i + 1) st +A1))) AR1

7. G2 ((T(r22.ee,i) st ) » F2((T(r22.€e,i + 1) <t +max(A1,A2) +Ac))

8 G2 (T(r22.€e,) <t) » F2(T(r24.c,i) St+Aq)) 1,2,SCR
where Ag=123.ty +724.tu
9. G2 (T(122.e¢,)) <t) » F2(T(124.6¢,i + 1) St+ A3+ Ag))
where A3 = max(A1,A2) T Ac 7,8,SCR
10. G2 (T(r24.6¢,1) St) > F2(T(t24.€¢,i + 1) St + A3)) 89 N

5.2 Producer/Consumer Chain

The basic structure of this program has the same form as the
two-processproducer/consumer problem. Each process inthe chain
acts as a consumer to the previous process and as a producer to the
next process. The program for an n-process producer/consumer
chain is outlined below.

lo P /* Program for producerlconsumer chain */
P1- I* Process Pi *I

f11: *((b1 true) - /* for ever */

l12: produce iteml;

l1a: cilitemy; /* send iteml to P2 *|
)
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Pi:: /* Process Pi *I

lit: *{(bi:true) - I* f or ever */

liz: ci-1?itemi.1; I* receiveitemi.1 from Pix */
lia: produce item;;

:;4: cilitemi; /* send itemito Pi+1 */

15:

1

| |Pni: /* Process Pn */

In1t *((bn:true) > [* forever*/

In2: Cn-1?itemn-1; I* receiveitemn.s from Pn.g */
Ina: produce itemn; [* final result */

Ins cnlitemn;

lnSI

Analysis of the timing behavior of this program can be done
similar to the analysis of the two-processproducer/consumer prob-
lem, and induction can be done on the number of processes 1n the
producerlconsumer chain to obtain the final result, which is of the
orm:
G(Vi> 0:T(Tn5.2¢,1) < t=>Fn(T(zns.ee,i T Dt Tmax(A1 +n*Ac,

A2*(n-1)*Ac, .. ,AnTAC) [ ]

6.0 Related Work

The model proposed by Koymans et al., is based on linear
temporal logic augmented with a global clock having a dense time
domain {3]. Using their proof system, the safety and liveness
B\roperties of general message-passing systems can be proved. A

eal-Time Temporal Logic (RTTL) was introduced in [9] for
specifying and verifying the timing properties of real-time proces-
ses; this method usés an interleaving semantics. In another related
work [6], syntacticextensionsto temporal logic are made through
the introduction of time-bounded temporal operators called in-
range (A) and all-range (v), for facilitating analysis of real-time
properties of programs. The proof method presented in [6] is based
on a maximaﬁy parallel model of computation. A compositional
roof system for a CSP-like programming language is reported in
13}]. A mapping from time to a set of channel states is used to
analyze the communication behavior of a program. This technique
is also based on a maximally parallel model [l%]. All these reported
proof methods.[1,3,6,9,13] attempt to analyze real-timed behavior
of programs based on models idealizing real-timed concurrency.
Idealizing the details of process executions, execution speeds, tas



schedulingtpolicy of the system, etc. makes analysis of real-timed
behavior o grograms diff)i’cult and often unrealistic. DL takes care
of these problems by defining a real-timed concurrency model:
There areanumber of similarities between DL andc{merl' avii,
Set Temporal Logic (ISTL) [2], both the distributed logic an(fIS
are based on ideas from interleaving and partial order semantics.

However, the distributed logic differs in several important ways
from ISTL [2]. ISTL concentrates on developing a natural model
for distinguishing nondeterminism due to concurrency and, non-
determinismarising out 0f local nondeterministic choices. DL views
a computation as a set of interleaving sequences with a partial
ordering among the states of these sequences, whereas ISTL views
a computation as a partial order representingi]a set of interleaved
computations. Further, DL does not support the concept of a global
state, unlike ISTL which represents global state as global snap-
shots;also ISTL does not support quantitative reasoning about time.

7.0 Conclusions and Discussions
An important question that is often asked of a real-time program
is whether an implementation of it would satisfy the timing con-
straints. However, the classical temporal logics do not model
real-timed concurrency,which makes it difficult to analyze the real-
time behavior of distributed Frograms. To overcome this problem,
we have introduced a modal logic having features from both the
artial order and interleaving models. With the established logical
ramework, it isstraightforward to develop a comprehensive proof
theory for formal analysis of real-time behavior of distributed
programs for various programming models supporting different
communication mechanisms. The use of the proo?theory has been
illustrated through the analysis of the real-time properties of a
sample program requiring communication among multiple proces-
ses. Our current work is 1n the direction of realizing an executable
specification tool based on the presented logic.
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