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Abstract 
Temporal logic is widely acclaimed to be a highly successful tool for 
analyzing non-real-time properties of programs. However, a few 
fundamental problems arise while designing temporal logic-based tech- 
niques to verify real-time properties of programs. In this context, we 
formulateamodallogiccalleddishibufed Iogic (DL) byusingideas from 
both the interleaving and partial ordering approach. This logic uses 
spatial modal operators in addition to temporal operators for repre- 
senting real-timed concurrency. In additikn to the syntax and semantics 
of the logic, a programming model, and a formal proof technique 
based on the logic are also presented. FmaUy, use of the proof method 
is illustrated through the analysis of the real-time properties of a generic 
multiprocess producer/consumer program. 

Key Words: Distributed systems, modal and temporal logics, real- 
time behavior, verification, proof theory. 

1 .O Introduction 
Temporal logic is widely acclaimed to be a highly useful for- 

malism for analyzing non-real-time properties of systems [5,7,8,10]. 
However, the underlying computational models of most temporal 
logics ignore details of process executions (real concurrency ). For 
example, the interleaving model idealizes a distributed program 
execution essentially into a multiprogramming scenario where con- 
current tasks are executed one at a time. Such models of concurren- 
cy are quite acceptable for analysis of non-real-time ro erties is 
concerned; however satisfactory analysis of real-time8beiavior of 
distributed s stems in this model is very difficult, since global states 
are very difzcult to observe in distributed s stems [ll]. 

A distributed system usually consists or  a set of cooperating 
rocesses running at the spatially separated nodes of the system. 

k e s e  processes can run at greatly varying speeds and execute 
either m an inde endent manner or in synchronization with some 
other process(esf)by exchangin messages. The message transmis- 
sion delays are usually not neg&ible compared to the inter-event 
time intervals. Thus, it is often impossible to say which one of two 
events occurred first (ie., some events are incomparable). Conse- 
quently, a distributed s stem can be viewed as a partial1 ordered 
collection of events [ 11. However, in the framework o r  classical 
temporal logic, a concurrent/distributed system is usually repre- 
sented by a monolithic state; and the system is assumed to evolve 
from one state to another by state trunsifions. Thus, a lobal clock 
and a central control are either explicitly or im licitfiy assumed. 
Consequently, a total ordering of various spatialfy separated and 
causally inde endent set of events is implicitly assumed. Concur- 
rency is moglled b allowing concurrent events to occur in any 
order. Although suci representations of concurren offers many 
advantages, includin conce tual simplicity and flemqility; they do 
not provide a naturaf modefof real-timed behavior of distributed 
programs is concerned [2,7]. 

An alternative representation of concurrency is by a partial or- 
dering model - Petri nets are probably one of the best-known 
formalisms incorporating this model of concurrency. Petri nets are 
based on nondeterministic automata and are capable of undergoing 
transitions involving only some of the processes at any time, mde- 
pendent of the transitions of other processes. Thus, representation 
of real-timed concurrency in this framework is facilitated by the fact 
that neither a global state nor a global clock need to be assumed. 
However, Petri nets suffer from several shortcomings includin the 
state e losion problem. In this context, we formulate a modal yogic 
calledxtribufed logic by using ideas from both the interleavlng 

and the partial ordering models. The ordering among events ii 
central to the semantics of the distributed logic. A total order is 
assumed to exist among the events that occur at an sin le node of 
a distributed system. Apart from that, the,event ozsenfiing a mes- 
sage at one node is assumed to precede the event of its reception at 
another node. 

The rest of this aper is organized as follows. The distributed 
logic is defined in %&on 2. In Section 3, a programmin model 
is introduced; while in Section 4, a proof scheme for ana f ysis of 
real-time properties of distributed programs i s  presented. In Sec- 
tion 5, use of the formalism is illustrated through analysis of a 
sample program. Section 6 presents a comparison of our work with 
the related work. Section 7 concludes this paper. 

2.0 Distributed Logic 
2.1 Preliminaries 

Distributed Logic (DL) assumes an underlying distributed sys- 
tem. A computation is considered to be a set of interleaving sequen- 
ces which reflects a partial ordering among the states of the different 
interleaving sequences from the underlying distributed system 
model. Thus, a computation (u) of a rogram P in the logic is a 

number of linear brpnches corresponding to process executions in 
different nodes of the system. The partial ordering among the states 
of the linear branches in a computation arises due to exchange of 
mesa  es among processes running on different nodes of the sys- 
tem. &r a s stem with n nodes (nzl), we can have a computation 
as shownin Fig. 1, where the Si."S are states, the thin lines represent 
state transitions, and the thick lines represent aprecedence ordering 

partially ordered structure of states. 5% is structure consists of a 

."-............I... " -.,, ~ among states (events). ... ............. .......'I ...... ".. ............. 

L," ...... " , ~  ........................ " ............... " ....................... ..... ~ ......... .̂..X 

Figure 1. A Computation in the Logic 

Detinition 2.1: We represent the under1 in distributed system by 
a structure Z=(N,C,S,G) such that 5.3 is a countable set of 
elements representing the nodes of the system, Z.C represents the 
set of commiinicatinn channels in the system. Each channel CEZ.C 
connects exactly two nodes of the system, Z.S is the speed assign- 
ment to the individual node rocessors ZS: Z . N 4  (8 is the set of 
positive real numbers), a n 8  Z.G represents the interconnection 
among the nodes by a partial mapping Z.G: Z.Cx2.N-Z.N. Intui- 
tively, for each node neZ.N and channel ceZ.C, Z.G c,n) if 
defined) is the node connected to node n by the channel c. ' k e  no6k 
interconnection function Z.G can be extended to the domain of 
transitive closure of channels Z.C such that Z.G(r,n) = n, and 
Z.G(ci.m+n) =Z.G(ci,Z.G(c;z,n)), where E is the empty string, and 

Definition 2.2: An event serves as a temporalmarker. Events mark 
points on a branching time structure and are of importance in 
describing the real-timed behavior of a system. Events can be 

c1,neZ.C. 
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an action becomes ready 

ii) Start action event: This event occurs when an action is scheduled 
for execution by the scheduler (see def. 2.5). 
iii) End action event: This type of events occur due to the completion 
of actions. 
iv) Exfemal event: Events of this type occur due to actions of the 
environment of the embedded system, e.g. an interrupt signalling 
some service routine to be invoked. 
v) Notifer event: This event occurs when a message is placed on a 
communication channel due to a process sending a message to 
another process. 
vi) Notification event: This event occurs when a message after 

traversing the communication channel arrives at its destination. 
Definition 23: Each linear brunch of a computation (Fig. 1) in 
DL is called a Path,  and represents interleaved executions at a 
node processor. Thus, there exists a path (oi) corresponding to each 
node niEZ.N. Consequently, the number of paths of a com utation 

length 10; I of a path ai is the number of states in that ath. I L i  is 

number of states in any path is infinite, then the path length is 
denoted by loit =a. It should be noted that we use the termpath 
to represents part of computation in a com onent of the system and 
is in variance with the meaning of a put{ as used in CTL [12], 
ISTL[2], etc. 

Definition 2.4: Each state sij, niEZ.N, j 4 [ui 1 ; is a value assignment 
to all variables associated with the processes statically assigned to a 
node niE%.N, and also interprets a clock function (defined later). 

Intuitively, the states are snapshots of task executions in the 
individual nodes. A state Si.j can evolve into the succeeding state 
Si.(j+1) by a state transition. A state transition occurs due to the 
occurrence of some event. Thus, time elapses in states, and the 
occurrence of an event instantaneously transforms a state S i .  into 
the succeeding state Si .0  + 1). In general, an arbitrary amount ottime 
may elapse in a state; thus, no restrictions have been imposed on 
the speeds of the individual node processors. 
Definition 2.5: An action T re resents a finite progress made by 

some program instruction(s). For a set of states S in a path ai, an 
action T is formally defined as a six-tuple: T = < tu, tl, h, er, es, ee > , 
tu and ti are the upper and lower time-bounds associated with the 
action, h:S-.S called transformation function which denotes that the 
effect of an zction is to transform a state into another state, er is the 
activation event, es and e e  are the start action and end action events 
(see def. 2.2) respectively. We will refer to any component x of an 

is given by the number of node processors IZ.NI. T R e ath 

finite (Le., ui:Si.O,&j.l, .... Si.k for some k), then )uil = R + 1. If the 

some process in the system, an B thus represents the execution of 

action r , by TX 
Definition 2.6: A precedence relation (L )  among the events in a 
distributed system is defined as follows. 
i.) If e i  and e2 are two events occurring in the same node of a 

system, and el occurs before e2, then ei L e2 (to be read as - el 
irecedes e2). 
ii.) If el is a notifier event and e2 the corresponding notifration 

event, then e i~e2 .  
iii. If e i ~ e 2  and e ~ ~ e j  then e i~e3 .  

kwo events are unrelated (or concurrent ) if ei&e2 and e2xei . 
The concurrent events occur on different paths of a computation - 
they may or may not be simultaneous. For any event e, we do not 
asmme eLe, since a system in which an event can occur before itself, 
is not physically meaningful. Thus, our precedence relation L is 
irrejlawe and is similar to Lamport's "hppened b@ore" relation 
111. p e  transitive closure of this precedence relauon represents a 
partial ordering of the states belonging to different paths and a total 
ordering of the states in any sin le path. 

as $.jL sl.k, iff an event el is kmwn to not yet have occurred 111 
' state si. and another event e2 is known to have occurred in state su, suci that e l ~ e 2  .We assume the existence of a clock% at each 
node ni EZ.N of the system. Each clock Ti ranges over an infinite 
set (TIME) of positive real values and assigns time values to the 
events occurring at the local node. The clock function assigns a value 
00 to events that have not yet occurred at any state. The system of 
clocks is assumed to be synchronized within Ad tindunits (maxi- 
mum clock skew). The entire system of clocks i s  represented by a 
function T, such that for an event b occurring at a node nit T(b) = 
Ti(6); and for any two events Q and 6, if a ~ b  then T(u) < T(b). 

A state Si.j is said to temporal f y precede another state S1.k. wri t tp  

2.2 Syntaxof DL 

given below 
Alphabet 

The formulas of DL are built up from an alphabet of symbols 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ." .................. 
(i) 

(ii) 
(iii) 

A denumerable set constant symbols, local and global variable 

a denumerable set of function and predicate symbols, 
operator symbols Xi, Fi, Gi, and Uij for ni,njEZ.N, cEZ.C, V, 

symbols, and the parenthesis symbols (, ), 

7 andv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The global variables represent the time-independent variables, 

and the local variables represent the time-dependent ones which 
can change from state to state. The set of predicate symbols in- 
cludes s,  =, <, and other usual predicates on numbers. The set of 

redicates also includes redicates of the type: at Ili, in Ii, and afer E, where li is the label o?a program instruction. Informally, these 
predicates mean that an instruction labelled li is ready to execute, 
it is under execution, and that execution of the instruction labelled 
1i has been completed, respectively. The meanings of the standard 
logical operators are assumed and those of the other operators are 
explained subsequently. 
Terms 

-̂."̂ _...._.I ................. ---.-.-.-" _I^_ 

(i) 
( G )  

Every constant and variable is a term 
Iff is an n-ary function, then f(ti,tz ..., tn) is a term, where tr,tz .... ta . ~. . ~~ 

- -__--_______-----_-_____ are hms Of aPR<@riate&i.-: __--: ---- -_--_: ___-------_- ---__-_- 
Atomic formulas are obtained by application of predicates to t e r m  
of a proptiate sorts. 
Wei-Formeci Formulas . , ~~$~ 

(i) 
(G) 

(iii) 

................................................ .......................................... 
Every atomic formula is a wff, 
if p is a wff, then -p, cp for cEZ.C, and 

if p and q are wffs, then p v q ,  and PUij q for ni,njEZ.N are wfk, 
Xi(p), Gi(p), and Fi(p) for niG5.N are wffs, 

ii9 - -__  . . i f P - ~ - a w f f a n d x ~ s - a 9 l ~ ~ ~ - . a ~ ~ ~ ! ~ ~ ~ ~ ~ ! ~ ~ ~ ~ ~ - ~ ~ ~ - ~ - ~ - - ~ :  __- __-  
Informally, the formulas X I ~ ,  fip, Gip, and PUij q, are read as "over 
path i nexttime p holds," "?ver ath i eventually p holds," "over path 
1 henceforth p holds," and hoTi"ds over path i until q holds over path 
j," respectively. Each CEZC is a s atial modal o erator: the for- 
mula cp is read as "p holds across t g e channel c". #he until operator 
(Uij ) is useful for representing and studying synchronizabon and 

communication behavior of distributed programs. The formula cp 
captures the fact that the formula p holds in a nei hbor node 
according to the latest mesa  e. Further operators &r arbitrary 
formulas p and q may be introtuced as abbreviations for particular 
formulas. 
Abbreviations 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ...................._..............I ..... ^ .  

P-V 'PV9 
P W  - . ( P - - O  
P-l ( P - . d A ( P P )  

3x:p 0 -(vx:-p) 

true u p V-p 
false 0 -true 

Gp 0 3 niEZ.N: (Gi(C1pVQpV ...)), where~i,cz, ... EZ.C* 
(henceforth p holds over some path) 

Op 0 3 niE2.N: (Xip) (nexttime p holds over some path) 
F p  e 3niEZ.N: (Pip) (eventually p holds over some path) 
pU q 9 3ni,njEZ.N (p &j q) 

The basic semantic notion of DL is the interpretation of for- 
mulas in a rnodeL A model M is a quadruple (s, A ,Z, u), where 
i) s is a structure (D, a, B )  consisnng of a countable domain D of 
values, an interpretation (a) for functlon and redicate symbols, and 
value assignments (B) to the constant s boys over the domain D; 
ii) A is a vahe assignment to the lobapariables in domain D; 
iii) Z is a distributed system as deined earlier; 
iv) u is a computution as defined earlier. 

We use an anchored interpretation of formulas [4]. In contrast 
to the froatin interpretation where validity and satrrfiability are 

[4], the interpretation of is anchored at the initial state of the 
com utation. We use an anchored inte retation primarily due to 
the Act that the sartial ordering amom$e states makes it difficult 
to comder suf i  closure of com utahons. Other advantages or 
usin anchored interpretation can%e found in [4]. 
2.3.9 interpretation of Formulas 

Let M = (S , A , Z, u) be a model, then the interpretation of a 
term t at a state Si-j is denoted by (M,i,j)(t), and is defined inductively 
as followc 

evaluated at a kq 1 states of a computation, in anchored interpretation 
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. .  . . . . . . . . . .  
if t is a constant symbol k, then (M,ij)(tj =' $ (k), 
if t is a global variable x, then (M,ij)(t) = A(x), 
if t is a local variable symbol v, then (M,ij)(t) = Si,j(V), 
i f f  is a k-ary function symbol and ti&, ..., tk are terms of appropriate 

if n is a k-ary predicate symbol and tl,t2, ..., tk terms of appropriate sorts, then 
~ M ~ ~ ~ - ~ ~ ( t ~ ~ ~ Z ~ ~ ~ ~ ~ k ~ ) - ~ ~ ~ ~ - ~ ~ ~ ~ M ~ ~ ~ - ~ t ~ ~ ~ ~ M ~ i ~ ~ ~ ~ ~ - ~ - ~ ~ ~ - ~ M ~ ~ ~ ~ ~ ~ ~ ~ ~ €  a(?)--- 

sorts, then (M,i,j)(f(ti,tz, ..., tk)) = a(f)((M,ij)(tl) ,... (M,ij)(tk)). 

Given a model M = ( S  , A , Z, u) and an atomic formula p, (M,ij) 
t= p denotes that (M,ij)( )t= true. An inductive definition for 
interpretation of formulas follows. k t  p and q be arbitrary for- 
mu!as.and. .x bea.g!oba!.variab!e, then: ........................................ 

(M,ij) c -p o it is not the case that (M,ij) I= p, 

(M,i,j) 6 Vx: p o (M,i,j) != p for each yED, y+x:M'(y) =M(y), 
(M,i,j) t=*p * j <  luil and(M,ij+l)  I= p, 
(M,i,j) I= cp Z.G(c,ni) =nk, and 

(M,ij) c Fi p 0 for some k: j<  k <  loil : (M,i,k) I= p, 
(M,ij) c Gip 9 for all k j s k <  
(M,ij) F pUik q oforsomecEZ.Candsome1,] < I <  1-1, 

The arentheses in a formula can be omitted, whenever the 
impliezparsing of the formula is understood from the context. If a 
formulap holds at some position s i j  on some model, i.e., (M,i,j) I= 
for some niEZ.N and some j <A "1, we say p is satisfiable. A form& 
is called to be temporally vali i it holds at all times in a model, 

for some niEZ.N. A formula is called valid 
in all models. The following theorems are 

easily provable. 

'123: c(G(p)) * G(c(P)) 

(M,i,j) != p v q 0 (M,i,j) I= P or (M,$ t= q, 

for some 1 < lq I, skj L s i  : (M,k,l) k= p 

l:(M,i,k) I= p, 

_ _ " _ _ _ _  _ _ _ _  _ _ _  - z ~ G ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ M ~ ~ ~ - ~ - ~ ~ ~ ~ d - ~ ~ ~ ~ ~ ! m ~ j ~ m ~ - ~ - ~ M ~ ~ ~ m ) - ~ ~ . - - -  

Tz.1: If Z.G(ni,c) =nj, thenFi(c(Fj(w))) * fi(c(w) 
T22: PUij p A C(P + Gjp) + Gi p) 

Tz.4 If e is any event, and Z.G(c,ni) =nj, then c(Fi(e) * Fj(e)) 

3.0 Programming Model 
We consider a programmin model supporting distributed 

processes which communicate onfy by exchanging messages. The 
communication mechanism is similar to remcte procedure calls 
where only the receiving process blocks. It is assumed that the 
communication system is reliable and that there are known u per 
bounds on transmission delays. The syntax and semantics o?this 
programming model are given below. 
3.1 Syntax 
m.e !ass,c?f?!?teme?ts s considered.is, as. fO!?@WS*. .......................... 
s:: x: =t  I* assignment *I 

delay d 
jC!t I* send command *: 
C?Y /* receive command *I 
s1;s2 /* sequential composition */ 

Iibi -++SA\, 

/* delay command "I 

/* guarded command *I 
............... (b!. ............... !* .'!erative comma?!!. *!.. ..................................... 
where t denotes a term built up from programvariables and function 
y b o l s ,  x and are variables, Si's are rogram statements, and bi 

domain of positive reafvalues. 
3.2 Semantics 

The informal meanings of the prwramming constructs are as 
usual; however some assumptions nee$to be stated. The statements 
of the language can be classified into atomic and compound state- 
ments. The atomic statements can further be subdivided intoprimi- 
tive and synchronization statements. An atomic instruction com- 
pletes execution once it starts executin , i.e., it cannot be inter- 
rupted. fimifive statements have predelned maximum and mini- 
mum execution times. The assignment, delay, and send statements 
are primitive statements. We also consider boolean evaluations in 
the guarded and iterative statements as primitive statements. This 
assumption is necessary only for simplification of the proof theory. 
Thus, the guarded and iterative statements can be considered to be 
composed of a boolean evaluation statement and other atomic 
statements. Aprogram statement is of the form P :: PI 1 I P2 1 1 ... I 1 Pk, 
where each Pi is a static process definition. The compound state- 
ments are composed of atomic statements. Sequentlal composi- 
tion, guarded, iterative, and program statements are compound 
statements. 

The only synchronization statement is the receive statement. 
Areceive statement blocks until the corresponding message arrives. 
Thus, the execution time of a synchronization statement depends 
on the satisfaction of the synchronization condition and does not 
have an a prion' upper time-bound. After a message is sent by a 

enotes a boo Y ean ex ression, d E %ME which represents a 

sending process (marked by a not$er event), it takes Atr time to 
arrive at the receivine node. Also, we assume arnaximum clockskew 
of Acl [1,14]. Thus, if at time t i  a notifier event occurs, and at t2 
the corresponding notification event occurs, then I ti-t21 I 

Each statement in a program is assumed to have a unique label. 
A statement labelled l i  can be represented by an action T i .  The 
following equivatences are assumed to hold. 
El: If an action T represents a guarded statement b-S, and action 
sb represents the boolean evaluation b and the statement S is 
represented by an action T ~ ,  then 
(a) ~ . e s  =Tb.es 

El(a) implies that the start event of a guarded statement is 
equivalent to the start event of the corresponding boolean evalua- 
tion statement. El(b) states that the end action event of a guarded 
statement is equivalent to the occurrence of either the end action 
event of the boolean evaluation when the boolean condition is false 
or to the occurrence of the end event of T ~ .  
E 2  If an action T represents an iterative Statement *(b-S), T b  

represents the boolean evaluation, and T S  represents the statement 
S, then 

Atr + A d .  

(b) r.ee FG 0 ((-b ATb.ee) V Ts.ee) 

(a) 
(b) 

Vi > 0 (r.es,i) E (rb.eS, i) 
Vi > 0: (Ts.ee,i) 5 [s.es,i + 1) 

(C) T.ee 3 0 ('b hTb.ee) 
E2(a) states that the start action of an iterative statement is 
e uivalent to the start action event of its boolean evaluation part. 
E%b, states that the end action event of the the statement S is 
equivalent to the next instance of the start action event of the 
iterative statement. E2(c) states that the end action event of an 
iterative statement is equivalent to the end action event of the 
boolean evaluation when the boolean condition is false. 
E3. Let the sequential composition S1;S2 be represented by an 
action 5, and let the action TI represent the statement Si and r;! 
represent the statement S2, then 
(a) TI.% = rz.er 

E3(a) formalizes the fact that a statement becomes ready as soon 
as the revious instruction completes executing. E3(b) states that 
the eniaction event of sequential composition is equivalent to the 
end action event of its last com onent statement. 

to, and let action ri represent process Pi, then 
(a) ro.er wer A T2.Q A ... A T n S r  

(b) 
E4(a) states that all the parallel processes of a ro ram statement 
become ready as soon as the program is ready. &(b5 states that the 
end action of the program statement is equivalent to the end action 
of all its constituent statements. 

(b) T.% = T2.ee. 

E4. Let a program P :: P i ]  I Pz I f ... I I Pn be represented by an action 

To& I Ti& A r2.Q A ... A Tn.% 

4.0 Proof System 
A number of axioms and rules are necessary to formalize the 

deductive proof system for the programmin model. The axioms 
and deduction rules translate the structure o fa  program into basic 
DL statements about its real-time behavior. The statements thus 
derived, are then combined into proofs to establish the real-time 
properties. The basic axioms for a process Pi statically allocated to 
a node nk, are given below. 
PA1: For an action T of the process Pi, 

where SP is a predicate denoting the scheduling policy of the system. 
This axiom states that an action starts executing as soon as it is ready 
and is selected by the scheduler. 
PA2a. Let aprimitive instruction (other than a delay instruction) be 
represented by a transition T ,  then 

This axiom implies that if a start action event for a (nonblocking) 
instruction occurs, then the corresponding end action event occurs 
within the time bounds of the action as determined by the speed of 
the corresponding node processor. 
PA2b. Let a delay instruction of the form li: delay d be represented 
by an action T then 

This axiom is similar to the axiom PMa,  however; it formalizes the 
fact that the time to complete execution of a delay statement is 
independent of the processor speed. 
l'm: Gk((T(emr) St) +(c(T(ems) 5 t-Atr-Acl)) MSA (Message Send Axiom) 

Gk(T(T.er)It A SP(T) -, Fk(T(t.es)St)) 

Gk((T(T.es)5t) *Fk(t+T.tl*Z.S(nk 5 T( r.&) St+T.tu*Z.S(nk)) 

Gk(T(t.es) = t + Fk(T(T.ee) = t + d)) 
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where ems is a notifier event and emr is the corresponding notifica- 
tion event. This axiom formalizes the assumption that if a message 
is received, then it must have been sent by the sender process at 
most Atr i- Acl time units earlier, since a mesa  e takes Atr time to 
travel to its destination, and two adjacent clock differ by at most 
Acl time units. 
PA4: k t  an action Tr represent amessage receive statement, then 

where emr  is the notification event. This axiom formalizes the 
assum tion that after a receiving process is ready and the re- 
quirecfnotification event occurs, another Ac units of time are 
re uired to com lete execution. 

rence of events, then 

G k(Fk(T(Tr.es) S t l  AT(emr) Stz) + Fk(T(Tr.ee) Smax{ti,tz} + hc)) 
MRA (Message Receive Axiom) 

SC It (Sequentid? Composition Rule): Let el, e2, e3 be any occur- 

G(((t i5T el S t z  -+ F t i + d i  ST ez Stz+dz))) 
G G.ysti-q& t i  ST[ez\Std] -2y2 -qT((fi + F[[ti+d3 q-6-T-di-2 sTb)Stz+dd)J ij)-SiiT- iT'a;c)'i) 

SCR is the only rule of the proof system. There is no rule for parallel 
composition in accordance with the underlying partial order seman- 
tics. 
4.1 Soundness and Completeness of Proof System 

We show that the roof system is sound, i.e., every formula 
derivable in the proofsystem is indeed valid, and that the proof 
system i s  complete relative to provability of DL formulas. 

Theorem 4.1: Theproof system is sound. 
Proof: We have to show that all axioms arevalid, and that whenever 
the premise of the inference rule is valid, so is the conclusion. For 
most axioms and for the inference rule, soundness follows directly 
from the definition of the semantics of the programming model and 
the distributed lo ic Here we sketch :he soundness of the messa e 

Lemma 4.2: The message receive ariom MRA is sound. 
Proof: From the premise of MRA: Fk(T(sr.es) St l  A T(ema)~t2)). 
The premise implies that the receive statement becomes ready 
before time t i  and that the corresponding notification event occurs 
before time t2. Thus, the time at which copying of the message to 
the buffer can start is given by max{ti,t2}. The receiving pfocess 
requires Ac units of time to complete execution. Thus, the time at 
which the end action event occurs is given by max{ ti&} + Ac. This 

Theorem 4.3: neproof system is complete relative to theprovability 
o valid ormulas in DL. 
Look {he proof can be constructed by using the idea of a precise 
specification [13]. The axioms can be shown to give precise 
specifications and the roof rule can be shown to be precise preserv- 

receive axiom (&A). IF 

precisely is what stated by MRA. H 

ing from which the refative completeness follows. 

We will illustrate the use of the proof theory by analyzing the 
real-time propert of a sample problem. 
5.1 Producedonsumer Problem 

The generic multiprocess roducer/consumer problem is very 
important to the analysis of many real-time control problems. 
Usual1 , real-time control programs consist of a pi eline of roces- 
ses [ 111 Such pipelines of real-time rocesses canie  consi&ed as 
chains of real-time producers anfconsumers [ll]. In order to 
illustrate how the real-time behavior of a pipeline of processes can 
be  analyzed, let us first consider a generic two-process 
producer/consumer problem. Subsequently, we will generalize this 

5.0 Example 

problem to an n-process producerlconsumer chain. 
In: P:. /* Producer/Consumer Proaram *I " 
P1:: I* Process PI */ 

111: *((bl:true) + 

112: produce iteml; 
113: cl!iteml; I* send iteml to P2 * I  

! IP2:: I* Process Pz *I 
1; ' .  *((bz:true) + /* for ever */ 

cl?itemi; 
I_. produce ikomn; /* final result */ 
124 m!itemn; 

I* for ever *I 

114: ) 

/* receive itemi from Pi  */ 

125 
iis program has two iterative processes P i  and P2 running on 

tw*- nodes  ni  and n2 of a d is t r ibuted svstem with 
Z.f::(nl) = Z.S(n2 = 1. The process P i  produces itemi and sends 
t h  item (result] to P2 which uses item1 to produce item2. An 
ir ,mtant timing property of this producer/consumer system is the 

rate at which the tinal result (item;?) is produced. The analysis of this 
problem involves analysis of two cooperating processes. First, we 
analyze process Pi  to determine the arrival rate (AR1) of itemi at 
P2 and then using this result, we analyz? process P2 to find the 
production rate PR1) of item2. 
Arrival Rate ((ARI) 
&(Vi>OT(ema,i) =t  + Fz(T(ema,i+l)St +hi)) 

Production Rate (PR1) 
Gz(Vi > OT(sza.ee,i) S t + Fz(T(sza.ee,i + 1) 5 t + A3)) 

1. G2 (Vi > O:T(tlz.ee,i) S t + F?(T(sz3.ee, i) 5 t + tz3  tu)) E3(a),PA2(a) 
2. G2 (tli>O:T(r23~,i)St + F2(T(t2a.ee,i)St+Tza.t,)) E3(a),PA2(a) 
3. G2(Vi>O:T(s2a.ee, i)5t + F2(T(T2i.ee, i+ 1)St +Tb.tu)) E2(b),PA2(a) 
4. c&(Vi/iO:T(s21.e~, i)5t +F2(T(szz.er,i +I)St)) 
5. GzCJi > O:T(szz.ee, i) S t  + Fz(T(szz.eni + 1) C t + A2)) 1,2,3,4,SCR 

6. Gz(Vi>O: T(e,,,i)St +F2(T(ema,i+l)st +Ai))) AR1 
7. Gz ((T(T22.ee,i)St) + F2((T(r22.ee,i+l)St+max(Ai,A2)+Ac)) 
8. (T(tzt.ee,i) _c t) + F2(T(r%.ec,i) S t + &)) 1,2,SCR 

where h4 =T23.tu +TM.tu 
9. Gz (T(~zz.%,i)St) +Fz(T(r~.ee,i+ l ) S t + A 3 + A 4 ) )  

where A3 = max(Ai,A2) + Ac 

10. Gz (T(Tza.ee,i)St) ~F2(T(sz4,ee , i+l )St+A3))  8,9 

where ema is the nofzficafion event. 

Proof: 

E3(a) 

where A2 'Tb.tu + T23.t" + TXSu 

7,8,SCR 

5.2 Producer/Consumer Chain 
The basic structure of this program has the same form as the 

two-process producer/consurner problem. Each process in the chain 
acts as a consumer to the previous process and as a roducer to the 
next process. The program for an n-mocess DroLcericonsumer 
chain is outlined below. 
lo P:. 
p1 I* Process P i  *I 

111. *((bl true) + 

/* Program for producerlconsumer chain *I 

I* for ever */ 
112: produce iteml; 
113: cl!iteml; I* send iteml to Pa *I 
114: ) 
I1 ... 
Pi:: I* Process Pi *I 
lil: *((bi:true) 4 

li2: ci-i?itemi.i; I* receive itemi.1 from Pi.1 */ 
I* f or ever *I 

113' produce item]; 
li4: c,!itemi; I* send itemi to Plc1 *I 
115: ) 
1 1  
I IPn; 
hi: ((bn.true) + I* forever*/ 
ln2. ~n-l?itemn-i, 
ln3' produce itemn; /* final result *I 
ins cnlitemn; 
ins: 1 

/* Process Pn *I 

I* receive itemn-i from Pn-1 *I 

Analysis of the timing behavior of this program can be done 
similar to the analysis of the two-process producer/consumer prob- 
lem, and induction can be done on the number of processes in the 
producerlconsumer chain to obtain the finaI result, which is of the 
O m :  

Gn(W > O:T(sns.ee,i) S t+Fn(T(Tfi.ee,i + 1) C t + rnax(Al+ n*Ac, 
Az*(n-l)'Ac, ... , An + Ac))) H 

6.0 Related Work 
The model proposed by Koymans et al., is based on linear 

temporal lo ic augmented with a global clock having a dense time 
domain [3f Using their proof system, the safety and liveness 
roperties of general message- assing systems can be proved. A 

keal-Time Temporal Logic (kITL) was introduced in [9] for 
specifying and verifying the timing properties of real-time proces- 
ses; this method uses an interleavlng semantics. In another related 
work [6], syntactic extensions to temporal logic are made through 
the introduction of time-bounded temporal operators called in- 
range (A) and all-range (V), for facilitating analysis of real-time 
properties of rograms. The proof method presented in [6] is based 
on a maximaiy parallel model of computation. A compositional 

roof system for a CSP-like programming language is reported in P 131. A mapping from time to a set of channel states is used to 
analyze the communication behavior of a pro ram. This technique 
is also based on a maximally parallel model &. All these re orted 
proof methods.[ 1,3,6,9,13] attempt to analyze real-timed beRavior 
of programs based on models idealizing real-timed concurrency. 
Idealizing the details of process executions, execution speeds, task 
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scheduling olicy of the s stem, etc. makes analysis of real-timed 
behavior o? rograms diflcult and often unrealistic. D L  takes care 
of these proglems by defining a real-timed concurren 

There are a number of similarities between DL a n d ~ ~ $ $ n  
Set Temporal Logic (ISTL) [2], both the distributed logic and I S d  
are based on ideas from interleaving and partial order semantics. 
However, the distributed logic differs in several important ways 
from ISTL [2]. ISTL concentrates on developing a natural model 
for distinguishing nondeterminism due to concurrency and, non- 
determinism arising out of local nondeterministic choices. DLviews 
a computation as a set of interleaving sequences with a partial 
ordering among the states of these sequences, whereas ISTL views 
a computation as a partial order representing a set of interleaved 
computatiozis. Further, DL does not sup ort the concept of a global 
state, unlike ISTL which represents &bal state as global snap- 
shots; also ISTL does not support quantitative reasoning about time. 

7.0 Conclusions and Discussions 
An important question that is often asked of a real-time program 

is whether an implementation of it would satisfy the timing con- 
straints. However, the classical temporal logics do not model 
reul-timed concurrency, which makes it djfficult to anal ze the real- 
time behavior of distributed rograms. To overcome t x is problem, 
we have introduced a modaf logic having features from both the 

artial order and interleaving models. With the established logical 
Yramework, it is straightforward to develop a conprehensive 
theory for formal analysis of real-time behavior of distri!;:eodf 
programs for various programming models sup orting different 
communication mechanisms. The use of the prooFtheory has been 
illustrated through the analysis of the real-time properties of a 
sample program requiring communication among multiple proces- 
ses. Our current work is in the direction of realizing an executable 
specification tool based on the presented logic. 
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