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Abstract 

An attempt is made to integrate three well-known 
formalisms of knowledge representation: termino- 
logical logic in the tradition of KL-ONE, the tem- 
poral logic of Shoham, and Allen’s interval calcu- 
lus. Drawing on each of these sources, a temporal 
terminological logic is proposed which combines 
structural with temporal abstraction. A formal 
semantics is provided, and some hints are given 
for exploring the computational properties of rea- 
soning in the formalism. 

Introduction 
Terminological logics in the tradition of KL-ONE 
[Brachman & Schmolze 19853 as well as temporal 
reasoning have both received considerable attention 
within the knowledge representation community in the 
last years. However, there has never been a serious at- 
tempt to integrate these two fields. Although in a num- 
ber of projects using terminological logic (e.g. [Poesio 
19SS]) the problem of representing time has arisen, no- 
tably in the context of tense in natural language under- 
standing, the approaches taken there and the partial 
solutions found have not culminated in a syntactically 
and semantically well-defined temporal variant of a ter- 
minological logic. The theoretical framework described 
in the following is the foundation of a (future) tem- 
poral extension of BACK, a knowledge representation 
system based on terminological logic being developed 
in our project [Peltason et al. 891. 

The approach for integrating time into a termino- 
logical formalism which I am proposing here draws on 
three ingredients. First of all on terminological logic it- 
self, the appealing features of which are completely pre- 
served in the temporal variant. The temporal capabili- 
ties come straightforwardly by adding some new term- 
forming constructs. The model-theoretic semantics are 
accordingly amended, and remain unchanged for non- 
temporal terms. Compositionality is unaffected; there 

*This work was supported by the Commission of the 
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are no restrictions on the combination of temporal and 
non-temporal terms. 

The second ingredient is concerned with the elemen- 
tary combination of temporal and non-temporal ob- 
jects. Following [Shoham 19871 I will keep temporal 
and non-temporal components of the language sepa- 
rate, giving time a special status in the formalism. 
The role of ‘TRUE’ in his logic is played by a new 
term-forming construct ‘(at interval concept)’ which 
denotes the set of all individuals that are in the de- 
notation of concept at the time interval. Denotations 
of concepts are interpreted at intervals, not at points. 
Also as in Shoham’s approach there is no commitment 
with respect to the property/event/process trichotomy 
in the basic framework. The denotation of a concept 
at one interval is essentially unrelated to its denotation 
at other intervals. 

Thirdly, for expressing temporal relationships and 
constraints, I rely on Allen’s interval calculus [Allen 831 
extended by some additional constra.int types for deal- 
ing with durations, absolute times, and the granular- 
ity of intervals. This restricts the range of expressible 
temporal constraints compared with a full-fledged tem- 
poral logic, but for this subset specialized algorithms 
are available making an efficient treatment at least for 
a broad range of ‘non-puzzle-mode’ cases conceivable, 
which is a prerequisite for a knowledge representation 
(KR) service. 

Syntax and Introductory Examples 
Figure 1 shows the syntax of some of the basic concept- 
and role-forming constructs common to most termino- 
logical logics of the KL-ONE family: and, all, atleast, 
atmost for concepts, and and, clomain, range for 
roles. Note that the (restrict role concept) con- 
struct found in some systems is equivalent to (and 
role (range concept)) in our syntax. The new term- 
forming operators involving time are at, sometime, 
and al1time.l The syntax for time intervals and time 

‘1 have deliberately included a fairly expressive set of 
role-forming constructs to demonstrate the expressive po- 
tential of the formalism, disregarding for the time being 
various possible trade-offs between expressivity and the 
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atomic-concept 
( and concept+) 
( all role concept) 
( atleast min role) 
( atmost max role) 
( at interval concept) 
( sometime ( interval-variable+) time-net concept) 
( alltime ( interval-variable+) time-net concept) 

atomic-role 
( and role+) 
( domain concept) 
( range concept) 
( at interval role) 
( sometime ( interval-variable+) time-net role) 
( alltime ( interval-variable+) time-net role) 

Figure 1: Syntax for Concepts and Roles with Temporal Structure 

nets is found in Figure 2. 
In standard terminological logics using the non- 

temporal constructs of the syntax concepts can be 
formed such as 

(and man 
(atleast 1 (and child (range female))) 
(all child grown-up)), 

with the intuitive meaning a mun with atleast one 
child, which is a female, whose children are all grown- 
up. According to the model-theoretic semantics for 
the term-forming constructs, the extension of a term 
is strictly a function of the extensions of its subterms 
and of the extensions of the atomic concepts or roles 
it contains, in this example the concepts man, female, 
grown-up, and the role child. 

An important feature that all KR systems based on 
terminological logics provide is the possibility of intro- 
ducing new atomic concepts and roles by definition, for 
example 

daughter := (and child (range female)). 

After this definition, the new name can be used in other 
terms and definitions as an abbreviation for the defin- 
ing term. 

Before looking at some examples using the new con- 
structs involving time, let us consider the meaning of 
non-temporal terms. For example, if we define 

car-owner := (atleast 1 (and own (range car))), 

what is the meaning of car-owner within the tempo- 
ral framework? The answer is that all terms have to 
be evaluated with respect to a particular interval of 
time. Consequently, car-owner does no more denote a 
set of individuals fulfilling the definition, but in fact a 

computational complexity of classification algorithms. I 
could also have included negation and disjunction (as some 
terminological logics do), but that contributes nothing to 
the problem at hand of integrating time. 

function that assigns such a set of individuals to ev- 
ery interval. Using the at-construct, we can bind the 
time of evaluation of a term to a specific interval. For 
example, 

(at ‘August 1990’ car-owner) 

denotes the set of car-owners at the interval denoted by 
the interval constant ‘August 1990’. 

Every term can be rewritten as (at NOW term). 
NOW is the special reference interval which represents 
the index at which the term is evaluated. Thus, the 
index implicit in every non-temporal term can be made 
explicit. Every at-term creates an evaluation environ- 
ment whereby every (explicit and implicit) occurrence 
of NOW in the embedded term is bound to the inter- 
val specified in the at-term. Taking the last example, 
if we expand the definition of car-owner and bind the 
implicit NOW’s, we get 

(atleast 1 (and (at ‘August 1990’ own) 
(range (at ‘August 1990’ car)))). 

Note that the outer at-terms are redundant (and have 
therefore been deleted in the example), since there are 
no more embedded NOW’s that the time interval could 
be bound to. 

We can identify two classes of terms: time-indexed 
terms whose denotation depends on a particular value 
of NOW and universal terms whose denotation is the 
same for all values of NOW. Obviously, all terms 
that contain no unbound (implicit or explicit) occur- 
rences of NOW are necessarily universal, and as a con- 
sequence an at-term embedding a universal term is 
redundant and can be replaced by the term itself. 

With the at-construct and temporal constants alone, 
expressivity is very restricted. The potential for tem- 
poral abstraction comes with the ability to express 
abstract temporal patterns, which classify objects in 
terms of their pattern of change. In order to achieve 
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time-net ::= 

time-constraint ::= 
I 

interval-relation :I= 

comparison 
granularity 

..- ..- 

..- ..- 

interval ::= interval-variable I interval-constant I NOW 
interval-variable : := 4Ybl--- lQlZ2 1x31 *** 

interval-constant ::= ‘1987’ 1 ‘3/12/1987 14:04:12’ I . . . 
duration-constant ::= ‘5d 2h 4min 33sec’ I . . . 

time-constraint 
( and time-constraint +) 
( interval-relation interval interval) 
( comparison interval duration-constant) 
( granularity interval) 

equal 1 before 1 after 1 meets 1 met-by I 
overlaps I overlapped-by I starts I started-by1 
finishes I finished-by I during I contains I 
( or interval-relation+) 
i I< I= 12 I> ’ 
set I min I hour 1 day I month I year I . . . 

Figure 2: Syntax for Time Nets 

this, temporal variables and means of expressing con- 
straints over these variables are necessary.2 Temporal 
variables are introduced by the temporal quantifiers 
sometime and alltime together with a set of con- 
straints, a time net, over these variables. Three kinds 
of constraints are allowed by the syntax for time nets 
according to Figure 2: relations between pairs of in- 
tervals using Allen’s basic interval relations and dis- 
junctions of these, metric constraints on single inter- 
vals, and granularity constraints requiring an interval 
to take values that are multiples of some time unit. 
Absolute bounds can be imposed on an interval by us- 
ing interval constants in interval relations. 

The following term denotes the set of individuals 
that were car-owners at an interval sometime before 
NOW: 

former-car-owner := (sometime (x) 
(before x NOW) 
(at x car-owner)). 

former-car-owner can be equivalently expressed using a 
temporal role: 

former-car-owner := (atleast 1 have-owned-a-car), 

have-owned-a-car := (sometime (x) 
(before x NOW) 
(at 2 

(and own (range car))))). 

Two individuals are related by have-owned-a-car if they 

2The introduction of variables in terms seems counter to 
the spirit of KL-ONE-like languages; but the only variable- 
free temporal language I could think of is equivalent to the 
subset of the one presented here where there is only one 
variable per sometime- or alltime-term. That appears 
overly restrictive; not even a covering of NOW by a se- 
quence of meeting intervals can be expressed. 
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were related by own at some interval before NOW and 
if at that time the second was an instance of car. 

The following term correctly applies to an individual 
NOW if at a point during NOW he ceases to be a 
car-owner and becomes a bike-owner: 

(and (sometime (x y) 
(and (start x NOW) 

(finishes NOW y) 
(meets x y)) 

(and (at x car-owner) 

(at y bike-owner))) 
(alltime (5) 

(during x NOW) 
(at 2 (atmost 1 

(and own (range vehicle)))))). 

It is important to realize that in the sometime-term 
there is nothing that expresses ‘ceases to be’ or ‘be- 
comes’; being car-owner and bike-owner at the same 
time throughout NOW would be perfectly consistent. 
It is only in conjunction with the alltime term, which 
restricts the number of role-fillers for the own-a-vehicle 
role to atmost one for all times during NOW, and 
with the assumption that car and bike are subsumed 
by vehicle, that this interpretation is ruled out. 

In the previous examples, time nets only used inter- 
val relations to constrain temporal variables. The fol- 
lowing time net additionally uses metric constraints on 
the duration of intervals, and granularity predicates: 

(and (day x) (= x ‘24h’) 
(day y) (= y ‘24h’) 
(meets 2 y) 
((or starts finishes during equal) 2 NOW) 
((or starts finishes during equal) y NOW)) 

It constrains x and y to be consecutive days within 
NOW. The granularity constraint (day x) above re- 
stricts x to take only values that are started and fin- 



C[(and cl . . . cn)lt 
g[(all r c)]$ 

= ni”=, C[c& 
= 

E[(atleast m r)]: 
(d E D : E[r]:(d) C C[c]k} 

= 
4!T[(atmost m r)]= = 

{d E V : IE[r]g(d)l 2 m) 
v E ‘D : lGw)l L n-4 

i 

Z(x) E[clF if x is a variable 
E[(at 2 c)]: = G4, ifx = NOW 

J+‘(X) Glz if x is a constant 
E[(sometime X TC c)]” = 

f[(alltime X TC c)]” 
{d E 2) : 32 E Z*((TC,Xu (NOW}))jww++t d E E[c];} 

= {d E V : VI E Z*((TC, X u {NOW}))NOW,+~ 
([(domain c)]: = E[c]$ x 2) 

d E $[c];} 

C[(range c)]; = V x C[c]i 

Figure 3: Semantic Conditions for Extension Functions 

ished by a day. Without this constraint, x could be 
any interval with a duration of 24 hours, due to the 
metric constraint (= x ‘24h’), but not necessarily co- 
inciding with a full day of the calendar. On the other 
hand, leaving away the duration constraint, x could be 
any interval starting and ending with a full day. 

Semantics 
In terminological logics in the tradition of KL-ONE it 
has become customary to provide a model-theoretic 
account of the semantics (e.g. [Schmolze 1989, Nebel 
19891). I will f o 11 ow this tradition. Before spelling out 
the semantics for concepts and roles, the semantics as- 
sociated with temporal constraints must be clarified. 
For the present purpose, I will assume a discrete time 
model and interpret all time intervals as pairs of inte- 
gers, and define the domain of time intervals as follows: 
7 def {(i&) 1 il < ia, il, i2 E Integer}. Thus, con- 
secutive integers form the smallest, non-decomposable 
intervals, the moments in the sense of [Allen & Hayes 
19851. For time constraints according to Figure 2, I 
will assume a fixed model M which maps interval con- 
stants to elements of 7, duration constants to subsets 
of 7, comparison operators and interval relations to 
sets of pairs of elements of 7, and granularity predi- 
cates to subsets of 7, such that the intuitive meaning 
of these constructs is adequately mirrored (for exam- 
ple, that (M[‘August 1990’1, M[‘September 1990’1) E 
M[meets], M[‘3/12/1990’] E M[day], etc.). 

An interpretation3 of a time net (TC, X), where TC 
is a set of constraints and X a set of variables, is a 
function Z : X + 7 which satisfies TC (for example, 
if (meets x y) E TC, then (Z(x),Z(y)) E M[meets]). 
The set of all interpretations of the time net (TC, X) is 
denoted by Z*((TC, X)). The set of all interpretations 
of a time net in all of which x is mapped to the same 
value is denoted by Z*((TC, X)),,,. 

A model for a set of terms with temporal structure 
defined by the syntax in Figures 1 and 2 is a triple 

3The notation for time nets and their interpretations 
owes much to [NCkel 19881. 

(D, 7, r) where 2) is a set of individuals, 7 is the set 
of time intervals, and I is a function 

c: “R 
{ 

---) (7-+2’D) 

+ (7 + 2=y 

where C are the concept terms and 1-2 are the role 
terms without free variables and after all definitions 
have been expanded. Thus, each concept (each role) is 
mapped to a function that assigns sets of individuals 
(sets of pairs of individuals) to each time interval. For 
(D, 7, C) to be a model, the conditions in Figure 34 
that define the meaning of the syntactic constructs 
must be met for all t E 7. 

Taking into account the extension at each time inter- 
val, subsumption can now be defined in the usual way: 
For all concepts and roles, cl subsumes c2 ifl for all 
extension functions 6 (models) and all time intervals 
t E 7, tqc2y E qc1y. 

Kinds of Time Dependency 
As already mentioned in the introduction, in the basic 
semantic framework as spelt out in the last section 
there are no built-in restrictions on the extensions of 
primitive concepts or roles. For example, if a pair of 
individuals are related by the primitive role own at one 
interval, they may or may not be related by that role 
in any subinterval. As a consequence, according to the 
semantics so far, 

(at ‘June 1990’ own) 

does not subsume 
(at ‘1990’ own), 

and 

4Notation: r(d) dgf {d’ E 2, : (d, d’) E T}, and Z[c]i gf 
E(c)(t) where all free variables in c are evaluated using Z. 
Note that Z is only needed to evaluate at-terms nested 
within sometime- and alltime-terms. 

The conditions for and, at, sometime, and alltime for 
roles have been omitted since they are completely analogous 
to those for concepts. 
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(sometime (x) 
(> x ‘35 days’) 
(at x own)) 

does not subsume 

(and (at ‘June 1990’ own) 
(at ‘July 1990’ own) 

although intuitively if an own relation holds in an in- 
terval it should also be valid in all subintervals, and 
if it holds over two consecutive intervals it should 
hold over their union (which, in the second example, 
is then an interval longer than 35 days). Extra re- 
strictions on extension functions are needed in order 
to legitimize the subsumptions above. Using the ter- 
minology in [Shoham 19871, the possible extensions 
of the primitive role own should be restricted to be- 
ing downward-hereditary: for all t, t’ E 7, t’ subin- 
terval of t, S[ownlt 2 E[ownlt’, and con&enable: for 
all t, t’, t” E 7, t meets t’, t starts t”, t’ finishes t”, 
C[ownlt fI E[ownlt’ C I[ownlt”. 

Of course, for other kinds of concepts and roles these 
restrictions are quite inadequate. For example, for a 
role average-temperature that relates an object to its 
average temperature in a certain time interval, the first 
subsumption relation above should not hold since aver- 
age temperatures are not inherited to subintervals; the 
second may be correct though, because if an average 
remains identical for two consecutive intervals also ap- 
plies for their union. The latter is certainly not true for 
other aggregate values which depend on time, such as 
e.g. sales of a department per month, or annual salary 
of an employee. For these, another kind of restric- 
tion might be more appropiate: a role sales-per-month, 
for example, should take values only for intervals that 
correspond to full months, and be empty for all other 
intervals. 

How can these different kinds of restrictions be inte- 
grated into our framework? The situation is quite sim- 
ilar to the problem of integrating disjointness restric- 
tions into terminological logics. Should the disjoint- 
ness of e.g. male and female be treated as definitional 
and hence be used for validating certain subsumptions, 
or rather as assertional? On pragmatic grounds, the 
former alternative is generally chosen. Terminologi- 
cal systems allow disjointness restrictions for primitive 
concepts and use these for computing subsumption. 
The same approach could be adopted for restrictions 
on temporal extensions of primitive concepts or roles. 
So, in the example above, after declaring the primi- 
tive role own as downward-hereditary and concaten- 
able, the subsumptions would be valid. 

Computing Subsumption 
Subsumption is the central semantic notion in termino- 
logical logics; designing sound (and possibly complete) 
algorithms that compute subsumption is the central is- 
sue for providing practical KR services. Until now, no 

algorithms are available for the temporal variant pre- 
sented here, but atleast some preliminary hints as to 
what is involved can be given. Assume CT’ is of the 
form 

(sometime X’ TC’ (and . . . (at xi ci) . . . )), 

j E J, xj E X’ , C: E C’ 
and CT is of the form 

(sometime X TC (and . . . (at xi ci) . . . )), 

i E I, xi E x, ci E c. 
Under what conditions does CT’ subsume5 CT? Intu- 
itively, CT’ is a more general concept than CT, if its 
temporal variables are less constrained than those of 
CT, and for each of its temporal variables there is a 
corresponding variable in CT such that the associated 
concept of that variable subsumes the associated con- 
cept in CT. Obviously, CT can have additional tempo- 
ral variables and associated concepts, which specialize 
it further. 

To formalize this notion, let S : J -+ 1 be a function 
from indices of CT’ to indices of CT. Sx : X’ --f X is 
defined as Sx(xi) = xs(j), and SC : C’ -+ C is defined 
as SC(C[i) = CS(j)e S must always map NOTE to NOW, 

i.e. Sx(NOW) = NOW. 
The notion of ‘less constrained temporal variables’ 

is captured by the following definition: A time net 
(TC’,X’) subsumes another time net (TC, X) wrt a 
variable mapping Sx : X’ --+ X iff for all Z E 
Z*((TC, X)) th ere exists an Z’ E P((TC’, X’)) such 
that for all x E X’, Z’(x) = Z(Sx(x)). 

We can now express the condition above more for- 
mally: CT’ subsumes CT iff there exists a mapping 
S : J --+ I such that (TC’, X’) subsumes (TC, X) 
wrt Sx, and c; subsumes SC(C$). The subsumption 
of time nets guarantees that for every interpretation 
of TC there is a corresponding interpretation of TC’, 
and the second condition states that for each iuterva.1 
of that interpretation the corresponding concepts are 
in the subsurnption relation. Tllus, all instan& of CT 
must also be instances of CT’. 

Assuming for the moment that the ci and ci are 
all non-temporal concepts and WC can therefore a.p- 
ply known subsumption algorithms, we are left with 
the problem of determining subsumption between two 
time nets. Here we can utilize known algorithms 
for constraint propagation in temporal networks (e.g. 
[Schmiedel 1988, ValdCz-Perez 19871). These algo- 
rithms compute the most specific constraints deriv- 
able from the given ones, and at the same time 
check whether the network is consistent. Subsump- 
tion can easily be checked-modulo incompleteness of 
constraint propagation-relative to a given variable 
mapping. All constraints in the subsuming network 
must have corresponding ones-via the ma.pping-in 
the subsumed network wh ich are at least as restrictive. 

5Additional restrictions as mentioned in the last 
are not taken into account in the following. 

section 
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Conclusion 
Of course complete and tractable subsumption algo- 
rithms for the whole language and for the standard se- 
mantics presented here cannot be expected. In Allen’s 
interval calculus on its own, which is a subset of our 
temporal constraint language, determining all conse- 
quences of a set of constraints is NP-hard [Vilain & 
Kautz 19861. And even for moderately expressive lan- 
guages the non-temporal part is intractable [Nebel 
19881. That does not render these formalisms use- 
less. On the one hand, it remains to be seen to what 
extent normal cases in practical applications can be 
handled even by complete algorithms. On the other 
hand, algorithms for computing subsumption in ter- 
minological logics that are incomplete with respect to 
standard semantics are increasingly being character- 
ized as complete with respect to a weakened semantics 
[Schild 1989, Patel-Schneider 19881; approximative al- 
gorithms are also studied in the field of temporal rea- 
soning [van Beek 19891. These developments are a rea- 
sonable starting point for developing subsumption al- 
gorithms for temporal terminological logics. 
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