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Abstract

Cells within tissues are continuously exposed to physical forces including hydrostatic pressure, shear
stress, and compression and tension forces. Cells dynamically adapt to force by modifying their
behaviour and remodelling their microenvironment. They also sense these forces through
mechanoreceptors and respond by exerting reciprocal actomyosin- and cytoskeletal-dependent cell-
generated force by a process termed ‘mechanoreciprocity’. Loss of mechanoreciprocity has been
shown to promote the progression of disease, including cancer. Moreover, the mechanical properties
of a tissue contribute to disease progression, compromise treatment and might also alter cancer risk.
Thus, the changing force that cells experience needs to be considered when trying to understand the
complex nature of tumorigenesis.

At a glance

• Cells within tissues are continuously exposed to physical forces, including
hydrostatic pressure, shear stress and compression and tension forces. The nature
of these forces can change in pathologies such as cardiovascular disease and
cancer.

• Cells sense force through mechanoreceptors and, regardless of the type of force
applied, cells respond by exerting reciprocal actomyosin- and cytoskeleton-
dependent cell-generated force by a process termed mechanoreciprocity.

• Mechanoreciprocity maintains tensional homeostasis in the tissue and is necessary
for development and tissue-specific differentiation. Its loss promotes disease
progression, including liver fibrosis, atherosclerosis and cancer.
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• Cells dynamically adapt to force by modifying their behaviour and remodelling
their microenvironment. This adaptation probably involves a combination of
epigenetic chromatin remodelling events and direct physical links between the
matrix and nucleus that regulate gene expression. These gene-regulatory processes
are altered in diseases such as cancer.

• Breast cancer is characterized by changes in cellular rheology and tissue level
forces, a stiffening of the tissue and a progressive loss of tensional homeostasis
that has been exploited to detect tumours. The mechanical properties of a tissue
contribute to disease progression, compromise treatment and might also alter
cancer risk.

Force modulates cell fate and directs tissue development and post-natal function. Although we
know much about the biochemical pathways that direct cell behaviour, by comparison we know
less about how force can regulate cell fate and tissue phenotype. Nevertheless, cells in tissues
such as the heart, lung and skeleton encounter nanoscale to macroscale forces that are integral
to their function. The nature of these tissue-associated forces can be parallel, such as the shear
stress induced by blood flow on a vessel wall, or perpendicular, such as the compressive or
tensile stress induced by weight bearing on bone. In fact, all cells, including those incorporated
into traditionally mechanically static tissues, such as the breast or the brain, are exposed to
isometric force or tension that is generated locally at the nanoscale level by cell–cell or cell–
extracellular matrix (ECM) interactions. These nanoscale forces influence cell function
through actomyosin contractility and actin dynamics, and it is increasingly clear that force
collaborates with biochemical cues to modulate cell and tissue behaviour.

In this Review we summarize the current understanding of tensional homeostasis in tissue
development, homeostasis and cancer, and identify important areas for investigation. Defining
the role of force on cell and tissue behaviour depends on understanding what contributes to
force generation in the tissue, how the cell senses and integrates exogenous mechanical signals
within its tissue microenvironment, and thereafter how the cell coordinates its response as part
of a multicellular, organized tissue structure within its three-dimensional ECM
microenvironment. To focus our Review, we have detailed how force modulates the normal
and malignant behaviour of mammary epithelial cells in the context of the breast, illustrating,
where pertinent, major concepts with examples from experimental findings.

Forcing form and function

The importance of mechanical force in biological systems is illustrated by exploring its role in
normal tissue development and function. The mechanical stress that a cell is subjected to is
quantified in Pascals (Pa) and measured as force per unit area, or N per m2 (BOX 1). This
mechanical stress or force, in turn, is perceived and integrated in the cell at the molecular level
through mechanically responsive sensors that interface with biochemical signalling cascades
to elicit a specific cellular response through mechano-effectors. For example, force and growth
factor receptor signalling can each influence cell growth, survival, motility, differentiation,
shape and gene expression by regulating the activity of RhoGTPases that modulate actomyosin
contractility and actin dynamics1–7. Similarly, integrin-dependent extracellular-signal
regulated kinase (Erk) signalling and focal adhesion assembly are regulated by both growth
factor signalling and force from the ECM8,9 (BOX 2).

Force and embryogenesis

Force has a fundamental role in directing stem cell fate and in dictating embryonic
development10–12. For instance, embryonic stem cells progressively stiffen as cells
differentiate13, whereas stem cell shape and specification are influenced by Rho-dependent
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contractility that is modulated by the mechanical properties of the tissue microenvironment3,
5. Indeed, mesenchymal stem cells undergo lineage selection in response to the elasticity of
the matrix substrate. Soft matrices, similar to the brain, direct stem cells into a neurogenic
lineage, whereas stiffer matrices, similar to muscle and newly deposited bone, direct them into
myogenic and osteogenic lineages3. As development proceeds, tension fields mediated by cell
compression that result from normal morphogenic movements also shape the embryo. Indeed,
external micropipette-applied force, which mimics these developmental forces, drives nuclear
translocation of the transcription factor Armadillo to activate the transcription of twist, which
controls the formation of the dorsal–ventral axis in the early Drosphilia melanogaster
embryo14. Tissue development depends not only on the precisely timed application of force,
but also on its correct spatial localization, as in the distinctly patterned tissue domains that
specify cell polarity, shape and motility in the trunk and head mesoderm in Xenopus laevis
embryos15,16. By contrast, mislocalization of Rho and Rac, which regulate cell contractility,
prevents blastula gastrulation15,16.

Force is essential for normal tissue-specific development, in which it orchestrates tissue
organization and function, and regulates cell growth, survival and migration. The lung
epithelium, for example, undergoes branching morphogenesis as a result of progressive end
bud enlargement and expansion to form the respiratory tree17. Interestingly, like the branching
of the adolescent mammary gland, branch patterning in the lung epithelium is dictated by
localized remodelling of the ECM and the corresponding stretching of lung epithelial cells at
these locations. Force also regulates the integrity of the final lung ductal tree, which is governed
by the cyclic shear stress of fetal breathing movements18,19. Indeed, compromising Rho-
dependent cytoskeletal tension perturbs basement membrane thickness, disrupts terminal bud
formation and compromises lung epithelial duct organization20.

Adult tissue homeostasis and the ECM

A balance of forces is required to maintain adult tissue homeostasis. Skeletal health depends
on mechanical loading, such that exercise increases the proteoglycan content of articular
cartilage whereas reduced mobility leads to loss of proteoglycan content and exacerbates
arthritis-associated joint degeneration21,22. Force also facilitates bone matrix deposition to
accommodate skeletal loading such that immobilization of the organism, unilateral lower limb
suspension or microgravity leads to loss of bone mineral density, which in turn compromises
bone strength23,24. Similarly, vascular function is largely determined by fluid shear
stress25,26. The shear stress induced by blood flow permits artery maturation by directing
endothelial cells and their filamentous cytoskeletal networks to elongate and align with the
direction of flow27.

It is becoming increasingly apparent that each tissue has a characteristic ‘stiffness
phenotype’ (FIG. 1) and that each cellular component within a tissue has a unique rheology
and a stiffness optimum that can change over the course of development (as in lung branching
morphogenesis), in response to function (as during mammary gland lactation) or in
pathological situations (as in atherosclerotic plaque formation or in tumours)28,29.
Furthermore, the physical properties of the ECM and cellular rheology can profoundly
influence cellular behaviours as diverse as differentiation, tissue organization and cell
migration6,30–32.

A cell within a tissue is subjected to isometric force through dynamic interactions with the
ECM and its neighbouring cells, and these forces exert profound effects on cellular behaviour.
For example, endothelial cells form branched capillary-like vessels when cultured within
compliant gels, but form vessels with larger lumens in more rigid matrices. Compliance-
dependent cell behaviour has also been observed in neural, muscle and mesenchymal cell
populations. Therefore, ECM stiffness is an isometric force that exerts its effects gradually and
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chronically on cell behaviour, predominantly at the nanoscale level. An increase in ECM
protein concentration, increased matrix crosslinking or parallel reorientation of matrix fibrils
within a stromal matrix can stiffen a tissue locally to alter cell growth or direct cell migration,
albeit to differing degrees. This phenomenon permits fine-tuning of cellular function within a
heterogenous tissue.

Interstitial collagens are major contributors to tissue materials properties. Collagens undergo
a myriad of post-translational modifications, including matrix metalloproteinase (MMP)-
dependent cleavage, glycosylation and crosslinking, that modify their tensile strength and
viscoelasticity. During extracellular processing, collagen propeptides are cleaved by specific
endoproteinases. Thereafter, enzymes such as the lysyl oxidases (LOX) and the lysyl
hydroxylases catalyse covalent intermolecular crosslinks between collagens and with elastin.
LOX-mediated crosslinking increases insoluble matrix deposition, tissue tensile strength and
matrix stiffness33. However, chronically increased LOX activity increases collagen
crosslinking and this can stiffen heart muscle to compromise cardiac function34. Importantly,
non-enzymatic collagen crosslinking, such as glycation and transglutamination, or increased
biglycan and fibro-modulin proteoglycan levels also stiffen the matrix35. The excessive
deposition of proteoglycans in injured lungs contributes to fibrosis by stiffening the
parenchyma36, whereas inappropriate glycation-mediated crosslinking compromises wound
healing and cardiac function in diabetic patients in whom glycation is increased owing to high
blood glucose levels37,38. Therefore, isometric and active forces have crucial roles in tissue
behaviour. Force directs the differentiation of stem cells, drives the assembly of differentiated
tissues and maintains tissue homeostasis.

Box 1 | Types of forces experienced by a cell

Normal physiological processes expose cells to a variety of mechanical stimuli including
hydrostatic pressure, shear, compression and tensile force. The right-hand images in the
figure depict the balance of forces once equilibrium is achieved following the application
of a mechanical force. Newton’s third law states that for every action there is an equal and
opposite reaction and, following this law, cells in vivo will respond to alterations in the
mechanical properties of their surrounding matrix by adjusting their intracellular tension
through the cytoskeletal network. Conversely, changes in cell tension will result in
alterations in extracellular matrix (ECM) organization, thereby changing the mechanical
properties of the ECM. Stress is defined as a normalized load, where the force or load is
divided by the cross-sectional area available to support the load, and the units of stress are
Newtons per square metre (N/m2) or Pascals (Pa). The deformation of a material in response
to a given load varies with the geometry and the composition of the specimen. Strain is a
normalized deformation, in which the change in length is divided by the original length of
the specimen, and is a unitless quantity. We and others have previously measured the
stiffness or Young’s modulus of tissues in vivo and reported values in units of Pascals6.
Soft biological tissues can be described as viscoelastic materials. A viscous fluid resists
shear flow and strain linearly with time under stress. An elastic solid undergoes deformation
under stress and rapidly returns to its original state. Viscoelastic biological materials exhibit
the characteristics of both a viscous fluid and an elastic solid.
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Mechanotransduction and mechanoreciprocity

Given that cells are exposed to a myriad of active and isometric forces, it follows that cells
must have derived an array of generic and specialized force-sensory mechanisms. Examples
of specialized mechanosensors include the primary cilia in the hair cells of the inner ear and
calcium-gated ion channels in cardiac muscle39,40. Activation of stretch-activated potassium
channels41, activation and oligermization of transmembrane integrins, and remodelling of the
cytoskeleton in response to shear flow are examples of conserved mechanosensory
mechanisms42.

The current contention is that all force sensors directly undergo controllable molecular changes
in response to force, regardless of their nature. This behaviour is illustrated by the sequential
unfolding of p130Cas (also known as BCAR1) and conformational changes in the integrin-
associated molecule talin 1 in response to force43,44. Elegant experiments demonstrated that
direct application of a piconewton force can stimulate the mechanical extension of p130Cas,
revealing a domain that is a substrate of Src family kinases45,46. Phosphorylation by Src family
kinases subsequently activates the small GTPase RAP1 and initiates a sequence of events that
propagates integrin signalling45,47. Force-induced conformational changes in talin 1 also
reveal a binding site for vinculin, and force can modify extracellular fibronectin to alter integrin
adhesion48, suggesting other plausible mechanisms by which force could link the ECM to the
inside of the cell (FIG. 2a).

Once mechanical cues have been detected, cells must propagate and amplify the physical cue
within the cell and translate the signal into either a transient response or sustained cellular
behaviour. Integrins, by virtue of their extracellular interaction with the ECM and intracellular
interaction with plaque proteins and the cytoskeleton, are an excellent example of one such
ubiquitous mechanotransducer 49,50 (FIG. 2a). Either exogenous or endogenous force can
activate integrins, facilitate their nucleation and clustering, and drive their maturation into focal
adhesions6,51–55. Integrin oligomerization in turn facilitates RhoGTPase-dependent
actomyosin contractility and cytoskeletal reinforcement6. Integrin clustering and cytoskeletal
reinforcement lead to the phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 (REF.
56), which stabilizes the focal adhesions through activation of small RhoGTPases and actin
remodelling. The assembly of focal adhesions perpetuates downstream signalling through
kinases and initiates cytoskeletal remodelling through the nucleation of an assortment of
adhesion plaque proteins and signalling molecules, including Ras, Rac and Rho57,58. Ras
couples force-dependent integrin signalling to MAPKs including Erk, as has been illustrated
in lung epithelial cells in response to mechanical strain59 and increased Erk phosphorylation
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in endothelial cells in response to cyclic strain60. Importantly, however, what has yet to be
determined is whether any cellular or extracellular protein whose activated conformation can
be enhanced by force constitutes a viable mechanosignalling mechanism and, if so, what then
dictates mechanospecificity. Indeed, do mechanohierarchies exist?

Force-dependent activation of signalling cascades allows cells to respond quickly to a dynamic
force environment, and the same pathways also lead to sustained changes in cell behaviour.
Force-activated Erk cooperates with other kinases, such as Src and FAK, to induce cell
proliferation or sustain cell survival61, as shown for MAPK-dependent growth of keratinocytes
in response to mechanical stretch62 and the load-dependent survival of osteocytes63. In
addition to changes in cell growth and survival, compression stress affects microtubule
dynamics64 to induce quantifiable changes in cell shape, whereas durotactic gradients of ECM
stiffness30,65 direct cell motility and the migration of fibroblasts and smooth muscle cells. In
response to mechanical loading, fibroblasts synthesize and secrete many ECM proteins,
including fibronectin, tenascin and collagen, and direct matrix remodelling through the
expression, secretion and activation of MMPs and crosslinking enzymes. These sustained
cellular responses to force must be coordinated. One factor implicated in this orchestrated
response is transforming growth factor-β (TGFβ). Mechanical force initiates post-translational
activation of secreted TGFβ from a latent complex into the functional ligand66. TGFβ, in turn,
can stimulate the production of matrix proteins and matrix-modifying enzymes such as MMPs
and LOX that dramatically alter the characteristics of the extracellular stroma67. In extreme
cases, chronic activation of TGFβ can even induce tissue fibrosis and disease in soft tissues
such as the liver and kidney68. In this manner, cells can dramatically change the composition,
topology and elasticity of their tissue microenvironment and alter their adhesions and cell shape
and orientation to tune their behaviour according to the magnitude, direction and nature of
applied mechanical stress.

Box 2 | Three-dimensional model systems to study the effect of force

Three-dimensional cell culture models offer a distinct advantage over conventional two-
dimensional systems because they recapitulate both the architecture and the phenotypical
behaviour of differentiated tissues with reasonable fidelity. Three-dimensional model
systems can be used to study force and its effects on cell behaviour in the context of an
organized tissue structure in vitro. These systems use primary or immortalized cells and
natural or synthetic hydrogels (for example, collagen I, reconstituted basement membrane,
alginate, agarose, synthetic peptides and polyacrylamide). By various means, protein and
polysaccharide gels can be manipulated to modify their mechanical properties. An increase
in the total protein concentration of protein gels, such as collagen or fibrin, results in an
increased stiffness of the polymerized network. In this case, the elastic modulus has been
approximated to be proportional to the square of the protein concentration185. Free-floating
or relaxed gels present a more compliant three-dimensional environment to cells than
anchored or stressed gels and are more sensitive to cell force generation186 Glycation by
the addition of reducing sugars such as glucose or ribose results in non-enzymatic
crosslinking of collagen fibres that can further stiffen the three-dimensional collagen
gels188. The stiffness of fibrin gels can be increased by the addition of salts at physiological
pH or by activation of the plasma transglutaminase factor XIII188,189. Altering the protein
concentration to change gel stiffness can introduce additional variables into the model
system. The use of polyacrylamide gels allows for precise control of the gel stiffness while
maintaining ligand density and chemical content and changing either the bis-acrylamide (a
polyacrylamide crosslinking agent) or the acrylamide components of the gel can alter the
gel mechanics190. Pelham and Wang pioneered polyacrylamide gels for cell culture less
than 10 years ago and numerous investigators have used this model system with many
different cell types to address the question of cell response to ECM force. This technique
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has proved exceptionally adaptable, such that gels of varying stiffness can be combined to
resemble the mechanical properties of, for example, the alveolar basement membrane and
breast stroma6,191.

Push-me-pull-you

Cells are not simply passive force recipients but also respond dynamically to externally applied
force or stiff matrices with a proportional reciprocal cell-generated force. This reciprocal force
response depends on actomyosin contractility and cytoskeletal remodelling. For instance,
inside the cell, adaptor proteins associated with focal adhesions such as talin and α-actinin
directly link the cytoplasmic domains of β integrin subunits with actin filaments69,70. Actin
stress fibres polymerized at the focal adhesion act like viscoelastic cables and respond to the
extracellular mechanical environment with myosin-induced cell contractility71,72. Cells
anchor to and pull on ECM fibrils, creating intracellular tension73. This intracellular tension,
which can be induced experimentally by local application of mechanical stress to the
extracellular domains of integrins, redirects cytoskeletal reorganization and ultimately
activates RhoGTPases to generate large traction forces that can be measured using traction
force microscopy74 (FIG. 2b,c). Such approaches have revealed that cell-generated force or
mechanoreciprocity can profoundly influence cell behaviour by enhancing cell spreading,
growth, survival and motility6,30,65. Indeed, cellular tension and microrheology are finely
tuned to the properties of their surrounding matrix, and the nature and magnitude of applied
force they experience within their tissue microenvironment. The magnitude of cellular
contractility reflects the cell type and state75,76. For instance, cells on stiff substrates tolerate
excision of a single stress fibre by exerting greater myosin-dependent force, whereas the same
manipulation in cells grown on a compliant substrate disrupts the cellular force balance and
cell shape77. We have observed that normal mammary epithelial cells generate greater force
and occupy more surface area on a stiff matrix (5,000 Pa) than similar cells interacting with a
soft matrix of 140 Pa (FIG. 2b).

So, at the single cell level, cell-generated force can increase adhesion strength, enhance
integrin-dependent signalling and drive cytoskeletal remodelling to change cell rheology and
shape and modify cell behaviour. In multicellular tissues increased cell contractility can
destabilize cell–cell adhesions and promote cell invasion to facilitate wound healing or drive
MMP-dependent branching morphogenesis78,79. As well as changing cell shape and
behaviour, mechanical forces can also alter gene expression.

Gene expression and force

Changes in microenvironment or cell behaviour that permit the long-term adaptation to
exogenous forces or alterations in matrix compliance require a change in gene expression.
Integrin expression, for example, is much higher in fibroblasts and epithelial cells that are
grown on rigid substrates than those that are grown on compliant gels, and the expression of
α5 integrin is induced following sustained exposure to a stiffer matrix80,81. So, how might
force regulate gene expression? Many of the signalling networks that are activated in response
to force, such as Erk and Jun N-terminal kinase (JNK), activate and induce nuclear translocation
of transcription factors such as AP1, p53, signal transducer and activator of transcription 1
(STAT1), STAT3, MyC, CCAAT/enhancer-binding protein (C/EBP), cAMP response
element-binding protein (CREB) and nuclear factor-κB (NF-κB)33,82–85. Therefore, force
probably modifies cell fate by altering the activity of various adhesion and growth factor-
dependent transcriptional networks. However, acinar morphogenesis within a compliant
reconstituted basement membrane (rBM) or in response to mechanical loading is associated
with the repression and induction of hundreds of genes, and we determined that human
mammary epithelial cells (HMEC) respond to matrix stiffness by altering the expression of at
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least 1,500 genes that span multiple functional categories86 (K. C. Tsai et al., unpublished
data). Likewise, although we showed that breast tumour progression in the HMT-3522 human
breast cancer model is associated with specific genomic alterations, the accompanying gene
expression profile differs markedly between those cells grown on either a rigid tissue culture
plastic or stiff rBM-conjugated polyacrylamide gels and those within compliant rBM or on
soft rBM-conjugated polyacrylamide gels87. This suggests that additional gene regulatory
mechanisms, possibly linked to chromatin remodelling, must also be regulated by force.

A direct mechanical link from the ECM to nuclear chromatin could dynamically alter gene
expression in response to exogenous force1 through a solid-state signalling mechanism that is
governed by the principles of ‘tensegrity’ (tensional integrity). The tensegrity model implies
that integrins are linked to the nucleus through the cytoskeleton, that an applied force is
transmitted to the DNA through the cytoskeleton by nuclear lamins and nuclear envelope
receptor complexes, and that this then modulates gene expression by inducing conformational
changes in chromatin either by altering the nature of the protein complexes at the telomeres of
chromosomes or by changing the activity of DNA remodelling enzymes88–92. Support for
this paradigm has come from studies demonstrating how application of force on the integrin–
ECM interface can induce nuclear and chromatin distortion93, that tension can alter DNA
wrapping94, and that speared chromatin can be excised from the nucleus as a continuum that
remains physically linked to the cytoskeleton and adhesion interface95. Alternately, epigenetic
changes regulate gene expression during embryogenesis and tissue-specific development.
Given that force also modulates these processes, it follows that mechanotransduction might
influence chromatin remodelling to regulate histone acetylation and methylation. For example,
HMEC morphogenesis and differentiation in a compliant rBM but not on a stiff two-
dimensional substrate is associated with pronounced chromatin remodelling, changes in
histone deacetylase (HDAC) expression and activity, and increased expression of the methyl-
CpG-binding protein MECP2 (REFS 96,97) (Tsai et al., unpublished data). In addition, we
and others have found that rBM compliance dictates the response of differentiated HMEC acini
to the methylation inhibitor 5-azacytidine or the HDAC inhibitor trichostatin A. Only on
compliant matrices do these inhibitors induce gene expression to sensitize a mammary
epithelium to exogenous growth and death stimuli, coincident with a disruption of morphology
and cytoskeletal organization96,97 (K. Levental, V.M.W. and N. Zahir, unpublished
observations). These results indirectly implicate the properties of matrix materials in the control
of cell shape, cytoskeleton morphology and chromatin remodelling.

Several studies have highlighted the interactions between force, Rho signalling, cell shape and
histone acetylation98,99. Adhesion-induced changes in HMEC shape are associated with
altered actin organization, RhoGTPase activity, actomyosin contractility and modified global
patterns of chromatin histone acetylation6,100. Similarly, modifying fibroblast adhesion and
changing cell shape alters cytoskeletal organization and shrinks the nucleus and nuclear lamina
of cultured cells. These changes in the cytoskeleton and nuclear morphology are associated
with impaired polymerase access to chromosomal territories and a concomitant reduction in
gene transcription91,101–103. More convincingly, Rho-family GTPases indirectly regulate
histone H4 acetylation by shifting the balance of cellular and nuclear pools of F and G actin,
which in turn, modifies the association between serum response factor (SRF) and its co-
activator MAL (also known as MKL1)104–106. These and other data argue convincingly that
mechanical force regulates gene expression to alter cell behaviour either by directly altering
the DNA or by modulating the function of chromatin remodelling molecules. The current
challenge facing biologists then is to delineate the molecular mechanisms underlying these
provocative phenomenological observations.
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Changes in mechanical stress and cancer

Loss of tissue homeostasis is a hallmark of disease. Given the pluripotent role of force in tissue
function, it is not surprising that multiple pathologies, including cancer, are characterized by
compromised tensional homeostasis6,68,107. Indeed, tumours are often detected as a palpable
‘stiffening’ of the tissue, and approaches such as magnetic resonance imaging elastography
and sono-elastography have been developed to exploit this observation to enhance cancer
detection108,109. More provocatively, altered stromal–epithelial interactions precede and can
even contribute to malignant transformation (K. Levantal and V.M.W., unpublished
observations), and the desmoplastic stroma that is present in many solid tumours is typically
significantly stiffer than normal6. This raises the interesting possibility that preventing tissue
stiffening could impede cancer progression, and that genetically susceptible individuals
predisposed to matrix stiffening might be at greater risk for tumours and could benefit from
enhanced screening programmes37,110,111. To discuss these ideas further, we focus on the
role of mechanical stimuli in the regulation of normal breast development and the implications
these have for breast cancer.

The mechanics of mammary morphogenesis and maintenance

Force modulates all stages of breast development and is vital to the proper functioning of the
differentiated tissue. Together with hormonal and growth cues, force specifies the architecture
of the mature ductal tree and mediates efficient delivery of milk to the young. In mammals the
breast is the source of nutrients and passive immunity for the offspring, so abnormalities in
tensional homeostasis not only impair the structural organization and health of the tissue, but
could also compromise the survival of the species. As such, understanding how force
orchestrates the behaviour of such a crucial tissue as the breast should provide insight into how
mechanics regulates the behaviour of other seemingly mechanically inert tissues.

The mammary gland comprises an organized ductal tree consisting of a single polarized layer
of luminal epithelial cells that interact at their basal surface with a network of contractile
myoepithelial cells (FIG. 3). Each intralobular ductal tree terminates in a cluster of alveoli,
which comprise the basic structural unit of the breast. It is this basic acini unit that will
differentiate to produce milk on exposure to lactogenic hormones112. Surrounding the ducts
and alveoli of each lobule is the intralobular stroma, which is a loose connective tissue
containing microvasculature, small lymphatic channels, adipocytes, resident fibroblasts and
inflammatory cells113. Adjacent to and encompassing the intralobular stroma and ductal
network is the interstitial stroma, which comprises over 80% of the human breast
volume114,115. Unlike the loose and cellular intralobular stroma, the connective tissue of the
interstitial stroma is dense, less cellular and contains variable proportions of ECM and adipose
tissue.

A highly organized ECM supports the tissue and cellular level architecture of the breast.
Collagen IV, heparin proteoglycans, perlecan and various laminin isoforms comprise the
basement membrane that surrounds the mammary epithelial cell (MEC) bilayer. Together these
provide mechanical stress shielding that is crucial for functional integrity of the ductal
tree116,117. The intralobular stromal matrix, which surrounds the ductal tree, is secreted
primarily by stromal fibroblasts and is composed of structural matrix proteins — including
collagens I and III, elastin, proteoglycans, glycosaminoglycans and glycoproteins — that
interact to form a large complex network in the extracellular space that is contiguous with the
basement membrane118. The organization, concentration and crosslinking of the structural
components of the basement membrane and the intralobular matrix contribute to their material
properties119. Together, the basement membrane, intralobular matrix and interstitial stroma
are a continuum that cooperates to define the form and function of the breast through their
ability to act as a physical scaffold, to function as a repository for growth factors and cytokines,
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and to provide specific biochemical and tensional cues through specialized cellular receptors.
Thus, the ECM can be considered a highway by which MECs are able to communicate with
one another and with stromal cells locally and distally through biochemical and mechanical
cues.

Forces that operate from the nanoscale to the macroscale facilitate normal functioning of the
differentiated breast. The nature and magnitude of these forces reflect the organization,
composition, topology and post-translational modification state of the ECM and the
organization of the ductal tree. Thus, the matrix surrounding the large ducts is more linear and
stiffer, whereas the collagen surrounding the terminal ductal units is more relaxed and the
matrix is more compliant (K. Levantal and V.M.W., unpublished observations). During
lactation, the breast is subjected to compressive stress on the luminal and myoepithelial cells
and the basement membrane owing to the accumulation of milk and distension of the ducts,
which is facilitated by the highly compliant, relaxed collagen matrix surrounding the
differentiated acini. Upon suckling, the luminal epithelial cells encounter inward projecting
tensile stress as the myoepithelium contracts in response to oxytocin to force the milk out of
the aveolar sacs and into the larger ducts to facilitate efficient feeding of the young. In the
absence of the suckling stimulus, lactation ceases and milk accumulates within the acini, slowly
exerting an outwardly projecting compressive force of increasing magnitude on the
surrounding luminal epithelium and myoepithelium. With prolonged milk stasis and continued
gland distension, this compressive force eventually compromises the integrity of the tight
junctions between luminal alveolar cells, and the gland undergoes involution accompanied by
extensive remodelling of the cellular and extracellular stroma120,121. Importantly, gland
remodelling dramatically changes the composition and architecture of the stroma. The
remodelled stroma consequently alters the signals and the force encountered by the MECs
within the ducts and by so doing sets the stage for a subsequent round of epithelial proliferation
and differentiation122. For example, primary cultures of murine MECs form polarized
mammary acini with an endogenous basement membrane and differentiate in response to
lactogenic hormones when embedded within a floating collagen gel. By contrast, these same
cells will spread and continue proliferating in response to identical stimuli when interacting
with a stiff two-dimensional scaffold or incorporated into a mechanically loaded collagen
gel123. Similarly, immortalized MECs fail to express one of the major milk proteins, β-casein,
unless they interact with a compliant basement membrane123–125.

The crucial role of matrix compliance in MEC morphogenesis was illustrated by studies using
matrices with defined viscoelastic properties. HMECs embedded within collagen–rBM gels or
interacting with rBM-crosslinked polyacrylamide gels with matrix compliance comparable to
the normal murine mammary gland proliferated until they formed growth-arrested, polarized
mammary acinus-like structures with a central lumen and an external endogenous basement
membrane. When the matrix is progressively stiffened, cell growth is enhanced, cell–cell
junction integrity is compromised and lumen formation is impeded. MECs interacting with the
most rigid matrices form continuously growing, non-polarized, disorganized and invasive
colonies that lack detectable cell–cell junction proteins and exhibit irregular cell shapes with
detectable actin stress fibres. Whereas MECs interacting with the highly compliant matrix form
nascent focal contacts, those within the stiff gels assemble mature focal adhesions with active
FAK phosphorylated on Tyr397, vinculin and p130Cas (REF. 6). Importantly, when MECs
engineered to express a constitutively active V14Rho or a mutant V737N integrin that promotes
integrin clustering interact with a compliant basement membrane, they exert higher
contractility, assemble focal adhesions and display tissue phenotypes characteristic of MECs
interacting with a stiff matrix. Such observations underscore the importance of integrin
signalling and Rho-dependent actomyosin contractility in multicellular tissue morphogenesis.
This work also highlights the central role of active and isometric force in the functional integrity
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of soft tissues such as the breast, where small changes in matrix stiffness or mechanical cues
can profoundly alter cell behaviour.

Cancer: forcing transformation

Epithelial cancers are characterized by an altered tissue tensional homeostasis that reflects
differences in rheology and increased cell-generated force in the transformed cells126–128,
increased compression force due to the solid state pressure exerted by the expanding tumour
mass129, matrix stiffening due to the desmoplastic response6, and increased interstitial
pressure due a leaky vasculature and poor lymphatic drainage130. For instance, transformed
epithelial cells express vastly different intermediate filament profiles and cytoarchitecture to
normal cells and consequently have an altered microrheology that could provide a distinct
advantage to the cell during intravasation and extravasation of the vasculature, thereby
facilitating cancer metastasis29,128,130. Transformed cells also show compromised
mechanoreciprocity such that they often exert abnormally high force in response to a compliant
matrix and these increased cell-generated forces disrupt cell–cell junction integrity,
compromise tissue polarity, promote anchorage-independent survival and enhance invasion
(FIG. 4). It is also plausible that altered cellular force could account for the increased
invadopodia6 observed in transformed, invasive cells131. Increased cell contractility probably
reflects increased expression and activity of RhoGTPases and Rho-associated, coiled-coil-
containing protein kinase 1 (ROCK1), as well as high levels of growth factor-induced Erk
activity. The increased cell-generated forces exhibited by tumours enhance their growth,
survival and invasion by promoting focal adhesion maturation and signalling through
actomyosin contractility6,128,130,132–135. The increased contractility of tumour cells and
their associated stromal fibroblasts also induce tension-dependent matrix remodelling to
promote the linear reorientation of collagen fibrils surrounding the invasive front of the
tumour136,137. Rapidly migrating transformed mammary epithelial cells have been observed
on prominent linear bundles of collagen fibres adjacent to blood vessels138–140.

The expanding tumour mass exerts compressive stress on the surrounding tissue extracellular
matrix, vasculature, lymphatics and interstitial space. The solid stress induced by tumour
expansion could also promote tumour progression. For example, tumours in soft tissues such
as the pancreas typically show compromised laminin and type IV collagen basement membrane
organization and thinning that, when combined with outward projecting compression force,
facilitates tumour cell invasion into the parenchyma6,141 (FIG. 3). Tumour-associated
compression stress can induce tumour angiogenesis by directly increasing expression of
vascular endothelial growth factor A (VEGFA) or by indirectly blocking the existing
vasculature surrounding the tumour mass to promote hypoxia and VEGFA secretion142,143.
In addition, compression can increase the interstitial pressure in the tumour to up to 10× that
of normal tissue. This pressure induces the accumulation of fluid from leaky blood and
lymphatic vessels144,145. Compression force can also shrink the interstitial space surrounding
the ductal structures, which increases the local concentration of growth factors and cytokines
to facilitate autocrine and paracrine signalling and promote tumour growth146. Tumour-
associated changes in interstitial pressure and compressive stress also present real challenges
for the treatment of solid tumours with chemotherapeutic drugs147.

Breast cancer progression is accompanied by a desmoplastic response that includes
inflammatory cell infiltration, angiogenesis, fibroblast transdifferentiation and changes in
ECM composition, integrity and topology114,148,149. The ECM remodelling observed in
tumours includes increased deposition of fibronectin, tenascin, collagen types I, III and IV,
and proteoglycans150–152, substantial MMP-dependent cleavage and increased levels of
LOX-dependent matrix crosslinking33,153. In the normal breast, tightly controlled MMPs
remodel the ECM to promote mammary gland growth or involution. In tumours, however, this
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stringent control of MMP expression and function is lost154. Overexpression of MMP3,
MMP11, MMP12 and MMP13 have each been demonstrated in the tumour stroma, along with
MMP2 in the transformed mammary epithelial cells155. Moreover, aberrant MMP activity is
not merely symptomatic of a transformed tissue but rather has a causative role, as illustrated
by the observation that polymorphisms in the human MMP3 promoter that increase its
expression are associated with an increased tumour incidence156. Likewise, transgenic mice
that overexpress MMP3 displayed marked desmoplasia and precocious branching of the
mammary epithelium, and developed tumours with marked genetic abnormalities157.
However, tumour progression is also associated with substantial post-translational
modifications of matrix proteins including altered deposition of proteoglycans and increased
expression and activity of collagen crosslinking enzymes such as LOX and LOXl158,159. We
showed that experimentally induced breast tumour progression in transgenic mice is
accompanied by a significant increase in reversible and irreversible collagen crosslinking,
increased expression of LOX and an incremental increase in tissue and ECM stiffness (K.
Levental et al., unpublished information). Inducing collagen crosslinking and stiffening either
in three-dimensional collagen hydrogels or in vivo in a modified breast stroma promoted MEC
transformation that was associated with increased mechanosignalling. Provocatively,
inhibiting LOX-dependent collagen crosslinking tempered tissue desmoplasia, decreased
tumour incidence, reduced tumour growth and reduced mechanotransduction in the mammary
epithelium; thereby directly implicating changes in the properties of matrix materials in tumour
evolution.

Tumour evolution is accompanied by dramatic changes in interstitial pressure and fluid flow.
Fluid flow dynamics within soft tumour tissues has largely been ignored but is especially
relevant to tissue development and tumour metastasis and for optimal treatment efficacy145.
For instance, fluid flow facilitates lymphatic clearance and induces cytokine differentials that
promote cell motility and invasion through the creation of chemotactic C-C chemokine receptor
7 (CCR7) gradients that are highly important for cancer cell metastasis through the
lymphatics160. The increased interstitial pressure in an epithelial tumour mass, with fluids
accumulating from leaky blood vessels and impaired lymphatic drainage, can greatly impede
the delivery of tumour therapies130. Clearly, tumour cells are exposed to a myriad of altered
mechanical forces that could dramatically modify their behaviour. A better understanding of
how these force cues regulate tumour progression and metastasis and affect cancer therapy
could significantly aid the development of improved treatments161.

Breast density and age: a new perspective

Clinicians have long recognized that there is a connection between breast density and breast
cancer risk6,162–164. Increased mammographic density for instance, is associated with a four-
to six-fold increase in the relative risk of developing breast cancer165,166. Unfortunately,
however, deciphering the functional relationship between mammographic density and breast
transformation has proved quite challenging111,167. For instance, although dense breasts have
more collagen and increased cell density (reflected by a greater nuclear area), other factors
such as altered levels of the tissue inhibitor of metalloprotease 3 (TIMP3) and insulin-like
growth factor I (IGFI) are also associated with mammographic density and need to be
considered165,168,169. In fact, the composition of the ECM differs in women with dense
breasts, such that the proteoglycans lumican and decorin are often disproportionately increased
in women with mammographically dense breasts165,169. Proteoglycan deposition often
precedes fibrosis and may enhance tissue inflammation, raising the intriguing possibility that
women with mammographically dense breasts could be more susceptible to chronic
inflammation170. Interestingly, proteoglycans such as lumican and biglycan not only bind
growth factors and maintain tissue hydration but also contribute crucially to the mechanical
integrity of the stroma, suggesting that in some instances mammographic density could reflect
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a stiffer breast parenchyma36,171. Given that matrix stiffness can modify cell and tissue
behaviour by altering adhesion and growth factor receptor signalling and cytoskeletal dynamics
to change cell shape and tissue organization, it seems reasonable to predict that the increased
breast cancer risk associated with dense breasts could be attributed in some instances to an
aberrant tensional homeostasis in these tissues. In this regard, sonoelastography, which
measures the stiffness of a tissue in real time in situ, might offer a tractable auxillary screening
strategy to diagnose high-risk women who are identified initially using imaging
mammography172 (FIG. 5).

As women age, mammographic density decreases yet cancer incidence rises169,173. Indeed,
the post-menopausal breast has proportionately less collagen and more fatty tissue than the
young breast, implying that older breast tissue must be softer169. Consistently, in old skin and
bone, collagen deposition decreases and MMP-dependent degradation increases, and old bone
and skin are mechanically weaker than their younger tissue counterparts174,175. How can we
reconcile this seeming paradox between the increased cancer risk with age and the decreased
mechanical strength of tissues? one explanation is that ageing is associated with a
disproportionate increase in inappropriate post-translational modifications of ECM proteins,
including increased collagen glycation and ultraviolet crosslinking, yielding old tissue matrices
with less total collagen but a greater amount of disorganized collagen fibrils than young tissues.
Consistently, although old skin has lower tensile properties (that is, is mechanically weaker)
it is paradoxically stiffer (less elastic) and less functional than young skin176,177. Wound
healing in old skin is severely compromised, which could be attributed to altered mechanical
properties of the extracellular collagens178,179. Therefore, there is a positive association
between age, matrix stiffening, aberrant matrix crosslinking and increased cancer incidence.
Although the post-menopausal breast has less collagen, the collagen may be less mechanically
elastic, stiffer, more disorganized and less functional, a possibility that now needs to be
examined.

These findings underscore the need to understand the complex relationship between matrix
remodelling and topology, and cell and tissue behaviour. Indeed, although hormone
replacement therapy can increase breast density and tamoxifen treatment can reduce breast
density, these mammographic changes do not always reflect modified cancer risk, emphasizing
our need to develop additional metrics to understand the relationship between ECM
remodelling and tissue phenotype23,180. Such insight would be highly beneficial for clarifying
those issues encountered with the recent clinical trials of MMP inhibitors in cancer
treatment181.

Summary

Realizing that force is a crucial determinant of tissue development, cell differentiation and
homeostasis leads us to conclude that the loss of the ability to sense, respond and adapt
appropriately to force contributes to disease. Indeed, we and others showed that pathological
changes in cells and in the architecture, topology and material properties of their matrix
microenvironments constitutes a positive feedback loop that propels carcinogenesis and other
diseases. However, many questions still need to be resolved. Such issues include how the
unique material properties of specific differentiated tissues are established and maintained,
how cells coordinate their function and adaptation to external cues with their
microenvironments, and how physical signals might interface with and modulate the activity
of biochemical signalling pathways. Addressing these questions is particularly important if we
are to understand lethal processes such as tumour metastasis, which clearly is profoundly
influenced by the primary tissue microenvironment. Metastasis is also acutely regulated by the
inherent cellular rheology and the forces that the cells experience during their metastatic spread,
and is chronically regulated by the material properties of their targeted distal metastatic
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niche29,182. It may be that this niche is defined by proteins such as LOX or TGFβ, which have
the capacity to modify tumour cell adhesion and the material properties of ECM in tissues
targeted by these cells, respectively183,184. In this regard, recent work suggests that tumour
cells select their metastatic microenvironments in part through compliance matching but also
by pre-conditioning their metastatic niche. This raises a number of intriguing questions,
including defining the part that mechanical force might play in modulating the function of
tumour stem cells, why specific tumour types characteristically metastasize to distinct tissues,
and whether tumour cells might be mechanically pre-conditioning their metastatic sites.
Clearly, addressing such outstanding issues falls outside the realm of traditional cell biology
approaches and instead requires the cooperative effort of biologists, materials scientists,
physicists and engineers. Indeed, this exciting force ‘frontier’ is fertile territory for scientific
exploration of development and cancer biology that will undoubtedly yield new insights into
cancer evolution and identify novel anticancer therapeutic targets.
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Glossary

Rheology  
The study of the deformation and flow of matter.

Viscoelasticity 
Soft biological tissues can be described as viscoelastic materials. A viscous fluid
resists shear flow and strain linearly with time under stress. An elastic solid
undergoes deformation under stress and rapidly returns to its original state.
Viscoelastic biological materials exhibit characteristics of both a viscous fluid
and an elastic solid.

Endoproteinase 
An enzyme that proteolytically cleaves peptides at internal amino acids.

Durotactic  
Directed movement of cells up or down the stiffness gradient of a biomaterial.

Desmoplastic stroma 
Stromal tissue responds to tumour cells with a characteristic desmoplasia
resulting from fibroblast recruitment, collagen deposition and angiogenesis.
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Figure 1. Cells are tuned to the materials properties of their matrix

All cells, including those in traditionally mechanically static tissues, such as the breast or the
brain, are exposed to isometric force or tension that is generated locally at the nanoscale level
by cell–cell or cell–extracellular matrix interactions and that influences cell function through
actomyosin contractility and actin dynamics. Moreover, each cell type is specifically tuned to
the specific tissue in which it resides. The brain, for instance, is infinitely softer than bone
tissue. Consequently, neural cell growth, survival and differentiation are favoured by a highly
compliant matrix. By contrast, osteoblast differentiation and survival occurs optimally on
stiffer extracellular matrices with material properties more similar to newly formed bone.
Normal mammary epithelial cell growth, survival, differentiation and morphogenesis are
optimally supported by interaction with a soft matrix. Following transformation, however,
breast tissue becomes progressively stiffer and tumour cells become significantly more
contractile and hyper-responsive to matrix compliance cues. Normalizing the tensional
homeostasis of tumour cells, however, can revert them towards a non-malignant phenotype6,
thereby illustrating the functional link between matrix materials properties, cellular tension
and normal tissue behaviour. Importantly, however, although breast tumours are much stiffer
than the normal breast, the materials properties of a breast tumour remain significantly softer
than those of muscle or bone, emphasizing the critical association between tissue phenotype
and matrix rigidity.
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Figure 2. Mechanotransduction and focal adhesion maturation

a | The majority of integrins exist at the plasma membrane in a resting, inactive state in which
they can be activated by inside–out or outside–in cues. With regard to outside–in activation,
when cells encounter a mechanically rigid matrix or are exposed to an exogenous force integrins
become activated, which favours integrin oligomerization or clustering, talin 1 and p130Cas
protein unfolding, vinculin–talin association, and Src and focal adhesion kinase (FAK)
stimulation of RhoGTPase-dependent actomyosin contractility and actin remodelling. Focal
adhesions mature with the recruitment of a repertoire of adhesion plaque proteins, including
α-actinin to facilitate actin association, and adaptor proteins such as paxillin, which foster
interactions between multiple signalling complexes to promote growth, migration and
differentiation. b | Normal cells tune their contractility in response to matrix stiffness cues, but
tumours exhibit altered tensional homeostasis. Cells exert actomyosin contractility and
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cytoskeleton-dependent force in response to matrix stiffness cues. These forces can be
measured using traction force microscopy. Thus, non-malignant human mammary epithelial
cells spread more and exert more force on a stiff matrix than on a soft matrix. c | By comparison,
breast tumour cells (T4) are highly contractile and spread considerably more than their non-
malignant counterparts (S1) in response to the same compliant matrix. Importantly, inhibiting
RhoGTPase signalling in tumour cells, by expressing a dominant-negative N19Rho or treating
tumours with an inhibitor of Rho-associated, coiled-coil-containing protein kinase (ROCK;
Y-27632) or myosin 2 (blebbistatin), reduces tumour cell contractility and spreading to levels
exhibited by non-malignant breast epithelial cells. These data illustrate the importance of Rho
signalling and actomyosin contractility in cell force generation and show how transformation
alters cell force sensing. The traction map is shown in pseudocolour indicating regions of low
(grey) and high (purple) forces in dynes per cm2. ECM, extracellular matrix; SFK, Src family
kinase. Reproduced, with permission, from REF. 6 © (2005) Elsevier Inc.
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Figure 3. The normal mammary gland as a mechanically active tissue

a | The developing breast is subjected to a number of forces that facilitate its normal function.
During lactation, for instance, the normal breast experiences compressive stress on the luminal
epithelial cells and the basement membrane owing to the accumulation of milk and alveolar
distension. Upon sucking and oxytocin stimulation, epithelial cells encounter inward tensile
stress as the myoepithelium contracts to force the milk out of the alveolar sacs. In the absence
of this stimulus, milk will accumulate within the acinus and eventually exert an outward
projecting compressive force on the surrounding epithelium. This compressive force is
countered by a compensatory inward projecting resistance force and the combination of these
two forces eventually compromises the integrity of the tight junctions between alveolar cells.
Chronic exposure to these forces and perturbed tissue integrin sensitize the gland to apoptotic
cues so that the gland undergoes involution accompanied by extensive remodelling of the
epithelium and the cellular and extracellular components of the stroma. b | Transformation
(blue cells) resulting from the accumulation of genetic and epigenetic alterations in the
epithelium along with an altered stromal matrix leads to unchecked proliferation and enhanced
survival of luminal epithelial cells within the ductal tree, which compromises normal ductal
architecture. With prolonged growth and abnormal survival, the abnormal pre-neoplastic
luminal mammary epithelial cells eventually expand to fill the breast ducts. The expanding
luminal epithelial mass exerts outward projecting compression forces of increasing magnitude
on the basement membrane and adjacent myoepithelium. These forces are countered by an
inward projecting resistance force. Importantly, the pre-neoplastic lesion secretes a plethora
of soluble factors that stimulate immune cell infiltration and activation of resident fibroblasts
to induce a desomoplastic response in the breast stroma. The desmoplastic stroma, which is
characterized by dramatic changes in the composition, post-translational modifications and
topology of the extracellular matrix (ECM), stiffens over time. This rigid parenchyma exerts
a progressively greater inward projecting resistance force on the expanding pre-neoplastic duct.
Over time, the number of myoepithelial cells surrounding the pre-neoplastic mass decreases
and the basement membrane thins, probably owing to increased matrix metalloproteinase
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(MMP) activity, decreased protein deposition and compromised assembly (adapted from REF.
128). In parallel, there is a build-up of interstitial fluid pressure contributed by a leaky
vasculature and compromised lymphatic drainage. In response to their genetic modifications
and the altered materials properties of the matrix, the pre-neoplastic luminal epithelial cells
exhibit modified tensional homeostasis and respond to the combination of forces and stromal
cues to invade the breast parenchyma. Some resident fibroblasts transdifferentiate into
myofibroblasts and facilitate tumour migration and invasion by promoting the assembly of
linearized collagen fibrils surrounding the distended pre-neoplastic epithelial ducts.
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Figure 4. Matrix stiffness modulates cellular morphology and epidermal growth factor (EGF)-
dependent growth

Phase contrast microscopy and confocal immunofluorescence images of non-malignant
immortalized human mammary epithelial cell (HMEC; MCF10A) colonies interacting with a
three-dimensional reconstituted basement membrane (BM)-laminated polyacrylamide gel of
increasing stiffness (150–5,000 Pa) showing colony morphogenesis after 20 days of culture.
On compliant gels with materials properties similar to that measured in the normal murine
mammary gland (150 Pa) non-malignant MECs proliferate for 6–12 days to eventually form
growth-arrested, polarized acini analogous to the terminal ductal lobular units observed at the
end buds of the differentiated breast. These structures have intact adherens junctions and
insoluble cell–cell localized β-catenin before (main images) and after (inset a) Triton
extraction, and polarity, as shown by the basal localization of (α6) β4 integrin, the apical–lateral
localization of cortical actin (Phalloidin), and the assembly of an endogenous laminin 5
basement membrane. Incremental stiffening of the basement membrane gel progressively
compromises tissue morphogenesis and alters EGF-dependent growth of these cells. Thus,
colony size progressively increases with matrix stiffening, lumen formation is compromised,
cell–cell junctions are disrupted, as revealed by loss of cell–cell-associated β-catenin (inset b),
and tissue polarity is inhibited, as indicated by disorganized (α6) β4 integrin localization and
loss of the endogenous laminin 5 basement membrane. Interestingly, actin stress fibres were
not observed in the structures until the stiffness of the matrix reached 5,000 Pa, as has been
observed in murine breast tumours in vivo6. The arrows indicate loss of the endogenous
basement membrane and disruption of basal polarity. Reproduced, with permission, from REF.
6 © (2005) Elsevier Inc.
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Figure 5. Imaging elastography of a breast tumour

Tissue imaging elastography is a spatial ‘visual’ qualitative measurement of the stiffness of a
tissue that is generated by extrapolating tissue viscoelastic characteristics from ultrasound wave
reflection in real-time. Photographs of sonoelastography images compare an elastogram image
(a) with a B mode ultrasound scan (b) of a breast tumour170. Ultrasound imaging elastography,
as shown here, is an in situ mechanical imaging method that could improve the sensitivity and
the specificity of breast cancer detection and may be a useful tool to advance our understanding
of the link between mammographic density and the matrix materials properties of the breast.
Image courtesy of A. Thomas & T. Fischer, Charité, Berlin, Germany.
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