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A TENSOR APPROXIMATION METHOD BASED ON IDEAL MINIMAL

RESIDUAL FORMULATIONS FOR THE SOLUTION

OF HIGH-DIMENSIONAL PROBLEMS ∗

M. Billaud-Friess1, A. Nouy1 and O. Zahm1

Abstract. In this paper, we propose a method for the approximation of the solution of high-
dimensional weakly coercive problems formulated in tensor spaces using low-rank approximation for-
mats. The method can be seen as a perturbation of a minimal residual method with a measure of
the residual corresponding to the error in a specified solution norm. The residual norm can be de-
signed such that the resulting low-rank approximations are optimal with respect to particular norms
of interest, thus allowing to take into account a particular objective in the definition of reduced order
approximations of high-dimensional problems. We introduce and analyze an iterative algorithm that
is able to provide an approximation of the optimal approximation of the solution in a given low-rank
subset, without any a priori information on this solution. We also introduce a weak greedy algorithm
which uses this perturbed minimal residual method for the computation of successive greedy correc-
tions in small tensor subsets. We prove its convergence under some conditions on the parameters of the
algorithm. The proposed numerical method is applied to the solution of a stochastic partial differential
equation which is discretized using standard Galerkin methods in tensor product spaces.
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1. Introduction

Low-rank tensor approximation methods are receiving growing attention in computational science for the nu-
merical solution of high-dimensional problems formulated in tensor spaces (see the recent surveys [9, 23, 29, 30]
and monograph [24]). Typical problems include the solution of high-dimensional partial differential equations
arising in stochastic calculus, or the solution of stochastic or parametric partial differential equations using func-
tional approaches, where functions of multiple (random) parameters have to be approximated. These problems
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take the general form

A(u) = b, u ∈ X = X1 ⊗ . . . ⊗ Xd, (1.1)

where A is an operator defined on the tensor space X . Low-rank tensor methods then consist in searching an
approximation of the solution u in a low-dimensional subset SX of elements of X of the form

∑

i1

. . .
∑

id

αi1...id
w1

i1 ⊗ . . . ⊗ wd
id

, wµ
iµ

∈ Xµ, (1.2)

where the set of coefficients (αi1...id
) possesses some specific structure. Classical low-rank tensor subsets include

canonical tensors, Tucker tensors, Tensor Train tensors [27,40], Hierarchical Tucker tensors [25] or more general
tree-based Hierarchical Tucker tensors [18]. In practice, many tensors arising in applications are observed to
be efficiently approximable by elements of the mentioned subsets. Low-rank approximation methods are closely
related to a priori model reduction methods in that they provide approximate representations of the solution
on low-dimensional reduced bases {w1

i1 ⊗ . . . ⊗ wd
id
} that are not selected a priori.

The best approximation of u ∈ X in a given low-rank tensor subset SX with respect to a particular norm
‖ · ‖X in X is the solution of

min
v∈SX

‖u − v‖X . (1.3)

Low-rank tensor subsets are neither linear subspaces nor convex sets. However, they usually satisfy topological
properties that make the above best approximation problem meaningful and allows the application of standard
optimization algorithms [14,41,44]. Of course, in the context of the solution of high-dimensional problems, the
solution u of problem (1.1) is not available, and the best approximation problem (1.3) cannot be solved directly.
Tensor approximation methods then typically rely on the definition of approximations based on the residual
of equation (1.1), which is a computable quantity. Different strategies have been proposed for the construction
of low-rank approximations of the solution of equations in tensor format. The first family of methods consists
in using classical iterative algorithms for linear or nonlinear systems of equations with low-rank tensor algebra
(using low-rank tensor compression) for standard algebraic operations [4,28,31,34]. The second family of methods
consists in directly computing an approximation of u in SX by minimizing some residual norm [5,12, 35]:

min
v∈SX

‖Av − b‖⋆. (1.4)

In the context of approximation, where one is interested in obtaining an approximation with a given precision
rather than obtaining the best low-rank approximation, constructive greedy algorithms have been proposed
that consist in computing successive corrections in a small low-rank tensor subset, typically the set of rank-
one tensors [1, 32, 35]. These greedy algorithms have been analyzed in several papers [2, 6, 7, 15, 17, 19] and
a series of improved algorithms have been introduced in order to increase the quality of suboptimal greedy
constructions [17, 21, 33, 37, 38].

Although minimal residual based approaches are well founded, they generally provide low-rank approxima-
tions that can be very far from optimal approximations with respect to the natural norm ‖ · ‖X , at least when
using usual measures of the residual. If we are interested in obtaining an optimal approximation with respect
to the norm ‖ · ‖X , e.g. taking into account some particular quantity of interest, an ideal approach would be to
define the residual norm such that

‖Av − b‖⋆ = ‖u − v‖X ,

where ‖ · ‖X is the desired solution norm, that corresponds to solve an ideally conditioned problem. Minimizing
the residual norm would therefore be equivalent to solving the best approximation problem (1.3). However, the
computation of such a residual norm is in general equivalent to the solution of the initial problem (1.1).



TENSOR APPROXIMATION METHOD BASED ON IDEAL MINIMAL RESIDUAL FORMULATIONS 1779

In this paper, we propose a method for the approximation of the ideal approach. This method applies to a
general class of weakly coercive problems. It relies on the use of approximations rδ(v) of the residual r(v) = Av−b
such that ‖rδ(v)‖⋆ approximates the ideal residual norm ‖r(v)‖⋆ = ‖u − v‖X . The resulting method allows for
the construction of low-rank tensor approximations which are quasi-optimal with respect to a norm ‖ · ‖X

that can be designed according to some quantity of interest. We first introduce and analyze an algorithm for
minimizing the approximate residual norm ‖rδ(v)‖⋆ in a given subset SX . This algorithm can be seen as an
extension of the algorithms introduced in [8, 10] to the context of nonlinear approximation in subsets SX . It
consists in a perturbation of a gradient algorithm for minimizing in SX the ideal residual norm ‖r(v)‖⋆, using
approximations rδ(v) of the residual r(v). An ideal algorithm would consist in computing an approximation
rδ(v) such that

(1 − δ)‖u − v‖X ≤ ‖rδ(v)‖⋆ ≤ (1 + δ)‖u − v‖X , (1.5)

for some precision δ, that requires the use of guaranteed error estimators. In the present paper, (1.5) is not
exactly satisfied since we only use heuristic error estimates. However, these estimates seem to provide an
acceptable measure of the error for the considered applications. The resulting algorithm can be interpreted as a
preconditioned gradient algorithm with an implicit preconditioner that approximates the ideal preconditioner.
Also, we propose a weak greedy algorithm for the adaptive construction of an approximation of the solution of
problem (1.1), using the perturbed ideal minimal residual approach for the computation of greedy corrections.
A convergence proof is provided under some conditions on the parameters of the algorithm.

The outline of the paper is as follows. In Section 2, we introduce a functional framework for weakly coercive
problems. In Section 3, we briefly recall some definitions and basic properties of tensor spaces and low-rank
tensor subsets. In Section 4, we present a natural minimal residual based method for the approximation in a
nonlinear subset SX , and we analyze a simple gradient algorithm in SX . We discuss the conditioning issues
that restrict the applicability of such algorithms when usual residual norms are used, and the interest of using
an ideal measure of the residual. In Section 5, we introduce the perturbed ideal minimal residual approach. A
gradient-type algorithm is introduced and analyzed and we prove the convergence of this algorithm towards
a neighborhood of the best approximation in SX . Practical computational aspects are detailed in Section 6.
In Section 7, we analyze a weak greedy algorithm using the perturbed ideal minimal residual method for the
computation of greedy corrections. In Section 8, a detailed numerical example will illustrate the proposed
method. The example is a stochastic reaction-advection-diffusion problem which is discretized using Galerkin
stochastic methods. In particular, this example will illustrate the possibility to introduce norms that are adapted
to some quantities of interest and the ability of the method to provide (quasi-)best low-rank approximations in
that context.

2. Functional framework for weakly coercive problems

2.1. Notations

For a given Hilbert space H , we denote by 〈·, ·〉H the inner product in H and by ‖ · ‖H the associated norm.
We denote by H ′ the topological dual of H and by 〈·, ·〉H′,H the duality pairing between H and H ′. For v ∈ H
and ϕ ∈ H ′, we denote ϕ(v) = 〈ϕ, v〉H′,H . We denote by RH : H → H ′ the Riesz isomorphism defined by

〈v, w〉H = 〈v, RHw〉H,H′ = 〈RHv, w〉H′,H = 〈RHv, RHw〉H′ ∀v, w ∈ H.

2.2. Weakly coercive problems

We denote by X (resp. Y ) a Hilbert space equipped with inner product 〈·, ·〉X (resp. 〈·, ·〉Y ) and associated
norm ‖ · ‖X (resp. ‖ · ‖Y ). Let a : X × Y → R be a bilinear form and let b ∈ Y ′ be a continuous linear form
on Y . We consider the variational problem: find u ∈ X such that

a(u, v) = b(v) ∀v ∈ Y. (2.1)
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We assume that a is continuous and weakly coercive, that means that there exist constants α and β such that

sup
v∈X

sup
w∈Y

a(v, w)

‖v‖X‖w‖Y
= β < +∞, (2.2)

inf
v∈X

sup
w∈Y

a(v, w)

‖v‖X‖w‖Y
= α > 0, (2.3)

and

sup
v∈X

a(v, w)

‖v‖X
> 0 ∀w �= 0 in Y. (2.4)

We introduce the linear continuous operator A : X → Y ′ such that for all (v, w) ∈ X × Y ,

a(v, w) = 〈Av, w〉Y ′,Y .

We denote by A∗ : Y → X ′ the adjoint of A, defined by

〈Av, w〉Y ′,Y = 〈v, A∗w〉X,X′ ∀(v, w) ∈ X × Y.

Problem (2.1) is therefore equivalent to find u ∈ X such that

Au = b. (2.5)

Properties (2.2)–(2.4) imply that A is a norm-isomorphism from X to Y ′ such that for all v ∈ X ,

α‖v‖X ≤ ‖Av‖Y ′ ≤ β‖v‖X (2.6)

ensuring the well-posedness of problem (2.5)[13]. The norms of A and its inverse A−1 are such that ‖A‖X→Y ′ = β
and ‖A−1‖Y ′→X = α−1. Then, the condition number of the operator A is

κ(A) = ‖A‖X→Y ′‖A−1‖Y ′→X =
β

α
≥ 1.

3. Approximation in low-rank tensor subsets

3.1. Hilbert tensor spaces

We here briefly recall basic definitions on Hilbert tensor spaces (see [24]). We consider Hilbert spaces Xµ,
1 ≤ μ ≤ d, equipped with norms ‖ · ‖Xµ

and associated inner products 〈·, ·〉µ2. We denote by ⊗d
µ=1v

µ =

v1 ⊗ . . . ⊗ vd, vµ ∈ Xµ, an elementary tensor. We then define the algebraic tensor product space as the linear
span of elementary tensors:

a

d⊗

µ=1

Xµ = span{⊗d
µ=1v

µ : vµ ∈ Xµ, 1 ≤ μ ≤ d}.

A Hilbert tensor space X equipped with the norm ‖ · ‖X is then obtained by the completion with respect to
‖ · ‖X of the algebraic tensor space, i.e.

X = a

d⊗

µ=1

Xµ

‖·‖X

= ‖·‖X

d⊗

µ=1

Xµ.

2 e.g. Xµ = R
nµ equipped with the Euclidian norm, or Xµ = Hk

0
(Ωµ), k ≥ 0, a Sobolev space of functions defined on a

domain Ωµ.
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Note that for finite dimensional tensor spaces, the resulting space X is independent of the choice of norm and
coincides with the normed algebraic tensor space.

A natural inner product on X is induced by inner products 〈·, ·〉µ in Xµ, 1 ≤ μ ≤ d. It is defined for
v = ⊗d

µ=1v
µ and w = ⊗d

µ=1w
µ by

〈v, w〉X =

d∏

µ=1

〈vµ, wµ〉µ

and extended by linearity on the whole algebraic tensor space. This inner product is called the induced (or
canonical) inner product and the associated norm the induced (or canonical) norm.

3.2. Classical low-rank tensor subsets

Low-rank tensor subsets SX of a tensor space X = ‖ · ‖X

⊗d
µ=1 Xµ are subsets of the algebraic tensor space

a

⊗d
µ=1 Xµ, which means that elements v ∈ SX can be written under the form

v =
∑

i1∈I1

. . .
∑

id∈Id

αi1,...,id

d⊗

µ=1

vµ
iµ

, (3.1)

where α = (αi)i∈I ∈ RI , with I := I1× . . .×Id, is a set of real coefficients that possibly satisfy some constraints,
and (vµ

iµ
)iµ∈Iµ

∈ (Xµ)Iµ , for 1 ≤ μ ≤ d, is a set of vectors that also possibly satisfy some constraints (e.g.

orthogonality).
Basic low-rank tensor subsets are the set of tensors with canonical rank bounded by r:

Rr(X) =

{
v =

r∑

i=1

⊗d
µ=1v

µ
i : vµ

i ∈ Xµ

}
,

and the set of Tucker tensors with multilinear rank bounded by r = (r1, . . . , rd):

Tr(X) =

{
v =

r1∑

i1=1

. . .

rd∑

id=1

αi1,...,id
⊗d

µ=1 vµ
iµ

: vµ
iµ

∈ Xµ, αi1,...,id
∈ R

}

Other low-rank tensor subsets have been recently introduced, such as Tensor Train tensors [27, 40] or more
general tree-based Hierarchical Tucker tensors [18, 25], these tensor subsets corresponding to a form (3.1) with
a particular structure of tensor α. Note that for the case d = 2, all the above tensor subsets coincide.

Remark 3.1. From a numerical point of view, the approximate solution of the variational problem (2.1) requires

an additional discretization which consists in introducing an approximation space X̃ = ⊗d
µ=1X̃µ, where the

X̃µ ⊂ Xµ are finite dimensional approximation spaces (e.g. finite element spaces). Then, approximations are

searched in low-rank tensor subsets SX of X̃ (e.g. Rr(X̃) or Tr(X̃)), thus introducing two levels of discretization.
In the following, we adopt a general point of view where X can either denote an infinite dimensional space,
an approximation space obtained after the discretization of the variational problem, or even finite dimensional
Euclidian spaces for problems written in an algebraic form.

3.3. Best approximation in tensor subsets

Low-rank tensor approximation methods consist in computing an approximation of a tensor u ∈ X in a
suitable low-rank subset SX of X . The best approximation of u in SX is defined by

min
v∈SX

‖u − v‖X . (3.2)
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The previously mentioned classical tensor subsets are neither linear subspaces nor convex sets. However, they
usually satisfy properties that give sense to the above best approximation problem. We consider the case that
SX satisfies the following properties:

SX is weakly closed (or simply closed in finite dimension), (3.3)

SX ⊂ γSX for all γ ∈ R. (3.4)

Property (3.4) is satisfied by all the classical tensor subsets mentioned above (canonical tensors, Tucker and tree-
based Hierarchical Tucker tensors). Property (3.3) ensures the existence of solutions to the best approximation
problem (3.2). This property, under some suitable conditions on the norm ‖ · ‖X (which is naturally satisfied
in finite dimension), is verified by most tensor subsets used for approximation (e.g. the set of tensors with
bounded canonical rank for d = 2, the set of elementary tensors R1 for d ≥ 2 [15], the sets of Tucker or
tree-based Hierarchical Tucker tensors [16]).

We then introduce the set-valued map ΠSX
: X → 2SX that associates to an element u ∈ X the set of best

approximations of u in SX :

ΠSX
(u) = arg min

v∈SX

‖u − v‖X . (3.5)

Note that if SX were a closed linear subspace or a closed convex set of X , then ΠSX
(u) would be a singleton

and ΠSX
would coincide with the classical definition of the metric projection on SX . Property (3.4) still implies

the following property of projections: for all v ∈ X and for all w ∈ ΠSX
(v),

‖v − w‖2
X = ‖v‖2

X − ‖w‖2
X with ‖w‖X = σ(v;SX) = max

z∈SX

〈v, z〉X
‖z‖X

· (3.6)

ΠSX
(v) is therefore a subset of the sphere of radius σ(v;SX ) in X . In the following, we will use the following

abuse of notation: for a subset S ⊂ X and for w ∈ X , we define

‖S − w‖X := sup
v∈S

‖v − w‖X

With this convention, we have ‖ΠSX
(v)‖X = σ(v;SX) and

‖ΠSX
(v) − v‖2

X = ‖v‖2
X − ‖ΠSX

(v)‖2
X . (3.7)

4. Minimal residual based approximation

We now consider that problem (2.5) is formulated in tensor Hilbert spaces X = ‖·‖X

⊗d
µ=1 Xµ and Y =

‖·‖Y

⊗d
µ=1 Yµ. The aim is here to find an approximation of the solution u of problem (2.5) in a given tensor

subset SX ⊂ X .

4.1. Best approximation with respect to residual norms

Since the solution u of problem (2.5) is not available, the best approximation problem (3.2) cannot be
solved directly. However, tensor approximations can be defined using the residual of equation (2.5), which is a
computable information. An approximation of u in SX is then defined by the minimization of a residual norm:

min
v∈SX

‖Av − b‖Y ′ = min
v∈SX

‖A(v − u)‖Y ′ . (4.1)

Assuming that we can define a tangent space Tv(SX) to SX at v ∈ SX , the stationarity condition of functional
J : v �→ ‖A(v − u)‖2

Y ′ at v ∈ SX is

〈J ′(v), δv〉X′,X = 0 ∀δv ∈ Tv(SX),

or equivalently, noting that the gradient of J at v is J ′(v) = A∗R−1
Y (Av − b) ∈ X ′,

〈Av − b, Aδv〉Y ′ = 0 ∀δv ∈ Tv(SX).
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4.2. Ideal choice of the residual norm

When approximating u in SX using (4.1), the obtained approximation depends on the choice of the residual
norm. If we want to find a best approximation of u with respect to the norm ‖ · ‖X , then the residual norm
should be chosen [8, 10] such that

‖A(v − u)‖Y ′ = ‖v − u‖X ∀v ∈ X,

or equivalently such that the following relation between inner products holds:

〈v, w〉X = 〈Av, Aw〉Y ′ ∀v, w ∈ X. (4.2)

This implies

〈v, w〉X = 〈Av, R−1
Y Aw〉Y ′,Y = 〈v, R−1

X A∗R−1
Y Aw〉X ,

for all v, w ∈ X , and therefore, by identification,

IX = R−1
X A∗R−1

Y A ⇔ RY = AR−1
X A∗ ⇔ RX = A∗R−1

Y A. (4.3)

Also, since

〈v, w〉Y = 〈RY v, w〉Y ′,Y = 〈AR−1
X A∗v, w〉Y ′,Y

= 〈R−1
X A∗v, A∗w〉X,X′ = 〈A∗v, A∗w〉X′

for all v, w ∈ Y , we also have that (4.2) is equivalent to the following relation:

〈v, w〉Y = 〈A∗v, A∗w〉X′ ∀v, w ∈ Y. (4.4)

Note that (4.2) and (4.4) respectively impose

‖v‖X = ‖Av‖Y ′ and ‖w‖Y = ‖A∗w‖X′ . (4.5)

This choice implies that the weak coercivity and continuity constants are such that α = β = 1, and therefore

κ(A) = 1,

meaning that problem (2.5) is ideally conditioned.

In practice, we will first define the inner product 〈·, ·〉X and the other inner product 〈·, ·〉Y will be deduced
from (4.4).

Example 4.1. Consider that X = Y and let A = B +C with B a symmetric coercive and continuous operator
and C a skew-symmetric operator. We equip X with inner product 〈v, w〉X = 〈Bv, w〉X′,X , which corresponds
to RX = B. Therefore,

‖v‖2
Y = ‖A∗v‖2

X′ = ‖Bv‖2
X′ + ‖Cv‖2

X′ = ‖v‖2
X + ‖Cv‖2

X′ .

‖v‖Y corresponds to the graph norm of the skew-symmetric part C of the operator A. When C = 0, we simply
have ‖v‖2

Y = ‖v‖2
X .

Example 4.2 (Finite dimensional problem). Consider the case of finite dimensional tensor spaces X = Y =
Rn1×...×nd , e.g. after a discretization step for the solution of a high-dimensional partial differential equation. The
duality pairings are induced by the standard canonical inner product. We can choose for 〈·, ·〉X the canonical
inner product on Rn1×...×nd , which corresponds to RX = IX , the identity on X . Then, inner product on Y is
defined by relation (4.4), which implies

〈v, w〉Y = 〈A∗v, A∗w〉X and RY = AA∗.
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4.3. Gradient-type algorithm

For solving (4.1), we consider the following basic gradient-type algorithm: letting u0 = 0, we construct a
sequence {uk}k≥0 in SX and a sequence {yk}k≥0 in Y defined for k ≥ 0 by

{
yk = R−1

Y (Auk − b)

uk+1 ∈ ΠSX
(uk − ρR−1

X A∗yk)
(4.6)

with ρ > 0. Equations (4.6) yield

uk+1 ∈ ΠSX
(u + Bρ(u

k − u)),

with Bρ = IX − ρR−1
X A∗R−1

Y A a symmetric operator from X to X . For all v ∈ X ,

〈Bρv, v〉X
‖v‖2

X

= 1 − ρ
‖Av‖2

Y ′

‖v‖2
X

·

Here, we assume that ‖ · ‖X and ‖ · ‖Y do not necessarily satisfy the relation (4.5) (i.e. α
β �= 1). From (2.6), we

deduce that the eigenvalues of Bρ are in the interval [1 − ρβ2, 1 − ρα2]. The spectral radius of Bρ is therefore
bounded by

γ(ρ) = max{|1 − ρβ2|, |1 − ρα2|}.

Proposition 4.3. Assuming γ(ρ) < 1/2, the sequence {uk}k≥1 defined by (4.6) is such that

‖uk − u‖X ≤ (2γ)k‖u0 − u‖X +
1

1 − 2γ
‖u − ΠSX

(u)‖X (4.7)

and

lim sup
k→∞

‖uk − u‖X ≤ 1

1 − 2γ
‖u − ΠSX

(u)‖X (4.8)

Proof. Denoting vk = uk − u, we have

‖uk+1 − u‖X ≤ ‖ΠSX

(
u + Bρv

k
)
− u‖X

≤ ‖ΠSX
(u + Bρv

k) −
(
u + Bρv

k
)
‖X + ‖Bρv

k‖X

≤ ‖w −
(
u + Bρv

k
)
‖X + ‖Bρv

k‖X

for all w ∈ SX . In particular, this inequality is true for all w ∈ ΠSX
(u), and therefore, taking the supremum

over all w ∈ ΠSX
(u), we obtain

‖uk+1 − u‖X ≤ ‖ΠSX
(u) − (u + Bρv

k)‖X + ‖Bρv
k‖X

≤ ‖ΠSX
(u) − u‖X + 2‖Bρv

k‖X

Since ‖Bρv‖X ≤ γ‖v‖X for all v ∈ X and since 2γ < 1, we have

‖uk+1 − u‖X ≤ ‖ΠSX
(u) − u‖X + 2γ‖u− uk‖X

≤ (2γ)k+1‖u0 − u‖X +
1 − (2γ)k+1

1 − 2γ
‖u − ΠSX

(u)‖X

from which we deduce (4.7) and (4.8). �
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The condition γ(ρ) < 1/2 imposes β
α <

√
3 and ρ ∈ ( 1

2α2 , 3
2β2 ). The condition β

α <
√

3 is a very restrictive
condition which is in general not satisfied without an excellent preconditioning of the operator A.

However, with the ideal choice of norms introduced in the previous section (Eq. (4.5)), we have α = β = 1 and
Bρ = (1 − ρ)IX . That means that the problem is ideally conditioned and we have convergence for all ρ ∈ [12 , 3

2 ]

towards a neighborhood of ΠSX
(u) of size 2γ

1−2γ ‖u − ΠSX
(u)‖X with γ = |1 − ρ|.

Corollary 4.4. Assume that (4.5) is satisfied. Then, if ρ ∈ [ 12 , 3
2 ], the sequence {uk}k≥1 defined by (4.6)

verifies (4.7) and (4.8) with γ(ρ) = |1 − ρ|. Moreover, if ρ = 1, then u1 ∈ ΠSX
(u), which means that the

algorithm converges in one iteration for any initialization u0.

5. Perturbation of the ideal approximation

We now consider that function spaces X and Y are equipped with norms satisfying the ideal condition

‖Av‖Y ′ = ‖v‖X ∀v ∈ X. (5.1)

The solution of problem (4.1) using this ideal choice of norms is therefore equivalent to the best approximation
problem (3.2), i.e.

min
v∈SX

‖Av − b‖Y ′ = min
v∈SX

‖v − u‖X . (5.2)

Unfortunately, the computation of the solution of (5.2) would require the solution of the initial problem. We
here propose to introduce a computable perturbation of this ideal approach.

5.1. Approximation of the ideal approach

Following the idea of [8], the problem (5.2) is replaced by the following problem:

min
v∈SX

‖Λδ(R−1
Y (Av − b))‖Y , (5.3)

where Λδ : Y → Y is a mapping that provides an approximation Λδ(r) of the residual r = R−1
Y (Av − b) ∈ Y

with a controlled relative precision δ > 0, i.e. ‖Λδ(r) − r‖Y ≤ δ‖r‖Y . We will then assume that the mapping
Λδ is such that:

‖Λδ(y) − y‖Y ≤ δ‖y‖Y , ∀y ∈ DY =
{
R−1

Y (Av − b); v ∈ SX

}
. (5.4)

As we will see in the following algorithm, it is sufficient for Λδ to well approximate residuals that are in the
subset DY whose content depends on the chosen subset SX and on the operator and right-hand side of the
problem.

5.2. Quasi-optimal approximations in SX

Here we consider the case where we are not able to solve the best approximation problem in SX exactly, be-
cause there is no available algorithm for computing a global optimum, or because the algorithm has been stopped
at a finite precision (see Sect. 6.1 for practical comments). We introduce a set of quasi-optimal approximations
Πη

SX
(u) ⊂ SX such that

‖u − Πη
SX

(u)‖X ≤ η‖u − ΠSX
(u)‖X (η ≥ 1). (5.5)

Remark 5.1. Note that by introducing this new perturbation, we are able to remove the assumption that SX

is closed and to handle the case where the problem (5.2) does not have a solution, i.e. ΠSX
(u) = ∅. In this case,

we have to replace ‖u − ΠSX
(u)‖X by infw∈SX

‖u − w‖X in equation (5.5).
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Remark 5.2. Note that if SX denotes a low-rank subset of an infinite dimensional space X , additional approx-
imations have to be introduced from a numerical point of view (see Rem. 3.1). These additional approximations
could be also considered as a perturbation leading to quasi-optimal approximations, where η takes into account
the approximation errors. In numerical examples, we will not adopt this point of view and we will consider X as
the approximation space and the approximate solution in X of the variational problem will serve as a reference
solution.

5.3. Perturbed gradient-type algorithm

For solving (5.3), we now introduce an algorithm which can be seen as a perturbation of the ideal gradient-
type algorithm (4.6) introduced in Section 4.3. Letting u0 = 0, we construct a sequence {uk}k≥0 ⊂ SX and a
sequence {yk}k≥0 ⊂ Y defined for k ≥ 0 by

{
yk = Λδ

(
R−1

Y

(
Auk − b

))

uk+1 ∈ Πη
SX

(
uk − R−1

X A∗yk
) (5.6)

Proposition 5.3. Assume (5.1), (5.4), and (5.5), with δ(1 + η) < 1. Then, the sequence {uk}k≥1 defined by
(5.6) is such that

‖uk − u‖X ≤ ((1 + η)δ)k‖u0 − u‖X +
η

1 − δ(1 + η)
‖u − ΠSX

(u)‖X . (5.7)

Proof. Equation (5.6) can also be written

uk+1 ∈ Πη
SX

(u + Bδ(uk − u))

with Bδ(v) = v − R−1
X A∗Λδ(R−1

Y A(v)). Denoting vk = uk − u, and following the proof of Proposition 4.3, we
obtain

‖uk+1 − u‖X ≤ ‖Πη
SX

(u + Bδvk) − (u + Bδvk)‖X + ‖Bδvk‖X

≤ η‖ΠSX
(u) − (u + Bδvk)‖X + ‖Bδvk‖X

≤ η‖ΠSX
(u) − u‖X + (1 + η)‖Bδvk‖X

Moreover, using (5.1) and (4.3), we have

‖Bδvk‖X = ‖vk − R−1
X A∗Λδ

(
R−1

Y Avk
)
‖X

= ‖Avk − AR−1
X A∗Λδ

(
R−1

Y Avk
)
‖Y ′

= ‖R−1
Y Avk − Λδ

(
R−1

Y Avk
)
‖Y .

Noting that R−1
Y Avk = R−1

Y (Auk − b) belongs to the subset DY , we deduce from assumption (5.4) and equa-
tion (5.1) that

‖Bδvk‖X ≤ δ‖R−1
Y Avk‖Y = δ‖vk‖X .

Denoting δη = δ(1 + η) < 1, we finally have

‖uk+1 − u‖X ≤ η‖ΠSX
(u) − u‖X + δη‖uk − u‖X

≤ δk+1
η ‖u0 − u‖X + η

1 − δk+1
η

1 − δη
‖u − ΠSX

(u)‖X ,

from which we deduce (5.7). �
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Comments. We note the sequence converges towards a neighborhood of ΠSX
(u) whose size is η−1+(1+η)δ

1−(1+η)δ ‖u −
ΠSX

(u)‖X . Indeed, (5.7) implies that

‖u − ΠSX
(u)‖X ≤ ‖u − uk‖X ≤ (1 + γk)‖u − ΠSX

(u)‖X , (5.8)

with lim supk→∞ γk ≤ η−1+(1+η)δ
1−(1+η)δ . Therefore, the sequence tends to provide a good approximation of the best

approximation of u in SX , and the parameters δ and η control the quality of this approximation. Moreover,
equation (5.7) indicates that the sequence converges quite rapidly to this neighborhood. Indeed, in the first
iterations, when the error ‖u − uk‖X is dominated by the first term ((1 + η)δ)k‖u − u0‖X , the algorithm has
at least a linear convergence with convergence rate (1 + η)δ (note that for η ≈ 1, the convergence rate is very
high for small δ). Once both error terms are balanced, the error stagnates at the value η

1−(1+η)δ‖u−ΠSX
(u)‖X .

Note that when δ → 0, we recover an ideal algorithm with a convergence in only one iteration to an element of
the set Πη

SX
(u) of quasi-best approximations of u in SX .

Remark 5.4. Even if SX is chosen as a subset of low-rank tensors, the subset DY defined in (5.4) possibly
contains tensors with high ranks (or even tensors with full rank) that are not easy to approximate with a small
precision δ using low-rank tensor representations. However, the algorithm only requires to well approximate the
sequence of residuals {R−1

Y (Auk − b)}k≥0 ⊂ DY , which may be achievable in practical applications.

5.4. Error indicator

Along the iterations of algorithm (5.6), an estimation of the true error ‖u− uk‖X can be simply obtained by
evaluating the norm ‖yk‖Y of the iterate yk = Λδ(rk) with rk = R−1

Y (Auk − b). Indeed, from property (5.4), we
have

(1 − δ)‖y‖Y ≤ ‖Λδ(y)‖Y ≤ (1 + δ)‖y‖Y , (5.9)

for all y ∈ DY . Therefore, noting that rk ∈ DY and ‖rk‖Y = ‖A(u − uk)‖Y ′ = ‖u − uk‖X , we obtain

(1 − δ)‖u − uk‖X ≤ ‖yk‖Y ≤ (1 + δ)‖u − uk‖X . (5.10)

In other words,

ǫk =
1

1 − δ
‖yk‖Y (5.11)

provides an error indicator of the true error ‖u−uk‖X with an effectivity index τk = ǫk

‖u−uk‖X
∈ (1, 1+δ

1−δ ), which

is very good for small δ.

Moreover, if Λδ is an orthogonal projection onto some subspace Y δ ⊂ Y , we easily obtain the following
improved lower and upper bounds:

√
1 − δ2‖u − uk‖X ≤ ‖yk‖Y ≤ ‖u − uk‖X , (5.12)

that means that the following improved error estimator can be chosen:

ǫ̂k =
1√

1 − δ2
‖yk‖Y , (5.13)

with effectivity index τ̂k = ǫ̂k

‖u−uk‖X
∈ (1, 1√

1−δ2
).
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6. Computational aspects

6.1. Best approximation in tensor subsets

We here discuss the available algorithms for computing an element in ΠSX
(v), that means for solving

min
w∈SX

‖v − w‖X , (6.1)

where v is a given tensor in the tensor space X = ‖·‖X

⊗d
µ=1 Xµ equipped with norm ‖ · ‖X , and where SX is a

given tensor subset. Note that except for the case where d = 2 and ‖ · ‖X is the induced (canonical) norm, the
computation of a global optimum is still an open problem.

Canonical norm, d = 2. For the case d = 2, we first note that all classical low-rank tensor formats coincide with
the canonical format, that means SX = Rm(X) for some rank m. When the norm ‖ · ‖X is the canonical norm,
then um ∈ ΠSX

(u) coincides with a rank-m singular value decomposition (SVD) of u (which is possibly not
unique in the case of multiple singular values). Moreover, σ(u;SX)2 = ‖ΠSX

(u)‖2
X is the sum of the squares of

the m dominant singular values of u (see e.g. [15]). Efficient algorithms for computing the SVD can therefore
be applied to compute an element in ΠSX

(v) (a best approximation). That means that the algorithm (5.6) can
be applied with η = 1.

Canonical norm, d > 2. For d > 2 and when the norm ‖ · ‖X is the canonical norm, different algorithms
based on optimization methods have been proposed for the different tensor formats (see e.g. [14, 26] or [24]
for a recent review). Very efficient algorithms based on higher order SVD have also been proposed in [11], [22]
and [39], respectively for Tucker, Hierarchical Tucker and Tensor Train tensors. Note that these algorithms
provide quasi-best approximations (but not necessarily best approximations) satisfying (5.5) with a η bounded
by a function of the dimension d: η ≤

√
d, η ≤

√
2d − 3 respectively for Tucker and Hierarchical Tucker formats

(see [24]). For a high dimension d, such bounds for η would suggest taking very small values for parameter δ
in order to satisfy the assumption of Proposition 5.3. However, in practice, these a priori bounds are rather
pessimistic. Moreover, quasi-best approximations obtained by higher order SVD can be used as initializations
of optimization algorithms yielding better approximations, i.e. with small values of η.

General norms, d ≥ 2. For a general norm ‖·‖X , the computation of a global optimum to the best approximation
problem is still an open problem for all tensor subsets, and methods based on SVD cannot be applied anymore.
However, classical optimization methods can still be applied (such as Alternating Minimization Algorithm
(AMA)) in order to provide an approximation of the best approximation [14, 41, 44]. We do not detail further
these computational aspects and we suppose that algorithms are available for providing an approximation of
the best approximation in SX such that (5.5) holds with a controlled precision η, arbitrarily close to 1.

6.2. Construction of an approximation of Λ
δ(r)

At each iteration of the algorithm (5.6), we have to compute yk = Λδ(rk), with rk = R−1
Y (Auk − b) ∈ Y , such

that it satisfies

∥∥yk − rk
∥∥

Y
≤ δ

∥∥rk
∥∥

Y
. (6.2)

First note that rk is the unique solution of

min
r∈Y

∥∥r − R−1
Y

(
Auk − b

)∥∥2

Y
. (6.3)

Therefore, computing yk is equivalent to solving the best approximation problem (6.3) with a relative precision δ.
One can equivalently characterize rk ∈ Y by the variational equation

〈rk, δr〉Y = 〈Auk − b, δr〉Y ′,Y ∀δr ∈ Y,
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or in an operator form:

RY rk = Auk − b, (6.4)

where the Riesz map RY = AR−1
X A∗ is a positive symmetric definite operator.

Remark 6.1. For A symmetric and positive definite, it is possible to choose RX = RY = A (see Example 4.2)
that corresponds to the energy norm on X . For this choice, the auxiliary problem (6.3) has the same structure
as the initial problem, with an operator A and a right-hand side Auk − b.

6.2.1. Low-rank tensor methods

For solving (6.3), we can also use low-rank tensor approximation methods. Note that in general, ‖ · ‖Y is not
an induced (canonical) norm in Y , so that classical tensor algorithms (e.g. based on SVD) cannot be applied for
solving (6.3) (even approximatively). Different strategies have been proposed in the literature for constructing
tensor approximations of the solution of optimization problems. We can either use iterative solvers using classical
tensor approximations applied to equation (6.4) [4, 28, 31, 34], or directly compute an approximation yk of rk

in low-rank tensor subsets using optimization algorithms applied to problem (6.3). Here, we adopt the latter
strategy and rely on a greedy algorithm which consists in computing successive corrections of the approximation
in a fixed low-rank subset.

6.2.2. A possible (heuristic) algorithm

We use the following algorithm for the construction of a sequence of approximations {yk
m}m≥0.

Let yk
0 = 0. Then, for each m ≥ 1, we proceed as follows:

(1) compute an optimal correction wk
m of yk

m−1 in SY :

wk
m ∈ arg min

w∈SY

∥∥yk
m−1 + w − rk

∥∥
Y

,

(2) define a linear subspace Zk
m such that yk

m−1 + wk
m ∈ Zk

m,
(3) compute yk

m as the best approximation of rk in Zk
m,

yk
m = arg min

y∈Zk
m

∥∥y − rk
∥∥

Y
,

(4) return to step (2) or (1).

Remark 6.2. The convergence proof for this algorithm can be found in [17]. The convergence ensures that
the precision δ can be achieved after a certain number of iterations3. However, in practice, best approximation
problems at step (1) can not be solved exactly except for particular situations (see Sect. 6.1), so that the results
of [17] do not guaranty anymore the convergence of the algorithm. If quasi-optimal solutions can be obtained,
this algorithm is a modified version of weak greedy algorithms (see [43]) for which convergence proofs can also
be obtained. Available algorithms for obtaining quasi-optimal solutions of best low-rank approximation problem
appearing at step (1) are still heuristic but seem to be effective.

In this paper, we will only rely on the use of low-rank canonical formats for numerical illustrations. At
step (1), we introduce rank-one corrections wk

m ∈ SY = R1(Y ), where Y = ‖·‖Y

⊗d
µ=1 Y µ. The auxiliary

variable yk
m ∈ Rm(Y ) can be written in the form yk

m =
∑m

i=1 ⊗d
µ=1w

k,µ
i . At step (2), we select a particular

dimension μ ∈ {1, . . . , d} and define

Zk
m =

{
m∑

i=1

wk,1
i ⊗ · · · ⊗ vµ

i ⊗ · · · ⊗ wk,d
i , vµ

i ∈ Y µ

}
,

3Note however that a slow convergence of these algorithms may yield to high rank representations of iterates yk
m, even for a

low-rank subset SY .
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where dim(Zk
m) = m dim(Y µ). Step (3) therefore consists in updating functions wk,µ

i , i = 1 . . . d, in the
representation of yk

m. Before returning to step (1), the updating steps (2)−(3) can be performed several times
for a set of dimension μ ∈ I ⊂ {1, . . . , d}.

Remark 6.3. Note that the solution of minimization problems at steps (1) and (3) do not require to know
rk explicitly. Indeed, the stationary conditions associated with these optimization problems only require
the evaluation of 〈rk, δy〉Y = 〈Auk − b, δy〉Y ′,Y , for δY ∈ Y . For step (1), the stationary equation reads
〈RY wk

m, δy〉Y ′,Y = 〈RY yk
m−1 +Auk − b, δy〉Y ′,Y for all δy in the tangent space to SY , while the variational form

of step (3) reads 〈RY yk
m, δy〉Y ′,Y = 〈Auk − b, δy〉Y ′,Y for all δy in Zk

m.

Finally, as a stopping criterion, we use a heuristic error estimator based on stagnation. The algorithm is
stopped at iteration m if

ep
m =

‖yk
m − yk

m+p‖Y

‖yk
m+p‖Y

≤ δ, (6.5)

for some chosen p ≥ 1 (typically p = 1). Note that for p sufficiently large, yk
m+p can be considered as a good

estimation of the residual rk and the criterion reads ‖rk − yk
m‖Y ≤ δ‖rk‖Y , which is the desired property. This

stopping criterion is quite rudimentary and should be improved for a real control of the algorithm. Although
numerical experiments illustrate that this heuristic error estimator provides a rather good approximation of the
true error, an upper bound of the true error should be used in order to guarantee that the precision δ is really
achieved. However, a tight error bound should be used in order to avoid a pessimistic overestimation of the true
error which may yield an (unnecessary) increase of the computational costs for the auxiliary problem. This key
issue will be addressed in a future work.

Remark 6.4. Other updating strategies could be introduced at steps (2)−(3). For example, we could choose
Zk

m = span{wk
1 , . . . , wk

m}, thus making the algorithm an orthogonal greedy algorithm with a dictionary SY [42].
Nevertheless, numerical simulations demonstrate that when using rank-one corrections (i.e. SY = R1(Y )),
this updating strategy do not significantly improve the convergence of pure greedy constructions. When it is
used for obtaining an approximation yk

m of rk with a small relative error δ, it usually requires a very high

rank m. A more efficient updating strategy consists in defining Zk
m as the tensor space

⊗d
µ=1 Zk,µ

m with Zk,µ
m

span{wk,µ
1 , . . . , wk,µ

m }. Since dim(Zk
m) = md, the projection of rk in Zk

m can not be computed exactly for
high dimensions d. However, approximations of this projection can be obtained using again low-rank formats
(see [20]).

6.2.3. Remark on the tensor structure of Riesz maps

We consider that operator A and right-hand side b admit low-rank representations

A =

rA∑

i=1

⊗d
µ=1A

µ
i and b =

rb∑

i=1

⊗d
µ=1b

µ
i .

We suppose that a norm ‖ · ‖X has been selected and corresponds to a Riesz map RX with a low-rank repre-
sentation:

RX =

rX∑

i=1

⊗d
µ=1R

µ
i .

The ideal choice of norm ‖ · ‖Y then corresponds to the following expression of the Riesz map RY :

RY = AR−1
X A∗ =

(
rA∑

i=1

⊗d
µ=1A

µ
i

) (
rX∑

i=1

⊗d
µ=1R

µ
i

)−1 (
rA∑

i=1

⊗d
µ=1A

µ
i
∗
)

.
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Note that the expression of RY cannot be computed explicitly (RY is generally a full rank tensor). Therefore,
in the general case, algorithms for solving problem (6.4) have to be able to handle an implicit formula for RY .
However, in the particular case where the norm ‖ · ‖X is a canonical norm induced by norms ‖ · ‖µ on Xµ, the
mapping RX is a rank one tensor RX = ⊗d

µ=1RXµ
, where RXµ

is the Riesz map associated with the norm ‖ · ‖µ

on Xµ. RY then admits the following explicit expression:

RY = AR−1
X A∗ =

rA∑

i=1

rA∑

j=1

⊗d
µ=1

(
Aµ

i R−1
Xµ

Aµ
j
∗
)

.

In the numerical examples, we only consider this simple particular case. Efficient numerical methods for the
general case will be proposed in a subsequent paper.

6.3. Summary of the algorithm

Algorithm 1 provides a step-by-step outline of the overall iterative method for the approximation of the
solution of (5.2) in a fixed subset SX and with a chosen metric ‖ · ‖X . Given a precision δ, an approximation of
the residual is obtained with a greedy algorithm using a fixed subset SY for computing successive corrections.
We denote by e(yk

m, rk) an estimation of the relative error ‖yk
m − rk‖Y /‖rk‖Y , where rk = R−1

Y (Auk − b).

Algorithm 1. Gradient-type algorithm.

1: Set u0 = 0;
2: for k = 0 to K do

3: Set m = 0 ;
4: while e(yk

m, rk) ≤ δ do

5: m = m + 1 ;
6: Compute a correction wk

m ∈ arg min
w∈SY

‖yk
m−1 + w − rk‖Y ;

7: Set yk
m = yk

m−1 + wk
m ;

8: Define Zk
m containing yk

m ;
9: Compute the projection yk

m = arg min
y∈Zk

m

‖y − rk‖Y ;

10: Return to step 7 or continue ;
11: end while

12: Compute uk+1 ∈ Πη

SX
(uk − R−1

X A∗yk
m) ;

13: end for

7. Greedy algorithm

In this section, we introduce and analyze a greedy algorithm for the progressive construction of a sequence
{um}m≥0, where um is obtained by computing a correction of um−1 in a given low-rank tensor subset SX

(typically a small subset such as the set of rank-one tensors R1(X)). Here, we consider that approximations of
optimal corrections are available with a certain precision. It results in an algorithm which can be considered as
a modified version of weak greedy algorithms [43]. This weak greedy algorithm can be applied to solve the best
approximation problem (4.1) where approximations of optimal corrections are obtained using Algorithm 1 with
an updated right-hand side at each greedy step. The interest of such a global greedy strategy is twofold. First,
an adaptive approximation strategy which would consist in solving approximation problems in an increasing
sequence of low-rank subsets SX is often unpractical since for high dimensional problems and subspace based
tensor formats, computational complexity drastically increases with the rank. Second, it simplifies the solution
of auxiliary problems (i.e. the computation of the sequence of yk) when solving best low-rank approximation
problems using Algorithm 1. Indeed, if the sequence uk in Algorithm 1 belongs to a low rank tensor subset
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(typically a rank-one tensor subset), the residual rk in Algorithm 1 admits a moderate rank or can be obtained
by a low-rank correction of the residual of the previous greedy iteration.

Here, we assume that the subset SX verifies properties (3.3) and (3.4), and that span(SX) is dense in X
(which is verified by all classical tensor subsets presented in Section 3.2).

7.1. A weak greedy algorithm

We consider the following greedy algorithm. Given u0 = 0, we construct a sequence {um}m≥1 defined for
m ≥ 1 by

um = um−1 + w̃m, (7.1)

where w̃m ∈ SX is a correction of um−1 satisfying

‖u − um−1 − w̃m‖X ≤ (1 + γm) min
w∈SX

‖u − um−1 − w‖X , (7.2)

with γm a sequence of small parameters.

Remark 7.1. A w̃m satisfying (7.2) can be obtained using the gradient type algorithm of Section 5 that
provides a sequence that satisfies (5.8). Given the parameter δ = δm in (5.6), property (7.2) can be achieved
with any γm > 2δm

1−2δm
.

7.2. Convergence analysis

Here, we provide a convergence result for the above greedy algorithm whose proof follows the lines of [43] for
the convergence proof of weak greedy algorithms4.

In the following, we denote by fm = u − um. For the sake of simplicity, we denote by ‖ · ‖ = ‖ · ‖X and
〈·, ·〉 = 〈·, ·〉X and we let wm ∈ ΠSX

(fm−1), for which we have the following useful relations coming from
properties of best approximation problems in tensor subsets (see Sect. 3.2):

‖fm−1 − wm‖2 = ‖fm−1‖2 − ‖wm‖2 and ‖wm‖2 = 〈fm−1, wm〉. (7.3)

We introduce the sequence {αm}m≥1 defined by

αm =
‖fm−1 − wm‖

‖fm−1‖
∈ [0, 1[. (7.4)

It can be also useful to introduce the computable sequence {α̃m}m≥1 such that

α̃m =
‖fm−1 − w̃m‖

‖fm−1‖
· (7.5)

that satisfies for all m ≤ 0
αm ≤ α̃m ≤ (1 + γm)αm. (7.6)

Lemma 7.2. Assuming that for all m ≥ 1 we have

(1 + γm)αm<1, (7.7)

the sequence {‖fm‖}m≥1 converges. Furthermore, it is possible to define a positive sequence {κm}m≥1 as

κ2
m = 2

〈fm−1, w̃m〉
‖w̃m‖2

− 1, (7.8)

and we have {κm‖w̃m‖}m≥1 ∈ ℓ2.

4Note that the condition (7.2) on the successive corrections does not allow to directly apply the results on classical weak greedy
algorithms.
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Proof. From (7.1) and (7.2), we have

‖fm‖ = ‖fm−1 − w̃m‖ ≤ (1 + γm)‖fm−1 − wm‖ = (1 + γm)αm‖fm−1‖.

Under assumption (7.7), {‖fm‖}m≥1 is a strictly decreasing and positive sequence and therefore converges.
Moreover, this implies that w̃m �= 0 and since

‖fm−1 − w̃m‖2 = ‖fm−1‖2 −
(
2〈fm−1, w̃m〉 − ‖w̃m‖2

)
≤ ‖fm−1‖2,

it follows that 2〈fm−1, w̃m〉>‖w̃m‖2. Therefore, κm is positive and can be defined by (7.8) and we have

‖fm−1 − w̃m‖2 = ‖fm−1‖2 − κ2
m‖w̃m‖2 = ‖f0‖2 −

m∑

i=1

κ2
i ‖w̃i‖2,

that completes the proof. �

We now provide a result giving a relation between ‖wm‖ and ‖w̃m‖.

Lemma 7.3. Assume (7.7) holds and let μ2
m =

1 − (1 + γm)2α2
m

1 − α2
m

∈ [0, 1]. Then, we have

μm‖wm‖ ≤ κm‖w̃m‖ ≤ ‖wm‖, (7.9)

and
μm

2
≤ κm. (7.10)

Proof. From inequality (7.2) and from the optimality of wm, it follows that

‖fm−1 − wm‖2 ≤ ‖fm−1 − w̃m‖2 ≤ (1 + γm)2‖fm−1 − wm‖2

⇒ ‖fm−1‖2 − ‖wm‖2 ≤ ‖fm−1‖2 − κ2
m‖w̃m‖2 ≤ (1 + γm)2α2

m‖fm−1‖2

⇒ (1 − (1 + γm)2α2
m)‖fm−1‖2 ≤ κ2

m‖w̃m‖2 ≤ ‖wm‖2

Using ‖fm−1‖2 = ‖fm−1 − wm‖2 + ‖wm‖2 = α2
m‖fm−1‖2 + ‖wm‖2, and using the definition of μm, we ob-

tain (7.9). In addition, from the optimality of wm, we have 〈 w̃m

‖w̃m‖ , fm−1〉 ≤ 〈 wm

‖wm‖ , fm−1〉 = ‖wm‖, or equiva-

lently
κ2

m+1
2 ‖w̃m‖ ≤ ‖wm‖. Combined with (7.9), it gives

κ2

m+1
2 ≤ ‖wm‖

‖w̃m‖ ≤ κm

µm
, which implies (7.10). �

Proposition 7.4. Assume (7.7) and that
{
μ2

m

}
m≥1

is such that
∑∞

m=1 μ2
m = ∞. Then, if {fm}m≥1 converges,

it converges to zero.

Proof. Let us use a proof by contradiction. Assume that fm → f �= 0 as m → ∞, with f ∈ X . As span(SX) is
dense in X , there exists ǫ > 0 such that supv∈SX

|〈f, v
‖v‖ 〉| ≥ 2ε. Using the definition of wm and of f as a limit

of fm, we have that there exists N > 0 such that

‖wm‖ = sup
v∈SX

∣∣∣∣
〈

fm−1,
v

‖v‖

〉∣∣∣∣ ≥ ε, ∀m ≥ N. (7.11)

Thanks to (7.9), we have

‖fm‖2 = ‖fm−1‖2 − ‖w̃m‖2κ2
m ≤ ‖fm−1‖2 − ‖wm‖2μ2

m,

≤ ‖fN‖2 −
m∑

i=N+1

μ2
i ‖wi‖2 ≤ ‖fN‖2 − ε2

m∑

i=N+1

μ2
i ,

which implies that {μm}m≥0 ∈ ℓ2, a contradiction to the assumption. �
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Proposition 7.5. Assume (7.7). Further assume that the sequence μm is non increasing and verifies

∞∑

m=1

μ2
m

m
= ∞. (7.12)

Then the sequence {um}m≥1 converges to u.

Proof. Let two integers n < m and consider

‖fn − fm‖2 = ‖fn‖2 − ‖fm‖2 − 2〈fn − fm, fm〉.

Defining θn,m = |〈fn − fm, fm〉| and using Lemma 7.3, we obtain

θn,m ≤
m∑

i=n+1

|〈w̃i, fm〉| ≤ ‖wm+1‖
m∑

i=1

‖w̃i‖ ≤ 2
κm+1‖w̃m+1‖

μ2
m+1

m∑

i=1

κi‖w̃i‖.

Lemma 7.2 implies that κm‖w̃m‖ ∈ ℓ2. Together with assumption (7.12), and using Lemma 2.7 in [42], we obtain
that lim infm→∞ maxn<m θn,m = 0. Lemma 2.8 in [42] then proves that the sequence {fm}m≥1 converges. Noting
that (7.12) implies that {μm}∞m=1 /∈ ℓ2, Lemma 7.4 allows to conclude the proof. �

In practice, condition (7.12) can be satisfied by the following sufficient condition on the sequence α̃m, which
is a computable sequence.

Corollary 7.6. If there exists a constant 0 < ǫ < 1, independent of m, such that

α̃2
m ≤ 1 − ǫ

(1 + γm)2 − ǫ
, (7.13)

then the sequence {um}m≥1 converges to u.

Proof. Under assumption (7.13) and using relation (7.6), it holds that for all m ≥ 0

α2
m ≤ 1 − ǫ

(1 + γm)2 − ǫ
⇒ (1 + γm)2α2

m ≤ 1 − ǫ(1 − α2
m) < 1.

which implies condition (7.7). Moreover, we have

ǫ(1 − α2
m) ≤ 1 − (1 + γm)2α2

m ⇒ ǫ ≤ 1 − (1 + γm)2α2
m

(1 − α2
m)

= μ2
m,

which implies condition (7.12). Proposition 7.5 ends the proof. �

Remark 7.7. From a practical point of view, condition (7.13) provides a sufficient criterion on γm (or equiva-
lently on δm). Note that α̃m depends on w̃m which depends on the choice of the precision γm. Therefore, (7.13)
is an implicit condition on γm which suggests an iterative strategy for the control of the condition. A possible
strategy would be to adapt the parameter γm during the iterations of the gradient type algorithm used to
compute the w̃m.

8. Numerical example

In this section, we apply the proposed method to the numerical solution of a stochastic steady reaction-
advection-diffusion problem.
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Ω1

Ω2

Figure 1. Example: reaction-advection-diffusion problem.

8.1. Stochastic reaction-advection-diffusion problem

We consider the following steady reaction-advection-diffusion problem on a two-dimensional unit square
domain Ω = [0, 1]2 (see Fig. 1):

−∇ · (κ∇u) + c · ∇u + au = f in Ω, (8.1)

u = 0 on ∂Ω.

First, we consider a constant diffusion κ = 1. The advection coefficient c and the reaction coefficient a
are considered as random and are given by c = ξ1c0 and a = exp(ξ2), where ξ1 ∼ U(−350, 350) and
ξ2 ∼ U(log(0.1), log(10)) are independent uniform random variables, and c0(x) = (x2 − 1/2, 1/2 − x1),
x = (x1, x2) ∈ Ω. We denote by Ξ1 =]-350, 350[ and Ξ2 =] log(0.1), log(10)[, and we denote by (Ξ,B(Ξ), Pξ) the
probability space induced by ξ = (ξ1, ξ2), with Ξ = Ξ1×Ξ2 and Pξ the probability law of ξ. The external source
term f is given by f(x) = IΩ1

(x)− IΩ2
(x), where Ω1 =]0.45, 0.55[×]0.15, 0.25[ and Ω2 =]0.45, 0.55[×]0.75, 0.85[,

and where IΩk
denotes the indicator function of Ωk.

Let V = H1
0(Ω) and S = L2(Ξ, dPξ). We introduce approximation spaces VN ⊂ V and SP ⊂ S, with

N = dim(VN ) and P = dim(SP ). VN is a Q1 finite element space associated with a uniform mesh of 1600
elements such that N = 1521. We choose SP = Sξ1

p1
⊗ Sξ2

p2
, where Sξ1

p1
is the space of piecewise polynomials of

degree 5 on Ξ1 associated with the partition {]-350, 0[, ]0, 350[} of Ξ1, and Sξ2

p2
is the space of polynomials of

degree 5 on Ξ2. This choice results in P = 72. The Galerkin approximation u ∈ VN ⊗SP ⊂ V ⊗S of the solution
of (8.1) is defined by the following equation5:

∫

Ξ

∫

Ω

(∇u · ∇v + c · ∇uv + auv) dx dPξ =

∫

Ξ

∫

Ω

f v dx dPξ, (8.2)

for all v ∈ VN ⊗ SP . Letting VN ⊗ SP = span{ϕi ⊗ ψj ; 1 ≤ i ≤ N, 1 ≤ j ≤ P}, the Galerkin approximation

u =
∑N

i=1

∑P
j=1 uijϕi⊗ψj can be identified with its set of coefficients on the chosen basis, still denoted u, which

is a tensor

u ∈ X = RN ⊗ RP such that Au = b, (8.3)

where b = bx ⊗ bξ, with bx
i =

∫
Ω

fϕidx and bξ
j =

∫
Ξ

ψj(y)dPξ(y), and where A is a rank-3 operator such that

A = Dx ⊗M ξ + Cx ⊗Hξ1 + Rx ⊗Hξ2 , with Dx
ik =

∫
Ω
∇ϕi · ∇ϕkdx, Cx

ik =
∫

Ω
ϕic0 · ∇ϕkdx, Rx

ik =
∫

Ω
ϕiϕkdx,

M ξ
jl =

∫
Ξ

ψj(y)ψl(y)dPξ(y), Hξn

jl =
∫

Ξ
ynψj(y)ψl(y)dPξ(y), n = 1, 2. Here, we use orthonormal basis functions

{ψj} in SP , so that M ξ = IP , the identity matrix in RP .

5The mesh Péclet number is sufficiently small so that an accurate Galerkin approximation can be obtained without introducing
a stabilized formulation.
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8.2. Comparison of minimal residual methods

In this section, we present numerical results concerning the approximate ideal minimal residual method (A-
IMR) applied to the algebraic system of equations (8.3) in tensor format. This method provides an approximation
of the best approximation of u with respect to a norm ‖·‖X that can be freely chosen a priori. Here, we consider
the application of the method for two different norms. We first consider the natural canonical norm on X , denoted
‖ · ‖2 and defined by

‖v‖2
2 =

N∑

i=1

P∑

j=1

(vij)
2. (8.4)

This choice corresponds to an operator RX = IX = IN ⊗ IP , where IN (resp. IP ) is the identity in RN (resp.
RP ). We also consider a weighted canonical norm, denoted ‖ · ‖w and defined by

‖v‖2
w =

N∑

i=1

P∑

j=1

(w(xi)vij)
2
, (8.5)

where w : Ω → R is a weight function and the xi are the nodes associated with finite element shape functions
ϕi. This norm allows to give a more important weight to a particular region D ⊂ Ω, that may be relevant
if one is interested in the prediction of a quantity of interest that requires a good precision of the numerical
solution in this particular region (see Sect. 8.2.3). This choice corresponds to an operator RX = Dw ⊗ IP , with
Dw = diag(w(x1)

2, . . . , w(xN )2).
The A-IMR provides an approximation ũ ∈ SX of the ‖ · ‖X-best approximation of u in SX (that means

an approximation of an element in ΠSX
(u)), where ‖ · ‖X is either ‖ · ‖2 or ‖ · ‖w. The set SX is taken as the

set Rr(X) of rank-r tensors in X = RN ⊗ RP . The dimension of X is about 75 000 so that the exact solution
u of (8.3) can be computed and used as a reference solution. We note that both norms are induced norms
in RN ⊗ RP (associated with rank one operators RX) so that the ‖ · ‖X-best approximation of u in SX is a
rank-r SVD that can be computed exactly using classical algorithms (see Sect. 6.1)6. For the construction of
an approximation in Rr(X) using A-IMR, we consider two strategies: the direct approximation in Rr(X) using
Algorithm 1 with SX = Rr(X), and a greedy algorithm that consists in a series of r corrections in R1(X)
computed using Algorithm 1 with SX = R1(X) and with an updated residual b at each correction.

The A-IMR will be compared to a standard approach, denoted CMR, which consists in minimizing the
canonical norm of the residual of equation (8.3), that means in solving

min
v∈SX

‖Av − b‖2. (8.6)

This latter approach has been introduced and analyzed in different papers, using either direct minimization or
greedy rank-one algorithms [2, 5, 12], and is known to suffer from ill-conditioning of the operator A. We note
that this approach corresponds to choosing RX = A∗A and RY = IX = IN ⊗ IP .

8.2.1. Natural canonical norm ‖ · ‖2

First, we compare both greedy and direct algorithms for ‖ · ‖X = ‖ · ‖2, using either CMR or A-IMR with
different precisions δ. The convergence curves with respect to the rank are shown in Figure 2, where the error
is measured in the ‖ · ‖2 norm. Concerning the direct approach, we observe that the different algorithms have
roughly the same rate of convergence. The A-IMR convergence curves are close to the optimal SVD (correspond-
ing to ũ2) for a wide range of values of δ. One should note that A-IMR seems to provide good approximations
also for the value δ = 0.9 which is greater than the theoretical bound 0.5 ensuring the convergence of the
gradient-type algorithm. Concerning the greedy approach, we observe a significant difference between A-IMR
and CMR. We note that A-IMR is close to the optimal SVD up to a certain rank (depending on δ) after which

6Note that different truncated SVD are obtained when R
N is equipped with different norms.
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Figure 2. Comparison of minimal residual methods for SX = Rr(X) and ‖ · ‖X = ‖ · ‖2.
Convergence with the rank r of the approximations obtained with CMR or A-IMR with different
precisions δ, and with direct (left) or greedy rank-one (right) approaches.
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ũ
|| w

/
||u

|| w

Greedy approach

δ = 9.0e − 01
δ = 5.0e − 01
δ = 2.0e − 01
δ = 5.0e − 02
δ = 1.0e − 02
SVD
CMR

Figure 3. Comparison of minimal residual methods for SX = Rr(X) and ‖ · ‖X = ‖ · ‖w.
Convergence with the rank of the approximations obtained with CMR or A-IMR with different
precisions δ, and with direct (left) or greedy rank-one (right) approaches.

the convergence rate decreases but remains better than the one of CMR. Finally, one should note that using a
precision δ = 0.9 for A-IMR yields less accurate approximations than CMR. However, A-IMR provides better
results than CMR once the precision δ is lower than 0.5.

8.2.2. Weighted norm ‖ · ‖w

Here, we perform the same numerical experiments as previously using the weighted norm ‖ · ‖X = ‖ · ‖w,
with w equal to 103 on D = [0.15, 0.25]× [0.45, 0.55] and w = 1 on Ω \D. The convergence curves with respect
to the rank are plotted on Figure 3. The conclusions are similar to the case ‖ · ‖X = ‖ · ‖2, although the use
of the weighted norm seems to slightly deteriorate the convergence properties of A-IMR. However, the direct
A-IMR still provides better approximations than the direct CMR, closer to the reference SVD (denoted by ũw)
for different values of precision δ.

8.2.3. Interest of using a weighted norm

Here, we illustrate the interest of using the weighted norm rather than the natural canonical norm when one
is interested in computing a quantity of interest. For the sake of readability, we let ũw (resp. ũ2) denote the best
approximation of u in Rr(X) with respect to the norm ‖ · ‖w (resp. ‖ · ‖2). Figure 4 illustrates the convergence
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ũ
|| w

/
||u

|| w

ũw
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Figure 4. Convergence of best rank-r approximations ũ2 and ũw of the solution u measured
with the natural canonical norm ‖ · ‖2 or the weighted norm ‖ · ‖w.

Figure 5. Comparison of the first spatial modes of the rank-r approximations ũ and ũw.

with r of these approximations. We observe that approximations ũw and ũ2 are of the same quality when the
error is measured with the norm ‖ · ‖2, while ũw is a far better approximation than ũ2 (almost two orders of
magnitude) when the error is measured with the norm ‖ · ‖w. We observe that ũw converges faster to u with
‖ · ‖w than ũ2 with ‖ · ‖2. For example, with a rank r = 9, ũw has a ‖ · ‖w-error of 10−4 while ũ2 has a ‖ · ‖2-error
of 10−2. On Figure 5, plotted are the spatial modes of the rank-r approximations ũ2 and ũw. These spatial
modes are significantly different and obviously capture different features of the solution.

Now, we introduce a quantity of interest Q which is the spatial average of u on subdomain D:

Q(u) =
1

|D|

∫

D

u dx. (8.7)

Due to the choice of norm, ũw is supposed to be more accurate than ũ2 in the subdomain D, and therefore,
Q(ũw) is supposed to provide a better estimation of Q(u) than Q(ũ2). This is confirmed by Figure 6, where we
have plotted the convergence with the rank of the statistical mean and variance of Q(ũw) and Q(ũ2). With only
a rank r = 5, ũw gives a precision of 10−7 on the mean, whereas ũ2 gives only a precision of 10−2. In conclusion,
we observe that a very low-rank approximation ũw is able to provide a very good approximation of the quantity
of interest.
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Figure 6. Convergence with the rank of the mean (left) and variance (right) of Q(ũ2) and
Q(ũw). Relative error with respect to the mean and variance of the reference solution Q(u).
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Figure 7. Convergence of the gradient-type algorithm for different values of the relative pre-
cision δ, for SX = R10(X) and ‖ · ‖X = ‖ · ‖2.

8.3. Properties of the algorithms

Now, we detail some numerical aspects of the proposed methodology. We first focus on the gradient-type
algorithm, and then on evaluations of the map Λδ for the approximation of residuals.

8.3.1. Analysis of the gradient-type algorithm

The behavior of the gradient-type algorithm for different choices of norms ‖ · ‖X is very similar, so we only
illustrate the case where ‖ · ‖X = ‖ · ‖2. The convergence of this algorithm is plotted in Figure 7 for the case
SX = R10(X). It is in very good agreement with theoretical expectations (Prop. 5.3): we first observe a linear
convergence with a convergence rate that depends on δ, and then a stagnation within a neighborhood of the
solution with an error depending on δ. The gradient-type algorithm is then applied for subsets SX = Rr(X)
with different ranks r. The estimate of the linear convergence rate ρ is given in Table 1. We observe that for all
values of r, ρ takes values closer to δ than to the theoretical bound 2δ of Proposition 5.3. This means that the
theoretical bound of the convergence rate overestimates the effective one, and the algorithm converges faster
than expected. Now, in order to evaluate the quality of the resulting approximation, we compute the error after
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Table 1. Estimation of the convergence rate ρ of the gradient-type algorithm (during the
linear convergence phase) for different subsets SX = Rr(X), and for ‖ · ‖X = ‖ · ‖2.

δ 0.90 0.50 0.20 0.05 0.01

r = 4 0.78 0.36 ≈0 ≈0 ≈0

r = 6 0.83 0.45 0.165 ≈0 ≈0

r = 10 0.82 0.42 0.183 ≈0 ≈0

r = 15 0.84 0.47 0.189 0.047 ≈0

r = 20 0.86 0.48 0.197 0.051 0.011

Table 2. Final approximation errors (estimated by γ̃100) for different subsets SX = Rr(X)
and different precisions δ. Comparison with the theoretical upper bound 2δ/(1 − 2δ).

δ 0.90 0.50 0.20 0.05 0.01

2δ/(1 − 2δ) – – 6.6e-1 1.1e-1 2.1e-2

r = 4 3.3e-1 5.6e-2 4.9e-3 3.5e-4 3.0e-5

r = 6 3.0e-1 6.8e-2 1.1e-2 8.6e-4 8.0e-5

r = 10 5.2e-1 1.3e-1 1.7e-2 1.8e-3 3.3e-5

r = 15 4.9e-1 1.1e-1 1.5e-2 1.0e-3 7.5e-5

r = 20 6.4e-1 1.5e-1 1.9e-2 1.2e-3 7.3e-5

the stagnation phase has been reached. More precisely, we compute the value

γ̃k =
‖uk − u‖X

‖u − ΠSX
(u)‖X

− 1,

for k = 100. Values of γ̃100 are summarized in Table 2 and are compared to the theoretical upper bound
γ = 2δ/(1 − 2δ) given by Proposition 5.3. Once again, one can observe that the effective error of the resulting
approximation is lower than the predicted value regardless of the choice of Rr(X).

Now, we focus on numerical estimations of the error ‖u − uk‖X . It has been pointed out in Section 5.4 that
ǫ̂k, defined in equation (5.13), should provide a good error estimator with effectivity index τ̂k ∈ (1, (1−δ2)−1/2).
For δ = 0.2 and SX = R10(X), numerical values taken by τ̂k during the gradient-type algorithm are plotted on
Figure 8 and are compared to the expected theoretical values of its lower and upper bounds 1 and (1− δ2)−1/2

respectively. We observe that the theoretical upper bound is strictly satisfied, while the lower bound is almost but
not exactly satisfied. This violation of the theoretical lower bound is explained by the fact that the precision δ is
not satisfied at each iteration of the gradient-type algorithm due to the use of a heuristic convergence criterion
in the computation of residuals (see next Sect. 8.3.2). However, although it does not provide a controlled error
estimation, the error indicator based on the computed residuals is of very good quality.

8.3.2. Application of Λδ for the approximation of residuals

We study the behavior of the updated greedy algorithm described in Section 6.2.2 for the computation of an
approximation yk

m = Λδ(rk) of the residual rk during the gradient-type algorithm. Here, we use the particular
strategy which consists in updating functions associated to each dimension μ ∈ I = {1, 2} (steps (2)−(3) are
performed two times per iteration). We first validate the ability of the heuristic stopping criterion (6.5) to ensure
a prescribed relative precision δ. Let M = M(δ) denote the iteration for which the condition ep

M ≤ δ is satisfied.
The exact relative error eM = ‖yk

M − rk‖Y /‖rk‖Y is computed using a reference computation of rk, and we
define the effectivity index λp

M = ep
M/eM . Figure 9 shows the convergence of this effectivity index with respect



TENSOR APPROXIMATION METHOD BASED ON IDEAL MINIMAL RESIDUAL FORMULATIONS 1801

5 10 15 20 25 30

1

1.01

1.02

k

τ̂k

1/
√

1 − δ2

1

Figure 8. Effectivity index τ̂k of the error estimator ǫ̂k at different iterations k of the gradient-
type algorithm, with SX = R10(X) and δ = 0.2.
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Figure 9. Evolution with p of the effectivity index λp
M for different δ at step k = 1 of the

gradient-type algorithm with SX = R10(X) and for the natural canonical norm (left) or the
weighted norm (right).

to p, when using the natural canonical norm ‖ · ‖2 or the weighted norm ‖ · ‖w. We observe that λp
M tends to

1 as p → ∞, as it was expected since the sequence {yk
m}m≥1 converges to rk. However, we clearly observe that

the quality of the error indicator differs for the two different norms. When using the weighted norm, it appears
that a large value of p (say p ≥ 20) is necessary to ensure λp

M ∈ [0.9, 1], while p ≤ 10 seems sufficiently large
when using the natural canonical norm. That simply reflects a slower convergence of the greedy algorithm when
using the weighted norm.

Remark 8.1. One can prove that at step k of the gradient-type algorithm, when computing an approximation
yk

M of rk with a greedy algorithm stopped using the heuristic stopping criterion (6.5), the effectivity index τ̂k

of the computed error estimator ǫ̂k is such that

τ̂k ∈

⎛
⎝

√
1 − (δ/λp

M )2

1 − δ2
,

√
1

1 − δ2

⎞
⎠ .

where λp
M is the effectivity index of error indicator ep

M (supposed such that δ/λp
M < 1). That provides an

explanation for the observations made on Figure 8.

Now, we observe in Table 3 the number of iterations of the greedy algorithm for the approximation of the
residual rk with a relative precision δ, with a fixed value p = 20 for the evaluation of the stopping criterion. The
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Table 3. Computation of Λδ(rk) for different precisions δ and at different steps k of the
gradient-type algorithm, with SX = R10 (direct approach). The table indicates the number
of greedy corrections computed for reaching the precision δ using the heuristic stopping crite-
rion (6.5) with p = 20.

Canonical 2-norm ‖ · ‖2 Weighted 2-norm ‖ · ‖w

k\δ 0.9 0.5 0.2 0.05 0.01 0.9 0.5 0.2 0.05 0.01
1 1 1 3 7 11 8 21 31 35 51
2 1 3 7 16 27 5 22 14 24 42
3 1 5 11 19 24 4 15 24 23 43
4 1 3 11 14 24 8 11 19 37 42
5 1 6 7 15 24 6 19 23 14 38
6 1 8 8 16 24 3 12 47 25 63
7 1 5 7 17 24 7 14 16 29 47
8 1 4 8 16 24 5 12 22 21 40
9 1 4 8 16 24 7 13 18 36 45

number of iterations corresponds to the rank of the resulting approximation. We note that the required rank
is higher when using the weighted norm. It reflects the fact that it is more difficult to reach precision δ when
using the weighted norm rather than the natural canonical norm.

8.4. Higher dimensional case

Now, we consider a diffusion coefficient of the form κ(x, ξ) = κ0 +
∑8

i=1 ξiκi(x) where κ0 = 10, ξi ∼ U(−1, 1)
are independent uniform random variables, and the functions κi(x) are given by:

κ1(x) = cos(πx1), κ3(x) = sin(πx1), κ5(x) = cos(πx1) cos(πx2), κ7(x) = cos(πx1) sin(πx2),
κ2(x) = cos(πx2), κ4(x) = sin(πx2), κ6(x) = sin(πx1) sin(πx2), κ8(x) = sin(πx1) cos(πx2).

In addition, the advection coefficient is given by c = ξ0c0, where ξ0 ∼ U(0, 4000) is a uniform random variable.
We denote V = H1

0(Ω) and S = L2(Ξ, dPξ) where (Ξ,B(Ξ), Pξ) is a probability space with Ξ =]−1, 1[8×]0, 4000[
and Pξ the uniform measure. Here VN ⊂ V is a Q1 finite element space associated with a uniform mesh of 3600

elements, with a dimension N = 3481. We take SP = ⊗8
i=0S

ξi

P ⊂ S, where Sξi

P are polynomial function spaces

of degree 7 on Ξi with P = dim(Sξi

P ) = 8. Then, the Galerkin approximation in VN ⊗ SP (solution of (8.2))

is searched under the form u =
∑N

i=1

∑P
j0=1 · · ·

∑P
j8=1(ui,j0,··· ,j9)φj ⊗ (⊗8

µ=0ψ
µ
jµ

). This Galerkin approximation
can be identified with its set of coefficients, still denoted by u which is a tensor

u ∈ X = RN ⊗ (⊗8
µ=0RP ) such that Au = b, (8.8)

where A and b are the algebraic representations on the chosen basis of VN ⊗SP of the bilinear and linear forms
in (8.2). The obtained algebraic system of equations has a dimension larger than 1011 and its solution clearly
requires the use of model reduction methods.

Here, we compute low rank approximations of the solution of (8.8) in the canonical tensor subset Rr(X) with
r ≥ 1. Since best approximation problems in Rr(X) are well posed for r = 1 but ill posed for d > 2 and r > 1,
we rely on the greedy algorithm presented in Section 7 with successive corrections in SX = R1(X) computed
with Algorithm 1.

Remark 8.2. Low-rank approximations could have been computed directly with Algorithm 1 by choosing for
SX other stable low-rank formats adapted to high-dimensional problems, such as Hierarchical Tucker (or Tensor
Train) low-rank formats.
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ũ
|| w

/
||u

re
f
|| w

δ = 0.9
δ = 0.5
δ = 0.2
δ = 0.1
δ = 0.05

ũr
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Figure 10. Convergence with the rank of approximations obtained with the greedy CMR or
A-IMR algorithms for different precisions δ. On the left (resp. right) plot, convergence is plotted
with respect to the norm ‖ · ‖2 (resp. ‖ · ‖w) and A-IMR is used with the objective norm ‖ · ‖2

(resp. ‖ · ‖w).

8.4.1. Convergence study

In this section, low rank approximations of the solution u of (8.8) are computed for the two different norms
‖ · ‖2 and ‖ · ‖w defined as in Section 8.2. Here, we assume that the weighting function w is equal to 100 in the
subdomain D ⊂ Ω, and 1 elsewhere.

Since dim(X) ≥ 1011, the exact Galerkin approximation u in X is no more computable. As a reference
solution, we consider a low-rank approximation uref of u computed using a greedy rank-one algorithm based on
a canonical minimal residual formulation. We introduce an estimation ÊK of ‖u−uref‖2

‖u‖2
based on Monte-Carlo

integrations using K realizations {ξk}K
k=1 of the random variable ξ, defined by

Ê2
K =

1
K

∑K
k=1 ‖u(ξk) − uref(ξk)‖2

V

1
K

∑K
k=1 ‖u(ξk)‖2

V

,

with a number of samples K such that the Monte-Carlo estimates has a relative standard deviation (estimated
using the statistical variance of the sample) lower than 10−1. The rank of uref is here selected such that
ÊK < 10−4, which gives a reference solution with a rank of 212.

On Figure 10, we plot the convergence with the rank r of the approximations computed by both A-IMR and
CMR algorithms and of the greedy approximations ũr

2 and ũr
w of the reference solution uref for both norms.

We observe (as for the lower-dimensional example) that for both norms, with different values of the parameter
δ (up to 0.9), the A-IMR method provides a better approximation of the solution in comparison to the CMR
method. When decreasing δ, the proposed algorithm seems to provide approximations that tend to present the
same convergence as the greedy approximations ũr

2 and ũr
w.

8.4.2. Study of the greedy algorithm for Λδ

Now, we study the behavior of the updated greedy algorithm described in Section 6.2.2 for the computation of
an approximation yk

m = Λδ(rk) of the residual rk during the gradient-type algorithm. Here, we use the particular
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Table 4. Computation of Λδ(rk) for different precisions δ and at different steps k of the
gradient-type algorithm (first iteration r = 1 of the greedy approach with SX = R1). The
table indicates the number of greedy corrections computed for reaching the precision δ using
the heuristic stopping criterion (6.5) with p = 20.

Canonical 2-norm ‖ · ‖2 Weighted 2-norm ‖ · ‖w

k\δ 0.9 0.5 0.2 0.05 0.01 0.9 0.5 0.2 0.05 0.01
1 1 1 3 6 14 3 12 53 65 91
2 1 3 5 13 24 2 11 49 62 91
3 1 3 5 12 17 3 12 49 62 91
4 1 3 5 13 26 3 12 53 62 91
5 1 3 6 12 24 2 11 47 65 89
6 1 3 5 13 27 3 11 42 63 88
7 1 3 5 12 27 3 10 50 65 88
8 1 3 5 12 26 3 10 49 60 87
9 1 3 6 12 26 3 13 49 65 80

strategy which consists in updating functions associated to each dimension μ ∈ I = {2, . . . , 10} (steps (2) and
(3) are performed 9 times per iteration). The update of functions associated with the first dimension is not
performed since it would involve the expensive computation of approximations in a space Zk

m with a large
dimension mN .

In Table 4, we summarize the required number of greedy corrections needed at each iteration of the gradient
type algorithm for reaching the precision δ with the heuristic stagnation criterion (6.5) with p = 20. As for
the previous lower-dimensional test case, the number of corrections increases as δ decreases and is higher for
the weighted norm than for the canonical norm. However, we observe that this number of corrections remains
reasonable even for small δ.

8.4.3. Estimation of a quantity of interest

Finally, we study the quality of the low rank approximations ũ obtained with both CMR and A-IMR algo-
rithms for the canonical and weighted norms. To this end, we compute the quantity of interest Q(ũ) defined
by (8.7). Figure 11 illustrates the convergence with the rank of the variance of the approximate quantities of
interest. Note that the algorithm do not guarantee the monotone convergence of the quantity of interest with
respect to the rank, that is confirmed by the numerical results. However, we observe that the approximations
provided by the A-IMR algorithm are better than the ones given by the CMR, even for large δ. Also, when
using the weighted norm in the A-IMR algorithm, the quantity of interest is estimated with an better precision.
Similar behaviors are observed for the convergence of the mean.

9. Conclusion

In this paper, we have proposed a new algorithm for the construction of low-rank approximations of the
solutions of high-dimensional weakly coercive problems formulated in a tensor space X . This algorithm is
based on the approximate minimization (with a certain precision δ) of a particular residual norm on given
low-rank tensor subsets SX , the residual norm coinciding with some measure of the error in solution. Therefore,
the algorithm is able to provide a quasi-best low-rank approximation with respect to a norm ‖ · ‖X that can
be designed for a certain objective. A weak greedy algorithm using this minimal residual approach has been
introduced and its convergence has been proved under some conditions. A numerical example dealing with
the solution of a stochastic partial differential equation has illustrated the effectivity of the method and the
properties of the proposed algorithms. Some technical points have to be addressed in order to apply the method
to a more general setting and to improve its efficiency and robustness: the development of efficient solution
methods for the computation of residuals when using general norms ‖ · ‖X (that are not induced norms in the
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Figure 11. Relative error with respect to the variance of the reference solution Q(uref) with
the canonical (left) and weighted (right) norms.

tensor space X), the introduction of robust error estimators during the computation of residuals (for the robust
control of the precision δ, which is the key point for controlling the quality of the obtained approximations), the
application of the method for using tensor formats adapted to high-dimensional problems (such as Hierarchical
formats). Also, a challenging perspective consists in coupling low-rank approximation techniques with adaptive
approximations in infinite-dimensional tensor spaces (as in [3]) in order to provide approximations of high-
dimensional equations (PDEs or stochastic PDEs) with a complete control on the precision of quantities of
interest.
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[17] A. Falcó and A. Nouy, Proper generalized decomposition for nonlinear convex problems in tensor banach spaces. Numer. Math.
121 (2012) 503–530.
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